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State estimation of stochastic discrete-time linear systems subject to unknown inputs has been widely studied, but few works
take into account disturbances switching between unknown inputs and constant biases. We show that such disturbances
affect a networked control system subject to deception attacks on the control signals transmitted by the controller to the
plant via unreliable networks. This paper proposes to estimate the switching disturbance from an augmented state version
of the intermittent unknown input Kalman filter. The sufficient stochastic stability conditions of the obtained filter are
established when the arrival binary sequence of data losses follows a Bernoulli random process.
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1. Introduction

Over the last three decades, Kalman filtering has attracted
more and more attention in various areas. It plays a
prominent role in systems theory and has been produced
on a wide variety of application domains (Kailath et al.,
2000; Simon, 2006). Recently, there has been a growing
research interest in the problem of optimal state filtering
in the presence of persistent unknown inputs, representing
unknown disturbances or unmodeled dynamics.

One of the most popular approaches used to solve
this problem consists in representing the unknown inputs
as a deterministic or stochastic bias, augmenting the
original state equation with bias states, and then applying
the Kalman filter to the augmented state model of the
system. For the design of the augmented state Kalman
filter (ASKF) (see Alouani et al., 1992; Friedland, 1969;
Hsieh and Chen, 1999; Kim et al., 2006; Chabir et al.,
2014). When there is no prior information available about
the unknown input, an optimal recursive state filter to
decouple the state estimation error from unknown inputs
is presented by Kitanidis (1987). Darouach et al. (1992)
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set forth another approach that consists in transforming
a standard system with unknown inputs into a singular
system without unknown inputs.

Other optimal filters closer to the standard Kalman
filter have been derived by minimizing the estimation
error covariance matrix with respect to a reduced state
feedback gain. This represents the degrees of freedom
in the design of the unknown input Kalman filter (UIKF)
(Chen and Patton, 1996; Darouach and Zasadzinski,
1997; Hou and Patton, 1998; Chabir et al., 2008).
The closely related problem of joint input and state
estimation for linear discrete-time systems, which are of
great importance for fault tolerant control (FTC) when
each component of the unknown inputs vector represents
actuator or component faults (Blanke et al., 2006), has
been recently studied by Fang et al. (2011), Gillijns and
De Moor (2007) and Ben Hmida et al. (2010). The
unknown input decoupling constraint can be viewed as
a limit case of a more general assignment used in the
design of stochastic detection filters for fault detection and
isolation (FDI) problems as explained by Patton and Chen
(1999), Keller and Sauter (2011), Kim and Park (2003) or
Park et al. (1994).
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With the rapid progress of technology and new
control strategies, networked control systems (NCSs)
have been at the core of several infrastructure systems
and industrial plants. They present challenging problems
arising from the fact that sensors, actuators and controllers
exchange information via a digital communication
network. The state of the art for the design of control
systems under packet loss or packet delay has been
surveyed by Hespanha et al. (2007). In the past few
years, the problems of the Kalman filtering in the presence
of random observations losses represented by Markovian
or Bernoulli processes, have stirred up a great deal of
research interests. Considerable research efforts have
been reported by Liu and Goldsmith (2004), Schenato
et al. (2007) or Sinopoli et al. (2004). The case where the
availability of observations is regulated by a semi-Markov
chain has been discussed lately by Censi (2011). A
novel scheme to detect intermittent faults (IFs) in linear
stochastic systems with ideal measurements and study
the detectability of IFs was analysed by Sandberg et al.
(2016) and Zhou et al. (2014). Recently, the intermittent
unknown input Kalman filter (IIKF) has been studied by
Keller and Sauter (2013), assuming that the packet arrivals
of the unknown inputs are modeled as a known binary
sequence.

The parameterized approach discussed by Darouach
and Zasadzinski (1997) makes it necessary to precompute
off-line the structure of the state feedback gain for each
combinatorial situation of the binary sequence. In turn,
the intermittent unknown input decoupling constraint
parameterized by Keller and Sauter (2013) calculates it
from two constant size matrices, called the free and
the constrained parts of the gain. From a two-stage
optimization strategy that is very similar to those
described by Friedland (1969) and Chabir et al. (2010),
the free gain and the constrained gain are both used to
minimize the trace of the state-estimation-error covariance
matrix and the trace of the unknown-input-estimation
error covariance matrix.

Besides failures of components or packet loss and
packet delay, cyber physical systems (CPSs) became
vulnerable to cyber physical attacks (CPAs) incorporating
cyber and physical activities into a malicious attack.
A sharp rise in the number of cyber attacks has been
reported over the last few years. A great concern for
the analysis of vulnerabilities of NCSs to external CPAs
has been consequently noticed, as explained by Sandberg
et al. (2015). Attacks on NCSs are summarized as
follows: denial of service (DoS) attacks are designed
by Amin et al. (2009) when the adversary prevents the
controller from receiving sensor measurements or the
plant from receiving the control law. Deception attacks
are presented by Liu et al. (2009) and Teixeira et al.
(2010) when the adversary sends false information about
sensors or actuators. Replay attacks are developed by

Mo and Sinopoli (2009) or Bixiang et al. (2015) when
the adversary generates artificial measurement delays.
Covert attacks are designed by Smith (2011) when the
adversary takes the control of the plant. Finally, there are
direct physical attacks on sensors and/or actuators close
to traditional faults that are taken into account by FDI
techniques. When an attacker adds false data to the control
signal, the induced unknown input becomes a constant
bias when the control signal is blocked to its previous
value at the occurrence times of data losses. For state
filtering with disturbances switching between unknown
input and constant bias, Keller et al. (2016) have recently
applied the IIKF on the time-invariant augmented state
model of the plant by forcing the unknown input to be
the complementary state of the bias. This paper extends
this state filtering strategy to the case where the control
signals are transmitted by the controller to the plant via a
multichannel unreliable network.

The paper is organized as follows. Section 2 presents
the state filtering under switching disturbances. Section 3
solves the state filtering problem and studies the filters
stability. An illustrative example is given in Section 4
before conclusions in Section 5.

2. Problem statement
Consider the following stochastic linear discrete-time
system

xk+1 = Axk +Buk + wk, (1)

yk = Cxk + vk (2)

with B =
[
B1 . . . Bi . . . Bq

]
, where i ∈

{1, . . . , N} is the set of subsystems, uk ∈ R
q and

rank(CB) = rank(B) = q ≤ m. Here xk ∈ R
n,

uk =
[
u1
k . . . ui

k . . . uq
k

]T ∈ R
q , yk ∈ R

m are the
state, control and measurement vectors, respectively, and
wk ∈ R

n and vk ∈ R
m are the zero mean white Gaussian

state and measurement noise signals satisfying

E

{[
wk

vk

] [
wj

vj

]T}

=

[
W 0
0 I

]
δk,j (3)

with W � 0.
The initial state x0, assumed to be uncorrelated with

wk and vk, is a Gaussian random variable with E {x0} =

x̄0 and P0 = E
{
(x0 − x̄0)(x0 − x̄0)

T
}
≥ 0.

The plant is controlled by the NCS subject to
deception attacks and packet dropouts over multichannel
unreliable networks as described in Fig. 1.

The control signals sent by the controller to the plant
via multichannel unreliable network are denoted by uc

k =
[
uc1
k . . . uci

k . . . ucq
k

]T ∈ R
q and the unknown

signal sent by the adversary to compromise the controlled
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Fig. 1. Deception attack via a multi-channel network.

plant is denoted by dk =
[
d1k . . . dik . . . dqk

]T ∈
R

q.
The set of binary variables

θk =
{
ρ1k, . . . , ρ

i
k, . . . , ρ

q
k

}

represents the acknowledgement signals indicating the
status of reception/delivery (e.g., TCP) with ρik = 1 when
uci
k is received by the plant or ρik = 0 when uci

k is lost on
the i-th channel of the unreliable network.

From the following logic:

ui
k = (1− ρik)u

i
k−1 + ρiku

ci
k , (4)

ui
k is blocked to the past value ui

k−1 when uci
k is lost.

Under a deception attack, (4) rewritten in the form ui
k =

(1− ρik)u
i
k−1 + ρik(u

ci
k + dik) can be expressed as

ui
k = ūi

k + νik, (5)

ūi
k = (1− ρik)ū

i
k−1 + ρiku

ci
k , (6)

νik = (1 − ρik)ν
i
k−1 + ρikd

i
k, (7)

where ūi
k given by (6) is known to the controller having

access to the binary sequence
{
θj
}k

0
and where νik

given by (7) switches between unknown input νik = dik
when ρik = 1 and constant bias νik = νik−1 when
ρik = 0. By rewriting the hybrid disturbance νk =
[
ν1k . . . νik . . . νqk

]T
as a constant bias

νk = νk−1 + dθk (8)

driven by a bias state-dependent intermittent unknown
input

dθk =
[
ρ1k(d

1
k − ν1k−1) · · · ρik(d

i
k − νik−1)

. . . ρqk(d
q
k − νik−1)

]T
, (9)

we can derive the following (n + q)-th order linear
time-invariant state model of the plant

Xk+1 = ĀXk + B̄ūk + F̄ dθk + w̄k, (10)

yk = C̄Xk + vk, (11)

with

Xk =

[
xk

νk−1

]
∈ R

n+q,

ūk =
[
ū1
k . . . ūi

k . . . ūq
k

]T
,

Ā =

[
A B
0 I

]
, B̄ =

[
B
0

]
,

F̄ =

[
B
I

]
, C̄ =

[
C 0

]
,

w̄k =

[
wk

0

]
, E

{
w̄kw̄

T
j

}
= W̄ δk,j ,

W̄ =

[
W 0
0 0

]
.

To generate the minimum variance unbiased estimate
of the augmented state, this paper proposes to design a
multi-channel filtering algorithm by using (8), (9), (10)
and (11) and the IIKF presented by Keller and Sauter
(2013) or in Appendix. Sufficient stochastic stability
conditions of the obtained filter are established when
packet dropouts follow independent Bernoulli processes
with λ = Pr[ρik = 1], ∀i ∈ [ 1 q ], where λ is the rate
of data losses.

3. State filtering under switching
disturbances

In this section, we shall solve the state filtering
problem described in Section 2 by designing a
multi-channel filtering algorithm that takes into account
the interconnection signals between subsystems as
intermittent unknown inputs and by applying a modified
version of the unknown input Kalman filter to each
subsystem. This technique allows the filter to perfectly
handle permanent unknown inputs.

Theorem 1. The minimum variance unbiased estimate

X̂k/k =

[
x̂k/k

ν̂k−1/k

]

of the state Xk is generated by the following augmented
state intermittent unknown input Kalman (ASIIKF) filter:

X̂k/k = (I − K̄kC̄)(X̂k/k−1 + F̄k−1d̂
θ
k−1/k)

+Kkyk,
(12)

Pk/k = (I − K̄kC̄)(Pk/k−1 + F̄k−1Q̄
θ
k−1/kF̄

T
k−1)

× (I − K̄kC̄)T + K̄kK̄
T
k ,

(13)

X̂k+1/k = ĀX̂k/k + B̄ūk, (14)
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Pk+1/k = ĀPk/kĀ
T + W̄ , (15)

d̂θk−1/k = Ḡk(yk − C̄X̂k/k−1), (16)

Q̄θ
k−1/k = [(C̄F̄k−1)

T (C̄Pk/k−1C̄
T + I)−1C̄F̄k−1]

+

(17)
with

K̄k = Pk/k−1C̄
T (C̄Pk/k−1C̄

T + I)−1, (18)

Ḡk = Q̄k−1/k(C̄F̄k−1)
T (C̄Pk/k−1C̄

T + I)−1, (19)

F̄k =

[
Bk

Ik

]
, (20)

Bk =
[
ρ1kB

1 . . . ρikB
i . . . ρqkB

q
]
,

Ik = diag
[
ρ1k ρik ρqk

]
, (21)

where X+ in (17) is the Moore–Penrose inverse of X . Un-
der the necessary and sufficient condition

rank

[ −Iz + Ā F̄
C̄ 0

]
= n+ 2q, ∀ |z| ≥ 1, (22)

we have

lim
k→∞

E
{
Pk+1/k

}
< ∞, ∀λ ∈ [0 1], (23)

where E
{
Pk+1/k

}
is the mathematical expectation of

Pk+1/k with respect to
{
θj
}k

0
.

Proof. Consider the following linear state filter

X̂k/k = X̂k/k−1 +Kk(yk − C̄X̂k/k−1), (24)

Pk/k = (I −KkC̄)Pk/k−1(I −KkC̄)T +KkK
T
k , (25)

X̂k+1/k = ĀX̂k/k + B̄ūk, (26)

Pk+1/k = ĀPk/kĀ
T + W̄ , (27)

where X̂k/k−1 is the state prediction of covariance

Pk/k−1 = E
{
(Xk − X̂k/k−1)( Xk − X̂k/k−1)

T
}

based on measurements available until time k − 1 and
{θj}k−1

0 , X̂k/k signifies the state estimate of covariance
matrix

Pk/k = E
{
(Xk − X̂k/k)(Xk − X̂k/k)

T
}

based on measurements available until time k and
{θj}k−1

0 . The state prediction error ek/k−1 = Xk −
X̂k/k−1 and the state estimation error ek/k = Xk − X̂k/k

propagate as

ek/k−1 = Āek−1/k−1 + F̄ dθk−1 + w̄k−1, (28)

ek/k = (I −KkC̄)ek/k−1 −Kkvk. (29)

Under
E
{
ek−1/k−1

}
= 0,

we have

E
{
ek/k−1

}
= F̄ dθk−1, E

{
ek/k

}
= 0

if and only if Kk satisfies (I − KkC̄)F̄ d̄θk−1 = 0 or,
equivalently,

(I −KkC̄)F̄k−1 = 0. (30)

Instead of using the parameterized approach
proposed by Darouach and Zasadzinski (1997) to
minimize tr(Pk/k) with respect to Kk subject to (30)
which requires off-line precomputation of the structure
of Kk for each combinatorial situation of the binary
sequence θk−1 =

{
ρ1k−1, . . . , ρ

i
k−1, . . . , ρ

q
k−1

}
, the

solution to (30) is parameterized from two constant size
matrices K̄k and Ḡk as Kk = K̄k + (I − K̄kC̄)F̄k−1Ḡk.
The free gain K̄k and the constrained gain
Ḡk, obtained by minimizing the trace of the
state-estimation-error covariance matrix and the trace of
the unknown-input-estimation error covariance matrix,
are given by (18) and (19), respectively. The covariance
Pk+1/k of the hybrid Riccati difference equation (HRDE)

Pk+1/k = (Ā− ĀKkC̄)Pk/k−1(Ā− ĀKkC̄)T

+ ĀKkK
T
k Ā

T + W̄ (31)

satisfies Pk+1/k ≤ �

P k+1/k ∀ {θj}k0 , where
�

P k+1/k

is a solution to the ASIIKF’s RDE under θk =
{1, . . . , 1, . . . , 1} , ∀k, or equivalently a solution to
the standard UIKF’s RDE defined by Darouach and
Zasadzinski (1997) as

�

P k+1/k = (
�

A− �

Kk

�

C)
�

P k/k−1(
�

A− �

Kk

�

C)T

+
�

Kk

�

K
T

k +
�

W

(32)

with

�

Kk =
�

A
�

P k/k−1

�

C
T

(
�

C
�

P k/k−1

�

C
T

+ΣΣT )−1,

�

A = Ā− ĀF̄ (C̄F̄ )+C̄,
�

C = ΣC̄,

Σ = β(I − C̄F̄ (C̄F̄ )+),

β ∈ R
m−q,m so that rank(Σ) = m − q and

�

W = W̄ +

ĀF̄ (C̄F̄ )+(C̄F̄ )+T (ĀF̄ )T . Under (18), the pair (
�

A,
�

C)
is detectable and

lim
k→∞

Pk+1/k ≤ lim
k→∞

�

P k+1/k < ∞, ∀ {θk}∞0
leads to (23). �
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Let

ϑ =
{
θ0, . . . , θj , . . . , θN−1

}

be the set of N = 2q different binary situations of θk ={
ρ1k, . . . , ρ

i
k, . . . , ρ

q
k

}
,

σk =
{
σ0
k, . . . , σ

j
k, . . . , σ

N−1
k

}

the set of binary variables defined by σj
k = 1 when

θk = θj or σj
k = 0 when θk �= θj , rj the number

of one in θj , pj = λrj (1− λ)q−rj the probability of
the event σj

k = 1, F̄ j the nonzero columns of F̄k when
σj
k = 1 and, finally, (Āj , C̄j) the pair associated with

σj
k with Āj = Ā − ĀF̄ j(C̄F̄ j)+C̄, C̄j = ΣjC̄ and

Σj = βj(I − C̄F̄ j(C̄F̄ j)+) with βj ∈ R
m−rj,m so that

rank(Σj) = m− rj .

Theorem 2. Under the necessary condition

pjρ(Ā
j)

2 ≤ 1, ∀j ∈ {0, 1, . . . , N − 1}, (33)

where ρ(Āj) is the spectral radius of the unobservable
modes of the pair (Āj , C̄j), if there exists K̄j ∈
R

n+q,m−rj and Ȳ ∈ R
n+q,n+q with 0 < Ȳ ≤ I so that

Ψλ(Ȳ , K̄0, K̄1, . . . , K̄N−1) > 0, where

Ψλ(Ȳ , K̄0, K̄1, . . . , K̄N−1)

=

⎡

⎢⎢
⎢
⎢
⎢
⎣

Ȳ
√
p0Ω̄

0 √
p1Ω̄

1

√
p0Ω̄

0T Ȳ 0√
p1Ω̄

1T 0 Ȳ
...

...
...√

pN−1Ω̄
N−1T 0 0

. . .
√
pN−1Ω̄

N−1

. . . 0

. . . 0
...

. . . Ȳ

⎤

⎥
⎥
⎥⎥
⎥
⎦

(34)

with Ω̄j = Ȳ Āj + K̄jC̄j , then

lim
k→∞

E
{
Pk/k−1

}
< ∞, ∀λ ∈

[
0

�

λc

]
, (35)

where

�

λc = arg

{
max
λ

Ψλ(Ȳ , K̄0, K̄1, . . . , K̄N−1) > 0

}

(36)
is the lower bound of the unknown critical arrival rate λc

of packet losses defined as

lim
k→∞

E
{
Pk+1/k

}
{
→ ∞ if λ > λc,

< ∞ if λ ≤ λc.

Proof. Define the Riccati operator

f j(X) = ĀjXĀjT + W̄ j

− ĀjXC̄jT (C̄jXC̄jT + V̄ j)−1C̄jXĀjT

(37)

with

V̄ j = ΣjΣjT ,

W̄ j = W̄ + ĀF̄ j(C̄F̄ j)+(C̄F̄ j)+T (ĀF̄ j)T .

From the appendix in the work of Keller and Sauter
(2013), the HRDE (31) can be expressed as a switching
Riccati difference equation (SRDE)

Pk+1/k =

N−1∑

j=0

σj
k−1f

j(Pk/k−1) (38)

and

E
{
Pk+1/k

}
=

N−1∑

j=0

pjE
{
f j(Pk/k−1)

}
(39)

The Riccati operator f j(X) is concave, increases
with X and Jensen’s inequality gives

E
{
Pk+1/k

}
≤

N−1∑

j=0

pjf
j(E

{
Pk/k−1

}
).

A deterministic upper bounded Sk+1 of E{Pk+1/k}
so that E{Pk+1/k} ≤ Sk+1 is then generated, with S0 =
P0 ≥ 0, by the modified RDE

Sk+1 =

N−1∑

j=0

pjf
j(Sk). (40)

The first part of the proof shows that (33) represents
the necessary existence conditions for a stabilizing
solution to the modified algebraic Riccati difference
equation (ARDE)

S =

N−1∑

j=0

pjf
j(S). (41)

By letting

f j
λ(Sk) = ÃjSkÃ

j + W̃ j

− ÃjSkC̄
jT (C̄jSkC̄

jT + V̄ j)−1C̄jSkÃ
jT

(42)

with Ãj =
√
pjĀ

j and W̃ j = pjW̄
j or

f j
λ(Sk) = (Ãj − K̃j

kC̄
j)Sk(Ã

j − K̃j
kC̄

j)T

+ K̃j
kV̄

jK̃jT
k + W̃ j

(43)
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with K̃j
k = ÃjSkC̄

jT (C̄jSkC̄
jT + V̄ j)−1, the modified

RDE (40) is rewritten as

Sk+1 =

N−1∑

j=0

f j
λ(Sk). (44)

From (43), we have f i
λ(Sk) ≥ 0. By letting

f j
λ(Sk) = 0, ∀j ∈ {0, . . . , i− 1, i+ 1, . . . , N − 1}, in

(44), the obtained relation Si
k+1 = f i

λ(S
i
k) with Si

0 =
S0 ≥ 0 generates a lower bound Si

k+1 of Sk+1. From
Si
k+1 ≤ Sk+1 we deduce that a stabilizing solution to

the modified ARDE (41) cannot exist as limk→∞ Si
k+1 →

∞. Necessary conditions for a stabilizing solution to the
modified ARDE (41) are that (

√
pjĀ

j , C̄j) be detectable
for each j ∈ {0, . . . , N − 1}, which is rewritten as
pjρ(Ā

j)2 ≤ 1, ∀j ∈ {0, 1, . . . , N − 1} from the spectral
radius ρ(Āj) of the unobservable modes of the pair
(Āj , C̄j).

The second part of the proof directly follows the
one for the stochastic stability of the Kalman filter
with intermittent observations established in (Liu and
Goldsmith, 2004; Sinopoli et al., 2004).

Let

gλ(X) =
N−1∑

j=0

pjf
j(X)

and consider the auxiliary function

Φλ(X) =

N−1∑

j=0

pj
[
(Āj − K̄jC̄j)X(Āj − K̄jC̄j)T

+K̄jV̄ jK̄jT + W̄ j
]

(45)

satisfying gλ(X) ≤ Φλ(X), ∀K̄j ∈ R
n+q,m−rj for

j ∈ {0, . . . , N − 1}. If there exists K̄j ∈ R
n+q,m−rj

for j ∈ {0, . . . , N − 1} and X > 0 so that X > Φλ(X),
then there exists a unique stabilizing solution S ≥ 0 to
the modified ARDE (41). The following statements are
equivalent (Liu and Goldsmith, 2004):

• ∃K̄j ∈ R
n+q,m−rj for j ∈ {0, . . . , N − 1} and

X > 0 so that X > Φλ(X).

• ∃K̄j ∈ R
n+q,m−rj for j ∈ {0, . . . , N − 1} and 0 <

Ȳ ≤ I so that Ψλ(Ȳ , K̄0, K̄1, . . . , K̄N−1) > 0.

�

4. Numerical examples

In this section we apply our approach to an NCS in the
case of a minimum phase and a non-minimum phase plant.

4.1. Case 1: The minimum phase plant. Consider
first the following minimum phase plant, leading to the
representation shown in Fig. 1:

A =

⎡

⎢⎢
⎣

0.3 0 0.2 0.35
0 0.8 0 0.2
0 0 0.5 0
0 0 0 0.4

⎤

⎥⎥
⎦ ,

B =

⎡

⎢
⎢
⎣

1 0 0
1 0 1
0 0 2
0 1 1

⎤

⎥
⎥
⎦ ,

C =

⎡

⎣
1 0 0 0
0 1 0 0
0 0 0 1

⎤

⎦ , W = 0.01I,

where the rank condition (22) holds (the plant has one real
stable invariant zero at 0.9).
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Fig. 2. Sum of the binary variables ρ1k + ρ2k + ρ3k.
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Fig. 3. Evolution of tr(Pk/k−1) (solid line), tr(
�

P k/k−1) (dot-
ted line) and tr(Sk) (dash-dotted line).
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The sum of the binary variables ρ1k, ρ2k and ρ3k with
λ = Pr[ρik = 1] = 0.4 ∀i ∈ [

1 3
]

is plotted in Fig. 2.
Figure 3 shows that

tr(Pk/k−1) ≤ tr(
�

P k/k−1)

with
�

P k/k−1 generated by (32) and the upper bound
tr(Sk) of tr(E{Pk/k−1}) with Sk generated by (40).

The time evolutions of the switching disturbance ν1k ,
ν2k , ν3k and their estimates ν̂1k−1/k , ν̂2k−1/k, ν̂3k−1/k are

displayed in Fig. 4. Figure 5 shows the estimate ν̂ik−1/k of

νik generated by the standard ASUIKF (derived from the
ASIIKF of Theorem 1 with ρik = 1, ∀i ∈ [

1 3
]
).

Comparing Figs. 4 and 5, we find that the estimates
of the switching disturbances ν1k , ν2k and ν3k obtained by
the ASIIKF of Theorem 1 yield better filtering results
than the ASUIKF, especially when the unknown inputs are
transformed to constant biases at the occurrence of packet
dropouts.

4.2. Case 2: The non-minimum phase plant.
Consider now the non-minimum phase plant

A =

⎡

⎢
⎢
⎣

0.9 0 0.34 0.35
0 0.8 0 0.37
0 0 0.5 0
0 0 0 0.9

⎤

⎥
⎥
⎦ ,

B =

⎡

⎢
⎢
⎣

1 0 0
1 0 1
0 0 2
0 1 1

⎤

⎥
⎥
⎦ ,

C =

⎡

⎣
1 0 0 0
0 1 0 0
0 0 0 1

⎤

⎦ , W = 0.01I,

where (22) does not hold (the plant has one real unstable
invariant zero at 1.18). The lower bound of λc being the

solution to (36) gives
�

λ = 0.9.
The sum of the binary variables ρ1k, ρ2k and ρ3k with

λ = Pr[ρik = 1] = 0.4, ∀i ∈ [
1 3

]
is plotted in Fig. 6.

Figure 7 shows tr(Pk/k−1) and the upper bound tr(Sk)

of tr(E{Pk/k−1}). The time evolutions of the switching

disturbance ν1k , ν2k , ν3k and their estimates ν̂1k−1/k, ν̂2k−1/k,

ν̂3k−1/k are plotted in Fig. 8.
For non-minimum phase systems, the unstable

invariant zeros of the plant become the unobservable

modes of the pair (
�

A,
�

C) and the ARDE associated with
the RDE (32) has no stabilizing solution. In other words, a
comparative study between ASIIKF and ASUIKF is here
impossible.

To quantity which is not really discussed in this
paper, but constitutes the main practical application of this
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Fig. 4. Time evolution of the switching disturbance νi
k (dash-

dotted line) and its estimate ν̂i
k−1/k (solid line).
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Fig. 5. Estimate of the disturbance ν̂i
k−1/k (dash-dotted line)

generated by the standard ASUIKF (solid line).

work, is the augmented state estimate

X̂k/k =

[
x̂k/k

ν̂k−1/k

]

of the covariance

Pk/k =

[
P x
k/k ×
× P ν

k−1/k

]

given by the ASIIKF. It should be used to monitor
the occurrence of deception attacks in the case of the
non-minimum phase plant (extremely vulnerable to such
an attack) from a bank of statistical decision tests,
the i-th detector of the bank designed on the i-th
normalized switching disturbance estimate ν̂nik−1/k =

(P νi
k−1/k)

−1/2ν̂ik−1/k with ν̂ik−1/k the i-th component of

ν̂k−1/k and P νi
k−1/k the i-th element on the diagonal part

of P ν
k−1/k .
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Fig. 6. Sum of the binary variables ρ1k + ρ2k + ρ3k.
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Fig. 7. Evolution of tr(Pk/k−1) (solid line) and tr(Sk) (dash-
dotted line).
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Fig. 8. Evolution of the switching disturbance νi
k (dash-dotted

line) and its estimate ν̂i
k−1/k (solid line).

5. Conclusion

This paper has presented a state filtering strategy for
networked control systems subject to false data injections
on the control signals transmitted by the controller to
the plant via unreliable multichannel networks. The
unknown input induced by the false data injection,
transformed to a constant bias at each occurrence time of
packet dropout, has been estimated using an intermittent
unknown input Kalman filter. The stochastic stability
conditions of the filter, which is time-invariant due to
its design model obtained by forcing the unknown input
to be the complementary state of the bias, have been
established when the arrival binary sequence of data losses
follows a Bernoulli random process. Contrary to the
traditional unknown input Kalman filter, we have shown
that the obtained filter can be used to estimate the state of
non-minimum phase stochastic discrete-time systems.
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Appendix

The intermittent unknown inputs filter (IIKF) is described
as follows. The unbiased minimum variance (UMV) state
estimate x̂θ

k/k of covariance P θ
k/k is generated by the

following modified Kalman filter:

x̂θ
k/k = (I −K0

kC)(x̂θ
k/k−1 + F θ

k−1d̂
θ
k−1/k)

+K0
kyk,

(A1)

P θ
k/k = (I −K0

kC)(P θ
k/k−1 + F θ

k−1Q
θ
k−1/kF

θT
k−1)

× (I −K0
kC)T +K0

kK
0T
k ,

(A2)

x̂θ
k+1/k = Ax̂θ

k/k +Buk, (A3)

P θ
k+1/k = AP θ

k/kA
T +W, (A4)

with K0
k = P θ

k/k−1C(CP θ
k/k−1C

T + I)−1, updated

on-line from the additive quantities F θ
k−1d̂

θ
k−1/k and

F θ
k−1Q

θ
k−1/kF

θT
k−1 depending on the unknown inputs

estimate d̂θk−1/k of covariance Qθ
k−1/k given by

d̂θk−1/k = Gθ
k(yk − Cx̂θ

k/k−1) (A5)

Qθ
k−1/k = [(CF θ

k−1)
T (CP θ

k/k−1C
T + I)−1CF θ

k−1]
+

(A6)
with

Gθ
k = Qθ

k−1/k(CF θ
k−1)

T (CP θ
k/k−1C

T + I)−1.

The i-th component d̂θik−1/k represents the estimate

of ρik−1d
i
k−1 (with d̂θik−1/k = 0 when ρik−1 = 0) and the

i-th component Qθi
k−1/k on the diagonal part of Qθ

k−1/k

represents the variance of d̂θik−1/k (with Qθi
k−1/k = 0 when

ρik−1 = 0). The IIKF is initialized by x̂θ
0/−1 = x̄0,

P θ
0/−1 = P0 ≥ 0 and θ−1 = {0, . . . , 0, . . . , 0}.
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