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STATE OBSERVATION FOR NONLINEAR SWITCHED SYSTEMS

USING NONHOMOGENEOUS HIGH-ORDER SLIDING

MODE OBSERVERS

J. Davila, H. Ríos, and L. Fridman

ABSTRACT

This article presents the problem of finite time reconstruction of the continuous state and operating mode for a class of

nonlinear switched systems. The proposed method is based on the nonhomogeneous high-order sliding mode approach. It is able

to reconstruct both the state and operating mode of a switched system based only on its measurable outputs and through the use

of the features of the equivalent output injection. The observability is derived in terms of certain geometric restrictions on the

vector fields of the switched system that require the availability of all its modes. The method does not require the system to be

transformed into any normal form. Simulation results support the proposed method.

Key Words: High-order sliding modes, nonlinear observers, switched systems.

I. INTRODUCTION

Switched systems, whose behavior can be represented

by the interaction of continuous and discrete dynamics, have

been widely studied during recent decades since they can be

used to describe a wide range of physical and engineering

systems. Most of the attention paid to these kinds of system

has focused on the problems of stability and stabilization with

extensive and satisfactory results (see, e.g., [1]–[4]).

Sliding-mode-based robust state observation has been

developed successfully in Variable Structure Theory in recent

years (see, e.g., [5]–[7]).

The observer design problem for switched systems, i.e.

the estimation of the continuous and discrete state, is of great

interest for many areas of control. The main difference among

the existent approaches is related to the knowledge of the

active discrete state or operating mode: some approaches

consider only continuous state uncertainty with a known

operating mode, while others assume that both the operating

mode and the continuous state are unknown. In [8] a Luen-

berger observer approach for linear systems is proposed for

the known operating mode case. In other work, considering

that the continuous state is known, an algorithm for recon-

structing the discrete state in nonlinear uncertain switched

systems is presented in [9] based on sliding mode control

theory. For the unknown operating mode case, two state

observers for some classes of switched linear systems with

unknown inputs are designed in [10], based on a property of

strong detectability and using a linear matrix inequality

(LMI) approach. A nonlinear finite time observer is proposed

in [11] to estimate the capacitor voltage for multicellular

converters, which have a switched behavior. In [12] and [13],

the observability of hybrid systems is studied, where the

discrete state depends on the state trajectories.

In this work a high-order sliding-mode “multi-

observer” approach is considered for the state reconstruction

and operating mode identification problems. The nonhomo-

geneous methods presented in [14] and [15] are applied to

reconstruct, in finite-time, both the state and the operating

mode of a class of nonlinear switched systems. The state

observation features and the equivalent output injection are

exploited to reconstruct in finite time the continuous state and

the operating mode. Nonhomogeneous high-order sliding

mode methods provide smaller transient times than conven-

tional homogeneous methods.

Main contribution. A “multi-observer” approach, based on

nonhomogeneous high-order sliding mode methods, to con-

tinuous state and operating mode reconstruction for nonlinear

switched systems is proposed. The method allows the finite

time reconstruction of both the continuous state and the oper-

ating mode using the equivalent output injection, without

requiring any system transformation, and based only on the
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measurable outputs. As far as the authors know, it is the first

paper in which the “nonhomogeneous high-order sliding-

mode methods” are applied to the design of observers.

The paper has the following structure. Section II deals

with the problem statement. Section III presents the observer

structure and the main assumption underlying the feasibility

of the proposed procedure. In section IV the observation error

dynamics are studied and a methodology for the selection of

the observer gains is suggested. Section V presents a method

for identifying the operating mode. An example is given

in Section VI. Some concluding remarks are given in

Section VII.

II. PROBLEM STATEMENT

Consider the nonlinear switched system

ɺx f x y h xt= ( ) = ( )( )λ , (1)

where x ∈ X ⊆ Rn is the state vector and l(t) ∈ {1, 2, . . . , q}

is the so-called “switching signal”. The switching signal

determines the current system dynamics among the possible

q “operating modes” f1(x), f2(x), . . . , fq(x). The output

vector is y ∈ X ∈ Rp. The vector fields fi(x):X→Rn and

the functions h(x) = [h1 h2 ··· hp]
T : X→ X represent the

known nominal part of the system dynamics.

The following definitions are taken from [16].

Definition 1. A hybrid automaton H is a collection H = (Q,

X, f, Init, D, E, G, R), where Q = {1, 2, . . . , q} is the finite set

of discrete variables; X = {x1, x2, . . . , xn} is the finite set of

continuous variables; {f1(x), f2(x), . . . , fq(x)} are vector fields;

Init = {Q ¥ X} is the set of initial states; D(qi) = {x|x ∈
X ∈ Rn} is a domain; E = {(i, j)|i, j = i, j = 1, 2, . . . , q, i � j}

is the set of edges; l(t) is the guard condition; R(i, j, x) = x is

the reset map (in this case, the identity map for x).

Definition 2. A hybrid time trajectory is a finite or infinite

sequence of intervals τ = { } =I i i

N

0
such that: I i i= ′[ ]τ τ1, , for all

i < N; if N < •, then either IN N N= ′[ ]τ τ, , or IN N N= ′[ )τ τ, ;
τ τ τi i i≤ ′ = +1 for all i.

In other words, a hybrid time trajectory is a sequence of

intervals of the real line, whose end points overlap. For a

hybrid time trajectory τ = { } =I i i

N

0
, we define 〈t 〉 as the set {1,

2, 3, . . . , N} if N is finite and {1, 2, . . .} if N = • and
τ τ ττ= ∑ −( )∈ ′i i i . Finally let us introduce the definition of

execution.

Definition 3. An execution of a hybrid automaton H is a

collection x = (t, q, x), where t is a hybrid time trajectory, q:

〈t 〉→Q is a map, and x = {xi : i ∈ 〈t 〉} is a collection of dif-

ferentiable maps xi : Ii→X such that

• (q(0), x0(0)) ∈ Init;

• for all t i i∈ ′[ )τ τ, , ɺx t f x ti
q i

i( ) = ( )( )( ) and xi(t) ∈ X;

• for all i ∈ 〈t 〉\{N}, e = (q(i), q(i + 1)) ∈ E,

x G ei
i′( )∈ ( )τ , and x R e xi

i
i

i
+

+( )∈ ′( )( )1
1τ τ,

The execution of a hybrid automaton is a similar

concept to the solution of a continuous dynamic systems.

Zeno executions are not allowed. The zeno phenomena

can be described by an infinite execution with |t| < •.

The following definition of observability for a hybrid

automaton is adapted from [17].

Definition 4. Consider the system (1) and the variable

x = x(t, x). Let x(t, x1) be a trajectory of the automaton H with

a hybrid time trajectory TN and 〈TN 〉. Suppose that for any

trajectory (t, x2) of H with the same TN and 〈TN 〉, the equality

y(t, x1) = y(t, x2), a.e. in[tini, tend], implies x(t, x1) = x(t, x2),2

a.e. in[tini, tend], then we say that x = x(t, x) is Z(TN) observable

along the trajectory x(t, x1).

The system (1) is Z(TN) observable along any trajectory

x(t, x) and for any possible hybrid time trajectory TN. The aim

of this paper is to design a finite-time converging observer for

both the state and the operating mode of the system by means

of the knowledge of the multiple outputs.

In this paper we study the systems of the form (1)

whose hybrid time trajectories satisfiy that ′ − ≥τ τ δi i T for all

i = 1, . . . , N and a constant parameter Td > 0 called the

minimal dwell time.

III. MULTI-OBSERVER DESIGN

Consider the following observer structure:

ˆ ˆ ˆ , , , ,

ˆ ˆ

ɺ …x f x G x j q

y h x

j j j j j j

j j

= ( )+ ( ) ∀ =
= ( )
σ 1 2

(2)

with the estimated state vector x̂ j
n∈R and estimated output

ŷ j
p∈R . G xj j

n nˆ( )∈ ×
R will be designed further in the paper

as a distribution matrix ensuring that the effects of the

unknown inputs are compensated by the discontinuous

correction terms σ σ σ σj
T

j
T

j
T

j p
T n= [ ]∈, , ,1 2 ⋯ R , which in

turn will be designed using high-order sliding mode

techniques. The solutions of (2) are understood in the

Filippov sense in order to make it possible to use

discontinuous signals in the observers and to coincide with

the usual solutions, when the right-hand sides are continuous.

It is also assumed that all considered correction terms allow

the existence and extension of solutions to the whole

semi-axis t � 0.

Firstly, with reference to a scalar function q, with

vector argument x defined in an open set W ∈ Rn such that
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q(x) : Rn→R, denote dq x
q x

x

q x

x

q x

xn

( ) = ∂ ( )
∂

=
∂ ( )
∂

∂ ( )
∂

⎡
⎣⎢

⎤
⎦⎥1

⋯ .

Select a set of outputs such that the following matrices:

∂ ( )
∂

=

( )

( )

( )

( )
−

Φ j j

j

j

f x

r
j

p j

f

x

x

dh x

dL h x

dh x

dL

j j

j

j

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

,

1

1
1

1

⋮

⋮

⋮

ˆ̂

, ˆ

, , ,

x

r
p j

j

j p h x

j q

( )
− ( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

1

1 2 … (3)

with L h
L h

ff
k f

k

jj

j

⋅( )
⋅( )

−

⋅( ) =
∂ ⋅( )
∂ ⋅( )

⋅( )
1

, satisfy rj,1 + rj,2 + ··· + rj,p = n

"j = 1, . . . , q, and for all xj ∈ X; here rj,i denotes the relative

degree of the ith row of the output in the operation mode j.

Now, the following assumptions are established.

Assumption 1. The q matrices
∂ ( )
∂
Φ j j

j

x

x

ˆ

ˆ
in (3) are

nonsingular for every possible value of x̂ j ∈X .

Assumption 2. The mappings Fj(x) are diffeomorphisms on

X, "j = 1, . . . , q.

Remark 1. Assumption 2 implies the existence of local

diffeomorphisms in the domain X for each operation mode j.

Considering the above assumptions, the distribution matrices
G xj jˆ( ) are designed as

G x
x

x
j qj j

j j

j

ˆ
ˆ

ˆ
, , , .( ) = ∂ ( )

∂
⎛
⎝⎜

⎞
⎠⎟

∀ =
−

Φ
1

1… (4)

According to Assumption 1, G xj jˆ( ) is well defined "xj ∈ X.

The following step is to analyze the observation error

dynamics between switchings.

3.1 Correction terms design

Assumption 3. There are known constants Γ
j i, 1 0> , Γ j i, 2 0>

and known Lipschitz functions ρ j i ye
j, ( ) > 0 such that "j = 1,

. . . , q, the following inequalities are satisfied:

L h x L h x e
f x

r
i j f

r
i j i j i y j ij j

j i

i

j i

j iˆ , , ,

, ,

,
ˆ( ) ( )− ( ) < ( )+Γ Γ1 2ρ (5)

where e h x h xy i j ij i,
= ( )− ( ) are the output errors.

The correction terms could be calculated introducing

the following nonhomogeneous high-order sliding mode dif-

ferentiator [14], as auxiliary dynamics:

ɺϑ ϑ α
j i j i j i j i

r
y

r

r
yN e sign ej i

j i

j i

j i
j i, , , ,

,

,

,

,
,1 2 1

1 1

= − ( )
−

ɺ ɺϑ ϑ α ϑ ϑ ϑ
j i j i j i j i

r

j i j i

r

rN signj i

j i

j i
, , , , , ,

,

,

,
2 3 2 2 1

1

1
2

1= − −−
−

−
jj i j i, ,2 1−( )ɺϑ

⋮

ɺ ɺϑ α ϑ ϑ
j i j i j i j i j i

rj i rj i rj i rj iN sign
, , , , ,, , , ,= − −( )−1 (6)

In this way, the correction terms take the following form

"i = 1, . . . , p:

σ

α

αj i

j i j i
r

y

r

r
y

j i j i
r

N e sign e

N

j i

j

j i

j i
j

j i
,

, ,

, ,

,

,

,

,=

− ( )

−

−

−

1

2

1 1

1

11
1 2

2

1 1 2

1

Δ Δ

Δ

, ,

, , ,

,

,

, , ,

r

r

j i j i r r

j i

j i

rj i j i j i

sign

N sign

−

−

−

( )

−
⋮

α (( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

(7)

whereΔ Δ1 2 12 1 1, , , , , ,
, ,

, , , ,= − = −− −ϑ ϑ ϑ ϑ
j i j i r r j i j ij i j i rj i rj i

ɺ … ɺ , the con-

stantsα
j ik,

are chosen recursively and are sufficiently large. In

particular, according to [18], one possible choice isα j i,
.6 1 1= ,

α
j i,

.5 1 5= ,α j i, 4 2= ,α j i, 3 3= ,α j i, 2 5= , which is enough for the

case when rj,i � 5, "i = 1, . . . , p and "j = 1, . . . , q. The gains

Nj,i are upper bounds for each (5) and a proposition for their

design will be established later in the paper.

The continuous time reconstruction considering the

time interval between switchings will be described next.

IV. OBSERVATION ERROR DYNAMICS

BETWEEN SWITCHINGS

Consider l(t) ≡ l* = const. "t ∈ [0, t1), where t1 is the

time in which the first switching occurs. Therefore, the

system dynamics on the operating mode l* are given by

ɺx f x t t

y h x

= ( ) ∀ ∈[ )
= ( )

λ* , ,0 1

(8)

Thus, any of the q observers (2) can be associated with the

corresponding output error e y yy jj
= −ˆ , and the state error

e x xx jj
= −ˆ , in the time interval [0, t1).

Taking into account the previous explanations, the fol-

lowing theorem can be stated.

Theorem 1. Consider that the observers (2) with the correc-

tion terms designed according to (7) are applied to system (8),

and let Assumptions 1–3 be satisfied. Then, provided that aj,i

are chosen properly and Nj,i are upper bounds for each (5), the

state estimation error, e x xx = −ˆ , converges to zero in finite

time.
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Proof. System (8), under Assumptions 1–3, can be repre-

sented, on new coordinates, as

ɺz Az B z

y Czz

= + ( )
=

ϕλ*

(9)

where

A diag A A Ar r r n np
= ( ) ×1 2

, , ,…

Ar

r r

i

i i

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

×

0 1 0

0 0 1

0 0 0

⋯

⋮ ⋮ ⋱ ⋮

⋯

⋯

B

B

B

B

r

r

r n pp

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

×

1

2

0 0

0 0

0 0

⋯

⋯

⋮ ⋱

⋯

Br
T

ri i
= [ ] ×0 0 1

1
⋯

C

C

C

C

r

r

r p np

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

×

1

2

0 0

0 0

0 0

⋯

⋯

⋮ ⋱

⋯

Cr ri i
= [ ] ×1 0 0

1
⋯

ϕλ

λ

λ
λ

*

*

*
*

z

L h x

L h x

f x

r

f x

r
p

x z

p

( ) =
( )

( )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

( )

( ) = ( )−

1

1

1

⋮

Φ

(10)

Now, the observers (2), under Assumptions 1–3, can be

represented as:

ˆ ˆ ˆ , , ,

ˆˆ

ɺ …z Az B z j q

y Cz

j j j j j

z jj

= + ( )+ ∀ =
=

ϕ σ 1
(11)

where ϕ j jẑ( ) have the same structure as in (10).

Define the state observation errors as e z zz jj
= −ˆ ,

"j = 1, . . . , q. The state observation error dynamics take the

following form:

ɺ …e Ae B z z j qz z j j jj j
= + ( )+ ∀ =Ψ ˆ , , , ,σ 1 (12)

where Ψ j j j jz z z zˆ , ˆ *( ) = ( )− ( )ϕ ϕλ .

Now, if it is possible to find appropriate correction

terms �j, which can steer the vectors ez j to zero, then the

equality ẑ zj = will be satisfied when j = l*. Nevertheless, it is

not desirable to design the correction terms in the coordinates
ẑ but rather in the coordinates x̂.

Therefore, returning to the original coordinates and

defining the following output error vector:

ε

ε

ε
j i

j i

j i

y

y

r
rj i

j i

j i

j i

e

e

,

,

, ,

,

,

,

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥

−( )

1

1

⋮ ⋮ ⎥⎥
⎥
⎥

(13)

The state observation error dynamics (12) turn into

output observation error dynamics block form as follows:

ɺ

ɺ

⋮

ɺ

ε ε σ

ε ε σ

ε λ

j i j i j i

j i j i j i

j i j jrj i x

, , ,

, , ,

, , ,

1 2 1

2 3 2

= +

= +

= ( )Ψ Φ Φ ** , ,x
j i

rj i( )( )+σ

(14)

Notice that the dynamic structures (14) are very similar to (6).

Thus, if a variable change is realized in the structure (6) it is

possible to obtain the following sliding mode differentiator

forms:

ɺ

ɺ

ε ε α ε ε

ε
j i j i j i j i

r

j i

r

r
j i

j i

N signj i

j i

j i
, , , , , ,

,

,

,

,
1 2 1 1 1

1 1

= − ( )
−

22 3

2 2 1 2

1

1
2

1

= −

−−
−

−

ε

α ε ε ε

j i

j i j i
r

j i j i

r

r
j i

N signj i

j i

j i

,

, , , , ,

,

,

,ɺ −−( )

= ⋅( )− −

ɺ

⋮

ɺ ɺ

ε

ε α ε ε

j i

j i j j i j i j i j i
rj i rj i rj i rN sign

,

, , , , ,, , ,

1

Ψ jj i, −( )1

(15)

Now, if Assumption 3 is satisfied and if the parameters
α

j ik, are chosen recursively, according to the high-order

sliding mode differentiator properties described in [18], the

following equality is satisfied, only when j = l*, in finite

time: ε ε ελ λ λ*, *, *,
, , , , , , , , ,

,i i i
r j i

i p1 2 0 0 0 1… … …⎡
⎣

⎤
⎦ ≡ [ ] ∀ = .

Then, the condition ελ*,i1
0≡ , ∀ ∈t t ti[ , )*

1 implies that

ε ελ λ λ*, *,
, , , ,*,i i

r i2 0 0… …⎡⎣ ⎤⎦ ≡ [ ], ∀ ∈t ti[ , ]0 * . To prove this,

assume that the condition ελ*,i1
0≡ is satisfied in a nonzero

time interval. This condition implies that ɺελ*,i1
0≡ in the same

time interval. Thus, from the first row of (15) it is obtained

that ελ*,i2 0≡ . Then, since ελ*,i2 0≡ and ɺελ*,i1
0≡ from the

second row of (15) it is obtained that ελ*,i3
0≡ . If the same

procedure is iterated the following expressions are obtained
ελ*,i ≡ 0 , "i = 1, . . . , p.

Given Assumption 3 and taking into account that the

gains Nj,i are upper bounds for (5), the last row of (15) defines

the following differential inclusion ɺελ λ λλ*, *, *,*, ,
i i ir i N N∈ −[ ]−
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ɺα ε ε
, , , ,, ,j i j i j i j i

rj i rj i rN sign − jj i, −( )1 where Ψλ λ λ* *, *,,⋅( )∈ −[ ]N Ni i ,

"i = 1, . . . , p. Therefore, the dynamics (14) converge to zero

after a finite time, i.e. ελ*, [ , )i it t t≡ ∀ ∈0 1
* , and according to

Assumption 2 it is ensured that the state estimation error

e x xxλ λ* *= − also converges to zero in finite time. Notice that

it is always possible to select the gains Nj,i to be sufficiently

large such that each t ti
* < 1 "i = 1,. . ., p. Q.E.D. �

Theorem 1 states that when the active dynamic is the

l* - th one according to (8), then the observation error exλ*
of

the l* - th observer tends to zero.

Remark 2. Notice that in order to design the observers

only the calculation of the inverse matrices
∂ ( )
∂

⎛
⎝⎜

⎞
⎠⎟
−Φ j x

x

1

is

necessary, and not of the inverse transformation Φ j z− ( )1 .

Now, a further result consisting of an additional

Assumption, involving all the possible system dynamics f1(x),

f2(x), . . . , fq(x), guaranteeing that all observers provide the

correct estimate of the continuous state irrespectively of the

current value of the operating mode, is given.

Assumption 4. Let the functions fi(x), fk(x) and h(x) be such

that for each i, k = 1, 2, . . . , q, i � k, with i = 1, . . . , p

L h x

L L h x

f x i

f x f x

r
i

k

k

j i

ι

ι ι

,

,

,

( )

( ) ( )
−

( )

( )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=
⎡

⎣

⎢
⎢
⎢

⋮ ⋮

2

0

0

⎤⎤

⎦

⎥
⎥
⎥

(16)

where f f fk kι ι, = − .

Therefore, if Assumption 4 is satisfied then all observ-

ers provide the correct estimate of the continuous state irre-

spectively of the current value of the operating mode. Notice

that the proposed method does not require that the switching

parameter satisfies the matching condition (see [19]). This

improvement is a result of the multi-estimator approach.

To prove this, consider the dynamics (15) in time

instants before and after the switching time t1, i.e.

ɺ

ɺ

ε ε α ε ε

ε

Δ Δ Δ Δ Δ Δ

Δ

Δ
Δ

Δ
, , , , , ,

,

,

,

,
i i i i

r

i

r

r
i

i

N signi

i

i1 2 1 1 1

1 1

= − ( )
−

22 3 2 2 1 2

1

1
2

1= − −−
−
−ε α ε ε εΔ Δ Δ Δ Δ Δ

Δ
Δ

Δ
, , , , , ,

,

,

,
i i i

r

i i

r

r
i

N signi

i

iɺ −−( )

= ⋅( )− −

ɺ

⋮

ɺ ɺ

ε

ε α ε ε

Δ

Δ Δ Δ Δ Δ ΔΔ Δ ΔΨ

,

, , , , ,, , ,

i

i i i i i
r i r i r i rN sign

1

ΔΔ ,i−( )1

where

ε
ιΔ ,i f x t

l

f x t

l
l

k
L h x t L h x t= ( )( )− ( )( )− +( )( )

−
( )( )

+
1 1

1 1

with the parameters α α αιΔ , , ,i i k il l l= − and the gains
N N Ni i k iΔ , , ,= −ι , for i, k = 1, 2, . . ., q and i � k, "l = 1,

. . . , n.

In order to preserve the estimation in the switching

times, i.e. so that the equality �D,i ≡ 0 is kept, it is sufficient

that Assumption 4 be satisfied. In this way, the switchings do

not affect the observability mappings.

It is important to remark that after each operating mode

switches the observers could loose the correct estimation (due

to the discontinuities in the higher order output derivatives) if

Assumption 4 is not satisfied. However, after a transient,

which can be made arbitrarily small by taking sufficiently

large values of the correction terms parameters, the correct

value of the state is recovered.

The appropriate selection of the differentiator’s gains

ensure the convergence of the difference x x− ˆ to zero in a

time smaller than Td. This means that, under the presence of

jumps in the continuous state, the proposed algorithm ensures

the estimation of x after a finite-time transient smaller than Td.

4.1 Gains Adaptation for the correction terms

Theorem 1 solves the continuous state observability

problem whenever the gains Nj,i are chosen appropriately, but

it does not explain how to choose the above mentioned gains.

Based on [15], that show how to select adaptable gains Nj,i

for the high-order sliding mode differentiator, the following

proposition is stated to choose the gains Nj,i like time func-

tions and is adaptable with respect to the output error.

Proposition 1. Consider the dynamics (15) and that

ε εj i j i, ,0 0( ) ≤ , where ε j i,
0 are known constants. To adapt the

gains Nj,i(t) of every correction term in (7), the following

algorithm is considered:

1. Set N t Nj i j i, ,
( ) = 0 for 0 ≤ ≤t ti* with ti* the time instants

in which every dynamic block of (15) converges to zero

with N
j i, 0 a sufficiently large constant. To detect that

every dynamic block has converged to zero it is suffi-

cient to verify that the following inequality is satisfied

[15]

e t N ty j i j i

r

j ij i

j i
t,

,

, , ,
, ,( ) ≤ ∀ ∈⎡⎣ ⎤⎦γ δ γ δ0 0 0 (17)

where γ j i, 0 and γ
j it, are positive constants and d > 0 is

the sample time.

2. Set N t ej i j i j i y j ij i, , , ,,
( ) = ( )+λ ρ λ1 2 for all t ti> * with

λ λ
j i j i

i p
, ,

, , , ,1 20 0 1> > ∀ = … (18)

Then, the convergence of e ty j i,
( ) to zero in finite time is

ensured. Moreover, the logarithmic derivatives ɺN t N ti i( ) ( )
are uniformly bounded for every dynamic block.
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Proof. For the proof each step of the algorithm is considered.

1. It is necessary to show that the gains N
j i, 0 are suffi-

ciently large for the convergence of the dynamics (15)

in time intervals 0, *ti[ ]. Then, taking into account that

j = l* and Assumption 3, it is obtained that

ɺε ρ

α

λ λ λ λ

λ λ

λ λ

λ

*, *, *, *, *,

*, *,

*,

*,

i i i y i i

i i

r i

r i

e

N sig

≤ ( )+
+

Γ Γ1 2

0 nn
i i

rr i i
ε ε
λ λλ λ*, *,

*, *,
−( )−ɺ 1

(19)

ɺε ρ

α
λ λ λ λ

λ λ

λ

λ

*, *, *, *,

*, *,

*,

*,

i i i i

i i

r i

r i N sign

≤ +

+ ⋅( )

+Γ Γ1 2

0

(20)

It is well known [18] that it is possible to select the gains N
j i, 0 ,

"i = 1, . . . , p to be sufficiently large to provide any

convergence time, in this case sufficiently large such that

dynamics (15) converge within 0, *ti[ ]. Then, N
j i, 0 can be

chosen in the following form:

N
j i i i i, *, *, *,0 1 2> ++Γ Γλ λ λρ (21)

Also according to [15], it is possible to detect that

dynamics (15) have converged verifying the inequality (17)

("i = 1, . . . , p.

2. Once dynamics (15) have convergence "i = 1, . . . , p,

the identity ελ*,i ≡ 0, "i = 1, . . . , p is true and according

to Theorem 1 it is ensured that the state estimation

error e x xxλ λ* *= − is equal to zero, i.e. ˆ *x xλ ≡ . In this

way, it is obtained that

ɺε α
λ λ λλ λ*, *, *,*, *,i i ir i r i N sign≤ ⋅( )0 (22)

where N t ei i i y iiλ λ λ λλ ρ λλ*, *, *, *,*,
( ) = ( )+1 2 with

λ λλ λ*, *,i i1 20 0> > , "i = 1, . . . , p; makes sure that N tiλ*, ( ) is

also an upper bound of Ψλ* ⋅( ) maintaining the convergence of

the dynamics (15) from ti* forward for all i = 1, . . . , p. Now,

it is necessary to show that the logarithmic derivative of the

gain N tiλ*, ( ) is uniformly bounded. The gain derivative of
N tiλ*, ( ) is given by

ɺ ɺ …N t e i pi i i y iiλ λ λ λλ ρ λλ*, *, *, *,*,
, , ,( ) = ( )+ ∀ =1 2 1

By Assumption 3, the functions ρλ*,i ⋅( ) are known Lipschitz

functions. Therefore, ɺρλ*,i ⋅( ), "i = 1, . . . , p exist and are

bounded by properly constants ρλ*,i
L
+
. Then computing the

logarithmic derivative the following obtained:

ɺN t

N t

i

i

i i i

i i i

L
λ

λ

λ λ λ

λ λ λ

λ ρ λ

λ ρ λ
*,

*,

*, *, *,

*, *, *,

,
( )
( )

≤
+

+

+

+

1 2

1 2

∀∀ =i p1, ,…

It is easy to see that
ɺN t

N t

i

i

λ

λ

*,

*,

( )
( )

is uniformly bounded by a

constant for all i = 1, . . . , p. Q.E.D. �

It is natural to estimate the constants γ
j i, 0 and γ

j it,

through simulation. From (17), one can conclude that for any

small Nj,i the accuracy of the error will be better. However, if

the initial condition is very large, Nj,i has to be large. Then,

when the trajectories of the system are close to the origin, the

gain Nj,i must be small. Therefore, Proposition 1 is a good

option to use a variable gain Nj,i, and in this way improve the

accuracy of the error.

Now, the following step to solve the proposed observ-

ability problem is to establish a method for reconstructing the

operating mode to complete the observer design.

V. SWITCHING SIGNAL IDENTIFICATION

In this section, the method for reconstructing the

switching signal is outlined. In steady state, all entries of

vectors ej,i and ex j
are identically zero, while the terms ɺex j

,

i = 1, . . . , p, are directly affected by the discontinuous cor-

rection terms, i.e. are zero in the “average” sense. Thus we are

in position to exploit one of the main features of sliding mode

observers, the equivalent output injection principle. The

expression for ɺex j
, i = 1, . . . , p is

ɺe f x G x f xx j j j j jj
= ( )+ ( ) − ( )ˆ ˆ *σ λ (23)

Starting from the moment at which the exact state

reconstruction is achieved, (23) simplifies as ɺe f xx j jj
= ( )+ˆ

G x f xj j j( ) − ( ) =ˆ *σ λ 0. Then, the correction terms �j, will

take the value of the equivalent output injection σ jeq , i.e.

G x f x f xj j j j jeq
ˆ ˆ*( ) = ( )− ( )σ λ which derives from imposing

the zeroing of ɺex j
= 0 (equivalent control method). The above

equation implies that among the q observers (2) there is only

one with all the associated equivalent output injections being

identically zero according to the following condition of

reconstructability of the switching signal:

Condition 1. The switching signal l(t) can be reconstructed

by means of equivalent output injection according to

G x jj j jeq
ˆ ,( ) ≡ =σ λ0 * (24)

G x jj j jeq
ˆ ,( ) ≠ ∀ ≠σ λ0 * (25)

provided thatM is a discrete set.

Since �j has discontinuous terms, the equivalence

σ σj jeq
= , holds only in the Filippov sense, so that the

recovery of the equivalent output injection σ jeq
from the
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discontinuous output injection �j requires filtration. Let us

define the following equivalent output injection estimators

of σ jeq
:

τ σ σ σj j j jeq eq
ˆ ˆɺ = − (26)

where tj are designed according to d < < tj < < 1 with

τ δj = 1 2 , where d is the sample time. The continuous signals

σ̂ jeq
must be analyzed in order to extract the information

about the current value of the switching signal. Theoretically,

a simple threshold would be enough. Indeed it was shown that

one and only one of the signals σ̂ jeq
becomes identically zero

and stays in this value until l(t) changes value. However, all

signals σ̂ jeq
can occasionally cross the zero value. Therefore,

a logic should be implemented that looks for the signal being

“closer” to zero over a suitable receding-horizon time interval

of finite length. This can be done easily via the numerical

method described below.

Let Ts be a small sampling time. The following non-

negative quantities are evaluated online at any “sampling

instants” t = kTs, k = 0, 1, 2, . . .

µ σ
ν

j j s

i

eq
t kT j q= −( ) ∀ =

=
∑ ˆ , , , ,

0

1 2 … (27)

The value of j for which mj is minimum is evaluated, and this

value will be the estimated operating mode λ̂ t( ), as follows

λ̂ µt
j

j( ) = argmin .

VI. SIMULATION EXAMPLE

Consider the sixth-order nonlinear system composed by

the interconnection of a Chua circuit and a Rössler oscillator:

ɺx

c x x x

x x x

x

x x x

t t t t

t=

− + −
− +
−

− − +

( ) ( ) ( ) ( )

( )

α α α

β

λ λ λ λ

λ

1 2 1
3

1 2 3

2

5 6 1

xx a x

b x x d

t

t t

4 5

6 4

+
+ −( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

( )

( ) ( )

λ

λ λ

(28)

where l(t) ∈ {1, 2, 3} and al(t) = {0.2, 0.2, 0.2}, bl(t) = {0.2,

0.1, 0.5}, cl(t) = {-0.143, -0.5, -0.2}, dl(t) = {6, 2, 4},

al(t) = {10, 8, 12} and bl(t) = {16, 16, 16} are constant

parameters.

System (28) represents a switched version of the

chaotic Chua-Rössler dynamics. Consider the measurable

system output y = [x3 x5]
T. The matrices

∂ ( )
∂
Φ j j

j

x

x

ˆ

ˆ
defined in

(3) are

∂ ( )
∂

=

−
− −Φ j j

j

j

j j j

j

j j

x

x

a

a a

ˆ

ˆ

0 0 1 0 0 0

0 0 0 0 0

0 0 0

0 0 0 0 1 0

0 0 0 1 0

1 0 0

β
β β β

22 1 1−( ) −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

It is easy to calculate that
∂ ( )
∂
Φ j j

j

x

x

ˆ

ˆ
is nonsingular "j = 1,2,3.

Therefore, Assumptions 1 and 2 are satisfied. Notice that for

this particular example all diffeomorphisms are global. In this

way, matrices G xj ˆ( ) are designed according to (4).

Note that for every pair of systems (fi, fk) with i, k = 1,

2, 3, the equalities L h xf x ikι , ( ) ( ) = 0 and L L h xf x f x ikι ι, ( ) ( ) ( ) = 0

hold. Then, by consequence, Assumption 4 is fulfilled and all

the designed observers will provide the correct estimation of

the continuous state.

The observers are designed as follows:

ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ

, , ,

, , ,

,ɺx

c x x x

x x x

x
j

j j j j j j j

j j j

j j=

− + −
− +
−

−

α α α

β

1 2 1
3

1 2 3

2

ˆ̂ ˆ ˆ

ˆ ˆ

ˆ ˆ

, , ,

, ,

, ,

x x x

x a x

b x x d

j j j

j j j

j j j j

5 6 1

4 5

6 4

− +
+

+ −( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

+ ( ) ⎡
⎣
⎢

⎤

⎦
⎥G xj

j

j

ˆ
,

,

σ
σ

1

2

where the correction terms are calculated using the following

auxiliary dynamics

ɺϑ ϑ α
i j i j i j j i y yN e sign e

j i j i, , , , , ,1 2 1

1

3

2

3= − ( )

ɺ ɺ ɺϑ ϑ α ϑ ϑ ϑ ϑ
i j i j i j j i i j i j i j i j

N sign
, , , , , , , ,2 3 2 2 1 2 1

1

2

1

2= − − −( )
ɺ ɺϑ α ϑ ϑ

i j i j j i i j i j
N sign

, , , , ,3 3 3 2= − −( )
with e x xy jj , ,1 3 3= −ˆ and e x xy jj , ,2 5 5= −ˆ "j = 1,2,3. The

parameter values of the corrections terms are shown in

Table I. (The same parameters are used for the three

observers taking into account Proposition 1).

Table I. Correction terms parameters.

Parameter i = 1 i = 2

rj,i 3 3

α
j ,10 2 2

α
j ,11 1.5 1.5

α
j ,12 1.1 1.1

N
j ,10 180 100

Nj,i(t) 10 50
1

ey j ,
+ 10 70

2
ey j ,

+
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The unknown switching signal l(t) is selected, for

simulation purpose only, as shown in Fig. 1.

The system initial conditions are set as x(0) = [3.9 -3.2

0.03 0.1 0.1 0.1]T. The observer initial conditions are taken as

zero. Simulations were done in the MATLAB Simulink envi-

ronment, with the Euler discretization method and sampling

time d = 0.0001 sec.

The real and estimated continuous trajectories of the

system are depicted in Fig. 2, only for the observer 1 to

illustrate the behavior. However, all the observers are capable

to estimating the continuous state correctly.

The convergence to zero of the continuous state estima-

tion errors is obtained for all observers. As shown in Fig. 3,

because Assumption 4 is satisfied, all the observers estimate

the continuous state in a correct way. Moreover, even in the

presence of switchings, the estimation error still equal to

zero. On the other hand, in Fig. 4 it is shown the behavior of

the designed corrections terms gains, using Proposition 1, for

the Observer 1. It is easy to see that the gains N1,1(t) and N1,2(t)

diminish when estimation error has converged and they do

not suffer any change because the error remains in zero.

The estimated equivalent output injections can be seen

in Fig. 5. Notice that after the transient the estimated equiva-

lent output injections are identically zero only when the cor-

responding mode is active, e.g. in the time interval t ∈ [0,20]

the operating mode l = 1 is active, then both equivalent

output injections �1,1 and �1,2 are equal to zero in this oper-

ating mode what does not happen for the others equivalent

output injections in the same interval of time (see right

column in Fig. 5).

Thus the operating mode can be reconstructed by

detecting which estimated equivalent output injection is iden-

tically zero. The logic suggested in (27) is applied and the

corresponding results are shown in Fig. 1. The upper plot

shows the actual and reconstructed operating mode. The

zoomed plot shows that the duration of the identification

transient following a switched operating mode is approxi-

mately 0.05 seconds. This length could be arbitrarily reduced

by taking different values for the parameter tj in the σ jeq

estimator (26). Due to this parameter modifies the estimation

velocity of the equivalent output injection it is possible to

improve the delay reconstruction of the discrete state chang-

ing this one.

VII. CONCLUSIONS

In this article a method based on the nonhomogeneous

high-order sliding mode approach for the finite time state

observation of the continuous state and operating mode for a

Fig. 1. Actual and reconstructed operating mode. Top: Real discrete state and its reconstruction (Left top: Transient error
reconstruction). Bottom: A zoom across the first switching.
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Fig. 2. Continuous state trajectories. Left column: Continuous trajectories of the system and the trajectories estimated by the Observer
1. Right column: A zoom of the real and estimated trajectories.
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Fig. 3. Estimation error convergence. Left column: Error convergence for every observer. Right column: A zoom of the error
convergence.
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Fig. 4. Correction terms gains of the Observer 1. Top left: Behavior of the correction terms gains when the state estimation error has
converged.

Fig. 5. Estimated equivalent output injections. Left column: Full equivalent output injections for every observer. Right column: A zoom
of the equivalent output injections.
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class of nonlinear switched systems has been proposed. The

approach is able to reconstruct both the continuous state and

operating mode of a switched system based only on its meas-

urable outputs and through the use of the features of the

equivalent output injection. Geometric structural restrictions

on the vector fields of the switched system, that require the

availability of all its modes, are given to guarantee the finite

time exact state reconstruction.
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