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Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
This paper presents a technique to accurately esti- 

mate the state of a robot helicopter using a combina- 
tion of gyroscopes, accelerometers, inclinometers and 
GPS. Simulation results of state estimation of the he- 
licopter are presented using Kalman filtering based on 
sensor modeling. The number of estimated states of 
helicopter is nine : three attitudes(B,q5,~) from the 
gyroscopes, three accelerations(x, y, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2)  and three posi- 
tions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x, y, z )  from the accelerometers. Two Kalman 
filters were used, one for the gyroscope data and the 
other zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor the accelerometer data. Our approach is 
unique because it explicitly avoids dynamic modeling 
of the system and allows for an elegant combination 
of sensor data available at  different frequencies. We 

.also describe the larger context in which this work is 
embedded, namely the design and implementation of 
an autonomous .robot helicopter. . 

1 Introduction 

State estimation is a fundamental need for au- 
tonomous robots. The accuracy that we demand from 
the estimation algorithm however, depends on the con- 
trol system to be used and the application for which 
the robot is slated. A large proportion of work in au- 
tonomous robotics today deals with ground vehicles 
and the control systems that allow such vehicles to be 
autonomous to varying degrees. At the University of 
Southern California, we have been working on robot 
helicopters for several years. Figure 1 shows the latest 
incarnation of the system in flight. As part of a larger 
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context, our goal is to build an autonomous robot he- 
licopter that can interact with robots on the ground as 
part of a reconnaissance and surveillance team. The 
helicopter provides an ideal camera platform for in- 
spection of hazardous material sites, accident sites, 
crowded urban areas etc. 

To date our lab has been working on two aspects 
of autonomy for such a robot namely low-level con- 
trol and group behavior. Montgomery et. al. have 
demonstrated [19] a behavior-based controller com- 
prised of carefully tuned PD control loops that can 
stabilize a helicopter near hover. Lately, they have ex- 
tended their work to learning a control algorithm for 
a helicopter [lS] using a technique called teaching-by- 
showing where a human pilot demonstrates control to 
the robot and the algorithm learns the controller from 
several input-output pairs of data. The work on het- 
erogeneous group behavior [26] deals with the inter- 
action between the helicopter and the ground robots, 
and algorithms for cooperative tasking and re-tasking. 

We have recently begun an effort to develop al- 
gorithms that can accurately estimate the state of a 
robot helicopter in order to improve the functioning 
of the control algorithms being developed as part of 
the work described above. In the paper we report on 
the first results from this effort. Given the overhead 
(not to mention the costs associated with crashing) of 
flight experimentation, we have taken a two staged ap- 
proach to the problem of state estimation. In the first 
stage (reported here) we test our algorithm in simula- 
tion, using a simulated model of a full-scale helicopter 
as well as a nonlinear controller that can stabilize it. 
Based on the encouraging results thus far, we plan 
to implement our algorithm on the physical system 
over the next few months. Researchers frequently use 
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Figure 1: The USC AVATAR: Autonomous Vehicle Aerial 
Tracking And Retrieval 

simulation environments [12] before testing their esti- 
mation or control strategies on real helicopters. For 
example in [22] a simple helicopter model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwas used 
for controller design and stability performance analy- 
sis. Simulation results for hovering and forward flight 
conditions were used to illustrate the performance of 
a tested controller to specific commands. 

One method to estimate the state of a helicopter 
is to use a model. If a state-space helicopter model 
is available, a Kalman filter based estimator can be 
built using the model. However the main drawback 
of this approach is that it is difficult to obtain a good 
helicopter model. Furthermore, the dynamics of a he- 
licopter are expressed as a set of nonlinear equations., 
This makes it difficult to construct a Kalman filter. 
The other method to estimate state is to use a sen- 
sor model. The advantage of this is that a complex 
helicopter model is not needed. Further, Kalman fil- 
ter need not be rebuilt for each different robot if the 
sensor suite is unchanged. In this paper, we use the 
second approach in estimating the state of a helicopter 
robot. 

Kalman filtering [13, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA171 is a well known technique 
for state and parameter estimation. It is a recursive 
estimation procedure using sequential measurement 
data sets. Prior knowledge of the state (expressed 
by the covariance matrix) is improved at each step by 
taking the prior state estimates and new data for the 
subsequent state estimation. 

Autonomous helicopters have made their appear- 
ance with successful results in the mid 90’s 1251. Re- 
cent work at  several centers includes USC [20], [ll], 
Stanford [23], [7], MIT [9], [12] and CMU [2], [6] all 

winners of the Association for Unmanned Vehicle Sys- 
tems International Aerial Robotics competition (1994- 
1997 respectively). 

There are a variety of sensors and architectures 
that can be used for helicopter state estimation. In 
one case [3] a two-axis inclinometer, a compass, and 
a three-axis gyro are considered for attitude estima- 
tion. A complementary Kalman filter is used for fus- 
ing the data from these sensors. The claim is that the 
low dynamics of the inclinometers can be effectively 
compensated when a gyro is used. In the complemen- 
tary filter the inclinometer dynamics are taken into 
account. The gyro bias though is ignored. The at- 
titude estimation algorithm has to be combined in a 
helicopter control algorithm. 

Bosse et. al. [5], deal with helicopter velocity es- 
timation during the critical landing phase. An IMU 
(Inertial Measurement Unit) provides high bandwidth 
motion estimates from accelerations and rotational ve- 
locities that are used for controlling the helicopter. 
A differential GPS unit provides periodic updates of 
absolute positions and velocities. The sonar altime- 
ter provides the altitude information for autonomous 
landings and the compass is utilized to prevent long 
term drifts in the heading estimate. The authors use 
an Extended Kalman filter to merge the sensor infor- 
mation into a navigational solution focussed on land- 
ing without the help of GPS assuming a flat landing 
surface. 

In [7] the solution to the helicopter state estima- 
tion problems comes from using a Carrier Phase Dif- 
ferential GPS (CD-GPS). This was the only sensor 
for both attitude and position control. With 4 anten- 
nas strategically located on-board the helicopter the 
CD-GPS can be used to determine attitude with ac- 
curacy 1-2 degrees. The ground station antenna for 
the Differential GPS allows a positioning accuracy of 
2-3 cm. The capabilities of the system can reach sub- 
centimeter accuracy. A high bandwidth inner control 
loop based entirely on the CD-GPS provides attitude 
stabilization and position control. The main limita- 
tion of the system is that commands to fly trajectories 
or land are possible only if the location of the paths, 
points or objects can be expressed as GPS coordinates 
known a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApriora. A modification to the original system 
is presented in [23] where a stereo vision system is used 
for color based identification of objects with a unique 
color in their environment. Positions are translated to 
GPS coordinates and an outer control loop allows the 
helicopter to track objects on the ground. 

Various visual tracking approaches have been built 
to position robot helicopters over fixed targets. These 
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include [21], where the vision system tracks distinc- 
tive features on the ground supported by inertial sen- 
sor data. In [4] the authors have developed a vision 
based system that allows an autonomous helicopter 
to perform a line tracking task. Vision based obsta- 
cle avoidance is described in [27] where a multi-sensor 
feature-based range-estimation algorithm is proposed 
for automated helicopter flight. This algorithm can 
track many features at the same time in multiple im- 
age sensors using an Extended Kalman filter to esti- 
mate the feature locations in a master sensor coordi- 
nate frame. The focus of this paper is on the paral- 
lelization of the vision algorithm in order to be used 
in real time applications. 

The rest of this paper is organized zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas follows. In 
Section 2, the helicopter model, its characteristics and 
controller used in the simulation are described; in Sec- 
tion 3, a noise model for the gyroscopes and accelerom- 
eters is presented; in Section 4 the architecture of the 
Kalman filters used. in our work are described and in 
Section 5 the simulation results are given. Section 6 
concludes with a summary and a discussion of ongoing 
and future research. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHelicopter Model 

There are six rigid body degrees of freedom in the 
helicopter; three translational (along the three body 
axes) and three rotational (about these axes). The 
equations of helicopter dynamics are expressed with 
respect to the body axis coordinate system. The atti- 
tude of the body with respect to the inertial reference 
frame is defined by Euler angles zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8,4,1c,. The order of 
rotation is as follows : first, rotate along the X-axis by 
angle 4, then, along the Y-axis by angle 0, and finally 
along the Z-axis by angle $J. To each such unique or- 
der there exists a corresponding rotation matrix which 
transforms vectors in the body-centered frame to the 
inertial frame. The general equations of motion of a 
helicopter can be found in any standard textbook [lo] 
on the dynamics of flight. 

In this work, we use a helicopter model and con- 
troller from [16]. The model includes the main rotor 
rigid body effects, coning and quasi-steady flapping. 
Although this model, due to [?I, contains certain sim- 
plifying assumptions, its performance in stability and 
control studies is fairly well validated. This model has 
been used extensively in helicopter flight control sys- 
tem studies in the U.K. The controller is designed us- 
ing Input-Output Linearization[lG]. The performance 
of the controller was evaluated in terms of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPi- 
lot Handling Quality Requirements documented in the 

Aeronautical Design Standard(ADS-33C). By satisfy- 
ing these specification it is expected that there will be 
no limitations on flight safety or on the capability to 
perform intended missions. 

In the simulated model, there are four control in- 
puts available to the pilot. These are called collective 
(do), longitudinal cyclic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( e l s ) ,  and lateral cyclic (el,), 

which are control inputs for the main rotor, and tail- 
rotor collective (eo t ) ,  which is for the tail rotor. Four 
reference commands are given: 0, 4, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1c, and h. 

The outputs, of helicopter with commands 0 = 
20°, 4 = -30°, 1c, = 0 and h = 0 are shown in Figure 2 
when there is no noise corruption and no Kalman filter 
in the loop. This “baseline” figure shows the operation 
of the controller before we began our experiments. We 
used these values of command signals throughout the 
simulation in comparing outputs. 

To test the sensor-noise rejection capability of our 
filters, we injected noise into the baseline simulation 
(to simulate measurements from real sensors) and 
added an estimator which reconstructs the state based 
on these noisy measurements. As we show later, the 
filters are able to reject fairly realistic levels of noise 
that may be expected in real flight operations. 

3 Noise Models and Characteristics 

The AVATAR helicopter robot currently has three 
gyroscopes (to measure roll, pitch and yaw rates), 
three accelerometers (to measure, the accelerations in 
the 2, y and z directions), a compass (to measure the 
yaw angle) and a GPS unit (which provides the c, y, z 
location of the craft in an inertial coordinate system). 
The gyroscopes, accelerometers and GPS are part of 
an integrated avionics unit called the C-MIGITS I1 
Miniature Integrated GPS/INS System from Rock- 
well. We plan to add two inclinometers to directly 
measure the roll and pitch as well. The gyroscopes 
in the avionics unit are Systron Donner Quartz Gyros 
whose noise profile is well known. 

The key difficulty in attitude estimation using gy- 
roscopes is the low frequency noise component, which 
is also referred as bias or drift that violates the white 
noise assumption needed for standard Kalman filter- 
ing. The noise model used in our simulation is the 
one in [14, 151. The model assumes that the gyro 
noise consists of two elements : rate noise n,(t) (ad- 
ditive white noise) and a rate random walk n,(t) 
(generated when white noise passes through an in- 
tegrator l /s ) .  We used the Systron Donner Quartz 
Gyro(QRS11-100-420) for numerical values for noise 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2: Outputs of helicopter state without noise or Kalman filtering 

intensities. The intensities calculated from experi- 
ments [l] were zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU, = = O.OOS(deg sec)/& and 
uw = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa = 0.0005012(deg/sec)/ /- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHt. The level of 
noise in the compass and inclinometers is assumed to 
be uSs = 0.01. The noise associated with measuring 
accelerations from the accelerometers and and posi- 
tions from the GPS is assumed to be white. We used 
(T, = 0.07(m) for the noise associated with the GPS 
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcq = 0.05(m/sec) for the accelerometers. 

4 Architectures of Kalman Filters 

A Kalman filter model for acceleration is well de- 
scribed in [17]. That approach was followed here for 
building the filter associated with the accelerometers. 
However, the Kalman filter model in [17] is one di- 
mensional, that is, it uses just one acceleration mea- 
surement. Our simulation uses three components of 
acceleration, so we use the appropriate rotation ma- 
trix and transform the acceleration data with respect 
to the body reference frame to the acceleration with 
respect to the inertial reference frame. The rotation 
matrix can be calculated by using the Euler angles 
(whose estimates can be obtained from the Kalman 
filter) for 3-dimensional attitude [8]. 

For simplicity, we describe a one dimensional 
Kalman filter here. Let the noise w be a white 

Gaussian noise of mean zero and variance kernel 
E{w(t )w( t  + T)} = & S ( T )  entering at  the accelera- 
tion level. Let the noise zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv be a white Gaussian noise 
of mean zero and variance E{v(t)v(t  + T ) }  = R c d ( ~ )  
which happens in measuring position r t ,  where sub- 
script t denotes a true value. The two error states are 
defined as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

&(t)  = rm(t)  - rt ( t )  

h ( t )  = U r n @ )  - ut@) 

(1) 

(2) 

where U is velocity and subscript m denotes a mea- 
sured quantity. Then we can, write the following state 
equation: 

The state equation of the true position, velocity and 
acceleration is: 

Subtracting Equation 4 from Equation 3, we have 
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From these equations, the steady state values can 
be obtained by solving zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP(t )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

K = [ w . ]  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf i w n  
(7 )  

where w, equals ( Q / R c ) l j 4 .  

We used four quaternions (also called Euler param- 
eters) in representing the three dimensional attitude. 
We can easily calculate the rota_tion matrix from four 
quaternions 181. We define q k / k ( b k l k )  to be the quater- 
nion (bias) estimate at time t k  based on data up to and 
including Z ( t k ) ,  g k l k - l ( b k l k - 1 )  the quaternion (bias) 
estimate at time t k - 1  propagated to t k ,  right before 
the measurement update at  t k .  The estimated angular 
velocity is defined zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas: 

+ 

+ 

G k l k - 1  = d m ( t k )  - b k / k - 1  

z k l k  = z m ( t k )  - b k / k  

(8) 

(9) 

before the update, and as 

-. 
right after the update. 
The full estimated quaternion is propagated over 

the interval A t k  = t k  - t k - l  according to the following 
equation[28]: 

where 

O w1 w2 I (11) 
w 2  -w1  0 w 3  ' 

1 - w 1  - w 2  - w 3  0 j 
+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(12) 
( j k  f k -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 +3k- 1 f k -  1 

Waug = 2 

The equations for error state covariance propaga- 
tion, the Kalman gain matrix, the updated covariance 
and the updated error state are given by: 

where 

0 9 3  -92  

92  -41  0 
- 9 3  0 41 ] , (18)  

and 

@ ( A t k )  = I 3 x 3 A t k  -I- 

[ [ z a u g  ]] (1 - C O S ( W a u g A t k ) / W i u g  t 

[ [ Z a v g  ]] ( W a v g A t k  - s i n ( w a , g a t k ) ) / w 5 , ~ 2 0 )  
2 

for detailed equations and derivations the reader is 
referred to [24]. 

5 Simulation Results 

As mentioned above, nine states were considered 
and two filters were used to process the data stream 
from the helicopter's sensors in the simulations re- 
ported here. We used B = 20°, q5 = -30° ,  1c, = 0 
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh = 0 as reference commands. 

Consider Figure 3 .  This figure shows the values of 
the real quaternion element 9 4 ,  estimated quaternion 
4 4 ,  measured quaternion 9 4  and dead-reckoning esti- 
mate of element 9 4 .  As can be seen from the plot, 
the Kalman filter estimates the real quaternion well 
from the measured data corrupted by noise. We can 
also see that the dead-reckoning quaternion is a very 
good estimate of the real quaternion. The level of 
noise in angular velocity is very low. Therefore, it is 
natural that the dead-reckoning quaternion calculated 
from measured angular velocity is a good estimate of 
3-D attitude. However, this is good only for a small 
time span. Due to the integrating factor (a rate ran- 
dom walk n,(t)),  error is accumulated and becomes 
large after a long time if there is no correction. 

Figure 4 shows four error plots; the difference be- 
tween real position and filtered position data, the dif- 
ference between real position and dead-reckoning po- 
sition, the difference between real velocity and filtered 
velocity, and the difference between real velocity and 
dead-reckoning velocity. The filtered data for velocity 
is obtained from adding the value of estimated error 
state of velocity ( d i ,  see Equation 2) to the value that 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3: The values of real (solid line), filtered (dash-dotted line), measured (dotted line) and dead-reckoning (dash- 
dashed line) quaternion element zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA44, difference between the real and filtered d (left below), and difference between real and 
dead-reckoned 4 (right below) 

we get by integrating the measured acceleration. Care 
must be taken to use the appropriate coordinate sys- 
tem in calculating filtered and dead-reckoned velocity. 
The estimated attitude(B,, &, $,) was use to get the 
rotation matrix in processing filtered velocity and the 
dead-reckoning attitude(Od, bd, 4 d )  was used to calcu- 
late dead-reckoning velocity and position. 

The performance improvement can be seen by feed- 
ing filtered data to the controller instead of using raw 
sensor data. The dotted line in Figure 5 denotes the 
output of the helicopter when raw sensor data was fed 
to the controller. The solid line is the output when 
filtered data was used for controller input. As can be 
seen from the plot, the motion is more stable when the 
controller used filtered data despite larger overshoot. 

6 Conclusions and Future Work ' 

In this paper, a state estimator is developed for a 
robot helicopter without using a helicopter model. We 
would like to emphasize that the controller used in the 
tests here is model based but zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnot the estimator. The 
validity of our approach was verified by feeding filtered 
data to the controller and observing the output of the 
helicopter. It remains as future work to verify that our 

filters also work well when we change the controller or 
helicopter without modifying the sensors. After evalu- 
ating our Kalman filters for several helicopter models 
and controllers, our ultimate goal is to implement our 
algorithm on the real autonomous helicopter in our 
laboratory. 
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