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Abstract: This paper considers the problem of estimating the states in an unobservable power system,
where the number of measurements is not sufficiently large for conventional state estimation. Existing
methods are either based on pseudo-data that is inaccurate or depends on a large amount of data that
is unavailable in current systems. This study proposes novel graph signal processing (GSP) methods
to overcome the lack of information. To this end, first, the graph smoothness property of the states
(i.e., voltages) is validated through empirical and theoretical analysis. Then, the regularized GSP
weighted least squares (GSP-WLS) state estimator is developed by utilizing the state smoothness.
In addition, a sensor placement strategy that aims to optimize the estimation performance of the
GSP-WLS estimator is proposed. Simulation results on the IEEE 118-bus system show that the GSP
methods reduce the estimation error magnitude by up to two orders of magnitude compared to
existing methods, using only 70 sampled buses, and increase of up to 30% in the probability of bad
data detection for the same probability of false alarms in unobservable systems The results conclude
that the proposed methods enable an accurate state estimation, even when the system is unobservable,
and significantly reduce the required measurement sensors.

Keywords: graph signal processing (GSP); power system state estimation (PSSE); network
observability; sensor allocation

1. Introduction

Power system state estimation (PSSE) is a critical component of modern energy man-
agement systems (EMSs) for multiple purposes, including monitoring, analysis, security,
control, and management of the power delivery [1]. The PSSE is conducted using topologi-
cal information, power measurements, and physical constraints to estimate the voltages
(states) at the system buses. The performance and reliability of the PSSE largely depend
on the availability and the quality of the measurements [2]. However, there are various
realistic scenarios where the system is partially observable (also named in the literature as
unobservable) ([1] Chpter 4, [3–5]), that is, the number of sensors is not sufficiently large,
or sensors are not well placed in the network. The observability of the system may be com-
promised due to communication errors, topology changes, sensor failures [1], malicious
attacks [6–8], and electrical blackouts [9]. A direct implication of system unobservability is
that conventional estimators that assume deterministic states, such as the commonly used
weighted least squares (WLS) estimator, can no longer be used since they are inaccurate,
inconsistent, and may have large estimation errors even in the absence of noise [3,10].
Therefore, developing new estimation methods that enable the full functionality of systems
without requiring observability is crucial for reliable operation of the power grid.

State estimation in partially observable systems must incorporate additional prop-
erties or information beyond the power flow equations in order to obtain a meaningful
estimation. Most existing approaches are two-step solutions that first produce additional
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pseudo-measurements, e.g., based on short-term load forecasting, to make the system
observable, and then estimate the states using an existing technique [11–14]. However,
pseudo-measurements do not contain real-time data, and thus result in an inaccurate esti-
mation. Dynamic state estimation utilizes measurements at different time points [14,15],
but needs fast scan rates to capture the dynamics, and is also based on restrictive stationary
system assumptions [14]. PSSE that uses data from smart meters and phasor measure-
ment units (PMUs) to overcome observability issues [10,16–18] is usually inapplicable, due
to the limited deployment of these sensors [19], and their initial installment cost [20,21].
Sparse signal recovery methods [5] use matrix completion to estimate the states under low
observability conditions. However, to employ the matrix completion framework, the mea-
surements matrix should be low-rank. Unfortunately, this assumption is system-dependent
and does not always hold, due to, e.g., the spatial correlation between loads at neighbor-
ing buses. Deep learning techniques have recently been used for pseudo-measurement
generation, and for the reconstruction of missing data for PSSE [19,22,23]. However, these
techniques heavily depend on the availability of numerous high-quality event labels that
are rarely available in practice [24,25]. In addition, some of these methods do not utilize
the physical model [19], which may result in poor performance in practice.

Concepts from graph theory and graphical models have been used in power systems
for sensor placement [26], topology identification [27–29], state estimation [6,30,31], anal-
ysis [32,33], and optimal power flow calculation [34,35]. However, the graphical model
methods assume a specific statistical structure, which does not necessarily apply in power
systems, and often do not use the physical models, which may result in poor performance
in practice. GSP is an emerging field that extends concepts and techniques from traditional
digital signal processing (DSP) to data on graphs [36–39]. Recent works have proposed the
integration of GSP in power systems, such as the application of the GSP framework for the
power grid with PMU data in [40], the spectral graph analysis of power flows in [35], and
attack detection by GSP in [7,41,42]. For unobservable power systems, the authors of [43]
investigate the use of GSP methods for dynamic state estimation in unobservable systems
based on PMUs and advanced metering infrastructures (AMIs) under the assumption
of bandlimited graph signals. However, state estimation without full observability that
does not depend on PMUs and AMIs using GSP tools has not been demonstrated before.
Therefore, using GSP tools has a great potential for overcoming the lack of information in
state estimation without full observability.

This research develops new GSP methods for state estimation in power systems based
on interpreting the voltage signals (phases and magnitudes) as graph signals. First, it is
shown empirically and analytically that the states for static PSSE, i.e., voltages, are smooth
graph signals with respect to the nodal admittance matrix, which is a Laplacian matrix
in the graph representation of the network. Second, a GSP-WLS estimation method is
developed for PSSE in the direct current power flow (DC-PF) model that uses the graph
smoothness of the states and does not require the full observability of the network. Next,
a new approach for sensor placement is introduced in order to optimize the estimation
performance obtained by the GSP-WLS estimator. Finally, the proposed estimation method
is extended to the more realistic alternating current power flow (AC-PF) model by develop-
ing a regularized Gauss–Newton method for PSSE that uses the smoothness of the voltage
phases and magnitudes. The simulations show that the proposed methods can accurately
estimate voltage phases and magnitudes, and detect bad data under conditions of low
observability, where standard methods cannot (or display poor performance).

The aim of this paper is to establish a GSP framework for state estimation, sensor
allocation, and bad data detection in partially observable systems. The key novelties are
as follows:

• It is demonstrated that the voltages in the power system can be represented as smooth
graph signals, where the graph Laplacian is the admittance matrix. This result can
serve as a foundation for developing new GSP tools for other power systems applica-
tions in future research.
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• New state estimation methods for PSSE in both DC-PF and AC-PF models are devel-
oped. These methods use the graph smoothness of the states, and do not require the
full observability of the network. While regularization using the Laplacian quadratic
form has been applied in various applications, such as image processing [44,45], prin-
cipal component analysis (PCA) [46], data classification [47,48], and semisupervised
learning on graphs [49,50], it has not been conducted before in the context of unobserv-
able power systems. Additionally, the nonlinear measurement equations in the AC-PF
model present a new challenge from a GSP perspective, requiring the incorporation
of graphical information in the form of Laplacian regularization into the iterative
method. As such, these state estimation methods contribute to the expansion of the
GSP toolbox for a wide range of applications.

• A new approach for sensor placement is introduced to optimize the estimation perfor-
mance. As the mean squared error (MSE) of the estimator depends on the unknown
state vector, the minimization of the Cramér–Rao bound (CRB) is utilized instead.
This results in a novel approach that can potentially be applied to other applications
in the future.

• Numerical simulations on the IEEE 118-bus system are used to validate the merit of
the new estimators and the new sensor placement method under different setups,
compared to existing pseudo-measurement and matrix completion techniques.

The rest of this paper is organized as follows. In Section 2, the GSP background is
introduced, as well as the model, and the conventional estimation approach. In Section 3,
the GSP properties of the states are studied. In Section 4, the GSP-WLS state estimator is
derived for the DC-PF model and a sensor placement method. In Section 5, the proposed
estimation method to the AC-PF model is extended by deriving the regularized Gauss–
Newton method. A simulation study is presented in Section 6, and the discussion and
conclusions are provided in Section 8.

2. Background and Model

A power system can be represented as an undirected weighted graph, where the nodes
and the edges of the graph are the grid buses and transmission lines, respectively. This
section begins with background on the theory of GSP in Section 2.1. Then, the considered
power flow measurement model, as well as the state estimation and network observability
for this model, are presented in Section 2.2.

In the rest of this paper, vectors and matrices are denoted by boldface lowercase letters
and boldface uppercase letters, respectively. The notations (·)T , (·)−1, (·)†, and Tr(·) denote
the transpose, inverse, Moore–Penrose pseudo-inverse, and trace operators, respectively.
The mth element of the vector a and the (m, q)th element of the matrix A are denoted by am
and Am,q, respectively. Similarly, AS1,S2 denotes the submatrix of A, the rows and columns

of which are indexed by the sets S1 and S2, where AS
4
= AS ,S , and aS is a subvector of a

containing the elements indexed by S . The cardinality of the set S is denoted by |S|. The
gradient of a vector function g(x) ∈ RK with respect to x ∈ RM, ∂g(x)

∂x , is a matrix in RK×M,

with the (k, m)th element equal to ∂gk
∂xm

. The matrices I and 0 denote the identity matrix and
the zero matrix with appropriate dimensions, respectively, and || · || denotes the Euclidean
l2-norm.

2.1. Background: GSP Framework

Let G(V , ξ) be a general undirected weighted graph, where V = {1, . . . , N} and
ξ = {1, . . . , P} are the sets of nodes and edges, respectively. The matrix W ∈ RN×N is the
weighted adjacency matrix of the graph G(V , ξ), where Wk,n denotes the weight of the edge
between node k and node n. It is assumed that Wk,n ≥ 0 and that Wk,n = 0 if no edge exists
between k and n. The graph Laplacian matrix is defined as
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Lk,l =


N

∑
n=1

Wk,n, k = l

−Wk,l , otherwise
, k, l = 1, . . . , N. (1)

The Laplacian matrix is a positive semidefinite matrix with the eigenvalue decomposition

L = VΛVT , (2)

where the columns of V are the eigenvectors of L, VT = V−1, and Λ is a diagonal matrix
consisting of the ordered eigenvalues of L: 0 = λ1 < λ2 ≤ . . . ≤ λN . By analogy to signal
frequency in DSP, the Laplacian eigenvalues can be interpreted as the graph frequencies
that, together with the eigenvectors in V, define the spectrum of the graph G(V , ξ) [37].

A graph signal is a function that assigns a scalar value to each node, and thus, is an
N-dimensional vector. The graph Fourier transform (GFT) of a graph signal a with respect
to the graph G(V , ξ) is [37]

ã , V−1a. (3)

Similarly, the inverse GFT is obtained by left multiplication of a vector by V. The
Dirichlet energy of a graph signal, a, is defined as

EL(a)
4
= aTLa =

1
2

N

∑
k=1

N

∑
n=1

Wk,n
(
ak − an

)2
=

N

∑
k=1

λk ã2
k , (4)

where the second equality is obtained by substituting (1), and the last equality is obtained
by substituting (2) and (3). The Dirichlet energy is a smoothness measure, which is used to
quantify the variability encoded by the graph weights [37]. A graph signal, a, is smooth if

EL(a) ≤ ε, (5)

where ε is small in terms of the specific application [37]. It can be seen that the smoothness
condition in (5) requires connected nodes to have similar values (according to (4)), and
forces the graph spectrum of the graph signal to be concentrated in the small eigenvalues
region (according to (4)).

A graph filter applied on a graph signal is a linear operator that satisfies [51]

aout = Vdiag(ψ(λ1), . . . , ψ(λN))VTain, (6)

where aout and ain are the output and input graph signals, diag(a) is a diagonal matrix in
which the (n, n)th entry is an, and ψ(λn) is the graph filter frequency response at the graph
frequency λn, n = 1, . . . , N. Low-pass graph filters of order K are defined as follows [52].

Definition 1. The graph filter in (6) is a low-pass graph filter of order K with a cutoff frequency at
λK if ηK < 1, where

ηk
4
=

max{|ψ(λk+1)|, . . . , |ψ(λN)|}
min{|ψ(λ1)|, . . . , |ψ(λk)|}

, k = 1, . . . , N − 1. (7)

This definition implies that if ηK < 1, then most of the energy of the graph filter is
concentrated in the first K frequency bins of the graph filter [52]. Upon passing a graph
signal through Vdiag(ψ(λ1), . . . , ψ(λN))VT , the high-frequency components (related to
graph frequencies greater than λK) are attenuated relative to the low-frequency components
(related to graph frequencies lower than λK). Accordingly, as long as the input of the filter
is a “well-behaved” excitation, and does not possess strong high-pass components, the
output signal is a K-low-pass graph signal [52], and thus, a smooth graph signal for small K
as defined in (5).
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2.2. DC-PF Model: State Estimation and Observability

A power system is a network of buses (generators or loads) connected by transmission
lines that can be represented as an undirected weighted graph, G(V , ξ), where the set
of nodes, V , is the set of N buses, and the edge set, ξ, is the set of P transmission lines
between these buses. The set of all sensor measurements is denoted byM, which includes

M
4
= 2P + N active power measurements at the N buses and at the bi-directional P

transmission lines. According to the π-model [1], each transmission line, (k, n) ∈ ξ, which
connects buses k and n, is characterized by an admittance value, Yk,n.

The active power and the voltages obey multivariate versions of Kirchhoff’s and
Ohm’s laws that result in the nonlinear equations of the AC-PF model (see Section 5). In
order to analyze the GSP properties and to simplify the presentation of the new methods,
first these equations are approximated using the DC-PF model [1], in which the states are
the voltage angles. Therefore, we consider first a DC-PF model with the following noisy
measurements of the active power [1]:

z = Hθ+ e, (8)

where

• z = [z1, . . . , zM]T ∈ RM is the active power vector.
• θ = [θ1, . . . , θN ]

T ∈ RN is the system state vector, where θn is the voltage angle at bus
n. In low-observability systems, it is more convenient to delay the assignment of the
reference angle (p. 165 in [2]). Thus, θ includes the angle of the reference bus.

• e ∈ RM is zero-mean Gaussian noise with covariance R.
• H ∈ RM×N is the measurements matrix, which is determined by the topology of the

network, the susceptance of the transmission lines, and the meter locations [6]. In
particular, the N rows of H associated with the meters on the buses that measure the
total power flow of the transmission lines connected to these buses together create the
nodal admittance matrix B (e.g., see p. 97 in [2]) with the following (k, l)-th element:

Bk,l =


∑

n∈Nk

−bk,n, k = l

bk,l , (k, l) ∈ ξ

0, otherwise

, ∀k, l = 1, . . . , N, (9)

where Nk is the set of buses connected to bus k and bk,n < 0 is the susceptance of
(k, n) ∈ ξ, i.e., bk,n equals the imaginary part of Yk,n.

The goal of DC-PF PSSE is to recover the state vector, θ, from the measurement vector,
z, for various monitoring purposes [1,31]. Since θ also includes the reference bus, without
loss of generality, the angle of bus 1 (the reference bus) is set to be θ1 = 0. The PSSE in this
case is implemented using the following WLS estimator [1]:

θ̂WLS = arg min
θ∈RN

(z−Hθ)TR−1(z−Hθ)

such that θ1 = 0.
(10)

The solution of (10) is {
θ̂WLS
V̄ = Kz

θ̂WLS
1 = 0

, (11)

where
K
4
= (HT

M,V̄R−1HM,V̄ )
−1HT

M,V̄R−1 (12)

and V̄ 4= V \ 1 is the set of all buses except the reference bus.
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For state estimation to be feasible, one needs to have enough measurements such
that the system state can be uniquely determined by the WLS estimation approach. This
observability requirement, before the assignment of reference angles, can be defined by one
of the following (p. 165 in [2]).

Definition 2. Assume the DC-PF model from (8). The network is observable if any matrix that
is obtained from H by deleting one of its columns has a full column rank of N − 1. Alternatively,
the network is observable if the following holds: Hθ = 0 if, and only if, θ = α1, where α is an
arbitrary scalar.

In particular, since according to Definition 2, HM,V̄ has full column rank for an
observable system, observability ensures that HT

M,V̄R−1HM,V̄ is nonsingular, and the WLS
estimator from (11) and (12) is well-defined for any observable network. Definition 2
implies the following corollary:

Corollary 1. The network is unobservable if the conditions in Definition 2 are not satisfied.

In practice, however, network observability is not always guaranteed. In such cases,
the WLS estimator from (11) cannot be implemented. Even for observable systems, errors
and outliers may have a disastrous effect on the state estimation. In the following, it
is shown that incorporating graphical information using GSP tools improves the state
estimation performance and enables estimation even in partially observable systems.

3. GSP Properties of the States

The power system can be represented as an undirected weighted graph, G(V , ξ), as
described at the beginning of Section 2.2. In this context, the state vector, θ ∈ RN , and the
subvector of z from (8) that contains the N active power injection measurements at the N
buses, denoted as zbus, can be interpreted as graph signals. In this graph representation, the
nodal admittance matrix from (9) is a Laplacian matrix:

L = B. (13)

In this section, the graph low-pass nature and the smoothness of the state vector is
established in power systems under normal operation conditions, and where the Laplacian
matrix is set to be the nodal admittance matrix, as defined in (13). That is, using the
smoothness defined in (4) and (5), we show that

EL(θ) = θTLθ ≤ ε, (14)

where ε is small relative to the other parameters in the system. These results are consistent
with the low-pass graph nature of the complex voltages described in [40]. It can be seen
from (14) that the smoothness property depends on the system states and the network
topology. The lack of measurements does not change the physical behavior; therefore, the
smoothness property is not affected by the system observability.

3.1. Theoretical Validation—Output of a Low-Pass Graph Filter

First, we show analytically that the state vector is a low-pass graph signal. By substitut-
ing (13) in the model in (8), after taking only the power injection measurements, one obtains

zbus = Lθ+ ebus, (15)

where ebus contains the elements of the noise vector, e, that are related to the N power
measurements at the N buses. Equation (15) implies that since L is a Laplacian matrix, it
satisfies L1 = 0 [53], where 1 is a vector of ones with appropriate dimensions. Therefore,
the states can be recovered from (15) up to a constant shift, which can be written as
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θ = L†(zbus − ebus) + c11 = VΛ†VT(zbus − ebus) + c11, (16)

where c1 is an arbitrary constant that represents the constant invariant property of the state
vector [1], and the last equation is obtained by substituting (2). Without loss of generality,
the value of c1 is set to be

c1 = c21T(zbus − ebus), (17)

where c2 is an arbitrary constant. Using (17) and the definition of the pseudo-inverse opera-
tor, the model in (16) can be written as the following linear graph filter input–output model:

θ = Vdiag(ψ(λ1), . . . , ψ(λN))VT(zbus − ebus), (18)

where

ψ(λn) =

{ 1
λn

, n = 2, . . . , N
Nc2, n = 1

. (19)

That is, θ is an output of a graph filter with the graph frequency response in (19). This
representation holds under the assumption that the network is connected. Therefore, λ1 is
the only zero eigenvalue of L with the eigenvector 1√

N
1 [53].

Since the eigenvalues of L are ordered, 0 = λ1 < λ2 ≤ λ3 ≤ . . . ≤ λN , it can be seen
that the graph frequency response in (19) decreases as n increases, as long as c2 > 1

Nλ2
. By

substituting (19) in (7), one obtains

ηk =

{
λk

λk+1
, 2 ≤ k ≤ N − 1

1
Nc2λ2

, k = 1
, (20)

where ηk < 1, k = 2, . . . , N − 1. Choosing c2 >> 1
Nλ2

implies that η1 << 1. Hence,
according to Definition 1, Vdiag(ψ(λ1), . . . , ψ(λN))VT in (18) is a graph low-pass filter of
any order K ≥ 1. Since zbus in (16) includes the generated powers and loads, it can be
assumed to be random [54,55], and thus, the input signal, zbus − ebus, does not possess
strong high-pass components. Hence, as explained after Definition 1, the state vector θ is a
first-order low-pass graph signal, and a smooth graph signal, as defined in (14).

3.2. Experimental Validation in IEEE Systems

In the following, the smoothness of the state signal is demonstrated in the graph
frequency domain for the IEEE test case systems [56]. We also demonstrate the smoothness

of the voltage magnitude vector, v
4
= [|v1|, . . . , |vN |]T , which can be interpreted as graph

signals, which will be used in Section 5. Figure 1 compares the normalized state vector, θ
||θ|| ,

and its GFT (calculated using (3)), θ̃
||θ̃|| , versus bus or spectral indices, for the IEEE 118-bus

system [56]. Similarly, Figure 2 presents the normalized voltage magnitude vector, v
||v|| , and

its GFT, ṽ
||ṽ|| , and Figure 3 presents the normalized power vector, zbus

||zbus||
, and its GFT, z̃bus

||z̃bus||
.

For the sake of clarity, the vectors in Figures 1–3 have been decimated by a factor of 3.
It can be seen that most of the energy of the state signal, i.e., the phases (Figure 1) and

the magnitudes (Figure 2) of the voltages, is concentrated in the low graph frequencies
region. Accordingly, it can be concluded that the state vector and the voltage magnitude
vector are smooth graph signals in the sense of (4). In contrast, the energy of the power in-
jection measurement vector (Figure 3) is uniformly distributed across all graph frequencies.
Thus, the power signal cannot be considered to be smooth. Similar results were obtained
for other IEEE systems.
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Figure 1. The state vector (top) and its GFT (bottom) for the IEEE 118-bus system.
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Figure 2. The voltage magnitude vector (top) and its GFT (bottom) for the IEEE 118-bus system.

0

0.5

20 40 60 80 100

0

0.5

20 40 60 80 100

Figure 3. The active power measurement vector (top) and its GFT (bottom) for the IEEE 118-bus system.

Next, we validate experimentally that the states, θ, and the magnitudes, v, are sig-
nificantly smoother than the power vector, zbus, by comparing their normalized Dirichlet
energy for typical IEEE systems, as shown in Table 1. The values of the nodal admittance
matrix, B = L, the voltages, and the power data are taken from [56]. It can be seen that
the phases and magnitudes are much smoother than the power injection vectors. This
result is reasonable, since the phase differences between connected buses are small under
normal conditions and the magnitudes are approximately constant [31], while the power
may be very different, since each generator/load injects different amounts of power into
the system.
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Table 1. Normalized smoothness values of IEEE systems.

Measure
IEEE Test Case System

14-Bus 30-Bus 57-Bus 118-Bus 300-Bus
EL(θ)
||θ||2 0.6617 0.3015 0.3714 1.1740 1.2371
EL(v)
||v||2 0.0036 0.0022 0.008 0.0082 0.0199
EL(zbus)
||zbus||2

16.4079 18.3307 50.8035 56.1047 138.8024

4. GSP-WLS Estimator in DC-PF Model

The recovery of smooth graph signals by incorporating regularization terms has been
well studied in the GSP literature [51,57] and in the context of Laplacian regularization [58,59].
In this section, we cast the state estimation problem as a regularized graph signal recovery
problem. In particular, we exploit the smoothness of the state vector, established in Section 3,
to develop the smoothness-based regularized GSP-WLS estimator of the states in Section 4.1.
The properties of the proposed approach are discussed in Section 4.2, where the main
advantage is that it does not require system observability. In Section 4.3, an estimator of the
missing power data is introduced as a by-product of this approach. Finally, in Section 4.5, a
sensor allocation policy that aims to optimize the performance of the GSP-WLS estimator
is designed.

4.1. GSP-WLS Estimator for the Partial Measurement Model

In the following, the case where only partial observations of the signal z from (8) are
available over a subset of sensors fromM is considered, where this subset is denoted by
S and S ⊆ M. A sensor at a particular location provides one row in the measurements
matrix, H. Therefore, based on the model in (8), the partial measurement vector can be
written as

zS = HS ,Vθ+ eS . (21)

Since eS contains the elements of the noise vector, e, of the set of available measure-
ments, S , it is a zero-mean Gaussian noise vector with a covariance matrix RS . If the
columns of HS ,V after deleting one column are linearly dependent, then, from Corollary 1,
the new model in (21) with HS ,V is not fully observable. In this partially observable case,
the WLS estimator for the model in (21) cannot be developed via a similar strategy to that
in (10) and (11) , since, according to Definition 2, the state, θ, cannot be uniquely (up to a
constant) determined from (21).

As a result, we need to incorporate additional properties beyond the power flow
equations in (21) to obtain a valid state estimation. Here, we propose to recover θ using
the GSP-WLS estimator that incorporates the smoothness constraint from (14). Hence, the
GSP-WLS estimator is defined by

θ̂GSP-WLS=arg min
θ∈RN

(zS −HS ,Vθ)TR−1
S (zS −HS ,Vθ)

such that 1) θ1 = 0 and 2) θTLθ ≤ ε. (22)

Using V̄ = V \ 1, θV̄ is the state vector without the reference bus state, θ1, and LV̄ is the
submatrix of L obtained by removing its first row and column. The smoothness constraint
in (14), after substituting θ1 = 0, can be rewritten as

θT
V̄LV̄θV̄ ≤ ε. (23)

Using the smoothness constraint from (23) and substituting θ1 = 0 in (22), the GSP-
WLS estimator is given by
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θ̂GSP-WLS
V̄ = arg min

θV̄∈RN−1
(zS −HS ,V̄θV̄ )

TR−1
S (zS −HS ,V̄θV̄ )

such that θT
V̄LV̄θV̄ ≤ ε, (24)

and θ̂GSP-WLS
1 = 0. Then, using the Karush–Kuhn–Tucker (KKT) conditions [60], the

minimization problem in (24) can be replaced by the following regularized optimization
problem (e.g., see pp. 17–19 in [61]):

θ̂GSP-WLS
V̄ = arg min

θV̄∈RN−1
{(zS −HS ,V̄θV̄ )

TR−1
S (zS −HS ,V̄θV̄ ) + µθT

V̄LV̄θV̄}, (25)

and θ̂GSP-WLS
1 = 0. The term θT

V̄LV̄θV̄ is a regularization term, which is based on the
smoothness constraint from (23). The parameter µ ≥ 0 is a Lagrange multiplier, which is a
tuning parameter that replaces ε and is discussed in Section 4.2. If the system is not fully
observable based on the sensors at S , then µ should be larger than zero, i.e., µ > 0.

The GSP-WLS estimator from (25) is obtained by equating the derivative of (25) with
respect to θV̄ to zero, which results in [61]{

θ̂GSP-WLS
V̄ = K̃(S , µ)zS

θ̂GSP-WLS
1 = 0

, (26)

where
K̃(S , µ)

4
= (HT

S ,V̄R−1
S HS ,V̄ + µLV̄ )

−1HT
S ,V̄R−1

S . (27)

For a partially observable system, the matrix HT
S ,V̄R−1

S HS ,V̄ is a singular matrix and
the additional term in (27), and µLV̄ with µ > 0 enables the matrix inversion and improves
the numerical stability of the proposed GSP-WLS estimator, since LV̄ has full rank (see
Lemma 1 in [62]).

4.2. Remarks

The main advantage of the proposed GSP-WLS estimator in (26) and (27) is that it does
not require full observability of the system. This estimator is a function of the regularization
parameter, µ ≥ 0. The determination of µ is discussed in Section 6. More strategies to
choose µ are described in the literature (e.g., see Section 1.8 in [61]). The following are
special cases of the proposed GSP-WLS estimator:

1. Full observability: If all sensors are available, then, by substituting S =M and µ = 0
in (27) one obtains that

K̃(M, 0) = K, (28)

where K is defined in (12). Therefore, if S =M, then the GSP-WLS estimator from
(26) with µ = 0 coincides with the WLS estimator, θ̂WLS, from (11).

2. Large µ: At the other extreme, for µ → ∞, the coefficient matrix from (27) satisfies
limµ→∞ K̃(S , µ) = 0. Thus, in this case, the GSP-WLS estimator from (26) satisfies
θ̂GSP-WLS → 0. This zero estimator can be interpreted as the a priori state estimator,
which does not use the observations. Thus, taking too large a value of µ is unhelpful.

3. Relation with the pseudo-measurement WLS (pm-WLS) estimator: The pm-WLS
estimator for systems that are not fully observable is based on generating pseudo-
measurements of typical power injection/consumption values from historical
data [1,24]. In this case, the received measurements are processed together with
a priori estimated (predicted) states (without the reference bus), θ̂prior ∈ RN−1, which
are assumed to have the error covariance matrix, Rprior ∈ R(N−1)×(N−1). The pm-WLS
estimator is the maximum a posteriori state estimator [11]:{

θ̂
(pm-WLS)
V̄ = K1zS + K2θ̂prior

θ̂1 = 0
, (29)
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where

K1 = (HT
S ,V̄R−1

S HS ,V̄ + R−1
prior)

−1HT
S ,V̄R−1

S (30)

K2 = (HT
S ,V̄R−1

S HS ,V̄ + R−1
prior)

−1R−1
prior. (31)

It can be seen that if θ̂prior = 0 and R−1
prior = µLV̄ , then K1 = K̃(S , µ) and the pm-

WLS estimator in (29) coincides with the GSP-WLS estimator in (26). Therefore, the
proposed GSP-WLS estimator can be interpreted as a special case of the pm-WLS
estimator, where the GSP theory provides a mathematical strategy to determine the
pseudo-data information. Moreover, in general, the GSP-WLS estimator only requires
setting a single scalar parameter, µ, compared with the pm-WLS estimator, which
requires setting both Rprior and θ̂prior.

4.3. Estimation of Missing Power Measurements

An important by-product of the GSP-WLS estimator is the following method for
reconstructing the missing data of active power measurements. In the partially observable
system, we have measurements obtained from the set of sensors, S , which is given by zS .
Our goal in this subsection is to recover the other measurements that are included in the
vector zM\S . Based on the model in (8) (similar to (21)), the measurement vector of the
partially observable system can be written as

zM\S = HM\S ,Vθ+ eM\S , (32)

where eM\S is a zero-mean noise vector with a covariance matrix RM\S . By substituting
the GSP-WLS estimator from (26) in (32) and removing the noise term, the following
WLS-type estimator of the missing power measurements is obtained:

ẑM\S = HM\S ,V θ̂GSP-WLS. (33)

By recovering the lost power data, the EMS can also monitor the unobservable part of
the system [63].

4.4. Detection of Bad Data in Unobservable Systems

State estimators can also be used for bad data detection by plugging it into any
detector that is based on a state estimator. In particular, in this paper, the following bad
data detection methods that are based on a general estimator θ̂ can be used with the
new estimator:

• Largest normalized residual test (LNR) [1]:

1
σ2 ‖zS −Hν,S θ̂‖∞

H1
≷
H0

τ, (34)

where the infinity norm of a vector a is defined by ‖a‖∞ = maxi |ai|.
• J(θ) test with R = σ2I [1]:

J(θ̂) =
1
σ2 (zS −Hν,S θ̂)T(zS −Hν,S θ̂)

H1
≷
H0

τ. (35)

• The GFT-based detector from [7] that was developed for the detection of false data
injection (FDI) attacks. The GFT-based detection scheme calculates the GFT of an esti-
mated grid state, θ̂, and filters the graph’s high-frequency components. By comparing
the maximum norm of this outcome with a threshold, it can detect the presence of
FDI attacks.
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In both (34) and (35), τ denotes a chosen threshold, and H0 and H1 denote the hy-
potheses of good/bad data, respectively.

Then, the proposed estimator from (26) can be used for bad data detection by plugging
it into the detectors that are based on a state estimator; that is, by substituting θ̂ = θ̂

GSP-WLS

in the LNR test from (34), the J(θ) test from (35), and the GFT-based detector from [7].

4.5. Optimization of the Sampling Policy

Sensor locations have a significant impact on the estimation performance of power
systems [64]. Therefore, in this subsection, we design a sensor allocation policy for
the model in (21) that aims to minimize the MSE of the GSP-WLS estimator,
MSE(θ̂) = E[(θ̂− θ)T(θ̂− θ)]. However, it can be shown that the MSE of θ̂GSP-WLS is
a function of the unknown state vector, θ, and thus, cannot be used as an objective function
for the optimization of the sensor locations. Therefore, the MSE is replaced by the CRB [65],
which is a lower bound on the MSE.

In this subsection, we treat the MSE, bias, and CRB of the vector θV̄ (without the
reference bus for the sake of simplicity). By substituting θ1 = 0 in the model in (21), one
obtains that the partial measurement vector obtained from a sensor subset S is a Gaussian
vector with mean HS ,V̄θV̄ and covariance RS :

zS ∼ N (HS ,V̄θV̄ , RS ). (36)

The CRB for this Gaussian vector, which is a lower bound on the MSE, is given by (pp.
45–46 in [65])

CRB(S) 4= Tr

((
I +

∂b(S)
∂θV̄

)
(HT
S ,V̄R−1

S HS ,V̄ )
†
(

I +
∂b(S)

∂θV̄

)T
)

, (37)

where b(S) 4= E[θ̂V̄ − θV̄ ] is the bias of the estimator and ∂b(S)
∂θV̄

is its gradient. Using
the model in (21) and the estimator in (26), it can be seen that the bias of the GSP-WLS
estimator is

b(S) = E[θ̂GSP-WLS
V̄ − θV̄ ] = K̃(S , µ)HS ,V̄θV̄ − θV̄ , (38)

where K̃(S , µ) is defined in (27). Accordingly, the gradient of (38) with respect to θV̄ is

∂b(S)
∂θV̄

= K̃(S , µ)HS ,V̄ − I. (39)

By substituting (39) in (37), we obtain that the CRB on the MSE of estimators with the
GSP-WLS bias is given by

CRB(S) = Tr
(

K̃(S , µ)HS ,V̄ (H
T
S ,V̄R−1

S HS ,V̄ )
†
HT
S ,V̄ K̃T(S , µ)

)
. (40)

By substituting (27) in (40) and using the pseudo-inverse property, A = AA†A, one obtains

CRB(S) = Tr
(
K̃(S , µ)RS K̃T(S , µ)

)
. (41)

The CRB in (41) is not a function of the unknown state vector, θ, and thus can be used as
an optimization criterion for choosing the sensor locations. We assume a constrained quantity
of sensing resources, e.g., due to a limited energy and communication budget. Therefore, the
problem of the selection of sensor locations with only q̃ sensors can be written as follows:

Sopt = arg min
S⊂M

CRB(S) s.t. |S| = q̃ = arg min
S⊂M

(
K̃(S , µ)RS K̃T(S , µ)

)
s.t. |S| = q̃, (42)

where the last equality is obtained by substituting (41).
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It is assumed that in the measured buses, all the relevant power measurements are
given. Thus, S is uniquely determined by the buses chosen for the measurements. For
the sake of simplicity, in the optimization approach, we take HV ,V̄ = LV ,V̄ and replace the
selection of q̃ sensors by the selection of q buses. Therefore, by substituting HV ,V̄ = LV ,V̄ , the
problem in (42) is replaced by the problem of selecting the optimal buses in the CRB sense.
However, finding the set of q locations among all the N buses with the smallest CRB is a
combinatorial optimization with a computational complexity of (N

q ), which is practically
infeasible. Therefore, we propose a greedy algorithm, Algorithm 1, for the practical
implementation of the sampling scheme. The idea behind this algorithm is to iteratively
add to the sampling set those buses that lead to the minimal CRB. In addition, Figure 4
illustrates the data flow diagram of this greedy algorithm for selecting the measured buses.

Figure 4. Flow of the proposed GSP greedy selection of the measured buses (Algorithm 1).

Algorithm 1 Greedy selection of the measured buses
Input:
(1) Laplacian matrix, L, and noise covariance matrix, R
(2) Number of buses with sensors, q
(3) Regularization parameter, µ
Output: Subset of q buses, S

1: Initialize the bus subset S (0) = ∅ and the iteration, i = 0
2: while i < q do
3: Update the set of available locations, L = V \ S (i)
4: Find the optimal bus to add:

wopt = arg min
w∈L

Tr({K̃(S (i) ∪ w}, µ)R(S (i)∪w)K̃
T({S (i) ∪ w}, µ)), (43)

where K̃ is defined in (27) with HV ,V̄ = LV ,V̄
5: Update the subset of buses, S (i+1) ← S (i) ∪ wopt, and the iteration, i← i + 1
6: end while
7: Update the chosen subset of buses: S = S (i)

5. Extension to the AC-PF Model

Since the problem of low observability mainly occurs in distribution systems, which
requires AC state estimation, in this section, the GSP-WLS estimator is extended to the AC-
PF model, where voltage magnitudes are estimated as well. In particular, the conventional
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PSSE in the AC-PF model is described in Section 5.1. Then, in Section 5.2, the proposed
iterative regularized Gauss–Newton method that exploits the smoothness property of the
voltage phases and magnitudes in each iteration is presented. In Section 5.3, the properties
of the proposed GSP Gauss–Newton algorithm are discussed.

5.1. Model, State Estimation, and Observability

In the following, we replace the DC-PF model from (8) by the following nonlinear
AC-PF model equations:

z = h(x) + e, (44)

where

• z ∈ RM is the measurement vector that includes the active and reactive branch power
flows and power injections.

• h(x) is the measurement function, which is determined by the sensor types and their
locations in the network.

• x = [θ2, . . . , θN , |v2|, . . . , |vN |]T ∈ R2N−2, is the state vector here, where bus 1 is the
reference bus, and thus, θ1 = 0 and v1 is known (e.g., see Chapter 4 in [1]).

The specific forms and parameters of (44) with different levels of modeling details can
be found, e.g., in Chapter 2 of [1].

Similar to the WLS estimator for the DC-PF model in (10), the AC-PF state estimator is
usually based on minimizing the following WLS objective function:

J(z, h(x), R) = (z− h(x))TR−1(z− h(x)), (45)

with respect to x [1]. The first-order optimality condition for the unconstrained minimiza-
tion problem in (45) is given by

g(x)
4
=

∂J(z, h(x), R)

∂x
= −HT(x)R−1(z− h(x)) = 0, (46)

where H(x)
4
= ∂h(x)

∂x is the Jacobian matrix of h(x) at x. Solving the nonlinear equation
in (46) using the Gauss–Newton method [1,2] results in the following iterative system:

x(i+1) = x(i) + G−1(x(i))HT(x(i))R−1(z− h(x(i))), (47)

where x(i) is the state estimator at the ith iteration and

G(x) = HT(x)R−1H(x) (48)

is the gain matrix. Iterating until convergence, i.e., until ||x(i+1) − x(i)|| ≤ δ, one will obtain
the solution of PSSE.

The observability requirement for the AC-PF model can be defined as follows (see
Chapter 4.6 in [1], Donti et al. [5]).

Definition 3. Assume the AC-PF model from (44). The network is observable if G(x) is a nonsin-
gular matrix for any x in the solution space.

By observing (48), it can be seen that if H(x) has a full column rank of 2N− 2, then the
network is observable in the AC-PF sense. This observability condition should be satisfied
in each iteration of the Gauss–Newton iterative algorithm.

5.2. GSP-Based Gauss–Newton Algorithm

Similar to Section 4, here we consider the case where only partial observations of z
from (44) are available over a subset of sensors S ⊆ M. That is, based on the model in (44),
the partial measurement AC-PF model can be written as
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zS = hS (x) + eS , (49)

where eS is a zero-mean Gaussian noise vector with a covariance matrix RS , as in (21). The
Jacobian matrix of the model in (49) is HS , ¯̄V (x) =

∂hS (x)
∂x , where ¯̄V indicates the set of all the

columns in H(x). If the columns of HS , ¯̄V (x) are linearly dependent, then G(x) is a singular
matrix, and from Definition 3, the new system in (49) is not fully observable. In this case,
the Gauss–Newton iterative procedure for the minimization of (45) cannot be implemented,
since the update of the solution cannot be uniquely determined from (47).

In order to tackle this problem, we incorporate the smoothness constraints from (23)
and from (5) with a = v. Hence, the GSP-WLS estimator for the AC-PF model is defined by

x̂GSP-WLS = arg min
x=[θT

V̄ ,vT ]T∈R2N−2
J(zS , hS (x), RS )

such that 1) θT
V̄LV̄θV̄ ≤ εθ

and 2) (vV̄ − v11)TLV̄ (vV̄ − v11) ≤ εv, (50)

where the function J is defined in (45), and εθ, εv are the tuning parameters of the smooth-
ness of θ and v.

Using the KKT conditions [60], the minimization in (50) can be replaced by the follow-
ing regularized optimization:

x̂GSP-WLS =arg min
x∈R2N−2

Jreg(zS , hS (x), RS , L̄(µθ, µv)), (51)

where

Jreg(z, h(x), R, L̄(µθ, µv))
4
= J(z, h(x), R) + (x− x0)

TL̄(µθ, µv)(x− x0), (52)

L̄(µθ, µv)
4
=

[
µθLν̄ 0

0 µvLν̄

]
, (53)

and x0
4
= [0T , v11T ]T . The right term in (52) is a regularization term, which is based on the

smoothness property of the phases and magnitudes of the voltages, established in Section 3.
The parameters µθ, µv ≥ 0 are Lagrange multipliers that replace εθ, εv as regularization
parameters, and their tuning is discussed in Sections 5.3 and 6.3.

The minimum of the quadratic objective function, Jreg(zS , hS (x), RS , L̄(µθ, µv)), with
respect to x can be determined using the first order optimality conditions as follows:

greg(x)
4
=

∂Jreg(zS , hS (x), RS , L̄(µθ, µv))

∂x
= −HT

S , ¯̄V (x)R
−1
S (zS − hS (x)) + L̄(µθ, µv)(x− x0) = 0. (54)

Then, similar to (47), the nonlinear equation, greg(x) = 0, is solved using the following
Gauss–Newton method iteration:

x(i+1) = x(i) + G−1
reg(x

(i))(HT
¯̄V ,S (x

(i))R−1
S (zS − hS (x(i)))− L̄(µθ, µv)(x(i) − x0)), (55)

where

Greg(x)
4
=

∂greg(x)
∂x

= HT
S , ¯̄V (x)R

−1
S HS , ¯̄V (x) + L̄(µθ, µv) (56)

is the new gain matrix. Solving this equation and iterating until the required accuracy, δ, is
reached, i.e., ||x(i+1) − x(i)|| ≤ δ, one will obtain the proposed GSP-WLS estimator for the
AC-PF model. It can be seen that for a partially observable system, HT

S , ¯̄V (x)R
−1
S HS , ¯̄V (x) is

a singular matrix, and the additional terms in (56), L̄(µθ, µv) from (53) with µθ > 0, and/or
µv > 0, can enable the matrix inversion of Greg(x) and improve the numerical stability
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of the GSP-WLS estimator for the AC-PF model. The iterative solution is summarized
in Algorithm 2. For the initialization, we suggest that one use the “flat start”, where all
bus voltages are 1 per unit and have the same phase [1]. Figure 5 presents the flow of the
iterative regularized Gauss–Newton algorithm through a data flow diagram.

Figure 5. Flow of the proposed regularized Gauss–Newton scheme.

Algorithm 2 Regularized Gauss–Newton (GSP-WLS)
Input:
(1) Laplacian matrix, L, and noise covariance matrix, RS
(2) Tuning parameters: δ, µθ, µv and number of iterations, l
(3) Measurement vector, zS , and the function, hS (·)
Output: State estimator, x̂

1: Initialize the state vector x(0)

2: for i = 0, . . . , l do
3: Calculate the right hand side of (55) for x(i)

4: Solve (55) for x(i+1)

5: if ||x(i+1) − x(i)|| < δ: break
6: end for
7: Update the state vector: x̂ = x(i+1)

5.3. Remarks

In the following, we present special cases of the proposed GSP-WLS estimator for the
AC-PF model implemented by the regularized Gauss–Newton method.

(1) Full observability: If the information from all sensors is available, i.e., if hS (x) = h(x),
then, by substituting µθ = µv = 0 in (55) one obtains that Greg(x) = G(x), where G(x)
and Greg(x) are defined in (48) and (56), respectively. Accordingly, in this case, the Gauss–
Newton iteration of the GSP-WLS estimator in (55) coincides with the Gauss–Newton
iteration in (47).

(2) Relation with the pm-WLS estimator: Similar to the case of the DC-PF model, the
pm-WLS estimator for partially observable systems is calculated based on the measure-
ments and the a priori estimated (predicted) states, x̂prior ∈ R2N−2, with the forecasting
error covariance matrix, Rprior. As a result, the following pm-WLS estimator is obtained [11]:

x̂pm-WLS = arg min
x∈R2N−2

{
J(zS , hS (x), RS ) + (x− x̂prior)

TR−1
prior(x− x̂prior)

}
. (57)

The pm-WLS estimator for the AC-PF model can be calculated with the Gauss–Newton
method [11]. It can be seen that if we substitute x̂prior = x0 and R−1

prior = L̄(µθ, µv), then
the pm-WLS estimator from (57) coincides with the GSP-WLS estimator from (51) and (52).
Hence, similar to the DC-PF model, the proposed GSP-WLS estimator can be interpreted as
a special case of the pm-WLS estimator, where the GSP theory provides the mathematical
justification for the determination of the pseudo-data information.



Sensors 2023, 23, 1387 17 of 27

6. Results

In this section, the performance of the proposed methods is compared with that of
existing methods. In Section 6.2, the performance of the GSP-WLS estimator from Section 4
is evaluated. In Section 6.3, the performance of the regularized Gauss–Newton method
from Section 5 is investigated. The influence of the sampling policy from Section 4.5 is
examined for both cases. In Section 6.4, the use of the new estimator for bad data detection
is demonstrated.

6.1. Simulations Platform and Parameters

All the simulations were performed with Matlab R2020b. The measurements were
generated according to the AC-PF model from (44) with h(·)

h2n−1(x) =
N

∑
k=1
|vn||vk|(Gn,k cos(θn − θk) + Bn,k sin(θn − θk)), n = 1, . . . , N,

h2n(x) =
N

∑
k=1
|vn||vk|(Gn,k sin(θn − θk)− Bn,k cos(θn − θk)), n = 1, . . . , N, (58)

for the real and reactive power injection measurement at bus n and

h2N+2 f (n,k)−1(x) = |vn|2Gn,n − |vk||vn|(Gn,k cos(θn − θk) + Bn,k sin(θn − θk)), ∀n ∈ Nk, k = 1, . . . , N,

h2N+2 f (n,k)(x) = −|vn|2Bn,n − |vn||vk|(Gn,k sin(θn − θk)− Bn,k cos(θn − θk)), ∀n ∈ Nk, k = 1, . . . , N, (59)

for the real and reactive power flow from bus n to bus k measurements ( f (n, k) is a one-to-
one mapping of all (n, k) ∈ ξ to [1, 2P]), where x = [θ2, . . . , θN , |v2|, . . . , |vN |]T ∈ R2N−2 is
the state vector here, bus 1 is the reference bus, and thus θ1 = 0 and v1 is known. The values
of the conductance and the susceptance matrices, B and G, as well as the values of the
voltage angles and magnitudes, were taken from the IEEE 118-bus test case recorded in [56].
This IEEE 118-bus test case represents a simple approximation of the American electric
power system (in the U.S. Midwest) as of December 1962. This IEEE 118-bus system, which
has N = 118 buses and, at most, M = 952 power measurements, contains 19 generators,
35 synchronous condensers, 177 lines, 9 transformers, and 91 loads. Bus number 1 is set
to be the slack bus. Gaussian white noise was added to generate several measurements
from the recorded grid state. In particular, in the simulations described in the following
subsections, the noise covariance matrix is set to R = σ2I, where, unless otherwise stated,
σ2 = 0.01. The performance is evaluated using 1000 Monte Carlo simulations.

We compare the estimation performance of the different estimators implemented for
the following bus selection policies:

(i) Random bus selection policy (rand.)—the measured buses are randomly chosen
independently from {1, . . . , N}, where for more than 72 buses only observable systems
are taken.

(ii) Experimentally designed sampling (E-design) [38]—the buses are chosen to maximize
the smallest singular value of the matrix VS ,{1,...,R}, where R is set to 48. The basic
assumption behind this method (which was suggested in [66] for power systems)
is that the measured graph signal (here, the power signal) is an R-bandlimited sig-
nal in the graph frequency domain. That is, the GFT of zbus satisfies (z̃bus)n = 0,
n = R + 1, . . . , N, where R is the cutoff frequency. As can be seen in Figure 3, in
practice, the R-bandlimitness assumption does not hold for the power signal.

(iii) Minimum CRB (Algorithm 1)—the proposed bus selection policy from Algorithm 1.

It should be noted that the CRB from (37) is not presented in the following simulations,
since it is not the main goal of this study, and in order to increase the interpretability of
the figures.

Figure 6 presents the estimated probability for the system to be observable, according to
Definition 2, versus the number of measured buses. The estimated probability of observability
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is calculated as the percentage of scenarios with observable systems in 100, 000 Monte Carlo
simulations for randomly selected buses in the system. It can be seen that this probability of
observability increases as the number of measured buses increases, and that for fewer than
72 measured buses, the IEEE 118-bus system will not be observable with probability 1.

40 50 60 70 80 90 100 110
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Figure 6. The estimated probability for the IEEE 118-bus system to be observable versus the number
of measured buses.

6.2. State Estimation and Sampling under the DC-PF Model

In this subsection, we evaluate the performance of the following estimators:

1. The pm-WLS estimator from [11], generated with R−1
prior = 0.5I, and where θ̂prior is

randomly chosen from a zero-mean Gaussian distribution with covariance 0.015I.
2. The matrix compilation (mc) method [5], implemented in this subsection by substitut-

ing the DC model from (8) in the constraints of the method in Equations (8) and (12)
in [5].

3. The proposed GSP-WLS estimator (26) and (27) with µ = 0.1.

In Figure 7a,b the MSE of the GSP-WLS, pm-WLS, and mc estimators is presented
versus the number of measured buses, q, and versus 1

σ2 , respectively, with the sampling
policies (i)–(iii). Figure 7b is obtained for q = 48 measured buses, for which the system
is not observable with probability 1. It can be seen that the MSE decreases as q increases
and as σ2 decreases. In both figures, the GSP-WLS estimator outperforms the pm-WLS
and mc estimators for any tested sampling policy. In this case, the performance of the
pm-WLS and the mc estimators is similar, since it can be shown that for the mc estimator,
the rank regularization on θ (see Eq. (13a) in [5]) turns out to be an l2 regularization on
θ− θ̂prior, as in (29), where θ̂prior approaches zero. In addition, it can be seen that the
proposed sampling policy from Algorithm 1 results in a significantly lower MSE than that
obtained for the random and the E-design sampling policies for all estimators. In Figure 7a,
it can be seen that for each sampling policy, the MSE of the GSP-WLS, pm-WLS, and mc
estimators coincides with that of the other methods where the system becomes observable
(i.e., where q > 72 for the random sampling, q > 76 for the E-design sampling, and q > 79
for Algorithm 1). In particular, where q = 118 (i.e., full observability with probability 1),
the MSEs of all estimators are identical.

Figure 8 shows the MSE of the power estimator ẑ from (33) with the three estimators
and the three sampling policies. It can be seen that the MSE decreases as the number of
measured buses increases, as expected, since there are fewer parameters to estimate with the
increase in the number of samples and the state estimation is more accurate, as presented
in Figure 7a. It can be seen that the relationships between the sampling policies and the
estimators are similar to Figure 7a, where the GSP-WLS estimator with the bus selection
policy of Algorithm 1 achieves the lowest MSE. Moreover, for each sampling policy, the
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MSE of the power estimation based on the GSP-WLS, pm-WLS, and mc estimators coincides
with that of the other methods where the system becomes observable (i.e., where q > 72 for
the random sampling, q > 76 for the E-design sampling, and q > 79 for Algorithm 1).
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Figure 7. State estimation under the DC−PF model: the MSE of the GSP−WLS from (26) and (27),
pm−WLS [11], and mc [5] estimators for random, E−design [38], and Algorithm 1 bus selection
policies versus (a) the number of buses, q, with σ2 = 0.01, and (b) 1

σ2 with q = 48.
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Figure 8. Power estimation based on the DC−PF model: the MSE of the GSP−WLS (26) and (27),
pm−WLS [11], and mc [5] estimators for random, E−design [38], and Algorithm 1 bus selection
policies versus the number of buses, q, where σ2 = 0.01.



Sensors 2023, 23, 1387 20 of 27

In Table 2 and in Figure 9, the influence of the tuning parameter, µ, is examined; we
show that the proposed GSP-WLS estimator is robust to the choice of this tuning parameter
by demonstrating that the estimator achieves the same performance for a range of values
of µ. In Table 2, the average and the sample standard deviation of the MSE of the GSP-WLS
estimator for different values of µ ∈ [0.01, 10] are presented, for a system with q = 48
and σ2 = 0.01, for the three sampling policies. It can be seen that, for the tested scenario,
the MSE is approximately constant for any µ in the range [0.01, 10]. Of course, further
increasing µ will eventually increase the MSE, since the weight of the measurements in
the estimation will be negligible. Similar results were obtained for other values of q and σ.
Therefore, choosing any µ in this wide range results in good estimation performance for
any sampling policy.

Table 2. State estimation based on the DC-PF model: the average MSE and its standard deviation
(std.) for the GSP-WLS (26) and (27) over different values of µ ∈ [0.01, 1], for q = 48 and σ2 = 0.01.

Measure
Bus Selection Method

Random E-Design Algorithm 1

Average MSE 0.2479 0.7929 0.0116
std. MSE 0.0116 0.0701 9.45× 10−6

Figure 9 demonstrates the performance of the GSP-WLS estimator where the power
system operating condition changes throughout the day, using time series data for different
values of µ and correspondingly different sampling sets chosen by Algorithm 1. Simulation
setup and parameters: For this case study, we use the modified IEEE 118-bus system in a
similar manner to [67]. Figure 9a shows the hourly load profile of the system demand, as
taken from http://motor.ece.iit.edu/Data/ (accessed on 1 August 2022). Given a single
measure of the loads in all the buses and the total system demand along 24 h, the hourly
load at bus n is the relative part of the load (among the other measured loads) from the
total system demand. The true value of the state was calculated using the MATPOWER
toolbox [68]. It can be seen in Figure 9b that for the MSE for µ = 0.01, 0.1, 1 is approximately
the same. These results show that the proposed GSP-WLS estimator is robust to the tuning
parameter in this range, even under changing operating conditions. More strategies for
choosing µ are described in the literature (e.g., see [61]).
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Figure 9. State estimation based on the DC−PF model: the hourly system demand (a) and
the corresponding MSE of the GSP−WLS estimator (26) and (27) (b) versus time over 24 h for
q = 48 buses and σ2 = 0.01.

http://motor.ece.iit.edu/Data/
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6.3. State Estimation and Sampling under the AC-PF Model

In the following, we discuss the estimation of both the phases and the magnitudes of
the states using the estimators:

1. The Gauss–Newton implementation of the pm-WLS estimator from [11] by Algorithm 2
with the appropriate replacements of the regularization terms, i.e., where x̂prior = x0

and R−1
prior = I are used instead of L̄(µθ, µv) (see the remarks after (57)).

2. The mc method from [5], implemented using Equations (6), (8), (12a), and (12c)
from [5], where the low-rank matrix used in this method, composed of the real and the
imaginary parts of v. In addition, we added to this method the current measurements
as inputs (instead of the power flow measurements) for a fair comparison. The
implementation was conducted by the SDP solver of CVX [60].

3. The proposed regularized Gauss–Newton method for implementing the GSP-WLS
estimator from Algorithm 2, with the regularization parameters µθ = 0.045 and
µv = 10.

In the Gauss–Newton-based methods, the maximal number of iterations is set to l = 20
and δ = 10−8 in Algorithm 2.

In Figure 10a the MSE of phase estimation by the GSP-WLS and pm-WLS estimators
(both implemented by the regularized Gauss–Newton method) are presented versus the
number of measured buses, q, for the sampling policies (i)–(iii). Similarly, in Figure 10b,
the MSE of the magnitude estimation is presented. It can be seen that the MSE decreases
as the number of measured buses increases for both the magnitudes and the phases.
Moreover, the GSP-WLS estimator outperforms the pm-WLS and the mc estimators for any
sampling policy. Figure 10a shows that for each sampling policy, the MSEs of the GSP-WLS,
and the pm-WLS estimators for the phases separate from each other when the system
observability can no longer be guaranteed (i.e., where q < 72 for the random sampling,
q < 76 for the E-design sampling, and q < 79 for Algorithm 1). In particular, where q = 118
(i.e., full observability with probability 1), the performances of the estimators coincide.
Figure 10b demonstrates that for q = 118, the MSEs of the GSP-WLS and the pm-WLS
estimators for magnitude are equal. For an observable system with q < 118, the MSEs
of the estimators coincide for each sampling policy separately. Finally, when the system
becomes unobservable (i.e., where q < 72 for the random sampling, q < 76 for the E-design
sampling, and q < 79 for Algorithm 1), the MSEs of the estimators split, and the MSE of
the GSP-WLS is lower.

It should be noted that the mc estimator implementation by CVX has higher compu-
tational complexity and a lot of tuning parameters in comparison to the other methods.
Finally, it can be seen that the sampling policy from Algorithm 1 results in a significantly
lower MSE than that obtained for the random and the E-design sampling policies for the
pm-WLS and the GSP-WLS estimators.

In Figure 11, we examine the influence of the tuning parameters µθ and µv on the
estimation performance of the phases and magnitudes, where the sampling set is chosen by
Algorithm 1. It can be seen that for µθ, µv ∈ [0.01, 10], the MSE is approximately constant.
Hence, choosing any µθ and µv in this range will obtain a good result.

6.4. Detection of Bad Data

In the following, the application of bad data detection based on the proposed estimator
is demonstrated, based on the description in Section 4.4. We compare the performance of
the following detectors:

• The LNR test from (34), the J(θ) test from (35), and the GFT-based detector from [7],

after substituting either θ̂ = θ̂
pm-WLS from (29) or θ̂ = θ̂

GSP-WLS from (26) and (27). In
the GFT-based method, the cutoff frequency is chosen such that in normal states, 35%
of the frequencies pass the filter.

• The L∞ detector from [69] with Σx = I.
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• The Laplacian-Regularized detector (Lap.Reg.) from our previous work in [41], which

also uses the GSP-WLS estimator, θ̂
GSP-WLS.
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Figure 10. State estimation under the AC−PF model: the phase MSE (a) and the magnitude MSE (b)
of the pm−WLS [11], mc [5], and GSP−WLS (Algorithm 2) estimators for random, E−design [38],
and Algorithm 1 bus selection policies versus the number of buses, q.

Figure 11. State estimation based on the AC−PF model: the MSE of the GSP−WLS (Algorithm 2) for
phase estimation (left) and magnitude estimation (right) with q = 48 buses and σ2 = 0.01 versus the
value of the tuning parameters, µθ and µv.

Simulation setup and parameters: The detection performance is evaluated for partially
observable systems with only power injection measurements, i.e., Lν,S = Hν,S , with q = 48
buses that are chosen by Algorithm 1. Constant noise (∆z = 10σ) has been added onto
three random measurements, i.e., zi + ∆z at the ith bus, where zi is obtained by (21).

In Figure 12, the detection performance of the proposed detectors is demonstrated by
the receiver operating characteristic (ROC) curves. This figure shows that the detectors
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that are based on the GSP-WLS estimator outperform the detectors that are based on the
pm-WLS estimator, as well as the L∞ detector. These results are aligned with the estimation
results, since the MSE of the state estimation by the GSP-WLS estimator is significantly
lower than the MSE obtained by the pm-WLS estimator, as shown in Figure 7.
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Figure 12. Bad data detection: the ROC of the LNR test (34), J(θ) test (35), GFT−based detector [7]
implemented with the GSP−WLS (26) and (27), and the pm−WLS [11] estimators, L∞ [69], and the
Laplacian−regularized [41] detectors with q = 48 buses.

7. Discussion

Utilization and Implications: The proposed GSP-WLS estimator has the potential
to significantly improve state estimation in unobservable power systems, which can be
caused by various reasons, such as communication issues, cyber attacks, and legal or
economic constraints on measurement locations. By utilizing GSP techniques, the proposed
estimator can achieve more accurate estimates with fewer measurements, reducing the cost
and complexity of data collection. In addition, the proposed sensor placement strategy
optimizes the performance of the estimator, further improving its accuracy. These GSP
techniques have important implications for the reliability and stability of power systems,
as well as for the development of advanced control and optimization algorithms. The
research also demonstrates the capabilities of GSP in power system networks, highlighting
the potential for its use in other tasks within the field. Overall, this research aims to
increase the stability and reliability of electrical grids by developing monitoring techniques.
Additionally, this study is closely related to the control and management of renewable
energy sources, since using enhanced estimation, sensor allocation, and attack detection
methods, the ability of the grid to deal with randomness in the system that stems from the
sources increases.

Limitations: This research provides a new GSP framework for state estimation and
bad data detection. However, it has some limitations that should be considered in future
research. First, it only uses the most recent vector of measurements. While this is a good
policy when the system may be under abrupt changes, the performance of the estimator
can be improved by incorporating historical measurements from previous time steps.
Second, the topology of the network is assumed to be known, which may not always
be the case, particularly for distribution systems. In such cases, methods for estimating
the topology [29,70] could be used. Third, the Gauss–Newton algorithm used in this
study may be computationally expensive for large networks. To address this issue, future
research could use low-complexity algorithms to calculate matrix inversion, as described
in [1]. Finally, this study has not explored the incorporation of smart meter and PMU
measurements into the proposed methods, and this should be considered in future research.

Future research: Future research directions include the incorporation of time series
measurements with temporal dependencies to improve the estimation and bad data perfor-
mance. Additionally, it would be useful to investigate the joint estimation of the system
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state and the identification of topology changes. Another potential future direction is the
combination of smart meter measurements and PMU data in the proposed method, as
mentioned above in the limitations. Finally, a promising area of future research is the inte-
gration of deep unfolding or other machine learning and optimization tools to accelerate
the regularized Gauss–Newton method. One particularly important area of future research
is the development of new graph neural network (GNN) approaches that take advantage
of the graph properties of the states that were validated in this study. GNN methods could
potentially offer significant improvements in the accuracy and efficiency of state estimation
in power systems, depending on the availability of relevant data.

8. Conclusions

This paper proposes a GSP framework for state estimation, sensor allocation, and
bad data detection in unobservable power systems. First, the graph smoothness of the
phases and the magnitudes of the voltages with respect to the admittance matrix have been
validated. Then, the GSP-WLS estimator of the system states has been derived under both
the DC-PF and AC-PF models. The GSP-WLS estimator uses the graph smoothness of the
state signals as a regularization term, and thus, does not require full observability of the
system. It is analytically shown that when the system is observable, the proposed GSP-WLS
estimator coincides with the WLS estimator. A greedy algorithm has been introduced
to tackle the problem of selecting the sampling set that optimizes the state estimation
performance. In addition, it is shown that the GSP-WLS estimator is useful for bad data
detection by plugging the estimator into existing detectors. Simulation results demonstrate
the potential of the GSP methods in power systems for cases where the system observability
is not guaranteed. It is shown that the proposed methods can accurately estimate voltage
phases and magnitudes, and detect bad data under partial observability conditions where
standard methods cannot, or exhibit poor performance. These results show that advanced
sensing and measurement technologies using GSP tools can transform data into useful
information and enhance various aspects of power system management.
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WLS Weighted least squares
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DC Direct current
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PSSE Power systems state estimation
EMS Energy management system
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GFT Graph Fourier transform
DSP Digital signal processing
KKT Karush–Kuhn–Tucker
pm Pseudo-measurements
MSE Mean squared error
CRB Cramér–Rao bound
LNR Largest normalized residual
FDI False data injection
ROC Receiver operating characteristic
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