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1. Introduction 

State estimation plays a significant role in the 
context of monitoring and/or of diagnosis of 
systems. It is an analytical source of 
redundancy used to generate failure symptoms 
of the system by making a comparison 
between the real behaviour signals of the 
system and the estimated signals. A non 
desired variation between these signals 
indicates the possible presence of faults 
affecting the system. These faults indicators 
are named residues. Their generation is based 
on the use of the state observers. 

A state observer is a dynamical system 
allowing the state reconstruction from the 
system model and the measurements of its 
inputs and outputs [20]. In fact, the observer 
controlled by the same inputs applied to the 
system is able to provide the same output 
signals provided that the model employed 
reproduces with precision the behaviour of 
the system to be supervised. The observer 
design can be delicate according to the type 
and the complexity of the considered model. 

Two types of models are distinguished 
according to the linear or non linear character 
of the system. Linear models have simple 
structures. They are the base of several 
applications and research works. 

In the case of linear systems, observers can be 
designed for uncertain systems with time-
delay perturbations [8] and unknown input 
systems [7]. Several researches were achieved 

 

 

 

 

 

 

 

 

 

 

 

 

 

concerning the state estimation in the 
presence of both known and unknown inputs 
[26], [29], [7]. These works can be gathered 
into two categories. The first one supposes an 
a priori knowledge of information on these 
non measurable inputs; in particular, Johnson 
[17] proposes a polynomial approach and 
Meditch [21] suggests approximating the 
unknown inputs by the response of a known 
dynamic system. The second category 
proceeds either by estimation of the unknown 
inputs [18], [19], or by their complete 
elimination from the system equations [11].   

However, in the majority of real cases the 
nonlinear nature of the process cannot be 
neglected. The assumption of linearity is 
checked only locally around an operating 
point. Real physical processes present 
complex behaviours with nonlinear laws. As, 
it is delicate to synthesize an observer for a 
nonlinear system, the multiple model 
approach constitutes a tool which is largely 
used in the modelling of nonlinear systems 
[22], [6]. 

The principle of the multiple model approach 
is based on the reduction of the system 
complexity by the decomposition of its 
operating space in a finite number of 
operating zones.  Each zone is characterized 
by a local model (named also, sub-model).  
Each sub-model is a simple and linear system 
around an operating point. The relative 
contribution of each sub-model is quantified 
with the help of a weighting function. The 
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global behaviour of the nonlinear system is 
obtained by the sum of the local models 
balanced by the weighting functions.  

Various studies dealing with the presence of 
unknown inputs acting on the nonlinear 
system were published [3], [4], [18], [19]. 
The problem of state estimation of nonlinear 
systems submitted to uncertainties has 
received considerable attention [13], [1], 
[24], [28]. In practice, there are many 
situations where some of the system inputs 
are inaccessible. The recourse to the use of an 
unknown input observer is then necessary in 
order to be able to estimate the state of the 
considered system. For state estimation, the 
suggested technique consists in associating to 
each local model a local unknown input 
observer. The multiple observer or global 
observer is the sum of the local observers 
weighted by the weighting functions 
associated to the local models [25].  

In this paper, the problem of state estimation 
of an uncertain Takagi-Sugeno multiple 
model is addressed. The purpose of this work 
is to extend the principle of the design of 
observers with unknown inputs to uncertain 
system case. Only model’s and input 
uncertainties are considered in this paper.  

Others works dealing with uncertain systems 
choose to estimate the sate using different 
kinds of observers, such as sliding mode 
observer [1], Proportional and Proportional 
Integral observer [23]. The main contribution 
in this paper is the development of an 
unknown input multiple observer for 
uncertain nonlinear systems modelled by 
Takagi-Sugeno models. The convergence 
conditions of the sate estimation error are 
expressed in terms of linear matrix 
inequalities (LMI). 

The paper is organized as follows. Section 2 
recalls the multiple model approach. In section 
3, the multiple observer of a system with 
unknown inputs is presented. Section 4 presents 
the main results concerning the synthesis of a 
multiple observer to estimate the state of 
nonlinear system submitted to modelling and 
inputs uncertainties. Finally, in section 5, a 
numerical example is given to show the validity 
of the proposed methodology. 

2. Elementary Background on the 
Multiple Model Approach 

The idea of the multiple model approach is to 
apprehend the total behaviour of a system by 
a set of local models, each of them can be for 
example a linear time invariant system valid 
in a particular operating zone of the system. 
The local models are then aggregated by 
means of an interpolation mechanism.  

It should be noted that various realisations 
of multiple models can be employed in order 
to generate the global output of the multiple 
model [9]. Two main structures of multiple 
models can be distinguished according to the 
nature from the coupling between local 
models. In the first case, the submodels 
share the same state-space and consequently 
the multiple model is composed of 
homogeneous submodels. In the second one, 
decoupled multiple structure, the submodels 
do not have the same state-space and the 
multiple model uses heterogeneous 
submodels. The first structure, known as 
Takagi-Sugeno multiple model, is the most 
used in multiple model class representation 
[15]. The association of their local models is 
performed in the dynamic equation of the 
multiple model using a common state vector. 
This model has been initially proposed, in a 
fuzzy modelling framework, by Takagi and 
Sugeno [27] and in a multiple model 
modelling framework by Johansen and Foss 
[16]. This model has been largely considered 
for analysis, modelling, control and state 
estimation of nonlinear systems. 

The main advantage of Takagi-Sugeno 
structure is its simplicity because it originates 
from the interpolation between linear 
systems. Thus, analysis and design methods 
developed for linear systems can be 
generalized to nonlinear systems [12]. 

The Takagi-Sugeno model representation is 
given by:   

1

1

( ) ( ( ))( ( ) ( ) )

( ) ( ( ))( ( ) ( ) )

M
i i i ii

M
i i i ii

x t t A x t B u t D

y t t C x t E u t N

 

 





   

   





 (1) 

where ( ( ))i t   are the activation functions 

and ( )t  is the decision vector which is a real 
time accessible variable. It may depend on 
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the known input, output and/or the measured 
state variables. 

If 0i iE N   and the output ( )y t  is linear, 

i.e. 1 2 ... MC C C C    , the structure of the 
Takagi-Sugeno multiple model becomes: 

1
( ) ( ( ))( ( ) ( ) )

( ) ( )

M
i i i ii

x t t A x t B u t D

y t Cx t

 


   





 (2) 

where ( ) nx t   is the state vector, ( ) mu t   

is the input vector, ( ) py t   represents the 

measured output. *n n
iA   is the state 

matrix, *n m
iB   is the matrix of input and 

*p nC  is the output matrix of the system. 
M  is the number of local models. It depends 
on the modelling precision, the nonlinear 
system complexity and the choice of the 
weighting functions structure.  

Matrices , ,i i iA B D  and C can be obtained by 
using the direct linearization of the nonlinear 
model around several operating points, or 
alternatively by using an identification 
procedure [5], [14], [10]. 

The weighting functions ( ( ))i t   quantify the 
relative contribution of each sub-model to the 
global model according to the current operating 
point of the system. They are nonlinear in ( )t . 
These weighting functions must satisfy the 
following convex sum properties: 

1

0 ( ( )) 1   and   ( ( )) 1
M

i i
i

t t   


    (3) 

The weighting functions can be obtained 
from Gaussian functions:  

1

( ( ))
( ( ))

( ( ))

i
i M

jj

t
t

t

 
 

 





 (4) 

where: 
( ) 2

2

( ) ( ( )) )
( )

( ( ))

it t

i t e
 

 
 

  (5) 

The variable of decision ( )t  is accessible in 
real time and it depends of measurable 
variables like system inputs or outputs. 

 

 

3. State Estimation Using Observers 
with Unknown Inputs  

In this part, one considers the state estimation 
of a nonlinear system perturbed by unknown 
inputs. The structure of that observer results 
of the aggregation of local observers [6]. The 
design of this multiple observer is based on 
the elimination of the unknown inputs. 

Multiple observer design 

The following Takagi-Sugeno multiple model 
representing a nonlinear system with 
unknown inputs is considered: 

1

( ) ( ( ))( ( ) ( ) ( ) )

( ) ( )

M

i i i i
i

x t t A x t B u t Ru t D

y t Cx t

 



   


 


 (6) 

where ( ) nx t   represents the state vector, 

( ) mu t   is the input vector,  ( ) ,qu t q n   
represents the vector of unknown inputs, 

( ) py t   is the measured output. , ,i i iA B D  

and C  are known constant matrices with 
appropriate dimensions. R  is the matrix of 
influence of the unknown inputs which is 
assumed to be known. 

Consider the global multiple observer 
described as follows [3]:  

1 2
1

( ) ( ( ))( ( ) ( ) ( ))

ˆ( ) ( ) ( )

M

i i i i i
i

z t t N z t G u t G L y t

x t z t Ey t

 



   


  


 (7) 

*n n
iN  , *

1
n m

iG  , *n p
iL   is the gain of 

the thi local observer, 2
n

iG   is a constant 
vector and E  is a matrix transformation. All 
these matrices or vectors have to be 
determined in order to guarantee the 
asymptotic convergence of ˆ( )x t  towards ( )x t . 

The state estimation error is given as follows: 

ˆ( ) ( ) ( )

    ( ) ( ) ( )

e t x t x t

I EC x t z t

 
  

 (8) 

By direct time derivative, the dynamic 
evolution of  ( )e t  is given by (9): 

1

1 21

( ) ( ( ))( ( ( ) ( ) ( ) )
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where ( )P I EC   

Replacing ( )y t  and ( )z t  by their expressions, 
(9) becomes: 

1

1 21

( ) ( ( ))( ( ) ( ) ( ))

( ( ))(( ) ( ) ( ) )

M
i i i i ii

M
i i i i ii

e t t N e t PA N KC x t

t PB G u t PRu t PD G

 

 





   

    





 (10) 

with i i iK L N E  .  

If the following conditions are fulfilled [2]: 

0PR   (11.a) 

P I EC   (11.b) 

i i iN PA K C   (11.c) 

i i iL K N E   (11.d) 

1i iG PB  (11.e) 

2i iG PD  (11.f) 

1
( ( ))

M
i ii

t N 
  Stable (11.g) 

The equation (10) reduces to: 

1
( ) ( ( )) ( )

M
i ii

e t t N e t 


  (12) 

Let us consider the following Lyapunov 
function ( )V t : 

( ) ( ) ( )TV t e t Xe t  (13) 

where X  denotes a positive definite 
symmetric matrix. 

Its derivative with regard to time is given by: 

( ) ( ) ( ) ( ) ( )T TV t e t Xe t e t Xe t     (14) 

By substituting ( )e t  given by (12) in (14), 
one obtains: 

1

( ) ( ( )) ( ) ( ) ( )
M

T T
i i i

i

V t t e t N X XN e t 


   (15) 

Thus, the asymptotic convergence of the 
multiple observer is guaranteed and the state 
estimation error ( )e t  converges towards zero, 
if the conditions (11) are verified 
and ( ) 0V t  , that is 0T

i iN X XN  . 

Global convergence conditions of the 
multiple observer  

The state estimation error between the 
multiple model (6) and the unknown input 
multiple observer (7) converges towards zero, 

if all the pairs ( , )iA C  are observables and if 
the following conditions are checked 

 1,...,i M   [3]: 

0T
i iN X XN   (16.a) 

i i iN PA K C   (16.b) 

P I EC   (16.c) 

0PR   (16.d) 

i i iL K N E   (16.e) 

1i iG PB  (16.f) 

2i iG PD  (16.g) 

where *n nX   is a positive definite 
symmetric matrix. 

Using the equation given by (16.b), the 
expression (16.a) can be rewritten: 

 ( ) ( ) 0, 1,...,T
i i i iPA K C X X PA K C i M       (17) 

It is noted that the inequalities (17) are 
bilinear compared to variables X  and iK . To 
be reduced to the case of a linear problem, 
changes of variables are used. 

Method of resolution 

In order to resolve the system (16), three 
steps are needed: 

1. The matrix E is given by using the 
expression (16.d), where ( )CR   is the 

pseudo-inverse of CR : 

( )E R CR    (18) 

Proof:   

( )

0;     

(   ) 0

0

-

-  ( )

PR P I EC

I EC R

R ECR

ECR R

E R CR 

  
 
 





  

□  

By determining the matrix E, the matrix P is 
deduced from (16.c): 

( )P I EC I R CR C     (19) 

2. To linearize the inequalities (17), the 
following change of variables is used:  

i iW XK  (20) 
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One obtains linear matrix inequalities (21) 
that can easily solve by the means of         
LMI tools: 

 ( ) ( ) 0, 1,...,T T T
i i i iPA X X PA C W WC i M       (21) 

Finally, the matrices iK  are derived from: 

1
i iK X W  (22) 

3. The other matrices defining the multiple 
observer are deduced knowing ,E P  and iK : 

1

2

i i i

i i i

i i

i i

N PA K C

L K N E

G PB

G PD

 

 




 (23) 

4.  Proposed Extension to 
Uncertain Systems 

Multiple model representation of an 
uncertain system 

The representation of a nonlinear system 
subject to modelling and input uncertainties 
is given by the following equations:   

1

( ) ( ( ))(( ) ( )

                ( ) ( ) )

( ) ( )

M

i i i
i

i i i

x t t A A x t

B B u t D

y t Cx t

 



  


    
 




 (24) 

where ( ) nx t   is the state vector, 

( ) mu t  the input vector and ( ) py t   the 

measured outputs. Matrices *n n
iA  , 

*n m
iB   denote respectively the state matrix 

and the input matrix associated with the ith 
local model. iD  is introduced to take into 
account the operating point of the system. 

iA  are the matrices of modelling 

uncertainties and iB  represent the input 
uncertainties of the system. The weighting 
functions must satisfy the conditions (3). 
By developing the expression given by the 
equation (24), one obtains: 

1

( ) ( ( ))(( ( ) ( ) )

                       +( ( ) ( )))

( ) ( )

M

i i i i
i

i i

x t t A x t B u t D

A x t B u t

y t Cx t

 



  


    
 




 (25) 

The aim in this section consists in estimating 
the state of the system described by an 
uncertain Takagi-Sugeno multiple model 
structure (24). A solution suggested with this 
problem consists in taking account of the 
modelling and input errors as unknown inputs 
what makes it possible to apply the results 
obtained in Section 3.  

Noting ( ) ( ( ) ( ))i iu t A x t B u t    


, the system 
(25) becomes:   

1

( ) ( ( ))(( ( ) ( ) ( ) )

( ) ( )

M

i i i i
i

x t t A x t B u t u t D

y t Cx t

 



   


 


  (26) 

By comparing the equation (26) with the 
equation (6), one notices that the two 
equations are almost identical.  The only 
difference is that the matrix R  is replaced by 
the matrix identity.  It is possible under these 
conditions to adapt the results of Section 3 
for the design of a multiple observer in the 
presence of modelling and input 
uncertainties.   

Multiple observer design 

The conception of the multiple observer is 
based on the elimination of uncertainties 
affecting the nonlinear system represented by 
the Takagi-Sugeno model given by the 
equation (24). These uncertainties are 
considered as unknown inputs. 
The structure of the multiple observer is       
as follows:   

1 2
1

( ) ( ( ))( ( ) ( ) ( ))

ˆ( ) ( ) ( )

M

i i i i i
i

z t t N z t G u t G L y t

x t z t Ey t

 



   


  


 (27) 

where ˆ( )x t  is the state estimation. *n n
iN  , 

*
1

n m
iG  , *n p

iL   is the gain of the local 

observer, 2
n

iG   is a constant vector and E  
a matrix of transformation.  

The method of resolution allowing 
determining the gains of local observers is 
that given in the part (3-2). The deduction of 
the matrices iN  and gains 1iG  and  2iG  are 
given respectively by the equations (16.b), 
(16.f) and (16.g). 
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Second approach 

Consider the system described by the 
equation (24), an observer able to estimate 
this system state is given by the equation 
(27). If the conditions (11.b-11.g) are fulfilled, 
the state estimation error is given by: 

1
( ) ( ( ))( ( )+ ( ))

M
i ii

e t t N e t Pu t 





 (28) 

where ( ) ( ( ) ( ))i iu t A x t B u t    


. 

Consider the same Lyapunov function 
( )V t given by (13).  

The problem of robust state and faults 
estimation is reduced to find the gains of the 
observer to ensure an asymptotic 
convergence of ( )e t  towards zero if ( ) 0u t 

  
and to ensure a bounded error in the case 
where ( ) 0u t 

 , i.e.: 

lim ( ) 0               for ( ) 0

( ) ( )   for ( ) 0 and (0) 0
e u

t

Q Q

e t u t

e t u t u t e


 

  


 
 (29) 

where 0   is the attenuation level. To 
satisfy the constraints (13), it is sufficient to 
find a Lyapunov function ( )V t  such that: 

2( ) ( ) ( ) ( ) ( ) 0T T
e uV t e t Q e t u t Q u t  

 
 (30) 

where eQ  and uQ  are two positive     
definite matrices.  

The inequality (30) can also be written as: 

( ) ( ) 0Tt t    (31) 

with: 

2

,

T
i i e

T
u

e
and

u

N X XN Q XP

P X Q





 
 
 
  

 
  

  (32) 

The quadratic form in (31) is negative if 0  . 

The method of resolution of (31) is given in [18]. 

5. Simulation Example 

In this part, only the first approach is 
considered for simulation. 

Let us consider the multiple model, made up 
of two local models and involving two states 
and two outputs. 

2

1

( ) ( ( ))(( ) ( )

               ( ) ( ) )

( ) ( )

i i i
i

i i i

x t t A A x t

B B u t D

y t Cx t

 



  


    
 




 (33) 

Posing ( ) ( ( ) ( ))i iu t A x t B u t    


: 

2

1

( ) ( ( ))(( ( ) ( ) ( ) )

( ) ( )

i i i i
i

x t t A x t B u t u t D

y t Cx t

 



   


 




 (34) 

The numerical values of matrices are: 

1

2 0

2 1
A

 
   

, 2

1 2

2 4
A

  
   

, 1 2

0

0
D D

 
   

 
 

1

1

2
B

 
  
 

, 2

3

1
B

 
  
 

, 
0 1

1 1
C

 
  
 

. 

One takes 0.1*i iA A    and 0.1*i iB B    

During simulation, one distinguishes the 4 
borderline cases: ( ) ( )i iA x t B u t   , 

( ) ( )i iA x t B u t   , ( ) ( )i iA x t B u t    and 

( ) ( )i iA x t B u t   . The study of these cases 
makes it possible to give an idea on the 
effectiveness of the method.  

The decision vector is depending on the 
system input. The system (34) was simulated 
using Gaussian functions for the weighting 
functions ( ( ))i u t  obtaining from the 

equations (4) and (5), with 1 1 0.25u   ,  
2 2 0.25u   and 0.15  . These functions 

are shown on Figure 1. 

 

Figure 1. The weighting functions 
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The known system input ( )u t  is represented 
in Figure 2. 

 

Figure 2. The known input ( )u t  

The structure of the multiple observer is: 

2

1 2
1

( ) ( ( ))( ( ) ( ) ( ))

ˆ( ) ( ) ( )

i i i i i
i

z t u t N z t G u t G L y t

x t z t Ey t





   


  



 Its matrices are: 

1 2

5.5 0

2 5.5
N N

 
     

,
1 1

1 0
E

 
   

 

1 2 11, ,L L G  and 21G  are null matrices.   

The simulation results are shown in Figures 
3, 4, 5 and 6. 

 

Figure 3. States and their etimates associated for 
(+deltaA+deltaB) 

 

 

Figure 4. States and their etimates associated for 
(+deltaA-deltaB) 

 

Figure 5. States and their etimates associated for 
(-deltaA+deltaB) 

 

Figure 6. States and their etimates associated for 
(-deltaA-deltaB) 
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Thus, one succeeds in estimating the system 
state for nonlinear systems described by 
Takagi-Sugeno models, in the presence of 
modelling and input uncertainties. Figures 3 
to 6 show the time evolution of the system 
states and their estimates for the for 
borderline cases: ( ) ( )i iA x t B u t   , 

( ) ( )i iA x t B u t  , ( ) ( )i iA x t B u t    and 
( ) ( )i iA x t B u t  . 

The actual state and the estimated state are 
superimposed except in the vicinity of the 
origin. This disparity is due to the choice of 
the initial conditions of the multiple observer. 
A model uncertainty equal to 10%  of the 
system matrices does not influence the 
estimate results. 

Figure 7 presents the evolution of the state 
error estimation. It is shown that the four 
errors converge towards zero. It can be 
concluded that the proposed method allows 
estimating well the system state even in the 
case of modelling and input uncertainties. 

 

Figure 7. State estimation error 

6. Conclusion 

This paper addresses a new method to design 
multiple observer for uncertain nonlinear 
systems represented by Takagi-Sugeno 
models. Models’ and input uncertainties 
considered in this work are assumed to be as 
unknown inputs. The convergence of the 
estimation error is studied using the second 
method of Lyapunov and the synthesis 
conditions of the observer are expressed in 
LMI terms. The calculation of the gains of 
the multiple observer is based on the 
calculation of gains of local observers. The 
simulation results show that the estimation of 

the state is very satisfactory. Future works 
will deal with the extension of the proposed 
method in order to take into consideration the 
modelling and outputs uncertainties. 
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