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Abstract

Background: Driving Boolean networks to desired states is of paramount significance toward our ultimate goal of

controlling the progression of biological pathways and regulatory networks. Despite recent computational

development of controllability of general complex networks and structural controllability of Boolean networks, there

is still a lack of bridging the mathematical condition on controllability to real boolean operations in a network. Further,

no realtime control strategy has been proposed to drive a Boolean network.

Results: In this study, we applied semi-tensor product to represent boolean functions in a network and explored

controllability of a boolean network based on the transition matrix and time transition diagram. We determined the

necessary and sufficient condition for a controllable Boolean network and mapped this requirement in transition

matrix to real boolean functions and structure property of a network. An efficient tool is offered to assess controllability

of an arbitrary Boolean network and to determine all reachable and non-reachable states. We found six simplest forms

of controllable 2-node Boolean networks and explored the consistency of transition matrices while extending these

six forms to controllable networks with more nodes. Importantly, we proposed the first state feedback control strategy

to drive the network based on the status of all nodes in the network. Finally, we applied our reachability condition to

the major switch of P53 pathway to predict the progression of the pathway and validate the prediction with

published experimental results.

Conclusions: This control strategy allowed us to apply realtime control to drive Boolean networks, which could not

be achieved by the current control strategy for Boolean networks. Our results enabled a more comprehensive

understanding of the evolution of Boolean networks and might be extended to output feedback control design.
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Background

Boolean networks have been successfully applied tomodel

gene regulations and protein interactions for the last two

decades because the up or down regulation of molecular

expressions can be described as discrete Boolean func-

tions [1–4]. In these applications, molecules and their

interactions were treated as nodes and edges, respec-

tively. Boolean networks were characterized with network

structure, i.e. the organization of nodes and edges, and
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the interactive Boolean functions among the nodes [5].

Recent advances in high through-put technology such as

genomics and proteomics have prompted us to deter-

mine the interactions among molecules, thus establishing

a Boolean network for a small biological system is feasible.

Currently, the most common senorio of biological

experiments is to modify a specific molecular expression

through gene knock-out or dosage injection and to eval-

uate the down stream effects of the modified molecule

by examining expressions of a panel of genes based on

expertise knowledge or using unbiased screening. Such

experimental design only changes the initial state of a bio-

logical network and no other stimuli (control input) is

introduced to the system during the response. Further,
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such experimental design was performed without answer-

ing the following questions: 1) whether changing the state

of one node or a group of nodes of a network will drive

the network to desired states; and 2) how to determine the

effect of structural and functional changes of a network.

Similar questions have been answered for linear time

invariant systems as reachability and controllability of a

system. In general, a particular state x1 is reachable if

there exists a control input to transfer the system from

any initial state to x1 in a finite time. Meanwhile, a sys-

tem is defined as reachable if every state of the system is

reachable [6]. Controllability of a system is very similar to

reachability definition, which means if there exists a con-

trol input to transfer the system from any initial condition

to the origin in finite time. For a linear time invariant sys-

tem, we can always translate a state to the origin using

coordinate transformation. And therefore, reachability is

a fundamental check for controllability.

Preliminary results on controllability of general net-

works were obtained via pinning control strategy in

terms of the spectral properties of network structure [7].

Barabasi’s group has mapped controllability conditions

of linear time invariant systems to complex networks

and computationally determined the driver nodes for a

network [8]. Their results answered the question which

nodes might affect the progression of a network. Yuan

and colleagues further examined the effect of weights

of the edges on controllability of a general network [9].

Both results focused on finding the minimal number of

nodes to control the network. However, these results are

computational analysis due to the lack of mathemati-

cal representation of complex networks. In the year of

2003, Cheng proposed a mathematical representation of

Boolean networks with semi-tensor product [10], which

provided a possible approach to systemically examine

the controllability of Boolean Networks. Sun and Cheng

defined the controllability of a Boolean network and

obtained preliminary controllable condition on network

structure [11–13]. However, the definition and conditions

were mathematical oriented and have not been linked to

Boolean operations in real networks, which imposed extra

difficulty for users without the required mathematical

background.

In this study, we defined both structural and func-

tional requirements for a reachable Boolean network

using semi-tensor product. We found 6 forms for con-

trollable 2-node Boolean networks with both structural

and functional conditions, developed a sharable tool to

determine whether an arbitrary Boolean network is reach-

able or not, and gave possible structural and functional

changes to modify the reachability. Most importantly, we

proposed the first state feedback control strategy to drive a

Boolean network by integrating current status of all nodes

in the network. The control strategy allowed realtime

application and will provide effective control to drive the

network to a desired state.

Boolean networks

Boolean networks proposed by Kauffman are discrete-

time dynamics systems with Boolean state-variables [5].

Each node of a Boolean network is a Boolean state vari-

able with logic value 0 (false) or 1 (true) corresponding to

down or up regulation of a molecule in a biological net-

work. States of all nodes in a Boolean network will lead to

a Boolean vector.

A Boolean function with k variables is a mapping B:

{0, 1}k → {0, 1} from the set of all k-tuples over {0, 1} to a

binary output. This function describes how to determine

a Boolean-valued output based on certain logical opera-

tions from k binary inputs. It can also be interpreted as

how the expression of a molecule will be determined by

other k molecules interacting with it. The basic Boolean

operations include AND (conjunction), OR (union), and

NOT (inhibition). A list of sixteen logical operations was

shown in Table 1.

Algebraic representation of Boolean networks

A Boolean network with n logical variables Vi, i =

1, 2, . . . , n and m control inputs uj, j = 1, 2, . . . ,m can be

expressed as

V1(t + 1) = B1(V1(t), . . . ,Vn(t),u1(t), . . . ,um(t))

... (1)

Vn(t + 1) = Bn(V1(t), . . . ,Vn(t),u1(t), . . . ,um(t)),

where Vi and uj take value from the set {0, 1} [14]. The

representation of each Boolean function is defined as Bi :

{0, 1}n+m → {0, 1}, i = 1, . . . , n, which is preassigned

Boolean logical functions determined by the biological

process. For a n-node boolean network, there are 2n pos-

sible states. If there is no control input uj, Bi is a 2 × 2n

matrix because each logical value 0 or 1 is expressed as a

vector (0, 1)T or (1, 0)T , respectively. The algebraic state-

space representation of the Boolean control network is set

up based on the semi-tensor product of matrices which

will be introduced in our method part [10, 14, 15].

For each Boolean function, there is a unique truth table

while the algebraic expression of a Boolean function is

not unique. This means that there exist different forms of

structures and operations of a network with same Boolean

function. In this study, we assume each Boolean func-

tion is represented with the simplest form to reduce the

complexity of analysis.

Results

We first defined all reachable states of a Boolean network

with control applied at the beginning and then removed

the control input from the system. This exactly mimics the
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Table 1 Logical matrices of 16 Boolean operations

Logical connective Logical operator Logical matrix for 2-node

symbol Boolean networks

True ⊤

⎛

⎝

1 1 1 1

0 0 0 0

⎞

⎠

False ⊥

⎛

⎝

0 0 0 0

1 1 1 1

⎞

⎠

Proposition x1 x1

⎛

⎝

1 1 0 0

0 0 1 1

⎞

⎠

Proposition x2 x2

⎛

⎝

1 0 1 0

0 1 0 1

⎞

⎠

Negation (inhibition) x1 ¬x1

⎛

⎝

0 0 1 1

1 1 0 0

⎞

⎠

Negation (inhibition) x2 ¬x2

⎛

⎝

0 1 0 1

1 0 1 0

⎞

⎠

Conjunction ∧

⎛

⎝

1 0 0 0

0 1 1 1

⎞

⎠

Disjunction (union) ∨

⎛

⎝

1 1 1 0

0 0 0 1

⎞

⎠

Converse implication ←

⎛

⎝

1 1 0 1

0 0 1 0

⎞

⎠

Material conditional →

⎛

⎝

1 0 1 1

0 1 0 0

⎞

⎠

Converse nonimplication �

⎛

⎝

0 0 1 0

1 1 0 1

⎞

⎠

Material nonimplication �

⎛

⎝

0 1 0 0

1 0 1 1

⎞

⎠

Biconditional ↔

⎛

⎝

1 0 0 1

0 1 1 0

⎞

⎠

Alternative denial ↑

⎛

⎝

0 1 1 1

1 0 0 0

⎞

⎠

Joint denial ↓

⎛

⎝

0 0 0 1

1 1 1 0

⎞

⎠

Exclusive disjunction ⊕

⎛

⎝

0 1 1 0

1 0 0 1

⎞

⎠

situation of modifying one node or a group of nodes in

the network initially and examining the response.We then

extended the reachability to controllability.

Determining reachability using graphical approach

For a n-node Boolean network, an integrated state repre-

sents the status of n variables in the network. All together

there are 2n integrated states, representing each possible

status of the n nodes. An integrated state is denoted as

e
j
2n , j = 1, 2, · · · , 2n, in which e

j
2n means the jth column

of 2n × 2n identity matrix. A graphical representation,

time transition diagram, was proposed to illustrate the

transition among the integrated states. Each node of the

time transition diagram corresponds to one integrated

state e
j
2n of a dynamic network. A directed edge from

e
j
2n to ek2n , j, k = 1, 2, · · · , 2n, indicates temporal transi-

tions from an integrated state e
j
2n to an integrated state

ek2n . The directed edge also represents that the jth column

in the transition matrix is ek2n . The transition matrix of

a Boolean network is calculated using semi-tensor prod-

uct, and each column of the transition matrix is a vector

ek2n . From the left to the right, each column of the transi-

tion matrix represents the transition from e
j
2n , j increasing

from 1 to 2n, to its next integrated state represented by

a column vector ek2n . Specifically, the left most column of

the transition matrix represents the transition from e12n

to its next integrated state, and the right most column in

the matrix represents the transition from e2
n

2n to its next

integrated state. Therefore, there are a total of 2n outgo-

ing arrows in the time transition diagram and a node may

have multiple incoming arrows but has only one outgoing

arrow.

Reachability of a node in the time transition diagram

means the corresponding integrated state can be reached

from any initial integrated state in finite time. If each node

in the time transition diagram is reachable, the Boolean

network is reachable.

Finding 1 A Boolean network with n nodes (n > 1) is

reachable if and only if the signal flow goes through each

node in the time transition diagram by one direction, indi-

cating that each node has one outgoing arrow and one

incoming arrow.

There are some specific properties for the transition

matrix of a reachable Boolean network: 1) There is only

one 1 in each column and each row, suggesting an inte-

grate state can only be reached by one other integrated

state; 2) Every diagonal elements is zero. It means that the

jth column is not e
j
2n . This property excludes self transi-

tion of one integrated state. 3) If the jth column is ek2n ,

then the kth column is not e
j
2n , n ≥ 2, which excludes

transition between two integrated states. However, this

property is not true for a 1-node reachable Boolean net-

work. The transition matrix of 1-node reachable boolean

network satisfies that the 1st column is e22 while the 2nd
column is e12.

Here, an example of a 3-node Boolean network is pre-

sented in Fig. 1 to show how the reachability is determined

and all 8 integrated states representing possible status of

the 3 nodes in the Boolean network are listed in Table 2.

Based on these integrated states listed in Table 2 and time

transition diagram in Fig. 1, whatever changes we make
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a

b

c

Fig. 1 Determination of the reachability of a three-node Boolean network with given Boolean functions. Based on the logical operations (a) for this

network, the corresponding time transition matrix (b) and the time transition diagram (c) can be obtained by semi-tensor product. A signal flow

among five integrated states e38 → e58 → e78 → e88 → e48 → e38 is formed as a circle. According to Finding 1, it means that all these five integrated

states are reachable, which are highlighted in red, while the other three states e18 , e
2
8 and e68 are not reachable, which are highlighted in blue

to the nodes through knock out of a node (value 0) nor

dosage injection to a node (value 1), the network can not

reach the integrated state e18 (node 1 is 0, node 2 is 1, and

node 3 is 1), e28 (node 1 is 1, node 2 is 1, and node 3 is 0),

e68 (node 1 is 0, node 2 is 1, and node 3 is 0). If we force the

initial status of the system to be these three states, the net-

work will deviate from these states and never come back.

This result can provide a guideline for experiment design

to examine down stream effect for a giving pathway with

known Boolean network. For the network shown in Fig. 1,

when e18, or e
2
8, or e

6
8 is a desired state we would like the

Table 2 Relationship between eight integrated states of a

3-node Boolean network and logical values of the 3 nodes

Node 1 Node 2 Node 3 Integrated state

1 1 1 e18

1 1 0 e28

1 0 1 e38

1 0 0 e48

0 1 1 e58

0 1 0 e68

0 0 1 e78

0 0 0 e88

network to go, a more complicated control strategy should

be introduced in stead of just modify status of one node of

a group of nodes.

Reachable 2-node Boolean network with logical

operations. We examined all 2-node Boolean networks

with combinations of 16 logical operations as shown in

Table 1. We found that there were only six simplest forms

of reachable 2-node Boolean networks. These six Boolean

networks were shown in Fig. 2 with their corresponding

time transition diagrams and transition matrices.

Interestingly, these six simplest networks show highly

coupled property, which can be divided into three groups.

In each group, if state x1 is swapped with x2 in one of the

coupled networks, it exactly becomes the other network.

Therefore, for any given 2-node Boolean network dynam-

ics with logical operations, it will be straightforward to

know that it is reachable or not when it reduces to its sim-

plest form. In addition, this provided a baseline to check

reachability and controllability of a Boolean network with

more nodes.

Feedback control design for N-node lower-triangle

Boolean networks Starting from the known 6 forms of

2-node reachable Boolean networks, their extensions to

N-node Boolean networks can be derived based on the
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Fig. 2 The six simplest 2-node reachable Boolean networks with their logic operations. The left column shows simplest reachable Boolean functions

of two variables, the middle column represents the state transition matrix, and the right column illustrates the time transition diagram among four

integrated states of two variables. The four integrated states of all six Boolean networks are all reachable

property of transition matrix. Further, for the extended

N-node Boolean network with control input added to

the nth node directly, the feedback control input can be

designed to implement the reachability of the N-node

Boolean network.

Finding 2 For a given N-node lower-triangle Boolean

network dynamic with control input located at the

nth node, if the first N-1 Boolean network dynamic

is a reachable (N-1)-node Boolean dynamics, a feed-

back control can be designed, which is extracted from

the Nth logical function of extended N-node reachable

Boolean dynamics from the (N-1)-node reachable Boolean

dynamics.

Given one of the 6 reachable 2-node boolean networks

in Fig. 2, we can extend the network with extra nodes once

the added boolean functions guarantee the time transition

diagram satisfy the condition in our 1st finding. For an

extended N-node reachable Boolean network, if we divide

its (2n × 2n transition matrix LN into sub-blocks, and

define 0-block as a square matrix with all zero elements,

and 1-block as square matrix with non-zero element, the

structure of the transition matrix LN in terms of the

sub-blocks will mimic the transition matrix for boolean

networks with less nodes.

Specifically, if 1-block in transition matrix of 2-node

network appears at row i and column j, then for a 3-node

network extended from 2-node network, the two 1-blocks

only appear at row 2i − 1 and column 2j − 1, row 2i and

column 2j or at row 2i − 1 and column 2j, row 2i and

column 2j − 1 respectively. An example of how to design

the feedback control input of the 3-node Boolean network

is shown below, which extends from 2-node reachable

Boolean network. And the relationship between transition

matrices was shown in Fig. 3. Further, the Boolean func-

tion for the 3rd node can be treated as control input u as

shown below,
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a c
d

eb

Fig. 3 The pipeline of extended 3-node reachable Boolean network from 2-node reachable Boolean network. If transition matrix L3
(

23 × 23
)

of

3-node Boolean network system, is divided into 4 × 4 blocks, then the new transition matrix represented by the 4 × 4 matrix is exactly the same as

transition matrix L2 of fundamental 2-node Boolean network dynamic. a The transition matrix of a 2-node reachable network; (b) Time transition

diagram of 2-node network; (c) Each 1-block is extended to two 1-blocks; (d) The transition matrix of extended 3-node extended reachable network;

(e) Corresponding time transition diagram of extended 3-node extended network

x1(k + 1) =¬x2(k)

x2(k + 1) =x1(k)

x3(k + 1) =u,

where u is the control input of the lower-triangle dynamic,

which will be designed later.

For the 2-node reachable Boolean network represented

by

x1(k + 1) =¬x2(k)

x2(k + 1) =x1(k),

we illustrate the inter relationship between the transition

matrices and time transition diagram. Based on one pos-

sible transition matrix that guarantees the reachability of

each integrated state, the boolean operation matrix M

can be obtained and the corresponding boolean function

for the 3rd node is determined. With the possible transi-

tion matrix shown in Fig. 3, the corresponding Boolean

function is listed as

x1(k + 1) = ¬x2(k)

x2(k + 1) = x1(k)

x3(k + 1) = (¬x1(k) ∧ ¬x2(k) ∧ ¬x3(k))

× ∨(x1(k) ∧ x3(k)) ∨ (x2(k) ∧ x3(k)).

Then, the feedback control input u is designed as

u=(¬x1(k)∧¬x2(k) ∧ ¬x3(k))∨ (x1(k) ∧ x3(k)) ∨(x2(k) ∧ x3(k)).

Analysis of reachability for P53 pathway

The p53 pathway responds to intrinc and extrinsic stress

signals that can disrupt the fidelity of DNA replication,

genome stability, cell cycle progression, and cell division.
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The pathway contains complicated feedback regulatory

mechanisms and many experimental results have been

accumulated to illustrate the regulations. In the major

switch of p53 pathways as shown in Fig. 4, there are four

state nodes are denoted as x1, x2, x3 and x4, which present

as ‘ATM’, ‘p53’, ‘Wip1’, ‘Mdm2’, respectively [16]. The rela-

tionship between integrated states and its corresponding

Boolean values of four genes is shown in Table 3 below.

The Boolean network representation of 4 genes is

x1(k + 1) =¬x3(k)

x2(k + 1) =x1(k) ∧ (¬x4(k))

x3(k + 1) =x2(k)

x4(k + 1) =¬x1(k) ∧ (x2(k) ∨ x3(k))

(2)

The transition matrix is

L=
(

e1416, e
10
16, e

6
16, e

2
16, e

16
16, e

12
16, e

8
16, e

4
16, e

13
16, e

13
16, e

5
16, e

5
16, e

15
16, e

15
16, e

8
16, e

8
16

)

(3)

The corresponding time transition diagram is shown in

Fig. 5. From the time transition diagram, there exists a

cycle including e816, e
4
16, e

2
16, e

10
16, e

13
16, e

15
16, suggesting a sta-

ble pulse generated by P53 pathway switches. Based on

Table 3, each integrated state corresponds the specific val-

ues of four states. In Fig. 5, the high expression level of a

gene presents Boolean value ‘1’ while low expression level

means Boolean value ‘0’.

Additionally, this stable pulse can be reached by differ-

ent initial integrated states. One of the time course, which

includes the main loop, is presented in Fig. 6 based on

Fig. 4 The major switch of p53 pathway. The major interactions for

p53 pathway, were presented among four nodes: ‘ATM’, ‘p53’, ‘Wip1’,

‘Mdm2’ respectively. The red line means the inhibition impact while

the black linestands for the promotion impact

Table 3 The relationship between integrated states and its

corresponding Boolean values of four genes

ATM p53 Wip1 Mdm2 Integrated state

1 1 1 1 e116

1 1 1 0 e216

1 1 0 1 e316

1 1 0 0 e416

1 0 1 1 e516

1 0 1 0 e616

1 0 0 1 e716

1 0 0 0 e816

0 1 1 1 e916

0 1 1 0 e1016

0 1 0 1 e1116

0 1 0 0 e1216

0 0 1 1 e1316

0 0 1 0 e1416

0 0 0 1 e1516

0 0 0 0 e1616

our simulation. The network exhibits the one-phase or

two-phase dynamic, which depends on the initial states.

If the initial is one of e816, e
4
16, e

2
16, e

10
16, e

13
16, e

15
16, there exists

only one-phase pulse, i.e. steady state pulse, which is a

periodical pulse. If the initial states are others integrated

states, there exists the two-phase pulse (transient pulse

and steady state pulse), where the first phase is depends on

the time distance between any state belongs to the peri-

odical circle and the initial states and it ends at reaching

any one state in the e816 → e416 → e216 → e1016 → e1316 →

e1516 → e816 circle. The second phase is characterized by the

periodical circle.

To verify that our predictions on P53 pathway progres-

sion, we examined the experimental results published on

P53 pathways. The published results confirmed that 1)

P53 pathway has a stable pattern pulses generation [17],

and 2) there exists two-phase transition in P53 pathways

[18].

Discussion and conclusions

Reachability of Boolean networks is a central issue for net-

work analysis. However, due to the lacking of a systemic

approach to present network progression with respect to

the structure and functions of a network, little is known

about reachability of a complex network. Recent results

are acquired with computational estimates and on struc-

tural property [8, 9, 19]. The most significant contribu-

tions of this study were listed below. We have developed

a tool to determine the reachability for Boolean networks

with arbitrary number of nodes and Boolean functions.
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Fig. 5 The time transition diagram of sixteen integrated states of 4 nodes in p53 pathway. The solid lines present the time path. As time goes on, any

initial integrated state will reach a signal flow including six integrated states e816 → e416 → e216 → e1016 → e1316 → e1516 → e816 . This phenomena

induces that the states change periodically after a period of time

This tool allows general non-engineer users to verify

whether a Boolean network is reachable or not. Further,

with a given Boolean network, we can recognize all the

reachable states and separate them from non-reachable

states. If a desired state of the network is among the

reachable states, a modification of initial states through

gene knock out or dosage injection may lead to desired

response. Otherwise, a more complicated control should

be introduced.

We also found six simplest forms for reachable 2-D

boolean networks. This result provided the structure of

reachable transition matrix and allowed us to examine

possible modification of structure and function of a net-

work. Finally, we proposed the first state feedback control

design strategy of N-node Boolean networks. The control

is determined by status of all nodes in the network and

is feasible for realtime application. For instance, a possi-

ble control design was introduced to a 2-node network to

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6 ATM

p53

Wip1

Mdm2

Fig. 6 The pulses of p53 pathway. Expression levels of four genes in the major switch of P53 pathway lead to pulse diagram. The high expression

level of a gene presents Boolean value ‘1’ while low expression level means Boolean value ‘0’. Expression levels of each node also lead to a specific

integrated state in the time transition diagram. The four different pulse lines, which are ATM (black solid line), p53 (blue solid line), Wip1 (green solid

line), Mdm2 (red solid line), show cyclic changes after 10 sec
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form a 3-node reachable Boolean network shown in Fig. 3.

Though the last Boolean function may be complicated,

it provides possible direction for state feedback control

design. Simplification and optimization of the state feed-

back control design and output feedback control design

will be conducted as our future research.

Finally, we presented the analysis of the major switch in

P53 pathway to predict the progression of the pathway and

validated our prediction with published results.

Methods

Semi-tensor product. Semi-tensor product ′
⋉

′ allows

us to multiply two matrices without the requirement of

matching their dimensions [10].

For a logical dynamics, we know that ′1′ and ′0′ are

used to represent logical states ′True′ and ′False′, respec-

tively. In order to define the logical values for computing

and analysis, vector forms of Boolean variables are applied

using semi-tensor product paper. The semi-tensor prod-

uct of two matrices A ∈ R
m×n and B ∈ R

p×q is that

A⋉ B = (A ⊗ Iα/n)(B ⊗ Iα/p), (4)

where α = lcm(n, p), lcm(n, p) denotes the least multiple

of n and p. Iα/n and Iα/p are the (α/n×α/n) identity matrix

and (α/p × α/p) identity matrix, respectively. Operation

⊗ means the Kronecker product [20].

Representation of Boolean network dynamicss using

semi-tensor product. We summarize the mathematical

tool of semi-tensor product in Cheng’s papers as follows.

[14, 21]

Cheng’s result 1: Any logical function

f (x1, x2, · · · , xn) with logical states x1, x2, · · · , xn ∈ D

can be expressed in a multi-linear form as

f (x1, x2, · · · , xn) = M ⋉ x1 ⋉ x2 · · · ⋉ xn (5)

whereM is a 2 × 2n logical matrix.

Cheng’s result 2: Consider a Boolean network with

states xi ∈ D and denote integrated state

x(k) = x1(k) ⋉ x2(k) · · · ⋉ xn(k), there exists a

unique matrix L ∈ {0, 1}2
n×2n such that

x(k + 1) = L⋉ x(k), (6)

L is the transition matrix of this Boolean network.

Cheng’s results allow us to represent the dynamics

of Boolean networks with an algebraic state space rep-

resentation. Then, the time transition diagram can be

determined by this transition matrix L.

Examining all the 2-node reachable Boolean networks

with logical operations. For any 2-node (node x1 and

node x2) Boolean network, denote the integrated state

x(k) = x1(k) ⋉ x2(k) as a 4 × 1 vector, the dynamics can

be represented by a multi-linear form as below

x1(k + 1) = M1 ⋉ x1(k) ⋉ x2(k)

= M1 ⋉ x(k),

x2(k + 1) = M2 ⋉ x1(k) ⋉ x2(k)

= M2 ⋉ x(k),

where M1 and M2 are the 2 × 4 undetermined logical

matrices. Suppose

M1=

(

α11 α12 α13 α14

α21 α22 α23 α24

)

,M2=

(

β11 β12 β13 β14

β21 β22 β23 β24

)

,(7)

noticing that if one of α1j and α2j, j = 1, 2, 3, 4, is zero,

the other one must be one. Also, the same condition is on

the situation of β1j and β2j, j = 1, 2, 3, 4. In other words,

α1j +α2j = 1 and β1j +β2j = 1, where α1j,α2j,β1j,β2j ∈ D.

Therefore,M1 andM2 has 2
4 combination cases.

There exists a unique matrix L such that

x(k + 1) = L⋉ x(k),

where L = M1 ⋉ (I4 ⊗ M2) ⋉ �2. Moreover, �2 is a fixed

16× 4 matrix provided below, which only depends on the

number of nodes.

�2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(8)

By substituting the expressions of M1, M2, and �2 into

the calculation formula of L, the matrix L is obtained as

L = M1 ⋉ (I4 ⊗ M2) ⋉ �2 (9)

=

⎛

⎜

⎜

⎝

α11β11 α12β12 α13β13 α14β14

α11β21 α12β22 α13β23 α14β24

α21β11 α22β12 α23β13 α24β14

α21β21 α22β22 α23β23 α24β24

⎞

⎟

⎟

⎠

.

Based on Finding 1, in order to ensure it is a reachable

Boolean network, the transition matrix should satisfy the

jth column is not e
j
2n and if jth column is ek2n , then kth col-

umn is not e
j
2n , which means transion matrix L here must

be a special asymmetric permutation matrix, and satisfy
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that all the elements on the diagonal are zeros. So, there

are only six different forms of L in total as shown below.

L1 =

⎛

⎜

⎜

⎝

0 1 0 0

0 0 0 1

1 0 0 0

0 0 1 0

⎞

⎟

⎟

⎠

, L2 =

⎛

⎜

⎜

⎝

0 0 1 0

1 0 0 0

0 0 0 1

0 1 0 0

⎞

⎟

⎟

⎠

(10)

L3 =

⎛

⎜

⎜

⎝

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

⎞

⎟

⎟

⎠

, L4 =

⎛

⎜

⎜

⎝

0 0 1 0

0 0 0 1

0 1 0 0

1 0 0 0

⎞

⎟

⎟

⎠

(11)

L5 =

⎛

⎜

⎜

⎝

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

⎞

⎟

⎟

⎠

, L6 =

⎛

⎜

⎜

⎝

0 0 0 1

0 0 1 0

1 0 0 0

0 1 0 0

⎞

⎟

⎟

⎠

(12)

According to the forms of Li, i = 1, 2, · · · , 6, the related

M1 and M2 can be determined and their corresponding

most simplistic logic equations can be obtained respec-

tively, which are listed below.

In terms of L1,M1 andM2 can be reduced as

M1 =

(

0 1 0 1

1 0 1 0

)

, M2 =

(

1 1 0 0

0 0 1 1

)

. (13)

Then, the most simplistic Boolean network dynamics

equation related to L1 is

x1(k + 1) =¬x2(k)

x2(k + 1) =x1(k).
(14)

All the other five sets of M1 and M2 corresponding Li,

i = 2, 3, 4, 5, 6, can be obtained through the same way. All

possible Boolean networks and corresponding transition

matrices were shown in Fig. 2.

Extending N-node reachable network dynamics from

2-node reachable Boolean networks. Denote Mi, i =

1, 2, · · · , n as 2 × 2n logical matrices of each logical func-

tion of a N-node Boolean network. Extension of the first

n logical functions to extended n+ 1 nodes Boolean func-

tions leads to M∗
i , i = 1, 2, · · · , n + 1. Specifically, M∗

n+1

indicates the (2 × 2n+1) logical matrix of the last logical

function. Moreover, the relationship between Mi and M∗
i

is

M∗
i = E ⋉Mi, i = 1, 2, · · · , n, (15)

where matrix E is a fixed 2 × 4 matrix shown as

E =

(

1 1 0 0

0 0 1 1

)

. (16)

In terms of n nodes reachable Boolean network system,

the corresponding expression of transition matrix Ln is

Ln = M1 ⋉

n
∏

i=2

[ (I2n ⊗ Mi) ⋉ �n] , (17)

where Mi are 2 × 2n logical matrices of dynamics, i =

1, 2, · · · , n. �n is a fixed 22n × 2n matrix, which only

depends on the number of nodes.

Then, for n + 1 nodes reachable Boolean network sys-

tem, the corresponding expression of transition matrix

Ln+1 is

Ln+1=M∗
1 ⋉

n+1
∏

i=2

[ (I2n+1 ⊗ M∗
i ) ⋉ �n+1]

=M∗
1 ⋉

n
∏

i=2

[ (I2n+1 ⊗ M∗
i ) ⋉ �n+1]⋉((I2n+1 ⊗ M∗

n+1) ⋉ �n+1)

=E ⋉M1⋉

n
∏

i=2

[(I2n+1 ⊗(E⋉Mi))⋉�n+1]⋉(I2n+1⊗M∗
n+1)⋉�n+1

=L∗
n ⋉(I2n+1 ⊗ M∗

n+1) ⋉ �n+1,

where L∗
n = E ⋉M1 ⋉

∏n
i=2[ (I2n+1 ⊗ (E ⋉Mi)) ⋉ �n+1],

which is a 2n×2n+1 matrix. Due to (I2n+1 ⊗M∗
n+1)⋉�n+1

is a 2n+2 × 2n+1 matrix, L∗
n matrix will be extended as

L∗
n ⊗ I2 when doing the semi-product. Therefore, Ln+1

is a 2n+1 × 2n+1 matrix, which has multi-level-nested

structure based on matrices L2, L3, · · · , Ln of 2 − D,

3−D, · · · , n−D reachable or reachable Boolean network

systems. According to the property of transition matrix,

when extending to more nodes reachable networks, each

1-block will be extended to a 2×2 identity matrix or skew-

identity matrix, which means a 1-block can be extended

to two 1-blocks. If there is an odd number of identity

matrices or skew-identity matrices, the extended Boolean

network is reachable. Based on this rule, the logical matrix

M∗
n+1 can be derived, then the feedback controller can be

determined.

Starting from the six forms of 2-node reachable logical

Boolean network, we can find all the 3-node correspond-

ing reachable Boolean network dynamics with logical

operations. By that analogy, N-node (n > 2) reachable

logical Boolean network can be obtained.
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