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Abstract. Some algorithms make critical internal use of updatable state, even though their

external speci�cation is purely functional. Based on earlier work on monads, we present a way of

securely encapsulating stateful computations that manipulate multiple, named, mutable objects,

in the context of a non-strict, purely-functional language. The security of the encapsulation is

assured by the type system, using parametricity. The same framework is also used to handle

input/output operations (state changes on the external world) and calls to C.

1. Introduction

Purely functional programming languages allow many algorithms to be expressed

very concisely, but there are a few algorithms in which in-place updatable state

seems to play a crucial role. For these algorithms, purely-functional languages,

which lack updatable state, appear to be inherently ine�cient (Ponder, McGeer &

Ng [1988]). Examples of such algorithms include:

� Algorithms based on the use of incrementally-modi�ed hash tables, where lookups

are interleaved with the insertion of new items.

� The union/�nd algorithm, which relies for its e�ciency on the set representa-

tions being simpli�ed each time the structure is examined.

� Many graph algorithms, which require a dynamically changing structure in

which sharing is explicit, so that changes are visible non-locally.

There is, furthermore, one absolutely unavoidable use of state in every functional

program: input/output. The plain fact of the matter is that the whole purpose of

running a program, functional or otherwise, is to make some change to the world

| an update-in-place, if you please. In many programs these I/O e�ects are rather

complex, involving interleaved reads from and writes to the world state.

We use the term \stateful" to describe computations or algorithms in which the

programmer really does want to manipulate (updatable) state. What has been

lacking until now is a clean way of describing such algorithms in a functional lan-

guage | especially a non-strict one | without throwing away the main virtues

of functional languages: independence of order of evaluation (the Church-Rosser

property), referential transparency, non-strict semantics, and so on.
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In this paper we describe a way to express stateful algorithms in non-strict, purely-

functional languages. The approach is a development of our earlier work on monadic

I/O and state encapsulation (Launchbury [1993]; Peyton Jones & Wadler [1993]),

but with an important technical innovation: we use parametric polymorphism to

achieve safe encapsulation of state. It turns out that this allows mutable objects

to be named without losing safety, and it also allows input/output to be smoothly

integrated with other state manipulation.

The other important feature of this paper is that it describes a complete system,

and one that is implemented in the Glasgow Haskell compiler and freely available

1

.

The system has the following properties:

� Complete referential transparency is maintained. At �rst it is not clear what

this statement means: how can a stateful computation be said to be referentially

transparent?

To be more precise, a stateful computation is a state transformer, that is, a

function from an initial state to a �nal state. It is like a \script", detailing the

actions to be performed on its input state. Like any other function, it is quite

possible to apply a single stateful computation to more than one input state

and, of course, its behaviour may depend on that state.

But in addition, we guarantee that the state is used in a single-threaded way.

Consequently, the �nal state can be constructed by modifying the input state

in-place. This e�cient implementation respects the purely-functional seman-

tics of the state-transformer function, so all the usual techniques for reasoning

about functional programs continue to work. Similarly, stateful programs can

be exposed to the full range of program transformations applied by a compiler,

with no special cases or side conditions.

� The programmer has complete control over where in-place updates are used and

where they are not. For example, there is no complex analysis to determine

when an array is used in a single-threaded way. Since the viability of the entire

program may be predicated on the use of in-place updates, the programmer

must be con�dent in, and be able to reason about, the outcome.

� Mutable objects can be named. This ability sounds innocuous enough, but once

an object can be named its use cannot be controlled as readily. Yet naming is

important. For example, it gives us the ability to manipulate multiple mutable

objects simultaneously.

� Input/output takes its place as a specialised form of stateful computation. In-

deed, the type of I/O-performing computations is an instance of the (more

polymorphic) type of stateful computations. Along with I/O comes the ability

to call imperative procedures written in other languages.

� It is possible to encapsulate stateful computations so that they appear to the

rest of the program as pure (stateless) functions which are guaranteed by the
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type system to have no interactions whatever with other computations, whether

stateful or otherwise (except via the values of arguments and results, of course).

Complete safety is maintained by this encapsulation. A program may contain

an arbitrary number of stateful sub-computations, each simultaneously active,

without concern that a mutable object from one might be mutated by another.

� Stateful computations can even be performed lazily without losing safety. For

example, suppose that stateful depth-�rst search of a graph returns a list of

vertices in depth-�rst order. If the consumer of this list only evaluates the

�rst few elements of the list, then only enough of the stateful computation is

executed to produce those elements.

2. Overview

This section introduces the key ideas of our approach to stateful computation. We

begin with the programmer's-eye-view.

2.1. State transformers

A state transformer of type (ST s a) is a computation which transforms a state

indexed by type s, and delivers a value of type a. You can think of it as a pure

function, taking a state as its argument, and delivering a state and a value as its

result. We depict a state transformer like this:

State outState in

Result

From a semantic point of view, this is a purely-functional account of state. For

example, being a pure function, a state transformer is a �rst-class value: it can be

passed to a function, returned as a result, stored in a data structure, duplicated

freely, and so on. (Of course, it is our intention that the new state will actually

be constructed by modifying the old one in place, a matter to which we return in

Section 9.) From now on, we take the term \state transformer" to be synonymous

with \stateful computation": the computation is seen as transforming one state

into another.

A state transformer can have other inputs besides the state; if so, it will have a

functional type. It can also have many results, by returning them in a tuple. For

example, a state transformer with two inputs of type Int, and two results of type

Int and Bool, would have the type:
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Int -> Int -> ST s (Int,Bool)

Its picture might look like this:

State outState in

Inputs Results

The simplest state transformer, returnST, simply delivers a value without a�ecting

the state at all:

returnST :: a -> ST s a

The picture for returnST is like this:

State outState in

2.2. Mutable variables

Next, we need to provide some primitive state transformers which operate on the

state. The simplest thing to provide is the ability to allocate, read, and write

mutable variables:

newVar :: a -> ST s (MutVar s a)

readVar :: MutVar s a -> ST s a

writeVar :: MutVar s a -> a -> ST s ()

The type MutVar s a is the type of references allocated from a state indexed by

s, and containing a value of type a. A reference can be thought of as the name of

(or address of) a variable, an updatable location in the state capable of holding a

value. The state contains a �nite mapping of references to values.

Notice that, unlike SML's ref types, for example, MutVars are parameterised over

the type of the state as well as over the type of the value to which the reference

is mapped by the state, a decision whose importance will become apparent in

Section 2.5. (We use the name MutVar for the type of references, rather than Ref,

speci�cally to avoid confusion with SML.)

Returning to the primitives, the function newVar takes an initial value, of type

a, say, and delivers a state transformer of type ST s (MutVar s a). When this
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state transformer is applied to a state, it allocates a fresh reference | that is, one

currently not used in the state | augments the state to map the new reference to

the supplied value, and returns the reference along with the modi�ed state.

Given a reference v, readVar v is a state transformer which leaves the state

unchanged, but uses the state to map the reference to its value.

The function writeVar transforms the state so that it maps the given reference to

a new value. Notice that the reference itself does not change; it is the state which is

modi�ed. writeVar delivers a result of the unit type (), a type which only has one

value (apart from bottom), also written (). A state transformer of type ST s ()

is useful only for its e�ect on the state.

2.3. Composing state transformers

State transformers can be composed in sequence, to form a larger state transformer,

using thenST, which has type

thenST :: ST s a -> (a -> ST s b) -> ST s b

The picture for (s1 `thenST` s2) is like this

2

:

State in

s1 s2

State out

Notice that the two computations must manipulate state indexed by the same type,

s. Notice also that thenST is inherently sequential, because the state consumed by

the second computation is that produced by the �rst. Indeed, we often refer to a

state transformer as a thread, invoking the picture of a series of primitive stateful

operations \threaded together" by a state passed from one to the next.

Putting together what we have so far, here is a \procedure" which swaps the

contents of two variables:

swap :: MutVar s a -> MutVar s a -> ST s ()

swap v w = readVar v `thenST` (\a ->

readVar w `thenST` (\b ->

writeVar v b `thenST` (\_ ->

writeVar w a)))

When swap v w is executed in a state thread (that is, when applied to a state),

v is dereferenced, returning a value which is bound to a. Similarly the value of w

is bound to b. New values are then written into the state at these locations, these

values being b and a respectively.

The syntax needs a little explanation. The form \\a->e" is Haskell's syntax for

a lambda abstraction. The body of the lambda abstraction, e, extends as far to
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the right as possible. So in the code for swap, the second argument of the �rst

thenST extends all the way from the \a to the end of the function. That is just

as you would expect: the second argument of a thenST is meant to be a function.

Furthermore, the parentheses enclosing the lambda abstractions can be omitted,

and we will do so from now on. They would only be required if we wanted the

lambda abstraction to extend less far than the end of the expression. Lastly, the

\_" in the second-last line is a wild-card pattern, which matches any value. We use

it here because the writeVar does not return a value of interest.

2.4. Other useful combinators

To avoid the frequent appearance of lambda abstractions with wild-card patterns,

we provide a special form of thenST, called thenST_, with the following de�nition:

thenST_ :: ST s () -> ST s b -> ST s b

thenST_ st1 st2 = st1 `thenST` \ _ ->

st2

Unlike thenST, the second argument of thenST_ is not a function, so the lambda

isn't required. Using thenST_, and omitting parentheses, we can rewrite swapmore

tidily as follows:

swap :: MutVar s a -> MutVar s a -> ST s ()

swap v w = readVar v `thenST` \a ->

readVar w `thenST` \b ->

writeVar v b `thenST_`

writeVar w a

Four other useful combinators, de�nable in terms of thenST and returnST, are

listST, listST_, mapST, and mapST_:

listST :: [ST s a] -> ST s [a]

listST sts = foldr consST nilST sts

where

nilST = returnST []

consST m ms = m `thenST` \ r ->

ms `thenST` \ rs ->

returnST (r:rs)

listST_ : [ST s a] -> ST s ()

listST_ sts = foldr thenST_ (returnST ()) sts

mapST :: (a -> ST s b) -> [a] -> ST s [b]

mapST f xs = listST (map f xs)
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mapST_ :: (a -> ST s ()) -> [a] -> ST s ()

mapST_ f xs = listST_ (map f xs)

The �rst, listST takes a list of state transformers, each indexed by the same

state type and returning a value of the same type. It glues them together into a

single state transformer, which composes its components together in sequence, and

collects their results into a list. The other three are useful variants. mapST, for

example, is rather like the normal map function | it applies a function repeatedly

to the elements of a list, but then it also feeds the state through the resulting state

transformers.

2.5. Encapsulation

So far we have been able to combine state transformers to make larger state trans-

formers, but how can we make a state transformer part of a larger program which

does not manipulate state at all? What we need is a function, runST, with a type

something like the following:

runST :: ST s a -> a

The idea is that runST takes a state transformer as its argument, conjures up

an initial empty state, applies the state transformer to it, and returns the result

while discarding the �nal state. The initial state is \empty" in the sense that no

references have been allocated in it by newVar; it is the empty mapping. Here is a

tiny example of runST in action:

three :: Int

three = runST (newVar 0 `thenST` \ v ->

writeVar v 3 `thenST_`

readVar v)

This de�nition of the value three, runs a state thread which allocates a new vari-

able, writes 3 into it, reads the variable, and returns the value thus read. (Sections 5

and 7 gives some more convincing uses of runST.)

2.5.1. A 
aw

But there seems to be a terrible 
aw: what is to prevent a reference from one thread

being used in another? For example:

let v = runST (newVar True)

in

runST (readVar v)
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Here, the reference allocated in the �rst runST's thread is used inside the second

runST. Doing so would be a great mistake, because reads in one thread are not

sequenced with respect to writes in the other, and hence the result of the program

would depend on the evaluation order used to execute it. It seems at �rst that a

runtime check might be required to ensure that references are only dereferenced in

the thread which allocated them. Unfortunately this would be expensive.

Even worse, our experience suggests that it is surprisingly tricky to implement

such a runtime check. The obvious idea is to allocate a unique state-thread identi�er

with each call to runST, which is carried along in the state. Every reference would

include the identi�er of the thread in which it was created, and whenever a reference

was used for reading or writing, a runtime check is made to ensure that the identi�er

in the reference matches that in the state.

This sounds easy enough, albeit perhaps ine�cient. The trouble is that it does

not work! Consider the following (recursive) de�nition

foo = runST (newVar 7 `thenST` \ v ->

writeVar foo 3 `thenST_`

returnST v)

Does this give a runtime error? No, the write is in the same thread as the allo-

cate. However, the following pair of mutually-recursive de�nitions ought to behave

identically:

foo1 = runST (newVar 7 `thenST` \ v ->

writeVar foo2 3 `thenST_`

returnST v)

foo2 = runST (newVar 7 `thenST` \ v ->

writeVar foo1 3 `thenST_`

returnST v)

All that we have done is to unfold the de�nition of foo once, which certainly should

not change the semantics of the program. But alas, each write sees a variable

from the \other" thread, so the runtime check will fail. A perfectly respectable

program transformation has changed the behaviour of the runtime check, which is

unacceptable.

2.5.2. The solution: parametricity

This problem brings us to the main technical contribution of the paper: the dif-

�culties with runST can all be solved by giving it a more speci�c type. The type

given for runST above is implicitly universally quanti�ed over both s and a. If we

put in the quanti�cation explicitly, the type might be written:

runST :: 8s,a. (ST s a -> a)

A runST with this type could legally be applied to any state transformer, regardless

of the types to which s and a are instantiated. However, we can be more precise:
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what we really want to say is that runST should only be applied to a state trans-

former which uses newVar to create any references which are used in that thread.

To put it another way, the argument of runST should not make any assumptions

about what has already been allocated in the initial state. That is, runST should

work regardless of what initial state it is given. So the type of runST should be:

runST :: 8a. (8s. ST s a) -> a

This is not a Hindley-Milner type, because the quanti�ers are not all at the top

level; it is an example of rank-2 polymorphism (McCracken [1984]).

Why does this type prevent the \capture" of references from one thread into

another? Consider our example again

let v = runST (newVar True)

in

runST (readVar v)

In the last line a reference v is used in a stateful thread (readVar v), even though

the latter is supposedly encapsulated by runST. This is where the type checker

comes into its own. During typechecking, the type of readVar v will depend on

the type of v so, for example, the type derivation will contain a judgement of the

form:

f: : : ; v : MutVar s Boolg ` readVar v : ST s Bool

Now in order to apply runST we have to be able to generalise the type of readVar v

with respect to s, but we cannot as s is free in the type environment: readVar v

simply does not have type 8s.ST s Bool.

What about the other way round? Let's check that the type of runST prevents

the \escape" of references from a thread. Consider the de�nition of v above:

v = runST (newVar True)

Here, v is a reference that is allocated within the thread, but then released to the

outside world. Again, consider what happens during typechecking. The expression

(newVar True) has type ST s (MutVar s Bool), which will generalise nicely to

8s.ST s (MutVar s Bool). However, this still does not match the type of runST.

To see this, consider the instance of runST with a instantiated to MutVar s Bool:

runST :: (8s'. ST s' (MutVar s Bool)) -> MutVar s Bool

We have had to rename the bound variable s in the type of runST to avoid it

erroneously capturing the s in the type MutVar s Bool. The argument type now

doesn't match the type of (newVar True). Indeed there is no instance of runST

which can be applied to (newVar True).

Just to demonstrate that the type of runST does nevertheless permit one thread

to manipulate references belonging to another thread, here is a perfectly legitimate

(albeit arti�cial) example:
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runST

runST

runST

Figure 1. An informal picture of a program with state threads

f :: MutVar s a -> MutVar s a

f v = runST (newVar v `thenST` \w->

readVar w)

where v is a reference from some (other) arbitrary state thread. Because v is not

accessed, its state type does not a�ect the local state type of the short thread

(which is in fact totally polymorphic in v). Thus it is �ne for an encapsulated state

thread to manipulate references from other threads so long as no attempt is made

to dereference them.

In short, by the expedient of giving runST a rank-2 polymorphic type we can

enforce the safe encapsulation of state transformers. More details on this are given

in Sections 6 and 9.2, where we show that runST's type can be accommodated with

only a minor enhancement to the type checker.

2.6. Summary

We have described a small collection of:

� Primitive state transformers, namely returnST, newVar, readVar, and writeVar;

� \Plumbing" combinators, which compose state transformers together, namely

thenST and its derivatives, thenST_, listST, mapST, and so on.

� An encapsulator, runST, which runs a state transformer on the empty state,

discards the resulting state, and returns the result delivered by the state trans-

former.

Figure 1 gives an informal picture of a program with a number of calls to runST.

Each call to runST gives rise to an independent thread, depicted as a large oval.
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The plumbing combinators ensure that the state is single-threaded, so that the

net e�ect is to plumb the state through a chain of primitive operations (newVar,

readVar and writeVar), each of which is depicted as a small square box. The

relative interleaving of the primitive operations in each thread is unde�ned but,

since the threads share no state, di�erent interleavings cannot give rise to di�erent

results.

Notice that it is only the state that is single-threaded. Both references and state

transformers, in contrast, are �rst-class values which can be duplicated, discarded,

stored in data structures, passed to functions, returned as results, and so on. A

reference can only be used, however, by bringing it back together with \its" state

in a readVar or writeVar operation.

The crucial idea is that of \indexing" state transformers, states, and mutable

variables, with a type. It is usual for a value of type Tree t, say, to contain

sub-components of type t. That is not the case for mutable variables and state

transformers! In the type ST s a, the \s" is used to label the state transformer,

and force compatibility between state transformers which are composed together.

Similarly, the \s" in MutVar s a simply ensures that a reference can only be deref-

erenced in \its" state thread. It is for this reason that we speak of a state \being

indexed by" a type, rather than \having" that type.

The type constructor ST together with the functions returnST and thenST form a

so-called monad (Moggi [1989]), and have a nice algebra. For a detailed discussion

of monads see Wadler [1992a].

3. Array references

So far we have introduced the idea of references (Section 2.2), which can be thought

of as a single mutable \box". Sometimes, though we want to update an array which

should be thought of as many \boxes", each independently mutable. For that we

provide operations to allocate, read and write elements of arrays. They have the

following types

3

:

newArr :: Ix i => (i,i) -> v -> ST s (MutArr s i v)

readArr :: Ix i => MutArr s i v -> i -> ST s v

writeArr :: Ix i => MutArr s i v -> i -> v -> ST s ()

Like references, newArr allocates a new array whose bounds are given by its �rst

argument. The second argument is a value to which each location is initialised. The

state transformer returns a reference to the array of type MutArr s i v, which we

call an array reference. The functions readArr and writeArr do what their names

suggest. The result is unde�ned if the index is out of bounds.

The three operations can be implemented using the mutable variables already

introduced, by representing an array reference as an (immutable) array of references,

thus:
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type MutArr s i v = Array i (MutVar s v)

This de�nition makes use of the standard Haskell type Array i v, the type of

arrays indexed by values of type i, with elements of type v. Haskell arrays are

constructed by the function array, and indexed with the in�x operator (!), whose

types are as follows:

array :: Ix i => (i,i) -> [(i,v)] -> Array i v

(!) :: Ix i => Array i v -> i -> v

The array-construction function array takes the bounds of the array and list of

index-value pairs, and returns an array constructed by �lling in the array in the

way speci�ed by the list of index-value pairs

4

.

The implementation of newArr, readArr, and writeArr is then straightforward:

newArr bds init = mapST newVar indices `thenST` \ vs ->

returnST (array bds (indices `zip` vs))

where

-- indices :: [(i,v)]

indices = range bds

readArr arr i = readVar (arr!i)

writeArr arr i v = writeVar (arr!i) v

The only interesting de�nition is that for newArr, which uses mapST (Section 2.4) to

apply newVar to each index. The standard function range is applied to the bounds

of the array | that is, a pair of values in class Ix | to deliver a list of all the

indices of the array

5

.

In practice, we do not implement mutable arrays in this way for two reasons:

� Implementing arrays in terms of variables is rather ine�cient. A single mutable

array of 100 elements would require an immutable array of 100 elements, plus

100 separately-allocated mutable variables. Each read or write would require

two memory references, one to the array, and a second to the variable. It would

obviously be more sensible to allocate one mutable array of 100 elements, and

have writeArr mutate the elements directly.

� Implementing arrays in terms of variables depends on the existence of standard

Haskell arrays. How are the latter to be implemented? Presumably, in a se-

quential system, the implementation of array will involve allocating a suitable

block of memory, and running down the list of index-value pairs, �lling in the

speci�ed elements of the array as we go. Looked at like this, we need mutable

arrays to implement immutable arrays! (We return to this topic in Section 7.)

Because of these considerations we actually provide newArray, readArr and writeArr

as primitives, and de�ne newVar, readVar, and writeVar in terms of them, by rep-

resenting variables as arrays of size one.
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4. Input/output

Now that we have the state-transformer framework in place, we can give a new ac-

count of input/output. An I/O-performing computation is of type ST RealWorld a;

that is, it is a state transformer transforming a state of type RealWorld, and de-

livering a value of type a. The only thing which makes it special is the type of the

state it transforms, namely RealWorld, an abstract type whose values represent the

real world. It is convenient to use a type synonym to express this specialisation:

type IO a = ST RealWorld a

Since IO a is an instance of ST s a, it follows that all the state-transformer

primitives concerning references and arrays work equally well when mixed with I/O

operations. More than that, the same \plumbing" combinators, thenST, returnST

and so on, work for I/O as for other state transformers. In addition, however, we

provide a variety of I/O operations that work only on the IO instance of state (that

is, they are not polymorphic in the state), such as:

putChar :: Char -> IO ()

getChar :: IO Char

It is easy to build more sophisticated I/O operations on top of these. For example:

putString :: [Char] -> IO ()

putString [] = returnST ()

putString (c:cs) = putChar c `thenST_`

putString cs

or, equivalently,

putString cs = mapST_ putChar cs

4.1. System calls

It would be possible to provide putChar and getChar as primitives | that is, func-

tions which are not de�nable in Haskell. The di�culty is that there are potentially

a very large collection of such \primitive" I/O operations, and it is very likely that

programmers will want to add new ones of their own. To meet this concern, we

provide just one primitive I/O operation, called ccall, which allows the Haskell

programmer to call any C procedure. Using ccall we can de�ne all the other I/O

operations; for example, putChar is de�ned like this:

putChar :: Char -> IO ()
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putChar c = ccall putchar c

That is, the state transformer (putChar c) transforms the real world by calling

the C function putchar, passing it the character c. The value returned by the

call is ignored, as indicated by the result type of putChar. Similarly, getChar is

implemented like this:

getChar :: IO Char

getChar = ccall getchar

We implement ccall as a new language construct, rather than as an ordinary

function, because we want it to work regardless of the number and type of its

arguments. (An ordinary function, possessing only one type, would take a �xed

number of arguments of �xed type.) The restrictions placed on its use are:

� All the arguments, and the result, must be types which C understands: Int,

Float, Double, Bool, String, or Array. There is no automatic conversion of

more complex structured types, such as lists (apart from lists of characters,

which are treated specially as strings) or trees. Furthermore, the types involved

must be statically deducible by the compiler from the surrounding context; that

is, ccall cannot be used in a polymorphic context. The programmer can easily

supply any missing type information with a type signature.

� The �rst \argument" of ccall, which is the name of the C function to be called,

must appear literally. It is part of the language construct.

4.2. Running I/O

The IO type is a particular instance of state transformers so, in particular, I/O

operations are not polymorphic in the state. An immediate consequence of this is

that I/O operations cannot be encapsulated using runST. Why not? Again, because

of runST's type. It demands that its state transformer argument be universally

quanti�ed over the state, but that is exactly what IO is not!

Fortunately, this is exactly what we want. If I/O operations could be encapsulated

then it would be possible to write apparently pure functions, but whose behaviour

depended on external factors, the contents of a �le, user input, a shared C variable

etc. The language would no longer exhibit referential transparency.

How, then, are I/O operations executed at all? The meaning of the whole program

is given by the value of the top-level identi�er mainIO:

mainIO :: IO ()

mainIO is an I/O state transformer, which is applied to the external world state by

the operating system. Semantically speaking, it returns a new world state, and the
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changes embodied therein are applied to the real world. Of course, as in the case of

mutable variables, our intention is that the program will actually mutate the real

world \in place".

By this means it is possible to give a full de�nition of Haskell's standard in-

put/output behaviour (involving lists of requests and responses) as well as much

more. Indeed, the Glasgow implementation of the Haskell I/O system is itself now

written entirely in Haskell, using ccall to invoke Unix I/O primitives directly.

The same techniques have been used to write libraries of routines for calling the X

window system, an image-processing library, and so on.

5. Some applications

In this section we give three applications of the state transformer framework, and

assess its usefulness.

5.1. A functional more

Our �rst example concerns input/output. The Unix more utility allows the user

to view the contents of a �le, a screenful at a time. A status line is displayed to

give positional information, and commands are provided to allow scrolling in either

direction.

However, more can only be used to display ASCII text. A completely di�erent

program would be needed to scroll through a �le of pictures, or to scroll and render

a �le of PostScript. We can improve on this situation by separating the process

into two:

� A representation-speci�c function, which converts the ASCII �le, description of

pictures, PostScript, or whatever, to a list of I/O actions, each of which paints

a single screenful:

asciiPages :: String -> [IO ()]

picturePages :: PictureDescriptions -> [IO ()]

postscriptPages :: String -> [IO ()]

� A representation-independent function, which takes a list of I/O actions (one

for each screenful), and interacts with the user to navigate through them:

more :: [IO ()] -> IO ()

Now the three viewers can be built by composition:

moreAscii = more . asciiPages

morePictures = more . picturePages

morePostscript = more . postscriptPages
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Notice the complete separation of concerns. The asciiPages function is concerned

only with displaying ASCII text on the screen, and not at all with user interaction.

The more function is concerned only with interaction with the user, and not at

all with the nature of the material being displayed. This separation of concerns

is achieved by passing a list of I/O actions from one function to another. Notice

too that some of these actions may be performed more than once if, for example,

the user scrolls back to a previously-displayed page. None of this is possible in any

imperative language we know of.

Our solution has its shortcomings. The Unix more allows the user to scroll a single

line at a time, whereas ours only allows scrolling in units of pages. It is a common

discovery that good abstractions sometimes con
ict with arbitrary functionality!

5.2. Depth �rst search

Depth-�rst search is a key component of many graph algorithms. It is one of the

very few algorithms for which an e�cient algorithm is most lucidly expressed using

mutable state, so it makes a good application of the ideas presented in this paper.

Our depth-�rst search function, dfs, is given in Figure 2. It takes a graph g and

a list of vertices vs, and returns a list of trees | or forest | which, collectively,

span g. Furthermore, the forest has the \depth-�rst" property; that is, no edge in

the original graph traverses the forest from left to right. The list of vertices vs gives

an initial ordering for searching the vertices, which is used to resume the search

whenever one is completed. Clearly the head of vs will be the root of the very �rst

tree.

The graph is represented by an array, indexed by vertices, in which each element

contains a list of the vertices reachable directly from that vertex. The dfs function

begins by introducing a fresh state thread, allocating an array of marks initialised

to False, and then calling the locally de�ned function search. The whole thing is

encapsulated by runST.

When searching a list of vertices, the mark associated with the �rst vertex is

examined, and if True the vertex is discarded and the rest are searched. If however

the mark is False indicating that the vertex has not been examined previously,

then it is marked True, and two recursive calls of search are performed, each of

which returns a list of trees. The �rst call, namely, search marks (g!v), is given

the edges leading from v, and it produces a forest ts which is built into a tree

with v at the root|all these nodes are reachable from v. The second recursive call

(search marks vs) produces a forest of those vertices not reachable from v and

not previously visited. The tree rooted at v is added to the front of this forest

giving the complete depth-�rst forest.

In a non-strict language, an expression is evaluated in response to demands from

the consumer of the expression's value. This property extends to values produced

by stateful computations. In the case of depth-�rst search, if only part of the forest

returned by dfs is evaluated then only part of the stateful computation will be

carried out. This is quite a remarkable property: we know of no other system
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type Graph = Array Vertex [Vertex]

data Tree a = Node a [Tree a]

dfs :: Graph -> [Vertex] -> [Tree Vertex]

dfs g vs = runST (

newArr (bounds g) False `thenST` \ marks ->

search marks vs

)

where search :: MutArr s Vertex Bool -> [Vertex]

-> ST s [Tree Vertex]

search marks [] = returnST []

search marks (v:vs) = readArr marks v `thenST` \ visited ->

if visited then

search marks vs

else

writeArr marks v True `thenST_`

search marks (g!v) `thenST` \ ts ->

search marks vs `thenST` \ us ->

returnST ((Node v ts): us)

Figure 2. Lazy depth-�rst search

which can execute a sequential, imperative algorithm, incrementally in response to

demands on its result value.

This algorithm, and many others derivable from it, or de�nable in terms of it are

discussed in detail in King & Launchbury [1993].

5.3. An interpreter

We conclude this section with a larger example of array references in use (Figure

3). It de�nes an interpreter for a simple imperative language, whose input is the

program together with a list of input values, and whose output is the list of values

written by the program. The interpreter naturally involves a value representing the

state of the store. The idea is, of course, that the store should be implemented as

an in-place-updated array, and that is precisely what is achieved

6

.

The resulting program has the same laziness property as our depth-�rst search.

As successive elements of the result of a call to interpret are evaluated, the in-

terpreter will incrementally execute the program just far enough to get to the next

Write command, when the returnST delivers a new element of the result list, and

no further. If only the �rst few elements of the result are needed, much of the

imperative program being interpreted will never be executed at all.
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data Com = Assign Var Exp | Read Var | Write Exp | While Exp [Com]

type Var = Char

data Exp = ....

interpret :: [Com] -> [Int] -> [Int]

interpret cs input = runST (newArr ('A','Z') 0 `thenST` \store ->

newVar input `thenST` \inp->

command cs store inp)

command :: [Com] -> MutArray s Int -> MutVar s [Int] -> ST s [Int]

command cs store inp = obey cs

where

-- obey :: [Com] -> ST s [Int]

obey [] = returnST []

obey (Assign v e:cs) = eval e `thenST` \val->

writeArr store v val `thenST_`

obey cs

obey (Read v:cs) = readVar inp `thenST` \(x:xs) ->

writeArr store v x `thenST_`

writeVar inp xs `thenST_`

obey cs

obey (Write e:cs) = eval e `thenST` \out->

obey cs `thenST` \outs->

returnST (out:outs)

obey (While e bs:cs) = eval e `thenST` \val->

if val==0 then

obey cs

else

obey (bs ++ While e bs : cs) inp

-- eval :: Exp -> ST s Int

eval e = ....

Figure 3. An interpreter with lazy stream output
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This example has long been a classic test case for systems which infer single-

threadedness (Schmidt [1985]), and is also used by Wadler in his paper on monads

(Wadler [1992a]). The only unsatisfactory feature of the solution is that eval has

to be written as a fully-
edged state transformer, while one might perhaps like to

take advantage of its \read-only" nature.

5.4. Summary

An obvious question arises when looking at monadic code: it appears to di�er only

super�cially from an ordinary imperative program. Have we done any more than

discover a way to mimic C in Haskell?

We believe that, on the contrary, there are very signi�cant di�erences between

writing programs in C and writing in Haskell with monadic state transformers and

I/O:

� Usually, most of the program is neither stateful nor directly concerned with

I/O. The monadic approach allows the graceful co-existence of a small amount

of \imperative" code and the large purely functional part of the program.

� The \imperative" component of the program still enjoys all the bene�ts of higher

order functions, polymorphic typing, and automatically-managed storage.

� A state transformer corresponds, more or less, to a statement in C or Pascal

7

.

However, a state transformer is a �rst-class value, which can be stored in a

data structure, passed to a function, returned as a result, and so on, while

a C statement enjoys none of these properties. This expressive power was

used in the more example above (Section 5.1), where complete I/O actions

are constructed by one function, stored in a list, and subsequently performed,

perhaps repeatedly, under the control of an entirely separate function.

� Imperative languages provide a �xed repetoire of control structures (conditional

statements, while loops, for loops, and so on). Because state transformers are

�rst class values, the programmer can de�ne functions which play the role of

application-speci�c control structures. For example, here is a function which

performs its argument a speci�ed number of times:

repeatST :: Int -> ST s () -> ST s ()

repeatST n st = listST_ [st | i <- [1..n]]

If we need a for loop, where the loop index is used in the \body", it is easily

provided:

forST :: Int -> (Int -> ST s ()) -> ST s ()

forST n stf = mapST_ stf [1..n]



20

And so on. The point is not that these particular choices are the \right" ones,

but rather that it is very easy to de�ne new ways to compose together small

state transformers to make larger ones.

� The usual co-routining behaviour of lazy evaluation, in which the consumer of

a data structure co-routines with its producer, extends to stateful computation

as well. As Hughes argues (Hughes [1989]), the ability to separate what is

computed from how much of it is computed is a powerful aid to writing modular

programs.

6. Formalism

Having given the programmer's eye view, it is time now to be more formal and to

de�ne precisely the ideas we have discussed. We have presented state transformers

in the context of the full-sized programming language Haskell, since that is where we

have implemented the ideas. In order to give semantics to the constructs, however,

it is convenient to restrict ourselves to the essentials. In particular, we choose to

omit the special semantics of IO operations with their calls to C. Instead, we focus

on providing a semantics for encapsulated state together with a proof demonstrating

the security of encapsulation.

6.1. A Language

We focus on lambda calculus extended with the state transformer operations. The

syntax of the language is given by:

e ::= x j k j e

1

e

2

j �x:e j

let x = e

1

in e

2

j runST e

k ::= thenST j returnST j

newVar j readVar j writeVar j

: : :

6.2. Type rules

The type rules are given in Figure 4, and are the usual Hindley-Milner rules, except

that runST also requires a judgment of its own. Treating it as a language construct

avoids the need to go beyond Hindley-Milner types. So rather than actually give

runST the type

runST :: 8a.(8s.ST s a) -> a

as suggested in the introduction, we provide a typing judgement which has the

same e�ect.
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APP

� ` e

1

: T

1

! T

2

� ` e

2

: T

1

� ` (e

1

e

2

) : T

2

LAM

�; x : T

1

` e : T

2

� ` �x:e : T

1

! T

2

LET

� ` e

1

: S �; x : S ` e

2

: T

� ` (let x = e

1

in e

2

) : T

V AR �; x : S ` x : S

SPEC

� ` e : 8t:S

� ` e : S[T=t]

t 62 FV (T )

GEN

� ` e : S

� ` e : 8t:S

t 62 FV (�)

RUN

� ` e : 8t:ST t T

� ` (runST e) : T

t 62 FV (T )

Figure 4. Type rules
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E [[Expr ]] : Env ! Val

E [[ k ]] � = B[[ k ]]

E [[x ]] � = � x

E [[ e

1

e

2

]] = (E [[ e

1

]] �) (E [[ e

2

]] �)

E [[ \x->e ]] � = �v:(E [[ e ]] (� � fx 7! vg))

E [[ let x=e

1

in e

2

]] � = E [[ e

2

]] (fix(��

0

:(� � fx 7! E [[ e

1

]]�

0

g)))

B[[ runST ]] = runST

B[[ thenST ]] = thenST

:

Figure 5. Semantics of Terms

As usual, we talk both of types and type schemes (that is, types possibly with

universal quanti�ers on the outside). We use T for types, S for type schemes, and

K for type constants such as Int and Bool.

T ::= t j K j T

1

! T

2

j

ST T

1

T

2

j

MutVar T

1

T

2

S ::= T j 8t:S

In addition, � ranges over type environments (that is, partial functions from term

variables to types), and we write FV (T ) for the free variables of type T and likewise

for type environments.

6.3. Denotational Semantics

In Figure 5, we extend a standard denotational semantics for a non-strict lambda

calculus to include the semantics of state operations by providing de�nitions for

the new constants.

The valuation function E [[ ]] takes an expression and an environment and returns

a value. We use Env for the domain of environments, and Val for the domain of

values, de�ned as follows:

Env =

Q

�

(var

�

!D

�

)

Val =

S

�

D

�

The environment maps a variable of type � to a value in the domain D

�

, and

the domain of values is the union of all the D

�

, where � ranges over monotypes

(polymorphic values lie in the intersection of their monomorphic instances).
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(returnST v) � = (v; �)

(thenST m k) � = k x �

0

where (x; �

0

) = m �

newV ar v � =

�

(?; ?); if � = ?

(p; �[p 7! v]); otherwise

where p 62 dom(�)

readV ar p � =

�

(?; ?); p 62 dom(�)

(� p; �); otherwise

writeV ar p v � =

�

(?; ?); p 62 dom(�)

((); �[p 7! v]); otherwise

runST m = x where (x; �) = m ;

Figure 6. Semantics of State Combinators and Primitives

From the point of view of the language, the type constructors ST and MutVar are

opaque. To give them meaning, however, the semantics must provide them with

some structure.

D

ST s a

= State ! (D

a

� State)

State = (N ,! V al)

?

D

MutVar s a

= N

?

A state transformer is a function which, given a state, produces a pair of results: a

value and a new state. The least de�ned state transformer is the function which,

given any state, returns the pair containing the bottom value and the bottom state.

A state is a lifted �nite partial function from locations (represented by natural

numbers) to values. The bottom state is totally unde�ned. This is the state that

results after an in�nite loop. We cannot tell even which variables exist, let alone

what their values are. Non-bottom states are partial functions with well-de�ned

domains which specify which variables exist. These variables may be mapped to

any value, including bottom.

References are denoted simply by natural numbers, except that it is possible to

have an unde�ned reference also, denoted by ?. The number represents a \location"

in the state.

It is worth noting in passing that the state parameter s is ignored in providing

semantic meaning. It is purely a technical device which shows up in the proofs of

safety.

The de�nitions of the state constants are given in Figure 6. Neither returnST nor

thenST are strict in the state, but both are single threaded. Thus they sequentialise

state operations, and guarantee that only one copy of the state is required, without

themselves forcing operations to be performed.
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newV ar

S

v � =

�

(?; ?); if � = ?

(�

S

(p); �[p 7! v]); otherwise

where p 62 dom(�)

readV ar

S

q � =

�

(?; ?); p 62 dom(�)

(� (�

�1

S

(q)); �); otherwise

writeV ar

S

q v � =

�

(?; ?); p 62 dom(�)

((); �[�

�1

S

(q); 7! v]); otherwise

f�

�

: N ! N j � 2 Type; �

�

1� to� 1g

D

MutVar s a

= (ran (�

S

))

?

Figure 7. Semantics of Indexed State Primitives

In contrast, the primitive operations are strict in the state. In order to allocate

a new variable, for example, we need to know which locations are free. Similarly,

with the other operations (in the semantics, we take p 62 dom(�) to be true if either

p or � are bottom). This all has a direct operational reading which we discuss in

Section 9.3.3.

Finally, the meaning of runST is given by applying its state-transforming argu-

ment to the empty state, and extracting the �rst component of the result. Note

that runST is not strict in the �nal state|it is simply discarded.

6.4. Safety

In any program there may be lots of concurrently active state threads which must

not be allowed to interfere with one another. That is state changes performed by

one thread must not a�ect the result of any other.

We achieve this by using the type scheme for runST. We use the parametric nature

of polymorphism to show that values within a state thread (including the �nal

value) cannot depend on references generated by other state threads. Section 6.4.2

contains the proof of the key lemma. Here, we will focus on the overall reasoning

process, assuming that the lemma holds.

6.4.1. Independence of threads

Figure 7 contains a more complex version of the semantics of the state primitives

in which the references are respectively coded and decoded. We assume an indexed
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family of injections � from the naturals to themselves to act as codings. This family

is indexed by types to allow the di�erent instances of the primitives to use di�erent

encodings for the variables (because the coding function is selected on the basis of

the particular instance type).

When newV ar allocates a new location, rather than return the address of the

location, it codes it using a particular coding function �. When readV ar and

writeV ar come to dereference the variable, they �rst apply the inverse of the coding

function to �nd the true location, and then act as before.

All the component parts of the state thread are eventually joined together using

thenST whose type forces these various parts to have the same state instance, and

hence use the same coding function. Similarly, the fact that references carry the

type of their creator forces any dereferencer to be in the same instance, and also

use the same coding function. Intuitively, therefore, the behaviour of a state thread

should be independent of the choice of coding function. Only if references managed

to cross state boundaries, or if the state information could somehow become lost in

the process of typechecking, could something go wrong.

The essence of the proof is that nothing does go wrong. The key lemma states

that a state transformer which is polymorphic in the state is indeed independent

of the coding function used. This means that state references do not cross state

boundaries, that is, no reference is dereferenced in any thread other than its creator.

If the converse were so, then we could construct a state thread whose behaviour

was dependent in the particular coding function used (change the coding function,

so e�ectively changing what the external reference points to), contradicting the

lemma.

Finally, as the choice of � is irrelevant, we are free to use the identity function,

and dispense with codings completely. This gives the original semantics of Figure 6.

6.4.2. Key Lemma

The development here relies on parametric polymorphism in the style of Mitchell

& Meyer [1985], who detail what e�ect the addition of polymorphic constants has

on parametricity. In general, we cannot hope that adding new polymorphic con-

stants willy-nilly will leave parametricity intact. In particular, the addition of a

\polymorphic equality" will have a disastrous e�ect on the level of parametricity

implied by a polymorphic type.

Mitchell and Meyer show that parametricity is preserved so long as (1) each new

type constructor comes equipped with a corresponding operation on relations, and

(2) the new polymorphic constants all satisfy the relevant logical relations implied

by their types.

In our setting, this means that we have to give an account of what State and

MutVar do to relations, and show that newVar, readVar and writeVar satisfy the

logical relations corresponding to their types.

Because we are here concerned purely with the issue of separating distinct state

threads, we only focus on the polymorphism with repect to the state parameter.
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Consequently, we will assume that we only store values of some �xed type, X say, in

the state, and we completely sidestep the issue of proving that the retrieved values

are of the same type as the MutVar reference which pointed to the location.

We de�ne

V ar s = MutV ar a X

Thus Var is a unary type constructor which we now use instead of MutVar.

Let R and S be types, and let r : R $ S be a relation

8

between R and S. Let

q

R

be a reference of type V ar R and q

S

be type V ar S. We de�ne

q

R

(V ar r)q

S

� �

�1

R

(q

R

) = �

�1

S

(q

S

)

�

R

(State r)�

S

� �

R

= �

S

Two variables are related if they point to the same location, and two states are

related if they are equal.

Lemma

newVar, readVar and writeVar are all logical relations.

Proof

We do the proof in the case of newVar. The others are just as easy. From the type

of newVar, we have to show that for all r : R$ S,

newV ar

R

a �(V ar r � State)newV ar

S

a �

Expanding out the de�nition gives,

�

�1

R

(�

R

(p)) = �

�1

S

(�

S

(p)) ^ �[p 7! v] = �[p 7! v]

which is clearly true. 2

As the constants are parametric, so are terms built from them (this is the force

of Mitchell and Meyer's result). Thus we deduce the key lemma as a corollary:

Lemma

If m : 8s:ST s T (where s 62 FV (T )) then for any types R and S, and any state �

we have,

m

R

� = m

S

�

As it is the instance of m which selects its coding for variables, the theorem states

that the result of a polymorphic state transformer is independent of its internal

coding. This is exactly what we needed to show for our earlier reasoning to be

supported.

7. Haskell Arrays

Next, we turn our attention to the implementation of immutable Haskell arrays.

We will show that the provision of mutable arrays (Section 3) provides an elegant

route to an e�cient implementation of immutable arrays.
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7.1. Implementing array

As we have already indicated, Haskell's immutable arrays are constructed by ap-

plying the function array to a list of index-value pairs. For example, here is an

array in which each element is the square of its index:

array (1,n) [(i,i*i) | i <- [1..n]]

This expression makes use of a list comprehension [(i,i*i) | i <- [1..n]],

which should be read \the list of all pairs (i,i*i) such that i is drawn from

the list [1..n]. Now, it is obviously a big waste to construct the intermediate

list of index value pairs! It would be much better to compile this expression into

a simple loop which appropriately initialises each element of the array. Unfortu-

nately, it is much less obvious how to achieve optimisation, at least in a way which

is not \brittle". For example, it would be a pity if the optimisation was lost if the

expression was instead written in this equivalent form:

array (1,n) (map (\i -> (i,i*i)) [1..n])

An obvious idea is to try to make use of deforestation. Deforestation is the generic

name used for transformations which aim to eliminate intermediate lists | that is,

lists used simply as \glue" between two parts of a functional program. For example,

in the expression

map f (map g xs)

there is an intermediate list (map g xs) which can usefully be eliminated. Quite a

bit of work has been done on deforestation (Chin [1990]; Marlow & Wadler [1993];

Wadler [1990]), and our compiler includes deforestation as a standard transforma-

tion (Gill, Launchbury & Peyton Jones [1993]).

The di�culty with applying deforestation to the construction of arrays is this: so

long as array is a primitive, opaque operation, there is nothing deforestation can

do, because deforestation inherently consists of melding together part of the producer

of a list with part of its consumer. The 
ip side is this: if we can express array

in Haskell, then our standard deforestation technique may be able to eliminate the

intermediate list.

With this motivation in mind, we now give a de�nition of array using mutable

arrays:

array :: Ix i => (i,i) -> [(i,v)] -> Array i v

array bds ivs

= runST (

newArr bds unInit `thenST` \ arr ->

mapST_ (fill arr) ivs `thenST_`

freezeArr arr

)

where
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unInit = error "Uninitialised element"

fill arr (i,v) = writeArr arr i v

The de�nition can be read thus:

1. The call to newArr allocates a suitably-sized block of memory.

2. The call to mapST_ performs in sequence the actions (fill arr (i,v)), for

each (i,v) in the index-value list. Each of these actions �lls in one element of

the array.

3. The function freezeArray is a new primitive which converts the mutable array

into an immutable array:

freezeArr :: Ix i => MutArr s i v -> ST s (Array i v)

Operationally speaking, freezeArr takes the name of an array as its argument,

looks it up in the state, and returns a copy of what it �nds, along with the

unaltered state. The copy is required in case a subsequent writeArr changes

the value of the array in the state, but it is sometimes possible to avoid the

overhead of making the copy (see Section 9.3.4).

4. Finally, the whole sequence is encapsulated in a runST. Notice the use of encap-

sulation here. The implementation (or internal details) of array is imperative,

but its speci�cation (or external behaviour) is purely functional. Even the pres-

ence of state cannot be detected outside array.

The important thing is that the list of index-value pairs, ivs is now explicitly con-

sumed by mapST_, which gives enough leverage for our deforestation transformation

to eliminate the intermediate list. The details of the deforestation transformation

are given in Gill, Launchbury & Peyton Jones [1993], and are not germane here. The

point is simply that exposing the implementation of array to the transformation

system is the key step.

7.2. Accumulating arrays

Of course, we can also de�ne other Haskell array \primitives" in a similar fashion.

For example, accumArray is a standard Haskell array operation with type:

accumArray :: Ix i => (a->b->a) -> a -> (i,i)

-> [(i,b)] -> Array i a

The result of a call (accumArray f x bnds ivs) is an array whose size is deter-

mined by bnds, and whose values are de�ned by separating all the values in the list

ivs according to their index, and then performing a left-fold operation, using f, on
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each collection, starting with the value x. Typical uses of accumArray might be a

histogram, for example:

hist :: Ix i => (i,i) -> [i] -> Array i Int

hist bnds is = accumArray (+) 0 bnds [(i,1)|i<-is, inRange bnds i]

which counts the occurrences of each element of the list is that falls within the

range given by the bounds bnds. Another example is bin sort:

binSort :: Ix i => (i,i) -> (a->i) -> [a] -> Array i a

binSort bnds key vs = accumArray (flip(:)) [] bnds [(key v,v)|v<-vs]

where the value in vs are placed in bins according to their key value as de�ned

by the function key (whose results are assumed to lie in the range speci�ed by the

bounds bnds). Each bin | that is, each element of the array | will contain a list

of the values with the same key value. The lists start empty, and new elements are

added using a version of cons in which the order of arguments is reversed. In both

examples, the array is built by a single pass along the input list.

The implementation of accumArray simple, and very similar to that of array:

accumArray bnds f z ivs

= runST (

newArr bnds z `thenST` \a ->

mapST_ (update a) ivs `thenST_`

freezeArr a

)

where

update a (i,v) = readArr a i `thenST` \x->

writeArr a i (f x v)

If array and accumArray were primitive then the programmer would have no

recourse if he or she wanted some other array-construction operator. Mutable

arrays allow the programmer to de�ne new array operations without modifying the

compiler or runtime system. We describe a more complex application of the same

idea in Section 10.3.

8. Other useful combinators

We have found it useful to expand the range of combinators and primitives beyond

the minimal set presented so far. This section presents the ones we have found

most useful.
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8.1. Equality

The references we have correspond very closely to \pointers to variables". One

useful additional operation on references is to determine whether two references are

aliases for the same variable (so writes to the one will a�ect reads from the other).

It turns out to be quite straightforward to add an additional constant, eqMutVar:

eqMutVar :: MutVar s a -> MutVar s a -> Bool

eqMutArr :: Ix i => MutArr s i v -> MutArr s i v -> Bool

Notice that the result does not depend on the state|it is simply a boolean. Notice

also that we only provide a test on references which exist in the same state thread.

References from di�erent state threads cannot be aliases for one another.

8.2. Fixpoint

In lazy functional programs it is often useful to write recursive de�nitions such as

(newTree, min) = f tree min

Here, part of the result of f is passed into f. A standard example is a function

which replaces all the leaves of a tree with the minimumof all the leaves, in a single

pass of the tree (hence our choice of names in the example) (Bird [1984]). The alert

reader may have noticed that it is impossible to write programs in this way if f is

a state transformer. We might try:

f tree min `thenST` \ (newTree, min) -> ...

but alas the min result is not in scope at the call. What is needed is a new combi-

nator fixST, with type:

fixST :: (a -> ST s a) -> ST s a

and the usual knot-tying semantics, which we depict thus:

State outState in

s

Now we can write our recursive state transformer:

fixST (\ ~(newTree, min) -> f tree min)

(The \~" in this example speci�es that the tuple should be matched lazily. If the

argument to fixST is a strict function, then of course the result of the fixST call

is bottom.)



31

9. Implementation

The whole point of expressing stateful computations in the framework that we

have described is that operations which modify the state can update the state

in place. The implementation is therefore crucial to the whole enterprise, rather

than being a peripheral issue. This section focuses on implementation issues, and

appeals to some intuitions about what will generate \good code" and what will not.

Readers interested in a more substantial treatment of such intuitions are referred

to Peyton Jones [1987], Peyton Jones [1992].

We have in mind the following framework:

� The state of each encapsulated state thread is represented by a collection of

objects in heap-allocated storage.

� A reference is represented by the address of an object in heap-allocated store.

� A read operation returns the current contents of the object whose reference is

given.

� A write operation overwrites the contents of the speci�ed object or, in the case

of mutable arrays, part of the contents.

As the previous section outlined, the correctness of this implementation relies to-

tally on the type system. Such a reliance is quite familiar: for example, the im-

plementation of addition makes no attempt to check that its arguments are indeed

integers, because the type system ensures it. In the same way, the implementation

of state transformers makes no attempt to ensure, for example, that references are

only used in the same state thread in which they were created; the type system

ensures that this is so.

9.1. Update in place

The most critical correctness issue concerns the update-in-place behaviour of write

operations. Why is update-in-place safe? It is safe because all the combinators

(thenST, returnST, fixST) use the state only in a single-threaded manner (Schmidt

[1985]); that is, they neither duplicate nor discard it (Figure 5). Furthermore, all

the primitive operations are strict in the state.

It follows that a write operation can modify the state in place, because (a) it has

the only copy of the incoming state, and (b) since it is strict in the incoming state,

and the preceding operation will not produce its result state until it has computed

its result, there can be no other as-yet-unexecuted operations pending on that state.

Can the programmer somehow duplicate the state? No: since the ST type is

opaque, the only way the programmer can manipulate the state is via the com-

binators thenST and returnST and fixST. The programmer certainly does have

access to named references into the state. However, it is perfectly OK for these to
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be duplicated, stored in data structures and so on. Variables are immutable; it is

only the state to which they refer that is altered by a write operation.

We �nd these arguments convincing, but they are certainly not formal. A formal

proof would necessarily involve some operational semantics, and a proof that no

evaluation order could change the behaviour of the program. We have not yet

undertaken such a proof.

9.2. Typechecking runST

Since runST has a rank-2 type, we needed to modify the type checker to include the

extra rule RUN in Figure 4. The modi�cation is quite straightforward, because

the rule for RUN is so similar to that for LET . All that is required is to check that

the type inferred for the argument of runST has a type of the form ST s � , where s

is an un-constrained type variable, not appearing in � .

The RUN rule describes how to type-checking applications of runST. What of

other occurrences of runST? For example, the RUN rule does not say how to type

the following expression, in which runST appears as an argument:

map runST xs

We side-step this di�culty by insisting that runST only appears applied to an

argument, as implied by the syntax in Section 6.1. It might be possible to allow

greater generality, but performing type inference in the presence of unrestricted

rank-2 types is a much harder proposition, and one which is not necessary for our

enterprise. Kfoury [1992] and Kfoury & Wells [1994] explore this territory in detail.

9.3. E�ciency considerations

It would be possible to implement state transformers by providing the combinators

(thenST, returnST, etc) and operations (readVar, writeVar etc) as primitives.

But this would impose a very heavy overhead on each operation and worse still on

composition. For example, a use of thenST would entail the construction in the

heap of two function-valued arguments, followed by a procedure call to thenST. This

compares very poorly with simple juxtaposition of code, which is how sequential

composition is implemented in conventional languages!

We might attempt to recover some of this lost e�ciency by treating state-transformer

operations specially in the code generator, but that risks complicating an already

complex part of the compiler. Instead we implement state transformers in a way

which is both direct and e�cient: we simply give Haskell de�nitions for the state

transformer type and its combinators. These de�nitions are almost precise translit-

erations of the semantics given for them in Figure 5

9

.
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9.3.1. The state transformer implementation

A state transformer, of type ST s a, is represented by a function from State s to

a pair of the result, of type a and the transformed state.

type ST s a = State s -> (a, State s)

(This representation of ST is not, of course, exposed to the programmer, lest he or

she write functions which duplicate or discard the state.) The one respect in which

this implementation di�ers from the semantics in Figure 5 is in the result type of

ST: the semantics used a simple product, whereas a Haskell pair is a lifted product.

(That is, the value ? di�ers from (?,?).) As we shall see, this distinction has an

unfortunate implication for e�ciency.

The de�nitions of thenST, returnST, and fixST follow immediately:

returnST x s = (x,s)

thenST m k s = k x s' where (x,s') = m s

fixST k s = (r,s') where (r,s') = k r s

The beauty of this approach is that all the combinators can then be in-lined

at their call sites, thus largely removing the \plumbing" costs. For example, the

expression

m1 `thenST` \v1 ->

m2 `thenST` \v2 ->

returnST e

becomes, after in-lining thenST and returnST, the much more e�cient expression

\s -> let (v1,s1) = m1 s

(v2,s2) = m2 s1

in (e,s3)

We have not so far given the implementation of runST, which is intriguing:

runST m = r where (r,s) = m dummyState

Since its argument, m, works regardless of what state is passed to it, we simply

pass a value representing the current state of the world. As we will see shortly (Sec-

tion 9.3.3), this value is never actually looked at, so a constant value, dummyState,

will do. We need to take care here, though. Consider the following expression,

which has two distinct state threads:

...(runST (newVar 1 `thenST` \v -> e1))...

...(runST (newVar 1 `thenST` \v -> e2))...
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After inlining runST and thenST we transform to:

...(let (v,s1) = newVar 1 dummyState in e1 s1)...

...(let (v,s1) = newVar 1 dummyState in e2 s1)...

Now, it look as though it would legitimate to share newVar 1 dummyState as a

common sub-expression:

let (v,s1) = newVar 1 dummyState

in

...(e1 s1)...

...(e2 s1)...

but of course this transformation is bogus. The two dummyStates are distinct values!

There are two solutions to this problem: do not inline runST, or alternatively,

when inlining runST create a new constant dummyState on each occasion, akin to

skolemization of logic variables.

This provides us with a second reason why runST should not be regarded as a

standard value (its type provided the �rst). Rather, runST is an eliminable language

construct.

The code generator must, of course, remain responsible for producing the appro-

priate code for each primitive operation, such as readVar, ccall, and so on. In our

implementation we actually provide a Haskell \wrapper" for each primitive which

makes explicit the evaluation of their arguments, using so-called \unboxed values".

Both the motivation for and the implementation of our approach to unboxed values

is detailed in Peyton Jones & Launchbury [1991], and we do not rehearse it here.

9.3.2. Strictness

In the previous section we produced the following code from a composition of m1

and m2:

\s -> let (v1,s1) = m1 s

(v2,s2) = m2 s1

in (e,s3)

This might be better than the original, in which function-valued arguments are

passed to thenST, but it is still not very good! In particular, heap-allocated thunks

are created for m1 s and m2 s1, along with heap-allocated selectors to extract

the components (v1, s1 and v2, s2, respectively). However, the program is now

exposed to the full range of analyses and program transformations implemented by

the compiler. If the compiler can spot that the above code will be used in a context

which is strict in either component of the result tuple, it will be transformed to

\s -> case m1 s of
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(v1,s2) -> case m2 s1 of

(v2,s2) -> (e,s2)

This is much more e�cient. First m1 is called, returning a pair which is taken

apart; then m2 is called, and its result taken apart before returning the �nal result.

In our implementation, no heap allocation is performed at all. If m1 and m2 are

primitive operations, then the code implementing m2 simply follows that for m2,

just as it would in C.

It turns out that even relatively simple strictness analysis can often successfully

enable this transformation, provided that Haskell is extended in a modest but

important regard. Consider the function

f :: MutVar s Int -> ST s ()

f x = writeVar y 0 `thenST_`

returnST ()

Is f strict in its input state? Intuitively, it must be: its only useful result is its

result state, which depends on its input state. This argument holds for any value

of type ST s (). Does the strictness analyser spot this strictness? Alas, it does

not. After inlining, f becomes:

f x s = let (_,s1) = writeVar y 0 s

in

((),s1)

This de�nition is manifestly not strict in either argument: it will return a pair

regardless of the values of its arguments. There are two problems, with a common

cause:

� Haskell pairs are lifted, so that (?,?) is distinct from ?. The semantics in

Figure 5 used an ordinary, unlifted product, so the lifting is not certainly not

required by semantics.

� The unit type, (), is also a lifted domain, with two values: () and ?. When we

chose () as the result type of state transfomers which had no result we certainly

did not have in mind that two distinct values could be returned. Again, the

lifting of the Haskell type () is not required.

If neither pairs nor the unit type were lifted then it is easy to see that f is strict in

s. Suppose s were ?: then because the primitive writeVar is strict, s1 would also

be ?, so the result of f would be the pair ((),?). But if () were unlifted too, this

is the same as (?,?), which, if pairs are unlifted, is the same as ?.

In short, in order to give the strictness analyser a real chance, a state transformer

must return an unlifted pair, and the result type of a state transformer which is

used only for its e�ect on the state should be an unlifted, one-point type. Though

this is an important e�ect, it is far from obvious; indeed, it only became clear to

us as we were working on the �nal version of this paper.



36

It is also regrettable that an occasionally-substantial performance e�ect should

depend on something as complex as strictness analysis. Indeed, we provide a variant

of returnST, called returnStrictlyST, which is strict in the state, precisely to

allow a programmer to enforce strictness, and hence ensure greater e�ciency. Of

course, if returnStrictlyST is used indiscriminately then the incremental laziness

of stateful computations (discussed in Section 5) is lost.

In the special (but common) case of I/O state transformers, we can guarantee

to compile e�cient code, because the �nal state of the I/O thread will certainly

be demanded. Why? Because the whole point in running the program in the �rst

place is to cause some change to the real world! It is easy to use this strictness

property (which cannot, of course, be inferred by the strictness analyser) to ensure

that every I/O state transformer is compiled e�ciently.

9.3.3. Passing the state around

The implementation of the ST type, given above, passes around an explicit state.

Yet, we said earlier that state-manipulating operations are implemented by per-

forming state changes in the common, global heap. What, then, is the role of

the explicit state value which is passed around by the above code? It plays two

important roles.

Firstly, the compiler \shakes the code around" quite considerably: is it possible

that it might somehow end up changing the order in which the primitive opera-

tions are performed? No, it is not. The input state of each primitive operation is

produced by the preceding operation, so the ordering between them is maintained

by simple data dependencies of the explicit state, which are certainly preserved by

every correct program transformation.

Secondly, the explicit state allows us to express to the compiler the strictness of

the primitive operations in the state. The State type is de�ned like this:

data State s = MkState (State# s)

That is, a state is represented by a single-constructor algebraic data type, whose

only contents is a value of type State# s, the (�nally!) primitive type of states.

The lifting implied by the MkState constructor corresponds exactly to the lifting

in the semantics. Using this de�nition of State we can now de�ne newVar, for

example, like this:

newVar init (MkState s#) = case newVar# init s# of

(v,t#) -> (v, MkState t#)

This de�nition makes absolutely explicit the evaluation of the strictness of newVar

in its state argument, �nally calling the truly primitive newVar# to perform the

allocation.
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We think of a primitive state | that is, a value of type State# s, for some type

s | as a \token" which stands for the state of the heap and (in the case of the

I/O thread) the real world. The implementation never actually inspects a primitive

state value, but it is faithfully passed to, and returned from every primitive state-

transformer operation. By the time the program reaches the code generator, the

role of these state values is over, and the code generator arranges to generate no

code at all to move around values of type State#.

9.3.4. Arrays

The implementation of arrays is straightforward. The only complication lies with

freezeArray, which takes a mutable array and returns a frozen, immutable copy.

Often, though, we want to construct an array incrementally, and then freeze it,

performing no further mutation on the mutable array. In this case it seems rather

a waste to copy the entire array, only to discard the mutable version immediately

thereafter.

The right solution is to do a good enough job in the compiler to spot this special

case. What we actually do at the moment is to provide a highly dangerous operation

unsafeFreezeArray, whose type is the same as freezeArray, but which works

without copying the mutable array. Frankly this is a hack, but since we only

expect to use it in one or two critical pieces of the standard library, we couldn't

work up enough steam to do the job properly just to handle these few occasions.

We do not provide general access to unsafeFreezeArray.

10. Interleaved state transformers

The state-transformer composition combinator de�ned so far, thenST, is completely

sequential: the state is passed from the �rst state transformer on to the second.

But sometimes that is not what is wanted. Consider, for example, the operation

of reading a �le. We may not want to specify the precise relative ordering of

the individual character-by-character reads from the �le and other I/O operations.

Rather, we may want the �le to be read lazily, as its contents is demanded.

We can provide this ability with a new combinator, interleaveST:

interleaveST :: ST s a -> ST s a

interleaveST m s = (r,s) where (r,s') = m s

Unlike every other state transformer so far, interleaveST actually duplicates the

state! The \plumbing diagram" for (interleaveST s) is like this:
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State outState in

Result

s

The semantics of interleaveST are much less easy to de�ne and reason about than

the semantics of our other combinators, given that our intended implementation

remains that of update in place. The purpose of this section is to provide several

motivating examples for interleaveST, while leaving open the question of how to

reason about whether it is being used \safely". In this context, we regard a use of

interleaveST as \safe" if the resulting program can still be evaluated in any order

that respects data dependencies.

10.1. Lazy �le read

One way for interleaveST to be safe is to regard it as splitting the state into two

disjoint parts. In the lazy-�le-read example, the state of the �le is passed into one

branch, and the rest of the state of the world is passed into the other. Since these

states are disjoint, an arbitrary interleaving of operations in each branch of the fork

is legitimate.

Here is an implementation of lazy �le read, using interleaveST:

readFile :: String -> IO [Char]

readFile filename = openFile filename `thenST` \f ->

interleaveST (readCts f)

readCts :: FileDescriptor -> IO [Char]

readCts f = readCh f `thenST` \c ->

if c == eofChar

then returnST []

else readCts f `thenST` \cs ->

returnST (c:cs))

Notice that the recursive call to readCts does not immediately read the rest of the

�le. Because thenST and the following returnST are non-strict, the list c:cs will

be returned without further ado. If cs is ever evaluated, the recursive readCts will

then (and only then) be performed. This is a good example of laziness in action.

Even though operations are being rigidly sequenced | in this case the reads of

successive characters of the �le | the rate at which this sequence is performed is

driven entirely by lazy evaluation. The single call to interleaveST simply allows

these operations to occur asynchronously with respect to other I/O operations on

the main \trunk".
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10.2. Unique-supply trees

In the lazy �le-read example, the use of interleaveST could be regarded as split-

ting the state into two disjoint parts. However, we have found some compelling

situations in which the forked-o� thread quite deliberately shares state with the

\trunk". This section explores the �rst such example.

A common problem in functional programs is to distribute a supply of unique

names around a program. For example, a compiler may want to give a unique

name to each identi�er in the program being compiled. In an imperative program

one might simply call GenSym() for each identi�er, to allocate a unique name from

a global supply, and to side-e�ect the supply so that subsequent calls to GenSym()

will deliver a new value.

In a functional program matters are not so simple; indeed, several papers have

discussed the problem (Augustsson, Rittri & Synek [1994]; Hancock [1987]; Wadler

[1992a]). The rest of this section shows a rather elegant implementation of the best

approach, that of Augustsson, Rittri & Synek [1994]. The idea is to implement a

pair of abstract data types, UniqueSupply and Unique, with the following signature:

newUniqueSupply :: IO UniqueSupply

splitUniqueSupply :: UniqueSupply -> (UniqueSupply, UniqueSupply)

getUnique :: UniqueSupply -> Unique

instance Eq Unique

instance Ord Unique

instance Text Unique

The three instance declarations say that the Unique type has de�ned on it equality

and ordering operations, and mappings to and from strings. Naturally, the idea is

that the two UniqueSupplys returned by splitUniqueSupply are forever separate,

and can never deliver the same Unique. The implementation is given some extra

freedom by making newUniqueSupply into an I/O operation. Di�erent runs of the

same program are therefore permitted to allocate uniques in a di�erent order | all

that matters about Uniques is that they are distinct from each other.

One possible implementation would represent a UniqueSupply and a Unique by a

(potentially very long) bit-string. The splitUnique function would split a supply

into two by appending a zero and a one to it respectively. The trouble is, of course,

that the name supply is used very sparsely.

The idea suggested by Augustsson, Rittri & Synek [1994] is to represent a UniqueSupply

by an in�nite tree, which has a Unique at every node, and two child UniqueSupplys:

data UniqueSupply = US Unique UniqueSupply UniqueSupply

Now the implementation of splitUniqueSupply and getUnique are trivial, and all

the excitement is in newUniqueSupply. Here is its de�nition, assuming for the sake

of simplicity that a Unique is represented by an Int:
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type Unique = Int

newUniqueSupply :: IO UniqueSupply

newUniqueSupply

= newVar 0 `thenST` \ uvar ->

let

next :: IO Unique

next = interleaveST (

readVar uvar `thenST` \ u ->

writeVar uvar (u+1) `thenST_`

returnStrictlyST u

)

supply :: IO UniqueSupply

supply = interleaveST (

next `thenST` \ u ->

supply `thenST` \ s1 ->

supply `thenST` \ s2 ->

returnST (US u s1 s2)

)

in

supply

The two uses of interleaveST specify that the relative ordering of the state changes

in next, and in the two uses of supply, is deliberately left to the implementation.

The only side e�ects are in next, which allocates a new Unique, so what this

amounts to is that the uniques are allocated in the order in which the Uniques are

evaluated, which is just what we wanted!

If the program was recompiled with, say, a di�erent analysis technique which

meant that the evaluation order changed, then indeed di�erent uniques would be

generated. But since the whole mkUniqueSupply operation is typed as an I/O

operation there is no reason to suppose that the same uniques will be generated, a

nice touch.

There is one important subtlety in the code, namely the use of returnStrictlyST

in the de�nition of next. The trap (into which we fell headlong) is this: since

interleaveST discards the �nal state, and the result of the writeVar is also dis-

carded, if returnST is used instead there is nothing to force the writeVar to take

place at all ! Indeed, if we used the standard returnST, no writeVars would be

performed, and each readVar would see the same, undisturbed value. Of course,

what we want to happen is that once the thread in next's right-hand-side is started,

then it must run to completion. That is exactly what returnStrictlyST achieves.

The di�erence between returnST and returnStrictlyST is simply that the lat-

ter is strict in the state. Operationally, it will not deliver a result at all until it

has evaluated its input state. We can picture it like this (compare the picture for

returnST in Section 2.1):
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State outState in

In this picture, the result is held up by the \valve" until the state is available.

Despite this subtlety, this code is a distinct improvement on that given in Au-

gustsson, Rittri & Synek [1994], which has comments such as \The gensym function

must be coded in assembler" and \A too-clever compiler might recognise the re-

peated calls to gen x and [generate] code which creates sharing...if such compiler

optimisations cannot be turned o� or fooled, one must generate code for gen [as

well as gensym] by hand.".

10.3. Lazy arrays

A second example of the use of interleaveST where the forked-o� thread shares

state with the trunk concerns so-called lazy arrays. Haskell arrays are strict in the

list of index-value pairs, and in the indices in this list (though not in the values).

An alternative, and more powerful, array constructor would have the same type as

array, but be non-strict in the index-value pairs:

lazyArray :: Ix i => (i,i) -> [(i,v)] -> Array i v

What does it mean for lazyArray to be non-strict in the index-value pairs? Pre-

sumably, it must return an array immediately, and search the list only when the

array is indexed. Since checking for duplicate indices would entail searching the

whole list, lazyArray simply returns the value in the �rst index-value pair in the

list with the speci�ed index. In short, the semantics of indexing a lazy array is

precisely that of searching an association list | except that, of course, we hope

that it will be more e�cient. Figure 8 gives a (rather amazing) program which uses

lazy arrays to compute prime numbers using the sieve of Eratosthenes.

The basis of the algorithm is an array minFactorwhich, for each index, stores the

minimumfactor (>1) of that index. A number is prime, therefore, if the value stored

at its index in minFactor is equal to the number itself. The function multiples

generates one or more multiples of its argument (each paired with its argument)

by �rst returning its argument, and then, if the argument is prime, returning more

multiples. Note that multiple always returns its argument as a multiple before

checking its primality so guaranteeing that minFactor will have been initialised (if

not by this call of multiples, then by a previous). This prevents the program from

entering a black hole (deadlock).

How can we implement lazyArray? The e�ect we want to achieve is:

� lazyArray allocates and initialises a suitable array, and returns it immediately

without looking at the index-value pairs.
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primesUpTo :: Int -> [Int]

primesUpTo n = filter isPrime [2..n]

where

minFactor :: Array Int Int

minFactor = lazyArray (2,n) (concat (map multiples [2..n]))

isPrime p :: Int -> Bool

isPrime p = minFactor!p == p

multiples :: Int -> [(Int,Int)]

multiples k = (k,k) : if isPrime k

then [(m,k) | m <- [2*k,3*k..n]]

else []

Figure 8. Computing primes using the Sieve of Eratosthenes, using a lazy array

� When this array is indexed, with the standard (!) operator, the index-value list

is searched for the speci�ed index. As a side e�ect of this search, the array is

�lled in with all the index-value pairs encountered, up to and including the index

sought. When this index is found the search terminates, and the corresponding

value is returned.

� If the array is subsequently indexed at the same index, the value is returned

immediately.

This behaviour is not easy to achieve in Haskell! It relies inherently on imperative

actions. The fact that the results are independent of the order in which array

elements are accessed is a deep property of the process. Nevertheless, we can

express it all with the help of interleaveST; the code is given in Figure 9.

Referring �rst to Figure 9, lazyArray allocates the following mutable values:

� A variable, feederVar, to hold the \feeder-list" of index-value pairs.

� A mutable array, valArr, in which the result of the whole call to lazyArray is

accumulated.

� A mutable array of booleans, doneArr, whose purpose is to record when the cor-

responding slot of valArr has been assigned with its �nal value. Each element

of the doneArr is initialise to False.

Next, lazyArray initialises each slot in valArr by calling initVal, de�ned in

the let. Finally, lazyArray freezes the array and returns the frozen value. Here,

we must use unsafeFreezeArray because the whole idea is that valArr is go-

ing to be mutated as a side e�ect of the evaluation of its elements. (Recall that
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lazyArray :: Ix i => (i,i) -> [(i,val)] -> Array i val

lazyArray bounds feederList

= runST (

newVar feederList `thenST` \ feederVar ->

newArray bounds False `thenST` \ doneArr ->

newArray bounds initial `thenST` \ valArr ->

let

initVal k = interleaveST (

readVar feederVar `thenST` \ ivs ->

writeVar feederVar badVal `thenST_`

fillUntil k ivs `thenST` \ ivs' ->

writeVar feederVar ivs' `thenST_`

readArray valArr ix

) `thenST` \ delayedVal ->

writeArray valArr k delayedVal

fillUntil k [] = noValue k

fillUntil k ((i,v) : ivs)

= readArray doneArr i `thenST` \ done ->

(if not done then

writeArray doneArr i True `thenST_`

writeArray valArr i v

else

returnST () ) `thenST_`

if i == k then

returnST ivs

else

fillUntil k ivs

in

mapST initVal (range bounds) `thenST_`

unsafeFreezeArr valArr )

where

initial = error "lazyArray: uninitialised element"

badVal = error "lazyArray: an index depends on a later value"

noValue k = error ("lazyArray: no value for: " ++ show (index bounds k))

Figure 9. An implementation of lazy arrays
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done_arr

val_arr

1 2 3 4 5

True False True False True

6 1810

(4,7)(2,10)

initVal 2 initVal 4

f_list_var

Figure 10. Lazy array construction

unsafeFreezeArray converts a mutable array to a value of the immutable-array

type, without copying the array; further mutations of the mutable array will there-

fore also a�ect the \immutable" value.)

Referring now to the local functions: the function initVal initialises the slot of

valArr with an interleaved state transformer which, when its result is demanded,

will:

� read feederVar to get the current list of as-yet-unconsumed index-value pairs;

� call fillUntil, to consume the list of index-value pairs, writing each value to

the appropriate slot of valArr (the array done records whether that element

has already been written), until the sought-for index is found;

� write the depleted list of index-value pairs back to feederVar;

� read the array to deliver the desired value.

Further accesses to the same array slot will now �nd the �nal value, rather than

the interleaved state transformer. All of this is illustrated by Figure 10, which

illustrates an intermediate state of a lazy-array value. The array has �ve slots, of

which three have already been �lled in. The remaining two are speci�ed by the

depleted portion of the list of index-value pairs, contained in feederVar.
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10.4. Parallel state transformers

A careful reading of newUniqueSupply or lazyArray reveals an important respect

in which both are unsafe (in the sense of independence of evaluation order). Both

rely on reading a variable and writing back a modi�ed value | in the case of

newUniqueSupply the variable is called uvar, while in lazyArray it is feederVar.

Implicitly, we have assumed that if the read takes place then so will the write,

and so they will in any sequential normal-order implementation. However, if two

\threads" are executed simultaneously (which is one legitimate execution order)

then this assumption might not hold, and the programs would fail.

This is not just a purist's objection, because an obvious development is a variant

interleaveST which starts a concurrent process to execute the forked-o� thread.

Such a variant, which we call forkST, is very useful. For example, in a graphical

I/O system it might be used to start a concurrent process to handle I/O in a new

pop-up window, independent of, and concurrent with, other I/O operations.

In e�ect, interleaveST forces us to address the usual textbook problems of

mutual exclusion and synchronisation that must be solved by any system supporting

both concurrency and shared state. We are by no means the �rst to meet these

issues in a functional setting. Concurrent ML (Reppy [1991]), and the I-structures

(Arvind, Nikhil & Pingali [1989]) and M-structures (Barth, Nikhil & Arvind [1991])

of Id (Nikhil [1988]) are obvious examples. We are currently studying how to

incorporate some of these now-standard solutions in our framework.

10.5. Summary

It should be clear by now that interleaveST has very undesirable properties. It

duplicates and discards the state, which gives rise to a very subtle class of pro-

gramming errors. We have so far failed to develop good techniques for reasoning

about its correctness. At �rst we wondered about ways to ensure that the two

state threads use di�erent variables, but two of our most interesting applications,

lazyArray and newUniqueSupply, deliberately perform side e�ects on shared state.

Their correctness depends on (relatively) deep meta-reasoning, and a certain sort

of atomicity (for example, the read and write of uvar must take place atomically

in next in newUniquesupply).

Should we outlaw interleaveST on the grounds that it is insu�ciently well be-

haved? Not necessarily. Outlawing interleaveST would simply drive its function-

alitly underground rather than prevent it happening. For example, we want to

have lazy �le reading. If it cannot be implemented in Haskell then it will have to

be implemented \underground" as a primitive operation written in C or machine

code. The same goes for unique-supply trees and lazy arrays.

Implementing such operations in C does not make them more hygienic or easy

to reason about. On the contrary, it is much easier to understand, modify and

construct variants of them if they are implemented in a Haskell library module

than if they are embedded in the runtime system.
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The need for special care to be taken is 
agged by the use of interleaveST,

which identi�es a proof obligation for the programmer to show that the results of

the program are nevertheless independent of evaluation order. We fear that there

may be no absolutely secure system | that is, one which guarantees the Church-

Rosser property | which is also expressive enough to describe the programs which

systems programmers (at least) want to write, such as those above. We do, however,

regard interleaveST as useful primarily for systems programmers.

11. Related work

Monads were introduced to computer science by Moggi in the context of writing

modular language semantics (Moggi [1989]). He noticed that denotational seman-

tics of languages could be factored into two parts: what happens to values, and the

underlying computational model. Furthermore, all the usual computational mod-

els satis�ed the categorical de�nition of monads (often called triples in category

theory) including state, exceptions, jumps, and so on. Wadler subsequently wrote

several highly accessible papers showing how monads could be similarly used as

a programming style in conventional functional programming languages (Wadler

[1992a]; Wadler [1992b]; Wadler [1990]).

Based on this work, we developed a monadic approach to I/O (Peyton Jones &

Wadler [1993]) and state (Launchbury [1993]) in the context of non-strict purely-

functional languages. The approach taken by these papers has two major short-

comings:

� State and input/output existed in separate frameworks. The same general ap-

proach can handle both but, for example, di�erent combinators were required

to compose stateful computations from those required for I/O-performing com-

putation.

� State could only safely be handled if it was anonymous. Consequently, it was

di�cult to write programs which manipulate more than one piece of state

at once. Hence, programs became rather \brittle": an apparently innocuous

change (adding an extra updatable array) became di�cult or impossible.

Both these shortcomings are solved in this paper, the core of which appeared earlier

(Launchbury & Peyton Jones [1994]).

Several other languages from the functional stable provide some kind of state. For

example, Standard ML provides reference types, which may be updated (Milner &

Tofte [1990]). The resulting system has serious shortcomings, though. The meaning

of programs which use references depends on a complete speci�cation of the order

of evaluation of the program. Since SML is strict this is an acceptable price to pay,

but it would become unworkable in a non-strict language where the exact order

of evaluation is hard to �gure out. What is worse, however, is that referential

transparency is lost. Because an arbitrary function may rely on state accesses, its

result need not depend purely on the values of its arguments. This has additional
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implications for polymorphism, leading to a weakened form in order to maintain

type safety (Tofte [1990]). We have none of these problems here.

The data
ow language Id provides I-structures and M-structures as mutable

datatypes (Nikhil [1988]). Within a stateful program referential transparency is

lost. For I-structures, the result is independent of evaluation order, provided that

all sub-expressions are eventually evaluated (in case they side-e�ect an I-structure).

For M-structures, the result of a program can depend on evaluation order. Com-

pared with I-structures and M-structures, our approach permits lazy evaluation

(where values are evaluated on demand, and may never be evaluated if they are

not required), and supports a much stronger notion of encapsulation. The big ad-

vantage of I-structures and M-structures is that they are better suited to parallel

programming than is our method.

The Clean language takes a di�erent approach (Barendsen & Smetsers [1993]).

The Clean type system supports a form of linear types, called \unique types". A

value whose type is unique can safely be updated in place, because the type system

ensures that the updating operation has the sole reference to the value. The contrast

with our work is interesting. We separate references from the state to which they

refer, and do not permit explicit manipulation of the state. Clean identi�es the

two, and in consequence requires state to be manipulated explicitly. We allow

references to be duplicated, stored in data structures and so on, while Clean does

not. Clean requires a new type system to be explained to the programmer, while our

system does not. On the other hand, the separation between references and state

is sometimes tiresome. For example, while both systems can express the idea of a

mutable list, Clean does so more neatly because there is less explicit de-referencing.

The tradeo� between implicit and explicit state in purely-functional languages is

far from clear.

There are signi�cant similarities with Gi�ord and Lucassen's e�ect system which

uses types to record side e�ects performed by a program (Gi�ord & Lucassen

[1986]). However, the e�ects system is designed to delimit the e�ect of side ef-

fects which may occur as a result of evaluation. Thus the semantic setting is still

one which relies on a predictable order of evaluation. In another way, though, e�ect

systems are much more expressive than ours, because they provide a simple way to

describe combinations of local bits of state. For example, one might have

f :: a!

region

1

b

g :: c!

region

2

d

h :: e!

region

1

[region

2

f

where h is de�ned using f and g. The side e�ects of f and g cannot interfere with

each other (since they modify di�erent regions) so they can proceed asynchronously

with respect to each other.

Our work also has strong similarities with Odersky, Rabin and Hudak's �

var

(Odersky, Rabin & Hudak [1993]), which itself was in
uenced by the Imperative

Lambda Calculus (ILC) of Swarup, Reddy & Ireland [1991]. ILC imposed a rigid

strati�cation of applicative, state reading, and imperative operations. The type of
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runST makes this strati�cation unnecessary: state operations can be encapsulated

and appear purely functional. This was also true of �

var

but there it was achieved

only through run-time checking which, as a direct consequence, precludes the style

of lazy state given here.

Our use of parametricity to encapsulate state has echoes of work by O'Hearn

and Tennant (O'Hearn & Tennent [1993]). In imperative languages, local variables

ought to be invisible to the the outside world. Most models of these languages, how-

ever, do not re
ect this, making model-based reasoning about program behaviour

less than satisfactory. O'Hearn and Tennant discovered that by using Reynolds-

style relational parametricity, it was possible to construct models for these languages

where local variables were truly invisible from outside the scope of the variable. One

may view our work as extending this idea to the case where variables are �rst class

values. Then it is no longer su�cient to restrict the application of parametricity

solely at the model level | it becomes a source language concern instead.

Hall's recent work on list-compression in Haskell also has intriguing similarities

to ours (Hall [1994]). Hall introduces an extra type variable into the list type, and

uses its uni�cation or otherwise to determine the scope of each list. If a particular

application involving a list does not have the extra type variable instantiated to

\unoptimised", then she replaces the list with a multi-headed version. This is

rather similar to our use of universal quanti�cation which, in essence, checks that

the state-thread's state index is free of constraint.

It also seems possible to use existential quanti�cation to achieve encapsulation of

state. In classical logic, of course, a universal quanti�er on the left of an arrow can

be brought outwards, converting to an existential in the process. In intuitionistic

logic, this is not valid in general. Nonetheless, Thiemann has developed a system

which captures this (Thiemann [1993]), though the result is far more complex than

the method presented here.
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Notes

1. Actually the distributed system is rather richer, as it includes some error handling facilities

also

2. Backquotes are Haskell's notation for an in�x operator.

3. The \Ix i =>" part of the type is just Haskell's way of saying that the type a must be an

index type; that is, there must be a mapping of a value of type a to an o�set in a linear

array. Integers, characters and tuples are automatically in the Ix class, but array indexing is

not restricted to these. Any type for which a mapping to Int is provided (via an instance

declaration for the class Ix at that type) will do.

4. In Haskell 1.2 the list of index-value pairs had type [Assoc i v], where Assoc is just a pairing

constructor, but Haskell 1.3 uses ordinary pairs in the list.

5. The de�nition of indices shows up an interesting shortcoming in Haskell's type signatures,

which it shares with several other similar languages: there is no way to give the correct type

signature to indices, because the type involves type variables local to the enclosing de�ni-

tion. We cannot write indices :: [(i,v)] because that would mean that indices has type

8i;v:[(i; v)], which is certainly not what we mean. Instead, a notation is required to allow the

type variables in the signature for newArr to scope over the body of newArr. Here we simply

give the type of indices in a comment, introduced by \--".

6. Notice the type signatures in comments again!

7. Indeed, the formal semantics of an imperative language often expresses the meaning of a

statement as a state-to-state function.

8. Because the let is recursive we also have to require r to be strict

9. Indeed, we have to admit that the implementation came �rst!


