
State Estimation of an Underwater Robot Using Visual and Inertial

Information

Florian Shkurti, Ioannis Rekleitis, Milena Scaccia and Gregory Dudek

Abstract— This paper presents an adaptation of a vision and
inertial-based state estimation algorithm for use in an underwa-
ter robot. The proposed approach combines information from
an Inertial Measurement Unit (IMU) in the form of linear
accelerations and angular velocities, depth data from a pressure
sensor, and feature tracking from a monocular downward
facing camera to estimate the 6DOF pose of the vehicle. To
validate the approach, we present extensive experimental results
from field trials conducted in underwater environments with
varying lighting and visibility conditions, and we demonstrate
successful application of the technique underwater.

I. INTRODUCTION

Algorithms for estimating the position and orientation

(pose) of a mobile robot are considered significant enablers

for robot autonomy, and thus, a large spectrum of robotics

research has focused on them. In particular, vision-based

pose estimation techniques have become quite popular in

recent years, not only due to the wide availability of cheap

camera sensors, but mainly due to a series of technical

advances and successful demonstrations of Structure from

Motion and Visual Odometry systems. Illustrative examples

in the former category include Davison et al.’s early [1] and

more recent work [2] on real time accurate 3D structure

reconstruction and motion estimation of a monocular camera,

moving in a constrained indoor space. In the latter category

Nister [3], Konolige [4], Furgale and Barfoot [5] have shown

online visual odometry systems that are capable of accurately

localizing terrestrial robots over tens-of-kilometers-long tra-

jectories. In addition, vision-aided localization techniques

also include appearance-based localization algorithms, which

do not attempt to estimate the 6DOF pose of the robot, but

rather to identify the place at which the robot is located.

The seminal work of Cummins and Newman [6], which

performed place recognition over a thousand-kilometer-long

trajectory, exemplifies this line of research.

Our goal is to perform 6DOF pose estimation for the Aqua

family of amphibious robots [7]. These hexapod robots are

equipped with three IEEE-1394 IIDC cameras, a low-cost

IMU, and a pressure sensor which is used to provide noisy

measurements of depth from the surface of the water. Their

swimming motion is a product of six paddles, which oscillate

synchronously in two groups of three.

The majority of the localization work mentioned previ-

ously does not deal with the underwater domain, and often

assumes the existence of a mathematical motion model of the
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Fig. 1. The Aqua vehicle starting a dataset collection run

vehicle at hand. In our case, such a model is highly nonlinear,

hard to justify, and susceptible to deviations due to currents

and other factors. In general, underwater environments are

more challenging than most of their indoor counterparts for

the following reasons:

(a) They are prone to rapid changes in lighting conditions.

The canonical example that illustrates this is the presence of

caustic patterns, which are due to refraction, non-uniform

reflection, and penetration of light when it transitions from

air to the rippling surface of the water [8].

(b) They often have limited visibility. This is due to

many factors, some of which include light scattering from

suspended plankton and other matter, which cause blurring

and “snow effects”. Another reason involves the incident

angle at which light rays hit the surface of the water. Smaller

angles lead to less visibility.

(c) They impose loss of contrast and colour information

with depth. As light travels at increasing depths, different

parts of its spectrum are absorbed. Red is the first color

that is seen as black, and eventually orange, yellow, green

and blue follow [9]. This absorption sequence refers to clear

water, and is not necessarily true for other types.

Given the above constraints, pose estimation algorithms

that rely on IMU and visual data are promising, because the

IMU provides a noisy estimate of our vehicle’s dynamics

even in the presence of strong currents, while the camera im-

poses corrective motion constraints on the drifting IMU pose

estimate, which is obtained by integration. In this paper we

present an adaptation of the algorithm presented by Mourikis

and Roumeliotis [10], [11] for the underwater domain, and

we validate the approach through offline experiments on

underwater datasets that capture varying scenes and lighting

conditions.
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II. RELATED WORK

The work of Mourikis and Roumeliotis uses an Extended

Kalman Filter (EKF) estimator that integrates the incoming

IMU linear acceleration and rotational velocity measure-

ments in order to propagate the state of the robot. Integration

of this data also propagates the noise, which quickly causes

the IMU estimate alone to drift. To correct this, the authors

rely on the constraints imposed by the tracking of visual

features from frame to frame, using a monocular camera.

Once a feature ceases being observed, its 3D position is

estimated via bundle adjustment and regarded to be ‘true‘.

The residual between the expected 3D feature position and

the ‘true‘ position determines the correction applied to the

state and the covariance. One of the technically appealing

attributes of this system is that the landmarks are not part

of the state, which caused dimensionality explosion in the

early formulations of the SLAM (Simultaneous Localization

and Mapping) problem. Furthermore, the filter was shown

to perform well even with a fixed, small number of past

camera poses, in essence making the state vector and the

covariance of fixed size. The experimental results of this

work demonstrated highly accurate estimated trajectories

with error of just 0.31% of a 3.2km trajectory.

One of the differences between their configuration and

ours is that we are using a low-cost IMU, which is very

susceptible to magnetic interference, as it is placed very close

to moving motor parts, housed in a densely-assembled robot

interior, which is characterized by high temperatures when

the robot is operating. All these factors significantly impact

our IMU’s accuracy.

More recent work by Jones and Soatto [12] reports even

more large-scale results, with 0.5% error of a 30km trajec-

tory, which was traversed in an urban environment. Aside

from the significance of the low drift given the length of

the trajectory, another novelty of this work is the fact that

it autocalibrates the transformation between the camera and

the IMU, as well as the gravity vector, which are two major

sources of systematic bias in this class of algorithms.

Furthermore, Kelly et al. [13] presented a visual and

inertial pose estimation algorithm for an autonomous heli-

copter, which uses images from a stereo camera and IMU

measurements to perform inertial-aided visual odometry. The

authors report errors of less than 0.5% over a 400m long

trajectory.

In the underwater domain, Corke et. al [14] presented

experimental results of an underwater robot performing

stereo visual odometry (without inertial data) using the

Harris feature detector and the normalized cross-correlation

similarity measure (ZNCC). They reported that, after outlier

rejection, 10 to 50 features were tracked from frame to frame,

and those were sufficient for the stereo reconstruction of

the robot’s 3D trajectory, which was a square of area 30m

by 30m. Other vision-based SLAM systems that have used

visual odometry underwater include [15]–[17].

Eustice et. al [18] showed successful use of the sparse

information filter to combine visual and inertial data, while

Update

Augmentation

Propagation

Update

Vector
State

Feature

Tracking

Terminated
Feature

Trail

Camera

15 Hz

Depth
50 Hz

50 Hz

IMU

3D Feature

Position 

Estimation

Fig. 2. An overview of the 6DOF state estimation algorithm. The state
vector appears in Eq. (1)

performing a robotic survey mapping of the surface of the

RMS Titanic. They also presented a technique for maintain-

ing the consistency bounds of the filter’s covariance.

There are, of course, other technologies for pose estima-

tion underwater including the use of beacons or Doppler-

based motion estimation [19]. In this paper we examine the

extent of what is feasible using only passive sensing, and

specifically vision and proprioception alone. One advantage,

incidentally, of purely passive sensing is that it is both energy

efficient and discreet towards marine ecosystems.

III. 6DOF STATE ESTIMATION OF AN AUTONOMOUS

UNDERWATER VEHICLE

The state vector at time tk that we are interested in

estimating has the following form:

Xk =
[

XIMUk

C1

G q GpC1
. . . CN

G q GpCN

]T

(1)

where XIMUk
is a 16× 1 vector expressing the state of the

IMU, and the pairs {Ci

G q GpCi
} represent the transforma-

tions between the global frame and the ith camera frame.

In particular, Ci

G q is a unit quaternion 1, that expresses the

rotation from the global frame to the frame of camera Ci, and
GpCi

is the origin of camera frame Ci given in coordinates

of the global reference frame G. In total, the state vector

Xk is of length 16+ 7N , where N is the number of camera

frames that are being tracked. As will be explained in more

detail below, camera frames are appended to the state vector

every time an image is recorded. Assuming the vehicle is not

standing still, most features that are tracked will exit the field

of view of the robot’s camera after some number of frames,

which is the main reason why we can bound N above by

Nmax (we set this to 32). The IMU state vector, consists of

the following:

XIMUk
=
[

I
Gq bg

GvI ba
GpI

]

(2)

where I
Gq is a quaternion that expresses the rotation from the

global frame to the IMU frame, bg is the bias of the gyro-

scope, GvI is the velocity of the IMU frame in coordinates

of the global frame, ba is the bias of the accelerometer, and
GpI is the origin of the IMU frame in global coordinates.

1Recall that quaternions provide a well-behaved parameterization of
rotation. We are following the JPL formulation of quaternions; see [20],
[21]
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Since the state vector contains quaternions and the co-

variance matrix is an expectation of a product of vectors, a

linearized representation of error quaternions is required. To

that end, we follow the small-angle approximation used by

Mourikis and Roumeliotis, whereby a quaternion correction

δq = [ksin(δθ/2) cos(δθ/2)] ≃ [kδθ/2 1] = [δθ/2 1]
determines the approximated difference in rotation between

two frames. So, we take the vector representation of the error

quaternion to be δθ. 2

The algorithm consists of four steps (see Fig. 2):

(a) In the propagation step the linear acceleration and

angular velocity measurements from the IMU are integrated,

in order to provide a short-term, noisy estimate of the

robot’s motion. Only the IMU state vector, XIMUk
and the

corresponding IMU covariance matrix are modified during

this phase; the state and covariance of the camera frames

remains intact.

(b) Depth measurements from a pressure sensor are avail-

able at the same rate as the IMU, however, we sample them

at the same rate as the camera and we perform a depth-based

update.

(c) When the camera records an image, the camera frame

is appended to the state vector and the covariance matrix

size grows accordingly. Also, current features are matched to

previous features. If the maximum number of camera frames

in the state vector has been reached, then old frames are

pruned, provided no feature trail is visible from said frames.

(d) If there exist feature tracks that ceased to appear in the

current image, the 3D position of said features is estimated

and is regarded as ‘true‘. Assuming said features are not

deemed to be outliers, the residual between the ‘true‘ feature

positions and the estimated feature positions gives rise to the

vision-based update, which corrects the entire state vector,

and in particular, the IMU integration drift.

A. Propagation

Given IMU measurements ωm and αm for the angular
velocity and linear acceleration of the IMU frame, respec-

tively, we model the errors affecting the measurements as

follows:
ωm = I

ω + bg + ng (3)

αm = R(IGq)(
G
α− Gg) + ba + na

where G
α and I

ω are the true values, the noise is white

Gaussian, and the biases are modeled as Brownian motion

processes with ḃg = 0, ḃa = 0, and R() denotes the rotation

matrix resulting from the corresponding quaternion. The

linear acceleration and angular velocity estimates used in the

IMU state integration are α̂ = αm − b̂a and ω̂ = ωm − b̂g .

With that in mind, we perform the integration of the IMU

state using 4th order Runge-Kutta integrator, modified to

include a zeroth-order quaternion integrator [21] for the

rotation of the global frame to the IMU frame:

2There exist alternative ways of representing quaternion error; see for
instance [22]–[24]

Fig. 3. A schematic of the relationship between the IMU coordinate frame
and the mounted camera coordinate frame.

I
Gq̂tk+1

=

[

ω̂

‖ω̂‖sin(‖ω̂‖ (tk+1−tk)
2 )

cos(‖ω̂‖ (tk+1−tk)
2 )

]

⊗ I
Gq̂tk

˙̂
bg = 03×1 , G ˙̂vI = RT (IGq̂)α̂+ Gg (4)

˙̂
ba = 03×1 , G ˙̂pI = Gv̂I

We have observed that 200-500 iterations of the Runge-

Kutta integrator are sufficient, while less than 50 iterations

produce noticeable numerical inaccuracies in terms of in-

tegration residual. The propagation of the covariance via

integration is fully presented in [10]. At this point it is worth

mentioning that Gg is estimated offline by averaging sensor

readings while the robot is still. Initialization of I
Gq̂ can

become involved in cases where the algorithm starts when

the robot is in motion and accelerating, since the gravity

vector might not be observable from the acceleration values.

B. State Augmentation

Our vehicle is equipped with two cameras facing forward

and one camera facing backwards. As the robot swims over

the seafloor, most of the structures are below it. Therefore, in

order to observe the seafloor a mirror is placed at a 45◦ angle

in front of the back camera. This configuration results in a

virtual downward-looking camera located behind the robot;

see Fig. 3. As a first step, the robot’s design specifications

have been used to estimate the coordinate transformation

{CI q,
IpC} from the IMU frame to the virtual camera coordi-

nate frame. However, small errors in this transformation are

sources of systematic biases in the estimation process. That

is why the use of a IMU-camera transformation calibration

process is recommended, such as [24], [25].

When a new image is recorded, the transformation of the

global frame to the new camera frame, C
Gq̂ = C

I q ⊗
I
Gq̂, and

Gp̂C = Gp̂I + RT (IGq̂)
IpC is appended to the state vector,

and the covariance matrix is modified accordingly.

C. Feature Tracking

In previous work [26] we experimented with a large

array of potential feature detectors, such as SURF [27],

SIFT [28], FAST [29], CenSurE [30], Shi-Tomasi [31],

but also with matching strategies that include Approximate

Nearest Neighbors [32] and normalized cross-correlation, as
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well as with the Kanade-Lucas tracker [33]. We have found

SURF with Approximate Nearest Neighbor matching to be

very precise, however, when the number of detected features

is high (e.g. above 1000), feature tracking cannot be done in

real-time. On the other hand, Shi-Tomasi features matched

using ZNCC scores of image patches searched along the

epipolar lines is more susceptible to false matches, but can

be done in real-time. At the moment, we are using SURF

features with Approximate Nearest neighbor matching. Our

outlier rejection is aggressive: we use the fundamental matrix

criterion to eliminate matches that do not satisfy epipolar

constraints; we eliminate features that give rise to unusually

high residuals in the vision-based update (as described in

[11]); and finally, we eliminate features whose position is

estimated to be closer than 0.2m and farther than 10m from

the robot. The latter is an environment-specific restriction,

because underwater visibility is lost outside that range.

D. 3D Feature Position Estimation

Consider a single feature, f , that has been tracked in n
consecutive camera frames, C1, C2, ..., Cn. Let us denote
Cipf =

[

CiXf
CiYf

CiZf

]

to be the 3D position of

feature f expressed in camera frame Ci coordinates. We

are interested in estimating this as accurately as possible,

because the vision-based update will depend on it. Then, we

can write the following:

Cipf = R(Ci

C1
q)C1pf + CipC1

= C1Zf

(

R(Ci

C1
q)

[

C1Xf

C1Zf

C1Yf

C1Zf

1

]T

+
1

C1Zf

CipC1

)

If we let αf =
C1Xf
C1Zf

, βf =
C1Yf
C1Zf

, and γf = 1
C1Zf

then

Cipf = C1Zf

(

R(Ci

C1
q) [αf βf 1]

T
+ γf

CipC1

)

= C1Zf





hi1(αf , βf , γf )
hi2(αf , βf , γf )
hi3(αf , βf , γf )



 (5)

Now, assuming a simple pinhole camera model, and dis-

regarding the effects of the camera’s calibration matrix, we

can model the projection of feature f on the projection plane
CiZ = 1 as follows:

zCi

f =
1

hi3(αf , βf , γf )

[

hi1(αf , βf , γf )
hi2(αf , βf , γf )

]

+ nCi

f (6)

where zCi

f is the 2 × 1 measurement, and nCi

f is noise

associated with the process, due to miscalibration of the

camera, motion blur, and other factors. If we stack the

measurements from all cameras into a single 2n× 1 vector

zf and similarly for the projection functions hi into a 2n×1
vector hf , then we will have expressed the problem of

estimating the 3D position of a feature as a nonlinear least-

squares problem with 3 unknowns:

argmin
αf ,βf ,γf

‖zf − hf (αf , βf , γf )‖ (7)

Provided we have at least 2 measurements of feature f ,

i.e. provided we track it in at least 2 frames, we use the

Levenberg-Marquardt nonlinear optimization algorithm in

order to get an estimate C1 p̂f of the true solution. Then,

the estimated feature position in global coordinates can be

obtained by:

Gp̂f =
1

γf
RT (C1

G q̂) [αf βf 1]
T
+ Gp̂C1

(8)

One problem with this approach is that nonlinear optimiza-

tion algorithms do not guarantee a global minimum, only a

local one, provided they converge. Another problem is that

if feature f is recorded around the same pixel location in all

the frames in which it appears, then the measurements we

will get are going to be linearly dependent, thus providing

no information about the depth of f . In other words, feature

tracks that have small baseline have to be considered outliers,

unless we exploit other local information around the feature

to infer its depth. Another potential pitfall is that the inter-

camera transformations {Ci

C1
q,CipC1

} might be themselves

noisy, which will also affect the solution of the least squares

problem.

E. Vision-based Update

Consider again a single feature f , which has been tracked

in n consecutive camera frames, C1, C2, ..., Cn, but stopped

being tracked at the current frame, Cn+1. In this case we

initiate the vision-based update step. After having estimated

the 3D position of feature f in global coordinates, we expect

that its projection on the image plane of camera frame Ci,

according to the pinhole camera model, will be:

ẑ
Ci

f =
[

Ci X̂f

Ci Ẑf

Ci Ŷf

Ci Ẑf

]

(9)

where
[

CiX̂f
Ci Ŷf

CiẐf

]T

= R(Ci

G q̂)(Gp̂f − Gp̂Ci
) (10)

The actual measurement obtained from the feature tracks, on

the other hand, is zCi

f , so for a single feature f viewed from

a camera frame Ci this gives rise to the residual

rCi

f = zCi

f − ẑ
Ci

f (11)

If we take the Taylor expansion of the function rCi

f about the

point (Ci

G q̂,Gp̂f ,
Gp̂Ci

) we will get the following lineariza-

tion:

rCi

f ≃ HCi

f X̃ + UCi

f
Gp̃f + nCi

f (12)

where HCi

f and UCi

f are the Jacobians of rCi

f at the chosen

point of linearization. nCi

f ∼ N (0,RCi

f ) is the uncertainty in

the residual, with RCi

f = σ2
imI2×2. Essentially, σim models

the uncertainty in the camera measurements, and we are

currently modeling it as being the same for all camera

frames, regardless of whether a particular image has high

levels of motion blur, or whether the viewed scene is nearby
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or far away. The total projection residual from all camera

frames in which feature f was tracked is therefore a stack

of the individual residuals:

rf ≃ Hf X̃ + Uf
Gp̃f + nf (13)

where nf is the total uncertainty of the residual due to

feature f . We make the assumption that observations of the

same feature in consecutive camera frames are statistically

independent, which makes the covariance of said uncertainty

Rf = σ2
imIn×n. The problem with the residual in Eq. (13)

is that the state errors X̃ are correlated with the errors in

the feature position estimate Gp̃f , since the former was used

to derive the latter, as described previously. So, using Eq.

(13) as the EKF residual will bias the estimates. That is why

we can use the closest residual that ignores the first-order

dependence on Gp̃f :

Let Af be a matrix such that AT
f Uf = 0, in other words,

the columns of A form an orthonormal basis of the null

space of UT
f . While the choice of A is not unique, the final

correction factor applied to the state and covariance will not

be affected by this. The residual due to a single feature f
that does not depend on the feature position errors is:

r′f = AT
f rf ≃ AT

f Hf X̃ + AT
f nf = H′

f X̃ + n′
f (14)

where n′
f ∼ N (0,Rf ) due to the column-wise orthonor-

mality of A. Now, the total residual for all the features that

ceased to be tracked, and are part of the update, is a stack

of the above individual residuals:

r′ = H′X̃ + n′ (15)

At this point we make another assumption, whereby observa-

tions of different features are statistically independent, which

makes the covariance of n′ be the identity matrix, scaled by

σ2
im. The residual of Eq. (15) is in a form where the EKF

framework can be applied, though a numerical speed-up step

is possible, as described in [10].

F. Depth Sensor Update

Our amphibious robots are equipped with a pressure sensor

that is exposed to the water and measures its hydrostatic

pressure. The sensor is calibrated so that its reference point

is at the surface of the sea, and its pressure measurements

are converted into depth measurements in a linear fashion.

We model the incoming data at time tk of absolute depth

from the sea surface as:

zk = dk + nk, nk ∼ N (0, σ2
depth). (16)

That said, we are interested in the difference between the

robot’s initial and current depth, in which case our measure-

ments are:

z′k = zk − z0 = dk − d0 + nk = GZIk + nk (17)

nk ∼ N (0, σ2
depth)

The EKF state estimate for the depth change is GẐIk , so the

measurement residual becomes rk = GZI,k − GẐI,k + nk.

Fig. 4. The near-straight line 30 meter-long trajectory executed in the first
experiment.

The covariance matrix of the uncertainty in the residual is

Sk = HdepthPk|k−1HT
depth + σ2

depth (18)

Hdepth =
[

01×14 1 01×6N

]

The Kalman gain is then given by Kk = Pk|k−1HT
depthS

−1
k ,

so the state correction vector is Kkrk. This correction will

potentially affect the entire state vector. For the vector com-

ponents of the EKF state additive correction is applied, while

for the quaternion components, the following correction is

used:

δq =
[

δθ/2
√

1− ‖δθ‖/4
]

(19)

q̂k|k = δq ⊗ q̂k|k−1

It is worth mentioning at this point that the approximation

of the error quaternion by δθ, as explained previously only

holds for small angles, so if ‖δθ‖ >= 4 the estimate will

most likely have diverged. Finally, due to the choice of the

optimal Kalman gain, the update of the covariance matrix is:

Pk|k = (Iξ − KkHdepth)Pk|k−1 (20)

where ξ = 6N + 15 is the dimension of the covariance

matrix. We perform the depth-based update right before the

augmentation step, every time an image is recorded. One very

important issue that needs to be mentioned is the presence of

numerical instabilities when the effects of these updates are

compounded, thus for example, making the state covariance

non-symmetric. This particular issue is addressed by forcing

the symmetry of the covariance after each update.

IV. EXPERIMENTAL RESULTS

To test the validity of our adaptation of the above men-

tioned algorithm, we collected underwater datasets with

ground truth from the waters of the island of Barbados,

and we performed offline experiments to test our imple-

mentation. Two of these datasets are going to be presented

below together with the state estimates. Images on both

datasets were recorded from the back camera at 15Hz with

resolution 870 × 520. The IMU data is coming from a

MicroStrain 3DM-GX1 MEMS unit, sampled at 50Hz. The

first dataset, depicted in Fig. 4, features a straight 30 meter-

long trajectory, where the robot moves at approximately

0.2 meters/sec forward, while preserving its depth. The sea

bottom is mostly flat, and the robot moves about 2 meters

over it. A white 30 meter-long tape has been placed on the

bottom, both to provide ground truth for distance travelled,

and to facilitate the robot’s guided straight line trajectory.

The second dataset corresponds to an experiment that took

place over the same site, and under the same conditions
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Fig. 5. The second experiment, where the robot is guided to perform a
loop closure while recording IMU data and images.

mentioned above, however the shape of the trajectory was

a closed loop, as depicted in Fig. 5. The total length was

approximately 33 meters, and the side lengths are shown on

the figure.
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(b) Estimation results from the
loop.

Fig. 6. (a) The estimated distance travelled is approximately 29 meters,
which is quite accurate. (b) The length of the top segment is overshot by
1m, while the lengths of the remaining segments are estimated accurately.
Loop closure is 3 meters apart, due to estimation errors in the yaw angle.

The reconstruction of the straight line trajectory, as shown

in Fig. 7 was very accurate in terms of distance travelled,

with only 1 meter error over a 30 meter-long trajectory.

Lengths were in general, very accurately estimated in the

case of the loop, where the loop closure was approached

within 3 meters, mainly due to errors in yaw, which is

problematic for the gyroscope sensors in low-cost IMUs.

Another factor that contributed to the loop results was the

presence of motion blur in both datasets, which makes

feature matching susceptible to errors.

We observed that the inclusion of the depth sensor mea-

surements improved the estimates of the position’s z-axis,

provided that the depth-based updates were given more

confidence than the accelerometer’s propagations.

V. DISCUSSION

Underwater environments are particularly challenging due

to limited visibility, locally self-similar structures, and the

unpredictability of motions due to surge and currents. Over

the course of our experimentations we have investigated the

impact of different parameters in the accuracy and robustness

of the state estimation algorithm. An important consideration

was always the effect of each parameter to the performance

of the algorithm. It is well known that constant velocity

motion results makes the state estimation problem unobserv-

able [12]. Contrary to terrestrial experiments, our underwater

vehicles are in constant motion due to currents and surge. As

such, initial estimation of the gravity vector and the initial

orientation of the robot become very challenging. We average

initial sensor readings for estimating the gravity vector and

the initial orientation and accept the inaccuracies that this

condition introduces.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented the adaptation of a 6DOF state

estimation algorithm to the underwater domain. Extensive

experimentation enabled us to identify the major contributors

to instability of the filter. Domain specific knowledge, such

as the velocity profile used by our vehicle, allowed us to

successfully estimate the pose of the vehicle in conditions

that make the state unobservable.

Real time performance is a requirement for this work,

thus trade-offs between performance and accuracy/robustness

are investigated, especially in the area of feature detection

and matching. On the other hand, ignoring the performance

issues and focusing only on accuracy opens the field for

post-processing the results offline in order to attempt high

quality reconstruction of the observed environment both in

the image and the 3D geometry domain.

Autonomous operations over coral reefs would benefit

greatly from accurate localization algorithms. The ability to

revisit the same area over long periods of time would enable

the investigation of climate change on the fragile ecosystem

of coral reefs, as well the effect of conservation efforts.

ACKNOWLEDGMENTS

The authors would like to thank Philippe Giguere for

assistance with robot navigation; Yogesh Girdhar and Chris

Prahacs for their support as divers; Marinos Rekleitis and

Rosemary Ferrie for their help with the experiments.

REFERENCES

[1] A. Davison, I. Reid, N. Molton, and O. Stasse, “MonoSLAM: Real-
time single camera SLAM,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 29, no. 6, pp. 1052 –1067, jun. 2007.
[2] R. A. Newcombe and A. J. Davison, “Live dense reconstruction with

a single moving camera,” in CVPR, 2010, pp. 1498–1505.
[3] D. Nister, O. Naroditsky, and J. Bergen, “Visual odometry,” in Com-

puter Vision and Pattern Recognition, vol. 1, 2004, pp. I652 – I–659.
[4] K. Konolige et. al., “Large scale visual odometry for rough terrain,”

in Proc. Int. Symposium on Research in Robotics, 2007.
[5] P. T. Furgale and T. D. Barfoot, “Stereo mapping and localization for

long-range path following on rough terrain,” in Proc. of the IEEE Int.

Conf. on Robotics and Automation, 2010, pp. 4410–4416.
[6] M. Cummins and P. Newman, “ Highly Scalable Appearance-Only

SLAM FAB-MAP 2.0 ,” in Robotics Science and Systems, 2009.
[7] J. Sattar, G. Dudek, O. Chiu, I. Rekleitis, P. Giguère, A. Mills,

N. Plamondon, C. Prahacs, Y. Girdhar, M. Nahon, and J.-P. Lobos,
“Enabling autonomous capabilities in underwater robotics,” in Proc.

of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2008.
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(a) Estimated velocity for the loop trajectory
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(b) Estimated velocity for the straight line trajectory

(c) Estimated reconstruction of both the trajectory and the 3D structure of the seafloor.
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(d) Estimated reconstruction of the straight line trajec-
tory and the 3D features seen along the way.

Fig. 7. (a), (b) The maximum forward velocity of our robot has been experimentally determined to be close to 1m/s, so both of these estimates are within
the bounds of normal operation. While ground truth values for the velocity estimates are not available (e.g. via a DVL), in the case of the near-straight
line the robot traversed 30 meters in 130 seconds, which means that on average the forward velocity of the robot was 0.23m/s. (c), (d) The depth of the
estimated features from the robot’s camera is correctly estimated to be around 2m.
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