
Behavior Research Methods & Instrumentation
1974, Vol. 6, No.2, 167-170

SESSION VII
SYMPOSIUM: THE SKED SYSTEM FOR PROGRAMMING

AND RECORDING BEHAVIORAL EXPERIMENTS

ARTHUR G. SNAPPER, Western Michigan University, Presider

State notation and SKED:
A general system for control and

recording of behavioral experiments*
RONALD M. KADDEN

FDR Veterans Administration Hospital, Montrose. New York 10548

State notation is a language for describing behavioral procedures and data acquisition formats. A
minicomputer system has been developed for translating state notation into operating computer
programs, which can control 10 simultaneous and independent experiments. A description of the system
is provided, including the hardware necessary to interface the computer with the experimental
environment

Programming minicomputers in machine language can
be quite time-consuming, and must be done with great
care when it involves on-line process control and data
acquisition. This is especially true when several
independent processes are being controlled
simultaneously by a single computer. At many
installations, heavy demands are placed on a
minicomputer by research scientists and graduate
students, with no experienced computer programmer
available to produce the complex programs that arise
from ongoing research projects. Even if such services
were generally available, the demands for on-line
computer time are usually so great that only bits and
pieces of free time scattered throughout the day and
evening are available for programming. To simplify the
problem of program complexity and to make it possible
to work within available time, a minicomputer system
(SKED) was developed for programming experimental
procedures. Although the system described here has
been implemented only on the PDP-8 series (Digital
Equipment Corporation) of computers, the same
principles would apply to any other computer.

The system is based upon the mathematical theory of
sequential switching circuitry, using the state notation
model. This notational language was chosen for three
primary reasons: (1) It is precise enough for designing
electronic switching circuitry, (2) it is simple enough to
be easily learned, and (3) it is already being used by
engineers and scientists to describe a wide variety of

*This work was supported by the National Institute of Mental
Health, under Grant MH-13049 to w. N. Schoenfeld, and by the
Veterans Administration Hospital, Montrose, New York.

167

sequential devices and procedures. The notation is
independent of the nature of the sequential events
considered and is also independent of particular
hardware or software systems. With it, a basic scientific
requirement is satisfied: accurate communication, both
among investigators working in different areas within a
field, and also across disciplinary lines. As for its
usefulness within the field of experimental psychology,
the notational language has been shown to completely
and unambiguously describe behavioral procedures
(Snapper, Knapp, & Kushner, 1970; Snapper, 1973).
The language of state notation consists of a set of
precisely defined elements called states, operators on the
elements called transitions, and outputs. Through the
appropriate interconnection of the state elements,
behavioral procedures involving discrete stimuli and
responses can be notated.

Figure 1 is a flow diagram of the steps required to
complete an experiment, from formulation of the
experimental problem through analysis of the resultant
data. Before a final diagram of the experimental
procedure can be drawn in the notational language, the
experimental question must be precisely defined. It has
been our experience that notating the procedure as it is
developed by the E facilitates completion of the final
version. Since the notation requires that all procedural
details be stated explicitly, ambiguities in the
experimental design become apparent quickly and
therefore tend to be resolved early. The notational
language also facilitates communication among co-Es,
eliminating debates about procedural details that may
have been poorly communicated from one scientist to
another.



168 KADDEN

process, translates the state diagrams stored by the
editor into state tables, in a binary format compatible
with the (RTS). Since the compiler reads the state
diagrams directly from the storage medium, the, only
information required of the E at this stage is the number
of data recording counters the completed program will
require. The compiler is programmed to detect certain
illegal characters and formats and undefined variables.
These errors are listed on the Teletype as they are
detected, and correction of them requires return to the
symbolic editor program. The output of the compiler is
preserved on the selected storage medium, ready for
entry into the RTS.

The SKED RTS is the executive program which
monitors the progress of individual state tables and
which distributes response inputs and stimulus outputs
between interface connections and the appropriate state
tables. Each cycle of the RTS program is triggered by a
pulse from a free-running external clock. The RTS
causes the portions of any state tables that are
time-dependent to be advanced by one unit step. In this
way, several independent state tables, representing
separate experimental procedures, are serviced by each
clock pulse. Similarly, at each clock input, all response
input lines are examined to determine whether responses
occurred in any of the operative experimental stations
since the last clock pulse. These are directed by the RTS
toward the appropriate state table for determination of
possible consequences (e.g., increasing the response ratio
count, reinforcement delivery, data recording, etc.). Any
stimulus outputs resulting from the interaction of
response and clock inputs with the state tables are
directed by the RTS toward the appropriate interface
output connectors. The RTS also provides other services
to the state tables, such as data recording, advancing of
states within state sets, and intercommunication
between state sets within a single state table. In addition,
provision has been made and a format provided for
programming special-purpose routines for the RTS, such
as to generate a random number sequence on-line, to
perform arithmetic or higher-order mathematical
functions, to provide unique data recording formats, or
to service specialized input-output devices. Both these
and the standard routines are stored by the RTS and are
made available to each state table as required.

The RTS program format remains unchanged for all
state tables, although the program does have two
modifiable features. The first of these is the
special-purpose routines, referred to above, which may
be added as needed at the end of the RTS. The second
modifiable feature of the RTS is the input-output
section. Since various laboratories have different
interface configurations, and since within the same
laboratory the same input-output interface channels may
be required to perform different functions, at different
times, the SKED RTS has been written with a flexible
input-output section. The configuration of this section is
determined by a program called the dialogue, which

SKED

Run-Tlme-System

Stimuli

Responses

Experlmentall---";;;";';";;=-"""';

Space

(Subjects)

After a final version of the experimental procedure
has been notated as a state diagram, a three-stage process
is necessary to implement it on the computer (vide,
Snapper & Kadden, 1973; Snapper & Walker, 1971). In
the first stage, the diagram is preserved on some storage
medium (paper tape, magnetic tape, magnetic disk, etc.)
by means of an editing program. In the second stage, the
stored diagram is processed by a compiler program
which produces a machine language state table (a binary
representation of the original state diagram), which is
also preserved on the storage medium. A third stage
involves committing the computer to on-line control by
means of an executive program or run-time system
(RTS) that reads the machine language version of the
program and enters it for one or more stations.

The first stage involves a straightforward
transformation from a free-hand drawing of the state
diagram to a linear Teletype format. The state diagram is
entered into a symbolic editor program, which provides
considerable power for adding to, modifying, and
rearranging the text as entered on the Teletype. The
symbolic editor is also used to correct errors detected in
the next stage by the compiler, and additionally to
modify the original state table to provide parametric
variations of the basic procedure. The editor does not
detect errors in the state diagrams, or even "typos," but
only stores text as provided by the teletypist. Once a
complete, accurate version of the state diagram has been
provided to the editor, it is preserved on the desired
storage medium in the American Standard Code for
Information Interchange (ASCII). It is this stored
version that will be entered into the compiler in the next
stage, and will also serve as the basis for reediting at any
future time.

The compiler, in the second stage of the programming

Computer Analysis
Basic
Focal
Fortran

Fig. 1. Flow chart of procedures required to complete an
experiment.



assigns the available input and output channels to
experimental stations. Thus, in a laboratory with two
12-bit input words and three 12·bit output words,
approximately 10 experimental stations can be
accommodated, each with two input (response) lines and
three or four output (stimulus) lines. More stations
could be accommodated by assigning fewer lines per
sta tion, or, alternatively, all 24 response and 36 stimulus
lines could be assigned to a single station. With more
input or output words, even greater flexibility would be
possible. The input-output section of the RTS could be
modified by the dialogue each time a new state table is
written, or the configuration could be left unchanged
through many experiments. For this reason, a different
shape of enclosure was placed around the dialogue
element in Fig. 1, to indicate that it is available for use
whenever desired, but need not necessarily be used each
time a new experiment is begun.

Data recording requirements are specified as part of
the state diagram at the time the diagram is typed, using
the symbolic editor. Each event whose occurrence is to
be recorded, clock pulses or responses, causes a specified
data recording counter in the computer memory to be
incremented once for each occurrence of the event.
Special recording requirements, such as interresponse
time distributions, response latency distributions,
responses in subintervals of fixed time cycles. etc., can
be accommodated as part of the state diagram. Since
data recording is treated by the notation like a stimulus
output, as a pulse incrementing a location in the
computer's memory, data recording routines can be
expressed in state notation just as the reinforcement
contingencies are. Thus, data recording requirements are
expressed as an integral part of the notation used to
specify the reinforcement schedule.

The progress of an experiment can be monitored at
any time during a session by manually typing a request
for a data dump. Alternatively, frequent automatic data
dumps could be specified in the initial state diagram so
that all the data recording counters for a particular
experiment would be listed on the Teletype or on some
other storage medium at prespecified intervals. If the
purpose of these data dumps is to monitor the progress
of an experiment, the data recording counters may be
left unmodified after each dump, so that each successive
dump will represent cumulative progress up to that time.
However, the use of frequent data dumps during a
session can accomplish another purpose as well. If an E
wished to collect large amounts of data, such as
successive interresponse times or successive cardiac
interbeat intervals, for example, the data recording area
in memory would be so large as to leave no space for the
running of any other experiments in the computer at the
same time. This problem can be solved by reserving a
fixed-length data recording area, dumping the data
frequently, resetting all counters in the data area to zero
after the dump, and starting to record data from the
beginning of the data area after each dump. Thus,

STATE NOTATION AND SKED 169

successive data dumps can provide a continuous listing
of the desired data throughout an experimental session.
When operated in this mode, the RTS stores the data to
be dumped in a temporary buffer storage area and
immediately clears all counters in the primary data
collection area, so that new data can be collected
without interruption, even while previous data are still
being dumped. This is particularly useful where data
storage must be done on paper tape, involving relatively
long dump times.

Presently. data analysis, such as tests of correlation,
statistics, etc .. must be performed off-line, using
standard data treatment packages like BASIC, FOCAL,
or FORTRAN. These cannot be used on-line as
background low-priority programs with the SKED RTS
as a foreground high-priority program, since the data
analysis programs occupy considerable memory space
that would probably be needed for state tables and data
recording counters. Also, their operations would be
made extremely slow by the high rate of interrupts
generated hy the free-running clock. For these reasons,
data are preserved on a storage medium by the RTS, and
are read off-line at a later time for analysis.

Some of the problems due to limitations of the size of
available memory can be alleviated by adding more
memory fields. Such additions allow the use of more
state tahles (i.e .. more experiments running
simultaneously). longer state tables, and expanded data
recording capabilities. The SKED RTS comes in two
sizes. one for memories consisting of only 4K words, and
a second that allows the addition of 4K memory fields
up to a maximum of 32K words. The number of
available memory fields is specified in the dialogue
program when other hardware configurations are also
specified. When state tables are subsequently loaded into
memory, they are placed by the RTS into the first space
available in memory, the uppermost memory fields being
utilized only after the lowest ones have been filled. If, at
the time a new state table is about to be loaded, it is
determined that one or more of the preceding ones in
memory have been terminated as active state tables, all
remaining active state tables are first moved down to fill
the vacant space, and only then is the new table entered,
above its predecessors. It might also be noted here that if
the same experiment is to be run simultaneously, but
independently, on four Ss, only a single state table need
be edited and compiled. At the time of loading the state
table, the four stations in which it is to be run are
specified, and the RTS will load the program four times
in successive portions of memory. In this way, four
proce d u rally identical, but wholly independent,
experiments can be run simultaneously.

Figure 2 shows a block diagram of the hardware
required for a typical system. Indicated at the top of the
figure are the computer and its affiliated devices for
storing and entering programs and state tables, and for
receiving and preserving data dumps. All communication
with the experimental Ss is accomplished through the



170 KADDEN

Fig. 2. Block diagram of equipment configuration.

accumulator (At,') of the computer, which transmits
pulses to operate or terminate stimuli and receives
signals indicating the occurrence of responses. All signals
which communicate with the experimental Ss also pass
through an interface composed of solid state signal
conditioning circuitry and general-purpose relays. A
free-running clock is connected to the solid state portion
of the interface. The repetition rate of this clock is
typically set for 10-msec interpulse intervals (100Hz),
although, where a higher rate is required for finer
temporal analysis, l-msec intervals (1,000 Hz) can be
used, if only one S is run at a time. The higher clock rate
is also useful to speed up the process of debugging new
state tables. Another device, which is useful for
debugging both programming and circuitry problems, is
a response simulator panel with a pushbutton which can
operate each input line. Although responses can also be
entered on the Teletype, much higher rates are possible
with pushbuttons. Indicator lights are also useful on
input and output lines.

Another adjunct to the system hardware which is very
helpful, although not required, is a patchboard interface
with general-purpose relays. Routing signals through
such a setup provides flexibility for changing the
configuration of experimental stations and for adding

Cumulative Recorcers
and- Displays

REFERENCES

new equipment as acquired. It can save many hours of
changing connections, and its systematic format helps to
minimize errors when rewiring becomes necessary. The
relays associated with this interface further add to its
flexibility and also act to protect the computer interface
from overloading. All stimuli, responses, and
connections to peripheral data recording devices are
channeled through the patchboard interface. They are
connected directly to the computer interface when no
patchboard interface is available.

The SKED RTS requires digital responses for its
operation. Although some computer systems have
analog-to-digital conversion capabilities, their operation
requires considerable sacrifice of computer time. It is
therefore preferable to perform conversions outside of
the computer, and to send only digital signals to the
RTS. These signals might include electrocardiograms,
blood pressure, electroencephalograms, or the output of
force-sensitive levers. The outputs of each A-to-D
conversion device would be transmitted on as many
channels as necessary as separate inputs to the RTS.

A system such as the one described here can be
started small, being added to in piecemeal fashion as
funds become available. With even a minimal operational
system, no more than 5 man-hours should be required to
produce a state table, including drawing the state
diagram, editing, compiling, specifying the interface
configuration by means of the dialogue program,
debugging, and reediting and recompiling to correct
errors. This time can be reduced for simple experiments
or where a library of basic state tables and interface
configurations is available, but may be extended where
considerable rearrangement of the system hardware is
required.

Snapper, A. G. Use of a notation system for digital control and
recording. Behavior Research Methods & Instrumentation,
1973,5,128-131.

Snapper, A. G., & Kadden, R. M. Time-sharing in a small
computer based on a behavioral notation system. In B. Weiss
(Ed.), Digital computers in the behavioral laboratory. New
York: Appleton-Century-Crofts, 1973. Pp. 41-97.

Snapper, A. G., Knapp, J. Z., & Kushner, H. K. Mathematical
description of schedules of reinforcement. In W. N.
Schoenfeld (Ed.), The theory of reinforcement schedules.
New York: Appleton-Century-Crofts, 1970. Pp, 247-275.

Snapper, A. G., & Walker, A. The SKED software system, Digital
Equipment Computer Users Society Program Library, 1971,
No. 8-465.

Response
Simulator
Console

Data Storage
and

Output Devices

COMPUTER INTERFACE
CI k

10MSEC
oc or

1 MSEC

Program Storage State Computer Oat
and T bl (Operating

Entry Devices a es Program)

OUTPUT INPUT
from AC to AC


