
INFORMATION TO USERS

While the most advanced technology has been used to 
photograph and reproduce this manuscript, the quality of 
the reproduction is heavily dependent upon the quality of 
the material submitted. For example:

•  Manuscript pages may have indistinct print. In such 
cases, the best available copy has been filmed.

•  Manuscripts may not always be complete. In such 
cases, a note will indicate that it is not possible to 
obtain missing pages.

•  Copyrighted material may have been removed from 
the manuscript. In such cases, a note will indicate the 
deletion.

Oversize materials (e.g., maps, drawings, and charts) are 
photographed by sectioning the original, beginning at the 
upper left-hand corner and continuing from left to right in 
equal sections with small overlaps. Each oversize page is 
also filmed as one exposure and is available, for an 
additional charge, as a standard 35mm slide or as a 17”x 23” 
black and white photographic print.

Most photographs reproduce acceptably on positive 
microfilm or microfiche but lack the clarity on xerographic 
copies made from the microfilm. For an additional charge, 
35mm slides of 6”x 9” black and white photographic prints 
are available for any photographs or illustrations that 
cannot be reproduced satisfactorily by xerography.





Order Num ber 8717647

S tate  observers and state-feedback controllers for a class o f  
nonlinear system s

Hauksdottir, Anna Soffxa, Ph.D.

The Ohio State University, 1987

Copyright © 1987 by Hauksddttir, Anna Sofiia. All rights reserved.

U MI
300 N. Zeeb Rd.
Ann Arbor, MI 48106





PLEASE NOTE:

In alt cases this material has been filmed in the best possible way from the available copy. 
Problems encountered with this docum ent have been identified here with a  check  mark V .

1. Glossy photographs or p a g e s_____

2. Colored illustrations, paper or prin t_______

3. Photographs with dark background_____

4. Illustrations are poor copy_______

5. Pages with black marks, not original copy

6. Print shows through as there is text on both sides of p a g e _______

7. Indistinct, broken or small print on several pages________

8. Print exceeds margin requirem ents______

9. Tightly bound copy  with print lost in sp in e _______

10. Computer printout pages with indistinct print_______

11. Page(s)____________ lacking when material received, and  not available from school or
author.

12. P age(s)____________ seem  to be  missing in numbering only as text follows.

13. Two pages n um bered  . Text follows.

14. Curling and wrinkled p a g e s______

15. Dissertation con ta ins pages with print at a slant, filmed a s  received__________

16. Other_________________________ ____________________________________ _____________

University
Microfilms

International





STATE OBSERVERS AND STATE-FEEDBACK 

CONTROLLERS FOR A CLASS OF NONLINEAR SYSTEMS

A Dissertation 

Presented in Partial Fulfillment of the Requirements for 

the Degree Doctor of Philosophy in the 

Graduate School of the Ohio State University

by

Anna Soffia Hauksdottir, B.S.E.E., M.S.E.E.

The Ohio State University 

1987

Dissertation Committee:

Prof. Robert E. Fenton

Assist. Prof. Kathleen A. K. Ossman

Assoc. Prof. Umit Ozgiiner

Approved by:

Adviser 
Department of Electrical 

Engineering



Copyright by 
Anna Soffia Hauksdottir 

1987



Thorgeir, Haukur, Adalheidur, Johannes and Helga



ACKNOW LEDGEM ENTS

I express sincere appreciation to my advisor, Dr. Robert E. Fenton, for his 

excellent guidance for the past six years. His technical expertise and dedication 

were a true inspiration. I also appreciate the helpful comments on my research by 

Drs. Kathleen A.K. Ossman and Umit Ozgiiner, as well as the essential support 

provided by Dr. H.C. Ko, Chairman of The Department of Electrical Engineering 

at the Ohio State University, ZONTA International, NATO and The American- 

Scandinavian Foundation. My special thanks to the Electrical Engineering De

partm ent faculty for their practical and rigorous instruction. Very special thanks 

go to my husband, Thorgeir, whose endless support has been invaluable, and to 

my family in Iceland for their everpresent support.



VITA

June 7, 1958 .............................................Born—Reykjavik, Iceland

1981 ..........................................................B.S.E.E., The University of Iceland,
Reykjavik, Iceland

1981-1986 .................................................Graduate Teaching Associate, The Ohio
State University, Columbus, Ohio

1983 ..........................................................M.S.E.E., The Ohio State University,
Columbus, Ohio

1986-Present ...........................................Graduate Fellow, The Ohio State Univer
sity, Columbus, Ohio

PUBLICATIONS

Hauksdottir A.S., Fenton R.E., “On the design of a vehicle longitudinal controller,” 
IEEE Trans. Veh. Tech., vol. VT-34, no. 4, pp. 182-187, Nov. 1985. Preliminary 
version presented at the IEEE 34tli Vehicular Technology Conference, Pittsburgh, 
Pennsylvania, May 1984.

Fenton R.E., Hauksdottir A.S., Murthy S.S., “Automatic vehicle control using mi
croprocessors,” presented at the IEEE 1986 Workshop on Automotive Applications 
of Electronics.

FIELDS OF STUDY

Major Field: Control Systems (Drs. R.E. Fenton and U. Ozguner)

Minor Fields: Digital Systems (Dr. K. Breeding), Power Systems (Dr. S. Sebo), 
Mathematics (Dr. S. Smith)



TABLE OF CONTENTS

A C K N O W L E D G E M E N T S iii

V ITA  iv

LIST OF FIG U R E S ix

I. IN T R O D U C T IO N  1

1.1 Control systems—a historical overview [ l ] - [ 9 ] ...............................  1

1.2 Controllability and observability of nonlinear system s.................. 5

1.3 The design of observers and controllers for nonlinear systems . 6

1.4 A class of nonlinear sy s te m s ................................................................ 7

II. N O N L IN E A R  STATE O BSER V ER S A N D  ST A T E -FE E D B A C K

CO NTRO LLERS 10

2.1 State observers for nonlinear sy stem s...............................................  10

2.1.1 Observability a sp ec ts ..............................................................  10

2.1.2 A nonlinear observer f o rm ....................................................  12

2.1.3 Observer design ......................................................................... 13

2.2 State-feedback controllers for nonlinear s y s te m s ...........................  20

2.2.1 Controllability a s p e c ts ...........................................................  20

2.2.2 A nonlinear controller f o r m .................................................  21

2.2.3 Controller d e s ig n .....................................................................  22



2.3 D iscussion..............................................................................................  24

III . O N  N O N L IN E A R  T R A N SFO R M A T IO N S 25

3.1 A nonlinear tra n s fo rm a tio n .............................................................. 25

3.2 Transformations to observer and controller f o r m s ......................  29

3.2.1 Observer fo rm ...........................................................................  29

3.2.2 Controller f o r m ........................................................................  36

3.3 Transform of nonlinear feedback g a i n s .......................................... 44

3.3.1 O utpu t-to -i feedback ...........................................................  44

3.3.2 State-to-input feedback ........................................................ 46

3.3.3 O utput-to-input fe e d b a c k ..................................................... 48

3.4 D iscussion ..............................................................................................  49

IV . C O M PU T A T IO N A L  A SP E C T S 50

4.1 Transformation to observer f o r m ...................................................  50

4.1.1 Case n  =  1   50

4.1.2 Case n  =  2 ..............................................................................  51

4.1.3 Case n > 2 ..............................................................................  64

4.1.4 D iscussion..................................................................................  69

4.2 Transformation to controller fo rm ...................................................  70

4.2.1 D iscussion..................................................................................  75

V . SIM U L A T IO N  ST U D IE S 70

5.1 System in general fo rm .......................................................................  76

5.2 Transformation from general form to observer f o r m ................... 80

5.3 Transformation from observer form to controller form ............  82

5.4 Observer/controller d e s ig n ................................................................  86

vi



5.5 Simulation re su lts .................................................................................. 88

5.5.1 Observer—general ca se ........................................................... 88

5.5.2 Observer—special c a s e ........................................................... 90

5.6 D iscussion...............................................................................................  96

V I. SU M M A R Y , C O N C L U SIO N S A N D  SU G G E ST E D  F U T U R E

ST U D IE S 97

6.1 S u m m a ry ............................................................................................... 97

6.2 C onclusions...........................................................................................  99

6.3 Suggested future s tu d ie s ..................................................................... 101

A . P R E R E Q U ISIT E S FO R  C H A P T E R  II  103

A .l N o rm s .....................................................................................................  103

A.2 Aspects of the nonlinear error d y n a m ic s .......................................  104

B . P R E R E Q U ISIT E S FO R  C H A P T E R  III  109

B .l Aspects of nonlinear in d e p e n d e n c e .................................................  109

B.2 The notation of Su and H u n t ...........................................................  110

C. P R O G R A M  L IST IN G S 112

D . T R A N SF O R M A T IO N S TO O T H E R  N O N L IN E A R  FO RM S 116

D .l Observability f o r m ............................................................................... 116

D.2 Controllability form ...........................................................................  121

D.3 Diagonal fo rm ................................    130

D.4 D iscussion ...............................................................................................  134

vii



E. ST R U C T U R A L  O BSER V A BILITY  A N D  C O N TR O LLA BIL

IT Y  130

E .l Observer form and observability fo rm .............................................. 136

E.2 Controller form and controllability f o r m .......................................  147

E.3 D iscussion..............................................................................................  154

F. A D D IT IO N A L  SIM U LA TIO N  ST U D IE S 155

F .l System in observer f o r m ....................................................................  155

F.2 Transformation from observer form to controller form .................. 155

F.3 Observer/controller d e s ig n ...............................   156

F.4 A comparable linear s y s te m .............................................................  158

F.5 Simulation re su lts .................................................................................  159

F.6 D iscussion..............................................................................................  159

R E FE R E N C E S 167



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

LIST OF FIG U R E S

O utput-to -i feedback ............................................................................... 45

State-to-input feedback ...........................................................................  47

O utput-to-input f e e d b a c k ........................................................................  48

Vehicle longitudinal control s y s te m ........................................................ 87

Position error for different observer initial co n d itio n s .......................  89

State e r ro r ...................................................................................................... 91

Position error for different observer-poles lo c a t io n s ........................... 92

Position error for different observer initial co n d itio n s .......................  93

State e r ro r ...................................................................................................... 94

Position error for different observer-poles lo c a tio n s ........................... 95

Control s y s te m ............................................................................................  157

State error for nonlinear system, observer poles at —3 ....................  160

State error for linear system, observer poles at —3 ........................... 161

State error for nonlinear system, observer poles at —0 . 5 ................. 162

State error for linear system, observer poles at —0 . 5 .......................  163

State error (ej) for the nonlinear and the linear system, observer

poles at -0 .5 ..................................................................................................  164

State error (e2 ) for the nonlinear and the linear system, observer 

poles at -0 .5 ..................................................................................................  165

ix



18 State error (e3 ) for the nonlinear and the linear system, observer

poles at -0 .5 ..................................................................................................  166

x



C H A P T E R  I

IN T R O D U C T IO N

1.1 C ontrol system s— a historical overview  [l]-[0]

the more you learn 
the more you know 
how little you know

Mankind has always searched for technological improvements, and in the 20th 

century this search has been especially successful. Further, probing new areas fre

quently draws attention to other unexplored ones. Thus, it can probably never be 

correctly stated that “everything th a t can be invented has been invented” (Charles

H. Duell, Commissioner of The U.S. Patent and Trademark Office, recommending 

its closing in 1899.)

Control systems are a m ajor component in many technological advancements 

and have a  history tha t goes back as far as several centuries B.C.. Hero’s device 

for opening the doors of a temple is among the earliest known open-loop control 

systems. It was based on heating air in a container half full of water; the expanding 

air caused a pumping of the water into a bucket which was attached to door spindles 

by ropes. The bucket then descended due to its increased weight and turned the 

spindles.

A turning point in the history of closed-loop control systems, in the sense that 

it is internationally accepted by the engineering community, was James W att’s 1788 

flyball governor for speed control. This prompted widened interest in and intu

1



itive inventions of other closed-loop control devices. Since these efforts frequently 

resulted in unstable systems, the development of control theory became imper

ative. An analytical study of the stability of the flyball governor was made by 

Maxwell in 1868 and a similar study by Wischnegradsky [10] in 1876. About 1922 

Minorsky [11] showed how differential equations describing a system could be used 

to determine its stability. In 1932 Nyquist [12] developed a method for determin

ing the stability of a closed-loop system on the basis of its open-loop response to 

steady-state sinusoidal inputs. Black [13] extended Nyquist’s work and published 

a  landm ark paper in 1934. In that same year, Hazen [14] published a paper on 

a position control system th a t invoked intense interest. He called his invention a 

“servomechanism” where “servo” comes from the word servant (slave).

Other basic work was done during the next six years or until World War 

II, during which many publications were withheld due to security restrictions; 

however, individual companies and laboratories engaged in research motivated by 

military requirements. Much of this was published after the war; e.g., the famous 

Massachusettes Institute of Technology’s 28-volume Radiation Laboratory Series 

dealt in part with control systems [15] and Bode [16] published a paper in which 

Nyquist’s work was further expanded. Progress then accelerated with frequency- 

response analysis of closed-loop control systems being applied by Hall [17] and 

Harris [18] in 1946, and the root-locus method presented by Evans [19] in 1948.

The frequency-response and root-locus methods are considered the core of 

classical control theory, which deals with linear, time-invariant, single-input-single

output (LTISISO) systems. Thus, in a classical design relatively simple LTISISO 

models are employed. Satisfactory performance is achieved in many such applica

tions, where the real system is not LTI, since well-designed classical control sys

tems are generally robust. However, in many advanced systems, e.g., those in the



aerospace domain, simplified models have been inadequate. Improved ones gener

ally involve a large number of variables, and nonlinear and time-varying param e

ters, thus removing the basis for a classical design. (Some ad-hoc approaches, such 

as the phase-plane method and the describing-function method, were developed 

for nonlinear systems, but those tend to give satisfactory results for lower-order 

systems only.) Classical performance criteria such as percent-maximum overshoot, 

settling time and steady-state error are further not especially useful in many ad

vanced applications where optimal criteria such as minimum time, minimum energy 

or minimum fuel are the prim ary design requirements.

Modern control theory, which can be applied to many situations in which 

classical control is inadequate, has been under development since the late 1950’s. 

The resulting control algorithms are typically complex, i.e., nonlinear and/or time- 

varying, as compared to classical control algorithms; however, the development of 

digital computers, a system component in and essential design tool for most modern 

control systems, has made tha t complexity a minor drawback.

Applications of well-known methods from other fields have contributed greatly 

to the development of this theory. For example, the state-space approach, which 

was developed in the late 1950’s, came from mathematicians such as Lefschetz 

[20], Pontryagin [21] and Bellman [22], using the theory of ordinary differential 

equations, m atrix theory and linear algebra.

The state-space formulation led to new concepts in linear system design [23]. 

Linear controllability and observability were defined in their present form by 

Kalman in 1959-1960 [24] who also noted their duality. Kalm an’s paper stimulated 

a wide range of other work, e.g., results on jointly controllable and observable re

alizations by Gilbert [25], Kalman [26] and Popov [27]. In 1959, J. Bertram  [28] 

realized by using root-locus techniques, that any desired characteristic polynomial



could be obtained by full-state feedback, if the given system were controllable. A 

statem ent and a  complete proof of this result was then first published in 1960 by 

Rissanen [29]. Popov independently deduced the same result for the multiple-input 

problem in 1964 [30,31] and subsequently Rosenbrock [32] discussed the improve

ment of system response achievable by using state feedback to relocate eigenvalues. 

The observer was apparently first introduced in unpublished work by Bertram in 

1961 [33] and by Bass in 1963 [28]. An independent and slightly different approach 

was published by Luenberger in 1964 [34].

The foundations of optimal control theory were also developed through the 

state-space approach in the 1950’s and early 1960’s. Minimum-time control laws 

were obtained for low-order systems in the early 1950’s through geometric and 

heuristic proofs. In the period 1953-1957, the basic theory regarding existence, 

uniqueness and other general properties of time-optimal control was developed 

by Bellman [35], Gamkrelidze, Krasovskii [36,37] and LaSalle [38], and the link 

between the calculus of variations and control problems was discovered. Pontrya- 

gin introduced the maximum principle to handle the “hard” constraints typically 

present in control problems [39], and this principle was proved by Pontryagin, 

Boltyanskii and Gamkrelidze [39] in 1962. Bellman et. al. [40] gave an explicit so

lution for linear systems with quadratic loss functions in 1958, and in 1960 Kalman 

[41] showed that the linear quadratic problem led to a Riccati equation. In the early 

1960’s a formulation of a  stochastic variational problem assuming random distur

bances led to the development of stochastic control theory and Linear Quadratic 

Gaussian (LQG) theory [42,43].

Another branch of modern control theory, which has been under development 

since the 1950’s, is adaptive control. Such control aims at ensuring satisfactory 

performance when system dynamics are unknown and/or when changes in those

4



dynamics occur due to nonlinearities or environmental disturbances. The earliest 

research was motivated by design requirement pertaining to high-performance air

craft. The dynamics of such aircraft vary substantially over their wide operational 

range of speeds and altitudes, and this variability must be accounted for in the 

design process. Several adaptive schemes were proposed in the 1950’s [44,45,46,47] 

and then interest appeared to diminish. However, with the coming of the 60’s, 

many advances in state-space theory, stability theory, stochastic control theory, 

system identification and parameter estimation, led to substantial advances in 

adaptive control systems. Dual control [48] and dynamic programming [35] in

creased the understanding of adaptive processes, and adaptive principles were in

corporated into learning algorithms [49]. Since the 1970’s, interest in this area 

has been vigorous. New adaptive control schemes were invented [50,51] and the 

synthesis of adaptive schemes, whose stability was guaranteed by using theorems 

of Lyapunov, Lure, Popov, et.al., was a major contribution. By the early 1980’s 

some basic problem of identification and adaptive control for linear time-invariant 

systems were solved, assuming a known process order and some restrictions on 

inputs and disturbances [52,53].

Another area which has been of especial interest since the early 1970’s is 

nonlinear control. The underlying theory is far from complete; however, its devel

opment is becoming imperative since nonlinear design approaches have become an 

essential key to the successful design of many high-performance control systems.

1.2 C ontrollability and observability o f nonlinear system s

The observability and controllability of nonlinear systems received substantial 

attention in the early 1970’s [54,55]. A nonlinear analog of linear controllability 

was developed by Hermann, Krener and others [56]-[63] in terms of the Lie Algebra

5



of vector fields using methods of differential geometry. An approach to nonlinear 

observability, related to that of nonlinear controllability, was also derived [64]. 

In all of these works, rank conditions were derived for local weak controllability 

and local weak observability. Loosely put, an n-th order system is locally weakly 

controllable if one needs local coordinates of dimension n to distinguish the system 

trajectories from any initial point. Similarly a system is locally weakly observable if 

one can instantaneously distinguish each point in the state space from its neighbors.

One drawback of such local weak observability is that it depends on the in

put applied to the system. To surmount this restriction, a nonlinear analog of 

the linear observability form [23] was defined [65]. The existence of a nonlinear 

transformation to such a form gives rise to a necessary and sufficient, condition of 

nonlinear observability for any input. Similarly, a nonlinear controllability form, 

which leads to a sufficient condition for controllability was defined [66].

1.3 T he design  o f  observers and controllers for nonlinear system s

Despite the interesting theoretical aspects of nonlinear observability and con

trollability, the link between these results and the actual design of observers or 

controllers has not been readily established. A few studies have been reported that 

have concentrated on the latter, which is the subject of this study. An asymptotic 

observer for nonlinear systems of the form

x =  f ( x )  xe3?n

y  =  h (x )  yea?1

has been defined and a Lyapunov-like method to design such observers has been 

derived [67]. A nonlinear controller form for nonlinear systems described by

x =  A ( x , t )  +  B ( x , t ) u ( t )  xe?Rn ,u e $ tm

6



has been defined and a control strategy that results in a linear, time-invariant, 

closed-loop system has been specified [68]. A nonlinear transformation to achieve 

this form was defined and the corresponding partial differential equations were 

solved by using an integrating factor. Similarly, a nonlinear observer form for 

nonlinear systems of the form

x =  f ( x , t ) xeUn
( 1 .1 )

y  =  h ( x , t )  yeSR1

and a corresponding observer which included nonlinear observer gains, were defined 

[69]. The partial differential equations involved were derived, but not solved. Solv

ing those equations is crucial in determining the exact nonlinear observer gains; 

consequently the latter were approximated through linearization of the error equa

tion about the observed states. Finally, a transformation to a nonlinear observer 

form for nonlinear systems described by

x  =  f ( x , u )  ®e3?n
'  ( 1 .2 )

y  — h( x)  ye$lp

has been presented [70,71]. In this form, the nonlinearities were functions of only 

the input and the output and thus perfectly reproducible in the defined observer, 

resulting in linear error dynamics.

1.4 A class o f  nonlinear system s

Generally, nonlinear systems are extremely hard to analyze and most of the de

veloped observer/controller design methods are impractical. Therefore a restricted, 

yet widely applicable, class of nonlinear systems was chosen for this study, in the 

hope that a practical design methodology would result. This class is described by



x = A(x)x  +  b(x)u ®e3?n
(1.3)

y  =  c(x)x u,yeR^

A time-varying version of this class was studied in the context of global and local 

controllability [72]. Further, this is a special class of the systems treated by Sommer 

[68] and Krener and Respondek [71]. A number of systems are naturally described 

by such equations, e.g., vehicle dynamics [97,74,75], ship dynamics [76,77] and 

aircraft dynamics [78,79]. Further, a nonlinear damped oscillator [80], any system 

described by Van der Pol’s equation, and many pendulum problems show behavior 

of this form. Finally, many nonlinear systems of a more general form may be put 

into this form by employing a Taylor series expansion (including as many terms as 

feasible).

It is proposed to do the following for the class of systems defined by (1.3):

1. Define a nonlinear observer form, that facilitates an easy selection of non

linear observer gains. Those gains should result in error dynamics that are 

bounded by a decaying exponential function.

2. Define a nonlinear controller form, that facilitates an easy selection of nonlin

ear feedback gains. Those gains should result in a linear closed-loop system, 

whose eigenvalues depend on the gains selected.

3. Investigate the nature of various nonlinear transformations with specific em

phasis on those that result in the defined nonlinear observer and controller 

forms.

4. Special emphasis will be given to the practical use of these methods, i.e., 

determining the nonlinear transformations and the observer and feedback 

gains for this class of nonlinear systems.

8



5. Using the design methodology developed simulation studies will be conducted 

to demonstrate that:

(a) If a nonlinear system can be transformed to a nonlinear controller form 

then it can be compensated by nonlinear state feedback such that linear 

closed-loop behavior results.

(b) If a nonlinear system can be transformed to a nonlinear observer form 

then the states of a nonlinear system can be reconstructed using non

linear observer gains.

Further, the use of a combined nonlinear observer/controller will be examined 

by simulation.

The development of the described methodology would facilitate the design of 

observers/controllers for one class of nonlinear systems. This could result in consid

erable improvement over a linearization and classical-design approach—especially 

in situations where the nonlinear effects are pronounced and, as a result, less-than- 

desired robustness is realized.

9



C H A P T E R  II  

N O N L IN E A R  STATE O BSERVERS A N D  STA T E-FE ED B A C K  

CONTROLLERS

2.1 S tate observers for nonlinear system s

2.1.1 O bservability aspects

Several definitions of observability for nonlinear systems have been presented 

in the literature. The most common ones are observability (0 ), local observability 

(LO), weak observability (WO) and local weak observability (LWO) [64]. A system 

is said to be O if an input can be found, such that when two different states result 

in the same output, this input will cause transitions to different outputs, thus 

distinguishing between the original two states. It must be possible to do this for 

any state pair which result in the same output. For example, for a system in 'R? 

and y =  [ 1 0 the states [ 2  4 and [2  6 result in the same output and

an input must be found so that the corresponding transitions (e.g., to [ 7 3 

and [ 4  1 ]^, respectively) result in different outputs. The system is LO if only a 

“short” (or local) transition by each state is necessary to distinguish the two states. 

It is WO if any two neighboring states can be distinguised after a transition from 

each state. Practically speaking this may be sufficient; e.g. [ 2  4 }T  and [ 2  6 ]r  

may have to be distinguishable, whereas the distinguishability of [ 2 4 and 

[ 2 5674 may not m atter1. Finally, a system is LWO if any two neighboring

1This depends on the norm used for distinguishability.

10



states can be distinguished after a short transition from each state. Note that LO 

is the strongest concept here, as it implies both 0  and LWO. The latter both imply

W O .2

If a system is analytic and controllable in some sense then it is WO iff it is 

LWO iff an “observability rank condition” is satisfied [64]. The latter refers to 

the Jacobian of a vector, composed of the output and its derivatives, being of 

full rank (this condition allows one to solve for the states given the input, the 

output and their derivatives). A similar definition of observability is made in 

[82], i.e., a system is observable if, for every pair of different states of the system, 

there exists an input which distinguishes these states, that is gives rise to different 

corresponding outputs. A system is simply defined as observable in [70] and [71] 

when the previously discussed observability rank condition is satisfied.

One drawback in these definitions is that observability generally depends on 

an input. It would be desirable to have a definition which is dependent only on the 

m athem atical structure of the state equations. Such a definition was given in [65], 

and it was demonstrated th a t the existence of a transformation to a structurally 

observable form gives a sufficient condition for observability of the original system3. 

This observability is discussed in detail in Appendix E.

In contrast to the linear, time-invariant case, these definitions neither provide 

insights into how an observer can be designed nor insure this can be done [71]. Since 

observer design is of primary interest here, the following functional definition of 

state observability is adopted (this definition is related to that of an exponential 

observer in [67]):

2For LTI systems all of these concepts are equivalent.

8LTI systems which can be formulated in either the observer or observability forms (see [23] for 

definitions of these forms) are examples of structurally observable forms.
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D efin ition  2.1.1 A time-invariant system is state observable, if each system state 

can be accurately estimated by an asymptotic observer, whose state error is expo

nentially bounded.

Note that systems that satisfy this definition may also satisfy some of the others 

and vice versa. The link between these, however, has not been established.

2.1.2 A nonlinear observer form

A nonlinear observer form for the class of systems (1.3) is defined by analogy 

to the linear observer form (e.g., in [23]) as4

x° = A ° ( x ° ) x °  + b°(x°)u

y = c°x°

where

A°{x°)  =

a f j (x°)  1 0  • • ■ 0 4f(*°)

P to
o IT o o b°2 (x°)

i i 0 O- O
'eT

o II ;

: : - . 1 :

< i  (x ° ) o ............  o

(2 .1)

(2 .2 )

c° — 1 0 ••• 0

and

x *2 xX

4The superscript “o” denotes observer form.
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Here it is assumed that the entries in A 0 {x°) and b° (x°) are “well behaved” , i.e., 

belong to C°°5. Note that this is not the only possible definition. This particular 

form is chosen since it is as general as possible and facilitates the selection of non

linear observer gains that result in asymptotically stable error dynamics provided 

some sufficiency conditions are met (see Section 2.1.3).

2.1.3 Observer design

T he general case— state-d ep en d en t nonlinearities

In the general case of (2.1)-(2.2) an observer is, in keeping with the usual 

practice for linear systems, chosen of the form

St° = A°(x°)x0 +  b°(x°)u + l°(x°)(y -  c°x°)
(2.3)

y = c°x°

where

l°(x°) =

and

l?(x°)eC°°  i =  l ,2  , . . . , n

are the nonlinear observer gains to be determined. The observation error e° is 

defined by

5C°° encompasses the class of continuous functions that are infinitely differentiable. This assump

tion is not essential, but invoked to avoid counting the degree of differentiability needed in the 

different arguments (for example, the sufficient conditions for observability in Theorem 2.1.1 

require that a Lipschitz condition be satisfied, which in turn requires uniform continuity and 

bounded variation of the entries [83]). This convenient assumption is frequently invoked in other 

studies for these same reasons; e.g., see [64].

l\{x°) l°2(x°) . . .  l°n(x°)

13



Differentiating (2.4) and then substituting (2.1) and (2.3) for x°  and x°  respec

tively, results in the error dynamics

e° = A°  (a°) x° +  b° (x°) u -  A°{x°)x° -  b°{x°)u -  l°(x°){y -  c°x°). (2.5)

Adding the term  A°(x°)x°  to, and subtracting it from, the right-hand side (R.H.S.) 

of (2.5) and rearranging gives

e° =  (A°(x°) — l0(x°)c°)e0

+{A° (x°) -  A°(x°))x°  +  (b° (x°) -  b°(x°))u.

Choosing l°(x°) as6

(2 .6)

l°(x°) = «fl(«°) +  /f a°21(x°) + l02 ■■■ a°n l (x°)+l°n (2.7)

where 1°, 1%, • • ■, In are constants, results in

A°(x°)  -  l°{x°)c° = A°e

1

1 1 0 •

1

o
1 ex

.*
to

o 0 ' • . ;

: •• 0

• •• l

-10 ln 0 ••• •

O

( 2 .8 )

Further^,

(A°(x°)  -  A°{x°))x° = (a°! (x°) -  a ^ x 0) ^  =  (a^  (x°) -  a ^ x ^ V -  (2.9) 

Thus the error dynamics (2.6) may be rewritten using (2.8) and (2.9) as

e° = A°ee° +  (a?! (x°) -  a°1(i° ))y  + (b° (x°) -  b°(x°))u. ( 2 .10 )

eNote that by this choice, 1° ( i° )  eC°° , i — 1 , 2 , . . n, since o°x (x°) eC°°, i =  1, 2, . .  . ,n.

7In general, the notation g.j j  =  l , . . . , m  will denote the j-th column in an n x tn matrix G ,  

similarly, g,. i =  1, . . . ,  n denotes the i-th row.
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The conditions under which these dynamics are asymptotically stable, result

ing in sufficient conditions for state observability of the observer form, are specified 

in the following theorem.

T heorem  2.1.1 I f  the error dynamics are described by (2.10) and if the following 

are satisfied for 0 <  t <  oo8;

1 . The Lipschitz condition9

lla?l (x°) ~  a°l(*0)llj <  “ IKIIj

where 0 < a <  oo; further if  a > 0 then

0 < 11* 11, < r < o o  (2.11b)

must also be satisfied.

2. The Lipschitz condition10

\\b° (x°) -  b-ix0) ^  <  felte-H, (2.11c)

where 0 < b <  oo; further if  b > 0 then

0 < IMI, < u  < oo (2.1 Id)

must also be satisfied.

Then A° can always be chosen such that

8See Appendix A for a definition of the norm ||-|| .

eThis Lipschitz condition is satisfied, since the a°x are differentiable and the derivatives are 

bounded [83].

10This Lipschitz condition is satisfied, since the b° are differentiable and the derivatives are bounded 

[83].
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| |$ ° (< ,t ) ||1 =  ||*4*(<-T,|| <  M e - W - ^  Vi >  r, Vr > i0, (& - ty

where M , k are positive finite constants satisfying

a Y  + bU < k / M ,

which gives

lim e°(t) =  0 
<-*00

and thus the system is state observable. Further, e°(i) is bounded by a decaying 

exponential function, whose speed of decay can be controlled by 1^,1^, ••• ,1^-

Proof: This proof follows a similar one in [5], pp. 275-276. Using (A.4) from 

Appendix A there results

I K M I I ,  <  l l * ° ( M o ) l l ,  l l ^ o H I ,

+  j f  IIM  (*°(t)) -  a°i(®°(T)))lli Ili/MII, d r

+ f ' o l in t .T ) ! ! ,  11(6° ( * » )  -  6° ( i° ( r ) ) ) ||,  M r) ! ! ,  i r

or

r m i i ,  < iie^ioxij

+  M e ~ ^ ~ T)a ||e(r)|| Y d r
Jt0

+ t  M e - k^ - Th\\e{T)\\ Udr.
Jto

Multiplying through by the positive term ekt and rearranging gives

e kt lle° (Oil, < M e ki0 ||e°(io)j| 1 +  j ‘ (aY  +  bU)Mekr dr. (2.13)

Define R(t)  as the R.H.S. of (2.13)

* (()  =  M e kt« HeOfio)!!, +  f  (aY  +  bU)Mekr H eX H , dr. (2.14)
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then

R(t)  =  (a Y  +  bU)Mekt ||e0(<)||, • (2.15)

Using (2.15) in the left-hand side (L.H.S.) and (2.14) in the R.H.S. of (2.13) there 

results

m
(aY + bU)M ~  W ’

or

< (« y  +  bV)M.  (2.16)

Integrating both sides of (2.16) from f° t gives

C m d t - C i a Y + h U ) M d t

n m ) < {aY +  bU)Mt
to to

In (R{ t ) /R( t0) < ( a Y +  b U ) M { i - t 0). (2.17)

Rearranging (2.17) results in

R(t)  < R {i0)e(aY+bU)M (i- t°'>. (2.18)

jR(to) is from (2.14)

R ( to) =  M ekio lle^fo)!!, • (2-19)

Using (2.19) in (2.18) and then (2.13) and (2.18) gives 

ekt He^OII, <  M ekto ||e°(t0) ||1 e(®r+*l7)Jlf(<-to)

or

17



llc^OII, < ||e°(<o) | | 1 . (2 .2 0 )

Thus from (2.20)

or equivalently,

lim e°t<) =  0 
t—>oo

if

k -  (aY + bU)M  >  0

or

a Y  + bU < k /M .

Since the error goes to zero, the estimates asymptotically approach the system 

states and thus the system is state observable by Definition 2.1.1.

□

Note tha t Theorem 2.1.1 gives bounds that can be related to the observer 

pole locations11; however, although useful for proving asymptotic stability, these 

bounds may be too conservative to use as a design guideline when selecting the 

poles.

A  special case— ou tpu t-depend en t nonlinearities

If the nonlinearities in the observer form are functions of only one state vari

able, i.e., « i =  y, the observer design becomes especially simple [69], [71]. Eqn. 

(2 .1 ) simplifies to

X1A theorem that gives a relation between eA^ l~r  ̂ and the eigenvalues of A°t is stated and proven 

in Appendix A.
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x°  =  A °(y )x°  +  b°(y)u

y  =  c°x°.

Here the observer is chosen as

(2 .21)

x  =  A°(y)x°  +  b°(y)u + l°(y)(y -  c°x°)

y  =  c°x°
(2 .22 )

where

l°(y) ii(y) iS(y) ••• %(y)

are the observer gains to be determined. Notice the difference between (2.3) and 

(2.22) is that A°(y), b°(y) and l°(y) are used as opposed to A°  (aij) , b° and

1° ( i j ) . This results in the considerably simpler nonlinear error dynamics

e° =  A°(y)x°  +  b°(y)u -  A°(y)x° -  b°(y)u -  l°(y)(y -  c°x°)

or

e° =  (A°(y) -  l°(y)c0)e°. (2.23)

Choosing l°{y) as

I°(V) =

where Zj, 1% ,..., are constants results in

A°(y) -  l°(y)c° = A°e =

- l \  1 0

- l° 2  0

~l°n 0 -

0

1

0

and

(2.24)
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e° =  A°e°.

Note that linear error dynamics are obtained and . . . ,  can be chosen to 

select the desired observer poles. Thus this form is state observable by Definition 

2 .1 .1 .

2.2 State-feedback controllers for nonlinear system s

2.2.1 C ontrollability aspects

Just as in the case of observability, several definitions of controllability for 

nonlinear systems have been presented in the literature. The most common ones 

are controllability (C), local controllability (LC), weak controllability (WC) and 

local weak controllability (LWC) [64]. A system is C if one can find an input that 

will cause a state transition from any initial point x q  to any other final point x\ .  

A system is LC if only a short distance (thus “ local” ) must be traversed to reach 

x i  when it is in the neighborhood of ®o> V®o>®i- A system is WC if one can either 

reach from ®o or yice versa, V®i,®o (this is weaker than C where one has to 

be able to reach x\ from ®o> V®05®l)- Finally a system is LWC if one can either 

reach from x q  or vice versa and only a short distance is traversed when x q  and
i

®1 are in the same neighborhood, V®o>*i- Note that LC is the strongest concept 

here as it implies C and LWC which, in turn, imply W C .12

If a system is analytic then it is WC iff it is LWC iff a “controllability rank 

condition” is satisfied [64]. The latter refers to the dimension of a space of tangent 

vectors being n  (if the tangent vectors span an n-dimensional space, then the states 

will also span an n-dimensional space). A system is defined as controllable in [84] 

if there exists a measurable input that takes the system from ®o to ®i, Vxq , x \ .  

Similarly a system is defined controllable in the large in [6 8 ] if there exists an

12For LTI systems all of these concepts are equivalent.
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input that will take the system from ®o t°  * 1> V*o,a;i, and the trajectory stays in 

a simply connected region.

Just as in the case of observability, it would be desirable to have a definition 

which is dependent only on the mathematical structure of the state equations. 

Such a definition was given in [66], and it was demonstrated that the existence of 

a transformation to a structurally controllable form gives a sufficient condition for 

controllability of the original system 13. This controllability is discussed in detail 

in Appendix E.

The main drawback in these definitions is that, in contrast to linear systems, 

the satisfying of some controllability property may neither provide insights into 

how a controller can be designed nor insure that this can be done. Since controller 

design is of primary interest here, the following restrictive, operational definition 

of state controllability is adopted:

D efin ition  2.2.1 A time-invariant system is state controllable, if a controller can 

be designed such that linear closed-loop dynamics with any desired pole locations 

result.

Note that systems that satisfy this definition may satisfy some of the others and 

vice versa. The link between these, however, has not been established.

2.2.2 A nonlinear controller form

A nonlinear controller form for the class of systems (1.3) is defined by analogy 

to the linear controller form (e.g., in [23]) as14

13LTI systems which can be formulated in either the observer or observability forms (see [23] for 

definitions of these forms) are examples of structurally observable forms.

14The superscript “c” denotes observer form.

21



xc =  A c (xc) x° +  bcu 

y = c° (xc) x c

(2.25)

where

«11 (*C) a12 (®°) ••• . . .  «sB(*«) 1

1 0 o 0

IIao

0 1 II •

1

o ° 1 0

1
o

(2.26)

cc (xc) = c \ ( x c) c \ { x c) cCn(*C)

and

xc — x\ x \ X.,

Here it is assumed that the entries in A c (xc) and bc (x°) are in C°°. Note that 

this is not the only possible definition. This particular form is chosen since it is 

as general as possible and facilitates the selection of nonlinear feedback gains that 

result in linear closed-loop dynamics (see Section 2.2.3).

2.2 .3  C ontroller design

Using nonlinear full-state feedback (assuming all the states are available), 

analogous to the usual practice for linear systems, u is selected as

u = —kc (xc) xc + v (2.27)

where

kc (xc) = k \ { x c) kc2 (xc) k'n (xc)
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and

i =  1 , 2 , . . .  ,n

are the nonlinear feedback gains to be determined. The resulting state equation is 

x c = A c {xc) xc -  bckc (®c) +  bcv =  (Ac (xc) -  bckc (*c)) ®c +  bcv.

Choosing kc (xc) as15

kc (xc) = « i l ( * C) +  fcl  a h ( xC) +  k 2 a l n  ( xC) +  k n (2.28)

where k\ ,  k%,. . . ,  are constants gives

A c (xc) -  bckc (xc) = ACC =

which results in

-fcf

1

0

~ k c2 - K

0 1 0

Xc — ArX° + bcv. (2.29)

Thus, linear closed-loop dynamics are achieved, whose eigenvalues can be placed 

arbitrarily by choosing fcf, k%, ..  •, &£. Therefore, a system which can be trans

formed to controller form is state controllable by Definition 2.2.1.

15 Note that by this choice, fcf (xc)eC°° , t =  1 , 2 , . . . , n, since acu  ( i c)eC°°, t =  1 , 2 , . . n.
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2.3 D iscu ssion

It has been outlined in this chapter how an observer can be designed for 

systems in the nonlinear observer form (2 .1 )-(2 .2 ) (or (2 .2 1 )) and how a controller 

can be designed for systems in the nonlinear controller form (2.25)-(2.26). However, 

these two forms are subclasses of the general class (1.3)16. Thus, it is of interest 

to investigate how a nonlinear system (1.3) can be transformed into these forms. 

This is the subject of the next chapter.

ls Other subclasses, which are analogous to other “standard forms” are examined in Appendix D.
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CH APTER III

O N N O N L IN E A R  T R A N SFO R M A T IO N S

3.1 A  nonlinear transform ation

In the class of systems (1.3) (rewritten here as (3.1))

x =  A(x)x  +  b{x)u xe3in 

y  =  c(x)x u,ye$}

the A(x),  b(x) and c(x) are of the general form

(3.1)

A(x)

« ll(* ) ............ ‘ ‘ ‘ a ln(a:) &l(ic)

«nl(*) ............ ’ ' '  ann{x )

, b{x) =

M * )

, (3.2)

c(x) = c i(x) Cn ( x )

and their entries are assumed to belong to C°°. This system can be transformed 

to

i 9 =  A^ (xq) xq + (x**) u

y  =  c9 (®9 )x 9

by employing a nonlinear, one-to-one transformation of the form

(3.3)
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xq =  Qq{x)x (3.4)

where Qq(x)x  is partially differentiable1 w.r.t. x. The superscript q is a  designator

which will be used in this section for any one of five specific forms discussed in

Section 3.2 and Appendix D. Using (3.4) in (3.3) gives

xq =  Aq(Qq(x)x)Qq(x)x +  bq(Qq(x)x)u

y  =  cq(Qq(x)x)Qq(x)x.  (3.6)

Differentiating (3.4) w.r.t. t gives

d(Qq(x)x)
X “  — f e — * ’

and substituting for * from (3.1) gives

i ,  = A (x)x  +  d% ^ b(x)u

y = c(x)x.

Upon equating corresponding coefficients in (3.6) and (3.7), one obtains 

A ( x ) =  a * ( Q H z ) x ) Q H x )

=  (3.8)

c(x) =  cq(Qq(x)x)Qq(x).

where

(3.7)

1The assumption of a one-to-one transformation implies that both Q7(x) and w.r.t. x

are nonsingular (see Appendix B for a definition of this term for nonlinear matrices) and the 

inverse transformation

x = Q ( x 7) x 7 (3.5)

exists for all x 7.
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x9=Q9(x)x

x9=Q9(x)x

x9=Q9(x)x

j4«(Q«(®)b ) =  i4«(®«)

6«(Q«(®)®) =  6®(a®) 

c « ( Q ® ( ® ) b )  =  cq (xq)
x9=Q9(x)x

The notation may be simplified by defining 2 

i ® ( g )  =  i4®(Q®(®)®) =  A« (*®)

5®(g) =  bq(Qq(x)x) = bq {xq)

c®(®) =  cq(Qq(x)x)  =  cq (e®)

x9=Q9(x)x

xQ=QQ(x)x

x9=Q9(x)*

Then (3.8) may be rewritten as 

d(Q®(z)a:)

fl(Q®(g)g)
dx

A(x) = A q(x)Qq(x)

b(x) = bq(x) 

c(x) =  c®(e)Q®(e).

(3.9)

(3.10a)

(3.10b)

(3.10c)

The A q(x), bq(x), c®(*) are typically defined to be of some specific form of in

terest, e.g., the nonlinear observer form (2 .1 )-(2 .2 ) or the nonlinear controller form 

(2.25)-(2.26). In general, the Qq(x) m atrix and the unknown nonlinear elements 

ajj(x)  of A q(x)  are determined from (3.10a)3. Further, depending on how bq(x) 

and c®(x) are chosen, additional information about Qq(x) and/or the A q{x) may 

be obtained from (3.10b) and /or (3.10c). Normally, the determination of Qq(x)

2The notation j4s(x) =  j45(Q7(x)x) is ambiguous since it incorrectly suggests A 9(x) =

4 7 (x7) , thus J[?(*) =  A7(C?7(x)x) is used.

8Note that in the linear case det(aJ — A) = det(aJ — A q)\ however, the nonlinear analog, det(al —

.A(x)) =  det(aJ — j4*(*)) is not valid.
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and A q(x) cannot be separated, i.e., a set of nonlinear equations with terms from 

both embedded results, which makes the problem difficult to solve. In special 

cases, however, some simplification can be achieved.

In all cases, the L.H.S. of (3.10a) gives

d(q\Xx)x) /  &x

d(Q*(x)x)
dx

A{x)  =

d{q\Xx)x) /dx

d(qi.(x )x ) /dx

A{x). (3.11)

This can be expressed in a simpler form by defining the linear operator £  : 

sj^lxn — , operating on v(x) as

C[ v ( x ) ]  =  [ d ( v { x ) x ) / d x \  A{ x ) .

Further,

£° [v(«)] =  u(*)

C l [v(e) ]  =  L [ v { x ) }

£ 2 [»(«)] =  £  [C1 [«(*)]] =  £  [£ [v(x)]] 

or in general

C ‘ [„(*)] =  C [r-> [„(*)]] = £[£[•••£[ «(*)] • • •]]
i times

Thus (3.11) becomes from (3.13)

C1 [gi.(*)]

C 1 [© . (e ) ]

(3.12)

(3.13)

d(QHx)x)
dx

A(x) =

C1 [?«•(*)]

(3.14)
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Once Qq(x) has been determined, A q(x), bq(x) and cq(x ) may be calculated 

using (3.10a), (3.10b) and (3.10c). Then the inverse transformation (3.5) can be 

determined and used to find

A q (xq) = A q{x) 

bq (xq) = bq(x) 

cq (xq) =  cq(X)

= A q( Q (x q) x q)

x=Q{x^)x^
= bq( Q (x q) x q) 

c«(Q ( x q) x q).
x=Q(xV)x(l

3.2 Transform ations to  observer and controller forms

3.2.1 O bserver form

In the case of the observer form (2.1)-(2.2), which has been shown to be useful 

for observer design, the R.H.S. of (3.10a) becomes (q is specified as o for this form)

A°(x)Q°(x)  =

ajj(®) 1 0 • • • 0 9l-(*)

«2l(x ) 0 '• <l i (x )

: : •. ••• 0 •

: ! 1 :

5 nl(*) 0 " •  0 & (* )

&u ( x k l ( x ) + 9 i i x )

«21 (*)?!.(*) +  4$Xx )
(3.15)

K i ( x )q°(x )

Combining (3.14) and (3.15) results in the following:
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and

q%.{x) = C1 [# (* )]

q l (x )  = £ 1 [gg.(*)] -  a%i(x)fi.(x)

Now upon employing (3.10c) 

c(x) =  c°Q°(x) = q°.(x).

(3.16a)

(3.16b)

(3.16c)

Expressing 92‘(®)»93-(®)> • • ■ >9n-(®) *n terms of c(x) using (3.16c) and (3.16a) re

sults in

q%.(x) =  C1 [c(®)] -a ? ^ ® )^ ® ) =  C1 [c(®)] -  £° [fln (j)c (i)] 

q l (x )  = C1 [Cl [c(®)] -  £° [of!(x)c(®)]] -  a,2i(x)c(x)

= &  [c(*)] -  C1 [ai1(®)c(x)| -  £° [o2i(*)c(®)]

q°n.(x) = £ n _1  [c(®)] — £ ” - 2  [®ii(®)c(®)] — ■ • •

 C1 [o(>n_ 2)i(*)c(®)] -  £° [a fn -i)^ * )^ * )]  • (3-17)

Using (3.17) and (3.16c) in (3.16b) gives

£ «  [ « ( * ) ]  -  £ “ _ I  [ s S i ( * ) « K * ) l - - - -
*•- [“(’„ - 2)l(i')c(x)] “  £ l a(»-l)l(*W *)] =

or
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£"[c(:c)] =  1 K n + l-O l^ H ® )]  • (3-18)
t=l

Thus, determining Q°(x) can be done in two steps:

1. Solve for a° |(x ), ) , . . . ,  a,^(x)  from (3.18).

2 . Calculate Q°(x)  from (3.16a) and (3.16c) (rewritten here as (3.19))

q l (x )  = c(x)

q%.(x) =  Cl [??.(*)] -  afjt®)^®)

q l (x )  = C1 [gg.(®)] -  ®2 i(®)c(®) ^

?«•(*) =  &  [?fn_i).(*)] “  «(,„_i)i(*)c(*)-

Comments:

1. Here the a°j(x) can be obtained without any knowledge of Q°(x); the latter 

can be obtained from these quantities.

2. Eq. (3.18) represents a system of n n — 1-st-order linear partial-differential 

equations in n  variables and n unknowns—a system which is generally very 

difficult to solve4.

3. Once this system has been solved, however, the calculation of Q°(x)  from 

(3.19) is relatively simple.

4Computational aspects of this system of equations are discussed in Chapter IV.
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E x am p le  3.2.1 A simple, nonlinear, second-order system.

- l l 0
X  = X  +

0 - X I 1

y = 1  0 X .

u

Here (3.18) becomes

C2 [c(x)J =  C1 [af1(®)c(x)] +  C° [ah(x)c{x)) 

Calculating each term gives

£ 2 [c(z)] =  C[C[c(x)}]=C

(3.20)

- ^ ( c ( x ) x )  A(x)} = c \ ~ ( x l )A(x)

=  C 1 0
- 1  1 

0 — x\ - [ [ — ]]

i - 1  1 r i
- 1  1

I 0 1 H
«

i  —i  — *i (3.21a)

C1 [a?i(®)c(z)] =  -^-(a%1{x)c(x)x)A(z)  = -^{a%1(x )x i )A (x )

(ofjfaOBi) ( a f i ( * ) * l )  ] 

(o? l (* )* l )
d

- l  i  

o —®i

dx\

dx \

C° [a%x{x)c{x)\ =  a°2l{x)c{x) =

dx2 

®2l(*) 0

(3.21b)

(3.21c)

Substituting (3.21a)-(3.21c) in (3.20) results in two equations

d
1 =  

—1 — x i  =

dx\
d

dx-i
( a ? i ( x ) * i ) - ® i— (afj(x )) .
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In this case, it is possible to find a f^ x )  to satisfy (3.22b) and then calculate 

o,2i{x)  from (3.22a). One possible solution to (3.22b), as may easily be verified by 

direct substitution, is

«fi(®) =  5 f i ( * i )  =  - 1 -

The corresponding 621(*) *s

a%i(b) =  1 +  (o f^ * )* !)  = 1 + ^ -  -  ®i) =  -® i.

Now Q°(x) can be calculated using (3.19)

9?.(®) = 1 0

?2-(*) = 1 0
- 1  1

-  ( — 2 ® i  -  i )  [  1  0 3 * 1  1

0 1 ft 1—
1

1

—

or

Q°(x) = 

Further,

o r 1 =

and

1 0 

~ \ x l 1

d{Q°(x)x)  =  d_ 
dx dx

x i 1

O

\ x \  +  x 2 *1 1

Now A°(x),  b°(x) and c ° ( e )  can be calculated using (3.10a)-(3.10c). Thus,
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A°(x)  =
1 0 - 1  1 1 0

~ \ x l 1x\  1 0 — x\

b°(x) =

1 0 —1 -  \ x \ 1 1 2®1 1

XI 1
■

I t 2 ~ X1 ~ X 1 0

1 0 0 0

*1 1 1 1

and

1 0
c°(x) = 1 0

1
r—iHi

•

— 1 0

Note that the entries in A°(x)  are consistent with the previously calculated a jj(x )  

and a,2i(x).

E x a m p le  3.2.2 A linear, n-th-order system.

x =  Ax + bu 

y  =  ex.

Here (3.18) becomes (fi°j =  a°^, i =  1 , . . .  ,n  from (3.9))

£ ” [c] =  £  C ~ l [a?n+1_ 0 1 c ] . (3.23)
t=l

For constant A and c, there results from (3.12) and (3.13)

Cn [c] = cAn

Cli— 1
a (n+l—t)l*

thus (3.23) becomes 

n
\ n + l - i) l
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or

c (An -  a° iAn~* -  a°2lA n 

Since c is arbitrary, then

A n -  a ^ A ”- 1 -  a°2lA n~2

- 2
 < i- f )  =  o.

<11 =  o .

(3.24)

A comparison of this result with the Cayley-Hamilton theorem, which is valid 

for LTI systems, reveals that —anl>—a(n - l) l ’ ■ ■ • > ~ °11 are coefficients of the 

characteristic equation

d e t(s l — A) — sn +  ais11 1 + -----(- an_ js  +  an ,

i.e., a\ =  —a fj, 02 =  —«2 l> • • • 1 =  ~ a n V  Further, (3.19) gives

q2. =  cA — a jjc

93- cA2 — ajjcA  — a21c

(3.25)

or

9n- cA71- 1 -  a°u cAn- 2 -  a%lCA n~3

Q° =

a ( n - l ) l c

1 0 ................. 0 c

- a f j  •• : cA

- a 21 •• : cA2

; •. 0 I

—®(n—1)1 _ a 21 _ a ll  1 cAn~ l

IO

where S  is a lower triangular Toeplitz m atrix with first column 1 —a?i —a?ll l  - a 21 " •

and O is the observability matrix. Since S has full rank, the required 

transform ation exists if and only if O has full rank. This result is, of course,

-“fn—1)1
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consistent with that in any standard text on linear systems, e.g. see Figure 2.4-3 

in [23].

3.2 .2  C ontroller form

In the case of the controller form (2.25)-(2.26), which has been shown to be 

useful for controller design, the R.H.S. of (3.10a) becomes (q is specified as c for 

this form)

A c( x ) Q c(x ) =

a ll (®)  S12(*)  

1 0

0

5 1 n(®)

0 1 0

«!.(*)

q i ( x )

«11 (® )?i.(® ) +  Oi2(®)92-(®) +

9l.(®)  

?2-(®)

9(„-l).(®)

Combining (3.14) and (3.26) results in the following:

?(n—1).(* ) =  £ l [?n-(®)] ‘

9(n—2)-(®) =  £ l  [ 9 ( » - l ) .( * ) ]

q l (x )  = C1 [9§.(*)]

9l-(®) =  & [?2.(®)]

9n-(®)

+  a ln(®)9»-(®)

.(3.26)

(3.27a)

and

a ll(®)9l-(®) +  «12(®)92-(®) +  • • • +  ain(®)«»-(®) =  & [9l-(®)] (3.27b)
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Now upon employing (3.10b)

d(q\Xx )x) / 1

d{<&Xx)x) l dx 0

• b(x)  = •

9 ( q n - ( x ) x ) / d x 0

(3.27c)

Expressing 5i.(®)> 52-(*)’ ■ • ■ in terms of g£.(®) using (3.27a), and sub

stituting in (3.27c) gives

a i r - - 1 [«!;.(*)]*)/«* 1

aoc - 2 [£ .(* ) ]* ) /& 0

| 4 (l) = I

d(C° [* (* )]  * ) /& 0

(3.28)

The next part was inspired by Zak [85] who obtained a transformation to 

controller form for a general class of nonlinear systems. His notation which will 

also be used here, is defined in Appendix B. Su’s identity [8 6 ]

(dT,{f,g,]) = ( d ( d T , g , ) , f ) - ( d ( d T , f ) , g )

where T  is a scalar field (function), /  and g are vector fields and d is the differential 

operator d /d x ,  will be used repeatedly, but in the form

(,d { d T ,g ) , f )  = (dT, [/, g\) + (d (dT , f ) , g ) .

In this notation the last equation in (3.28) becomes
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^  (^°  kw (®)] &(ic) =  £  (g^.fa-)T)6(a;)

=  (rf(9£-(®)®M(®))

=  ( d (?£K®)®) » (ad°i4(a:)a:, b{xj) )

=  0 .

The second last equation gives

-jk (£ l  [9n.(*)l *) 6(*) =  £  '{§i (ffn-(*)a=) A(*)«) b(x)

=  (d (d (9n-(x )x ) >^(®)®) »&(*))

= 0 .

Using Su’s identity gives ( T  — g =  A( x) x , /  =  b(x) )

T g f

^ d [ d ( q cn. (x )x ) , A(x )x^ , b (x) j

=  (<*(flft.(®)®)» [&(®)>^(®)® ] ) +  ( rf( rf(S&(®)®)>K®)V ^(®)®y
'----------- V ----------- '

=0 from (3.29)

=  “  ( d (<ln-(x )x ) » (a d 1.^ * ) ® ,^ ® ) ) )

=  0 .

In a similar fashion, the th ird  last equation gives

m  (£ 2 [?n.(®)]®)6(®) =  m  { £  (^(9n-(®)®)^(®)®) A(«)«) b(x)

=  (d (d {d(q£.(®)®), A { x ) x ) , A{x)x ) , b(x))

= 0

and employing T  = (d(q^.(x)x) g = A(x)x,  f  =  b(x), there results

(3.29)

(3.30)
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^d^d(d(fl^.(*)*),i4(aj)*),i4(aj)*^ ,6(®)^

= ( d  {d (^ .(a:)® ), A{x)x) , [ b(x) ,A(x)x  ] \

T  f  9

+ ( d ^ d ( d ( q n . ( x ) x ) , A (x)x),6(x)^,i4(x)x^
v-------------------v------------------- '

=0 from (3.30)

=  (d (d (g£.(x)x), A(x)x)  , — (ad}A{x)x,  6(®)) ^

=  0.

Applying Su’s identity again gives ( T  — g£.(x)x, g = A{x)x ,

/  =  — (ad1A(®)®,6(a;)^ )

T  g_____  f ________

( ^ ( ^ { Q n ( x )x )^A (x )x ^ ~  (ad1A(x)x ,b(x)Sj ^

T  ________ I ________  g

= (^(<ln-(x )x )> [ ~  (ad1 A(x)x ,b (x ) ) , A(x)x

T  ________ I ________  g

+ (^d(^d(qn.(x)x),— (ad1 A( x ) x , b(xf j^j , A(:fc)x^
'    '

=0 from (3.30)

=  (d (<ln-{x )x) » (ad2A{x )x ,6(x)) }

=  0.

Repeating the same process for all the equations in (3.28) results in

( -1 )°  ( d (g£.(x)x) , (ad°A(x)x, 6(x)) ) =  0

( - 1 ) 1 ( d ( ^ . ( x ) x ) , ( a d 1A (x)x,6(x)}) =  0 

( - 1 ) 2 (d(q^.(x )x ) , (ad2A (x)x,6(x))) =  0

( - l ) n _ 2 (d (g ^ .(x )x ),(ad n_2A (x)x,6(x))) =  0 

( - 1 ) " - 1 (d{q^  .(x )x ) ,(a d n_1A (x)x,6(x))) =  1.

39

(3.31)

(3.32)



This may be rewritten as

( - 1)°^ (9 n -(* )a:) (ad°A(x)x,b(x)) = 0

( - 1 )1^ ( 9n (a:)a:) (ad1̂ * ) * ,^ * ) )  =  0

( - 1)2^ (9 n - (a:)JC) (ad2A(®):c,6(a:)) =  0

( - 1  )n- 2l ( q cn. (x)x) (adn-*A(x)x,b(x))  =  0

C -1)” - 1 ^  Un-Os)*) (adn~ 1A(x)x,b(x))  =  1.

or

dx
(q^.(x)x)C(x) = 0 1

where

C(x) — ( — 1)° (ad?A(x)x,b(xf)  (—l ) 1 (ad*A(x)x,b(x)j

••• ( - I f " 1 (adn~ 1A{x)x,b(x))  ] •

Assuming pC(x) =  n, 

d
dx (««■(*)*) = 0 1 C ~ \ x ) .

Thus, determining Qc(x ) can be done in two steps:

1. Solve for qn-(x ) from (3.34)

2. Calculate Q°(®) from (3.27a) (rewritten here as (3.35))

9 f » - l ) . ( * )

qU x )

€ ( x )

c1 [ £ . ( * ) ]

£ l  [9(n-l).(*)]

&  [flS-C*)]

&  [92-(*)] ’
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Comments:

1. Here the rows of Qc(x)  can be obtained without any knowledge of aj.(a:).

2. Eq. (3.34) represents a system of n  first-order linear partial differential equa

tions in n  variables and one unknown (q^.(x)x).  Solution methods for such 

equations are well documented in the literature5.

3. Once (3.34) has been solved, the calculation of Q°(x)  from (3.35) is relatively 

simple.

E x am p le  3 .2 .3  A simple, nonlinear, second-order system.

u
- l l 0

X = X +
0 1

y = 1 0 X.

Here ( — 1)° (ad?A(x)x,b(xf)  and ( - 1 ) 1 (ad*A(x)x,b(x)' j  become 

(—1)° (adQ A(x)x,b(x)^j =  b(x) =
0

1

(—l ) 1 (adl A(x)x,b(xj^  =  — [A(s)*,6(a:)]

=  ~ ^ ( b(x ) ) A (x )x +  & ( M x )x ) b(x )

d_ - x i  +  * 2 0
dx

—®1®2 1

-  i

-  - X I  

1

- XI

0

1

5Computational aspects of this system of equations are discussed in Chapter IV.
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Thus

<:(*) =

and

0 1

0 1

1  X \

c~ \x)  = 0 1
1 0 - [ 1 0

Now (3.34) becomes 

d
dx 1 0

and it is easily verified that

92-00 =  92- = 1 0

is a solution. Now using (3.35) 

9f-(*) =
- 1  1 P

= 1 0 = - 1  1

1

O i H

•

and

Qc(x) =  Qc =  

Further,

- 1  1

1 0

Qc~ l =
0 1 

1 1

and

d {Qcx) nc  
d x v '

Now A c{x).t bc(x) and c^ e ) can be calculated using (3.10a)-(3.10c). Thus,
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A c{x) =
- 1 l - 1 1

1 0
■

0
I

—s

T"H1 l 1

i i
O

1--
---

-
1 H 1

1

■ i—
o

»

1

1 i
O i-H

■ 1 
.. o 1

0 1 

1 1

- * 1

0

■ 0 1 •

1 0
1 1

— 0 1

bc(x) =

and

c°( x) =

E x a m p le  3 .2 .4  A linear, n-th-order system.

x  =  Ax  +  bu 

y = ex.

Here

C (* )= C ,

i.e., the well-known controllability matrix. Here (3.34) results in

0 .............. 0 1 c ~ l^  (& (* )« )  =

and

9n(®) =  9n- = 0 ..............  0 1 I C 1
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is a solution. Then (3.35) gives

V - 1 ) .  =

?(n-2)- =

0

0

0 1 

0 1

C~l A

C - U 2

92- =

fff.

0

0

0 1 

0 1

C ^ A 71- 2

C~1A n~ 1.

The required transformation exists if and only if C has full rank. This result is, of 

course, consistent with that in any standard text on linear systems.

3.3 Transform  o f  nonlinear feedback gains

It is of interest to investigate the transformation rules for nonlinear feedback 

gains, i.e., how these gains transform when the system states are transformed 

according to (3.4). The three main cases of interest are: output-to-x feedback, 

state-to-input feedback and output-to-input feedback.

3.3.1 O utput-to-x  feedback

A typical system where output-to-x feedback is used is shown in Fig. 1. In 

this case the state equation becomes

x =  A(x)x  +  b(x)u +  h(x)y  

y  =  c(x)x,

where

T

(3.36)

h(x)  = /il(x) h2(x) M * )

Substituting for y in (3.36) results in
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c(x)b(x>

A(x)

h(x)

Figure 1: Output-to-x feedback 

x =  (A(x) +  h(x)c(x)) x  -f b{x)u.

Thus, h(x)c(x)  transforms according to (3.10a) 

d(QHx)x )
dx -h(x)c(x) =  hq(x)c?(x)Qq(x) (3.37)

Comparing (3.10c) and (3.37) shows that h(x)  transforms according to 

d(QHx)x )
dx ■h(x) = hq(x). (3.38)

In a typical system the x node is not accessible and thus this type of feedback 

is not practical. One case, however, where the x node is accessible is in an observer, 

e.g., the observer discussed in Section 2.1. Here

i » ( i )  =  P ( i )  =  !“ (*») ,
z0=Q°(i)x

thus 1° (x) transforms as in (3.38) or 

d ( Q ° ( x ) x ) l
dx

-l(x)  = l°{x) (3.39)
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The observer is selected corresponding to (2.3) as 

x = A ( x )  x + b (x )u  + I ( x ) ( y  — c ( x ) x ) . 

and the resulting error dynamics are

e = ( A( x)  — I ( i )  c ( i ) )  e +  (A(:c) — A(a:)) x +  (b(x) — b(x)) u

where

e — x — x.

If 1° ( i )  is chosen as described in Section 2.1 and I (®) calculated using (3.39) then, 

lim e(t) =  lim (Q (a°) x° — Q(x°)  x°)
t —>oo t —>oo

=  lim (Q (x°) (x° — x°)  +  (Q (®°) — Q ( i° ) )  x°)  =  0. 
t —>oo

since lim e°(t) =  0. 
t —>oo v ’

3 .3 .2  S tate-to-in p u t feedback

A typical system where state-to-input feedback is used is shown in Fig. 2. In 

this case

u = h(x)x  -f v, (3.40)

where

M*) =  hi(x)  h 2(*) ............  hn(x)

Substituting (3.40) in (3.1) results in

x = (A(®) +  b(x)h(x)) x +  6(®)u. (3-41)

Thus, b(x)h(x)  transforms according to (3.10a)
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b(x) c(x)

A(x) * _

h(x)

d { Q q(x)x)
dx

Figure 2: State-to-input feedback

b(x)h(x)  =  bq(x)hq(x)Qq(x). (3.42)

Comparing (3.10b) and (3.42) shows tha t h(x)  transforms according to 

h(x) = hq{x)Qq(x). (3.43)

The typical full-state feedback falls into this category, e.g., the state-feedback 

controller discussed in Section 2.2. Here

R»(«) = - * « ( « )  =  - * ' ( * ' )  c ,
x c=Q c(x)x  

and kc(x) transforms as in (3.43) or

k(x)  =  jfcc(x)Qc(x).

The state equation (3.41) becomes

x =  (A(x) — b(x)k(x)) x 4- 6(x)u. (3.44)
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b(x)

h(x)

A(x)

c(x)

Figure 3: O utput-to-input feedback

Note that this equation (3.44) is nonlinear, however, the closed-loop dynamics are 

the same as those of (2.29) and thus linear. Only the relationship between v and 

x c is linear; any other state x which has a nonlinear relationship with x c (i.e., 

x = Q ( x c) x c) also has a nonlinear relationship with v.

3.3 .3  O utput-to-input feedback

A typical system where output-to-input feedback is used is shown in Fig. 3. 

In this case

u =  h(x)y  +  v, (3.45)

where h.(x) is a scalar function. Substituting (3.45) in (3.1) results in

x =  (A (t) -f- b(x)h(x)c(x)) x -f 6(.r)r 

y — c(x)x.

Thus b(x)h(x)c(x) transforms according to (3.10a)

a ^ (x)k(x)c(x) =  bq(x)hq(x)c?(x)Qq(x). (3.46)
ox



Comparing (3.10b) and (3.10c) with (3.46) shows that h(x)  transforms according 

to

h(x)  =  hq(x).

3.4 D iscussion

In tills chapter the equations that must be solved to find the nonlinear trans

formation to the observer and the controller form were derived. These equations 

may be difficult to solve, especially in the observer case. Various computational 

aspects of (3.18) and (3.34) are considered in the next chapter.
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CH APTER TV

C O M PU TA T IO N A L A SP E C T S

4.1 Transform ation to  observer form

In this case the most difficult aspect is solving (3.18) rewritten here as (4.1)

Cn [ c ( b ) J  =  X )  £ l _ 1  [a ( » + l - i ) l ( * ) c ( * ) ]  • ( 4 - 1 )
i=l

In general this constitutes a system of n  (n — l)-st-order linear partial-differential 

equations (PDEs) in n  variables and n  unknowns, which can be reduced to n  — 1 

(n — l)-st-order linear PDEs in n  variables and n — 1 unknowns, namely a°i(x),  

®2l(®)» •••» ®(n—lJlC®)' ^ nce these unknowns have been obtained, a£j(®) can be 

determined from (4.1); however, knowledge of a ^ { x )  is not necessary in order to 

find Q°(x).

4.1.1 Case n =  1

Here x =  b j and (4.1) reduces to

£ I ['(*l)] =  ‘C °[s?l(* lW *l)]

or

Q
( c i ( ® i) s i ) a n  (®i) =  a jj  ( b i ) c i  ( ® i )  .

Assuming c\ (®j) ^  0, a j j  (« j) is given by 

1 d
O lil* 1) =  Cl(Xl )QXl ( c i ^ l ) 8 ! ) 0! ! ^ ! ) -
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4.1 .2  Case n =  2

Here x = *1 *2

C‘ |c(z)] =  C1 |a?i(x)c(x)] +  £ u [<&(*)«:(*)]. 

The quantity £* [c(x)J becomes

d  r
£ l  [cC*)l =  a z ( c(x )x )A (x ) =  c}(x) c\{x)

and Eqs. (4.1) become for n  =  2

=  cl {x)

where

cl(*) =  ^f^(c(a:)a:)<xii(a;) +  -£^{c{x)x)a2i{x)

4 ( x ) = ^ ( c(x )x )a12(v) + BEj(c(*)*)«22(*)-

Then £ 2 [c(x)] is

C2 [c(x)] =  C1 [[ cj(x) c\{x)  ]] =  [ cj(x) c%(x)

where

c l ( * )  =  ( c l (* )* )  « l l ( * )  +  g f j  ( c 1!* )* )  « 2 l (* )

c2(*) =  5^  (c l(*)*) «12(®) +  af j  (c l(*)*) ° 22(®)>

=  c (x)

Finally,

£[5?i(x)c(x)]

= |  c(x)xan ( x ) ^  (a ^ (x ))  +  ^  (c(x)x) a n ^ J o f ^ * )

+c(x)xa2i ( i ) g f j  («ii(®)) +  g f^ (c (x )x )a2i(a:)af1(x) 

c(x)xai2 (®)5^  (a f1(x)) + -£^{c{x)x) an {x)a°n {x)

+ c(x)xa22(® )afj (s ll(®)) +  a f j  (c(®)s) «22(®)ofi(®)

(4.2)

(4.3)

or
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C\a°n (x)c{x))

=  [ c(*)ajon(«)gfj- (a?^®)) +  c(® )® a2i(® )^  (« ii(* ))

+c}(®)ajj(®) (4 .4 )

c(®)®a12( ® ) ^  (an(® )) +  c(®)®a22(* )5 fj  (« ii(* ))

+c|(® )a?1(®) J

and

Thus (4.1) results in a set of equations

Q n
cj(x) = c(®)®an (®) —  (an(® )) +  c(®)®a21(®) —  (ofj(®))

+c|(® )a?1(®) +  c1(®)a§1(*) (4.5a)
$ dc|(®) =  c(®)®a12(®) —  (afj(®)) +c(®)®o22( ® ) ^ - ( a f 1(®))

+c^(®)afi(®) +  c2(®)a21(®). (4.5b)

Eliminating a2j(*) from these equations results in a  first-order linear1 PDE 

in two variables and one unknown, a°j(®), of the form

(“ lit* ))  +  (®ll(*)) +  rf(«)s ll(* )  +  M*) =  0 (4.6)

where

dl(®) =  c2(®)c(®)®an(®) — ci(®)c(®)®ai2(®)

d2(®) =  c2(®)c(®)®a2i(®) -  cj(®)c(®)®a22(®)
i  1 ( 4 , 7 )d(x)  =  c2{x)c[{x) -  ci(®)c£(®)

h(x) = - c 2(x)c\{x)  +  ci(®)c2(»)

1A PDE is linear if  the unknown and all its derivatives appear linearly.
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Alternatively, (4.6) can be written in the compact form

di{x)uXl +  d2(x)uX2 + d(x)u + h(x ) =  0, (4.8)

where

u = d°n{x),

Q
Uxl =

and

d
«*2 =  ( « l l ( * ) )  •

Once (4.6) (or (4.8)) has been solved for a f i(z ) , (4.5a) or (4.5b) may be used to 

solve for a2l(x ) ^  desired.

A  g e n e ra l so lu tio n  m e th o d  fo r n = 2

Solution methods for equations of the form (4.8) are well documented in the 

literature (see e.g. pp. 205-212 in [88]—here h(x ) =  0 but the same method also 

applies to h(x)  ^  0). The following briefly describes the approach taken in [89] 

(pp. 133-137).

This approach, wherein it is assumed that di(x)  and d2(x) do not vanish 

simultaneously for any x,  is based on finding a  change of coordinates such that 

(4.8) becomes an ordinary differential equation (ODE) in a new coordinate system. 

The new coordinates, £ and if, are related to the original ones, ®i and x 2, by

£ =  £(*1,*2)

and
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Since this transformation must be invertible, one must require that

t — 0 ( € > v )  d V W  d r l „ /n
d  ( * i , x 2) 9® i 9 * 2 9 * 2  9 *  1 11 352 Xz Xl

The relation between u XJ, u X2 and ug, is given by

u * \ = If + J R i's S i =  u f c \  + u n V x i

Ux2 =  If M i +  IRjiUk = u& 2  + uWx2-

Substituting in (4.8) gives

dl(x) (u{fXl +  UtfTfxj)  +  d2{x) (u^ x2 + 11̂ 77*2) +  d(x)u +  h(x)  =  0, 

(d l(* )£* !  +  d2{ x ) i x 2)  +  [di (x)r jXl +  d2(®)^*2) UV +  d (x )u  +  M * )  =  0

or

E ( x )u £ +  F ( x ) u r} +  d ( x ) u  +  h ( x )  =  0 (4-9)

where

E { x )  =  d ^ x ) ^ j  +  d 2{x)£X2 ^  io

F ( * )  =  di (x ) r f Xl +  d2(x)rjX2.

Then 77 is chosen such that

F ( x )  =  di (x ) r j Xl + d 2(x)r]X2 =  0 (4.11)

is satisfied. Eqn. (4.11) has infinitely many solutions of the form

Tf =  /  { v  ( * 1 ,  * 2 ) )

where v ( * 1 ,  * 2 )  i s  the general solution of

d x 1 d x 2

d l(* l,® 2) (®1»*2 )

One of these »7(*i,*2) i6 selected and then some £ { x \ , x 2) is chosen such that

J  /  02. Then the inverse transformation

2 For example, if  di  (x°, x°) 0 then taking
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X 1 = X l(e ’’,) (4.12)
*2 =  *2(£,*?)

can be determined.

Since F(x)  =  0 then (4.9) becomes

E ( x ) v ,£ +  d(x)u + h(x) =  0. (4.13)

When J  ^  0 and d\(x)  and c?2(®) do not vanish simultaneously, then E(x)  ^  0 

[89] and (4.13) can be rewritten as

+  7 (*)u +  6(x) = 0 (4-14)

where

7 (c) =  d(x) /E(x)

6(x) = h(x) /E(x) .

Then using (4.12) one can write

= 0, (4.15)

i.e., an ODE in £ where 77 can be treated as a constant. Eqn. (4.15) is referred to 

as the canonical form of (4.8) and its solution is given by (p. 390, [83])

u (t>v) = j ( - /  HC,v)M(C,v)dC + cj  (4.16)

where

M ( t , r j ) = e x  p /T K .iK . (4 .1 7 )

Tl(x?, *2) = *2

guarantees the existence of a unique solution to (4.11). Then rjt3 (*?, *§) =  1 and choosing 

£ (* ii *2) =  *1 gives J  = 1 in the neighborhood of (xj, x°).
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The general solution of (4.8) is then obtained by returning to  the * j , *2 coordinates. 

E x a m p le  4.1.1 A nonlinear, second-order system.

x =

y  =

X r

- 1  - 1  

1 0

Here (4.2) and (4.3) give

c}(*) =  1 

c%(x) = x \  

cj(x)  =  1 — 3*2

cl ( x ) = ~ 2x2-

Then (4.7) results in

d\{x)  =  - * i * |  

d2(x) =  xi  

d(x)  =  - x \  

h(x)  =  —2 *2 . 

Thus (4.8) becomes

9  9  9

—®l*2«!ej +  — X2U ~  2*2  =  0 . (4.18)

In this case d\(x)  and d2(x) vanish simultaneously at *1 =  0. However, (4.18) can 

be divided by *1 to avoid this problem, resulting in

—*2«*j +  Ux2 — x ^ x \ u  — 2 * f 1* i =  0 .

Now
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di{x)  =  - x \  

d2{x) = 1 

d(x) — — x ^ x \

4-

Eqn. (4.11) now becomes

h(a;) =  —2*2 ! *2

-*2*7*1 +  V x 2 =  0,

thus

dx\  dx 2
-* 2

or

Vdx i +  *2<i*2 =  0 

must be solved. Integrating gives

*1 +  ^ * 2  =

where C  is an arbitrary constant. Thus 77(2 1 , *2) may be taken as

1 ,
77(*l,*2) =  *1 + - * 2. (4.19)

Now J  becomes

J  — £x i x 2 ~  t x2 ’

Choosing

€(*1»*2> =  ®2 (4.20)

results in J  = —1. The inverse transformation can be found from (4.19) and (4.20) 

as
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* l(£ ,» /)  =  » 7 -  3^3 

*2(£,*7) =  £- 

Now (4.10) gives

E(x)  =  d,2(x) =  1,

and thus 7  (« i, 1 2 ) and & (*i> *2 ) are given by

7  (*i> *2) =

or

=  -  (>7 -  l e 3) _ 1 e2 

= - 2  (>?- |£ 3) * f2- 

Employing (4.17) gives

U ! t   ̂ - [ ( ’l - U * )  ' t 2#  ln (» -fc3) l j^ ( ( , 11) =  exp  ̂ V 3 /  =  exp V 3 '  =  77 -  -£  ,

and from (4.16)

« « . i )  =  ( i - i e 3) ' 1 ( / 2 ^ - i « 3) ’ I f 2 ( ^ - i f 3)<i« +  c )  

=  { j v ? d i + c )

where C  is an arbitrary constant. Inverse transforming gives

u ( x 1, x 2) =  x r 1 ( | * 2  +  c ')  =

taking C =  0. Thus

2
a°n (x) =  « (x ! ,x 2) =  g X f1®!- 

Then it can be easily verified from (3.19), (3.10a) and (3.10c) that
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< ? »  =

A°(x)

1 2_—1_3 _21 — ®2 *2

2_—1_3 i 
3®1 *2 1

—So +  1 0

and

c° = 1 0

S p ec ia l case 1

Since there are no boundary conditions on u (or 5 j j ( s ) ) ,  one has the freedom 

to choose any u tha t satisfies (4.8). An especially simple case arises if (4.8) can be 

put in the form

d\{x)uXl + d,2(x)ux2 +  du +  h =  0 (4.21)

where d and h are constants. Then u can be taken as a constant (thus u Xl and 

u X2 are zero), given by

u = —h/d.

A number of nonlinear systems and all second-order LTI systems fall into this 

category.

E x a m p le  4 .1 .2  A nonlinear, second-order system.

x  =

V =

0  x\  

- 1  - 1
x

X
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From (4.2), (4.3) and (4.7) one has

cj(®

c\(x

cl(*

c\{ x

=  -1  

=  - 1  

=  1

=  1 — X  j

d\{x)  =  0 

d,2(x) — —*2 

d(x) =  —1 

h(x)  =  —1 .

Thus (4.8) becomes

- x 2 u X 2  —  u  —  1 =  0

which is in the form of (4.21), and thus one solution is

u = —1 .

Clearly

s ll(* ) =  - 1-

It can be easily verified from (3.19), (3.10a) and (3.10c) that here

0 1
Q°(X) =  Q° =

•1 0

A ° ( x )  =
- 1  1

- x \  0

and

c° = 1 0
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S pecia l case 2 

T h e o re m  4.1.1 I f

a n (z )  a\2
A{x) =

a2l(x ) ^ ( ^ l )

c = 1 0

where a \ 2 is a constant, then

“ 111*) =  a ll(®) +  — /  a22 (*l)Xl «/

®2l(*) ~  “  det A(x)  

is a solution of (4-lj^ ■

Proof: (by direct substitution)

c\{x)

c\(x) 
c\(x)  

„2

a n ( x )

a 12
o ft

( a n (z ) z i)  a n (z )  +  a i2a2i(z ) +  ^  (a il(* )) * ia2 l(*)

C2(*) “  f a j ( al l ( x )x l ) a12 +  °12°22(®l) +  gf^(ail(® ))*l® 22(*l)

d\{x)  =  —a j2z i 

d2(x) =  - x 1a2 2 (z 1) 

d(x)  =  - a i 2

=  (a ll(®)®l) ®12 d" a 12a22 (* l) "b * la22 (* l) 5*2 (a ll(®))

BNote the similarity to the linear case where

a®! =  traced =  a n  +  022 
a n  =  — det A.

(4 .22)

(4.23)
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Thus (4.8) becomes

Q
- 0 1 2 *  l « * i  -  ®la22 (® l) u x 2 -  o i2 «  +  (a ll(® )® l)  a 12

d
+ a 12°22 (®l) +  s 1a22 (® i) (a l l ( ® ) ) .=  0. (4.24)

Substituting

u =  a?^®) =  a u (x )  +  ~ J a 22 {x i )dx i  

Uxl =  3^7 (“ llO®)) ~  i / a 22(®l)<^®l +  — '“22 (®l)
i  J  X \

Ux2 ~  ^ ( “ llC*)) 

in (4.24) results in

~ a t2x l ~ J ~  (a l l (® ))  ~  a 12®l { j ~ ~ 2 / a 22 (® l)^® l j  ~  «12®1 «22 (®l)^

- x i a 22 ( * l )  ^  ( o n ( * ) )  -  a i 2 0 n ( * )  -  a\2^ j a 22 (®l) dx\  

+  ̂ f ( a l l ( * ) * l ) ° 1 2  + 0 1 2 0 2 2  (®l) +  ® l022(® l) g f ^ ( a l l(® ))
d  1 r

=  - a i 2® i ^ -  ( o n (® ))  + 0 1 2 —  J  a22( x \ ) d x i  -  a\2a22 (x \ )

/
Q

a22{ x i ) d x 1 + 0 X2 * ! — (a n (* ))

+ 0 l 2 0 n ( * )  +  ai2a22 (®l)

= 0,

thus (4.22) is a solution of (4.1).

Then (4.5a) gives

5 2 l ( x ) =  C i ( * ) - c ( ® ) ® o n ( ® ) g £ j  (o i i (® ))

-c(® )*o2i(® )gfj (o n (x )) -c} (x )o ^(® ).

Substituting
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“SlOO =  C0'!!(*c)*cl ) a l l ( a!) +  a l2a2 l ( x ) d" 5^2 (®ll(®)) *pl a2 l ( a')

- « i a n ( * ) ^  ( a n ( « ) )  -  x i a n ( * )  a22 ( * l )  d®i j

~ x l a l l ( x ) ^ a 22 ( * l )  -  * l a2 l(® )gf^  ( « l l ( * ) )  -  a l l ( * ) a l l(® )  

- 0 ' U ( x ) ^ J a 2 2 ( x i ) d x i

= («n(*)) + « i i ( * )  + a i 2a 2 i ( * )

- ® i a n ( ® ) ^  ( a n ( * ) )  +  a n ( x ) ^ j a 22 ( * 1 ) d x \

—a ll(® )a 22 ( * l )  -  « i i ( * )  -  a n { x ) ± j a 2 2 M d x 1

— a 12a 2 l ( * )  — a l l {x ) a 22 ( * 1)

=  — det A ( x ),

thus verifying (4.23) is a solution of (4.1).

□

E x a m p le  4 .1 .3  A nonlinear, second-order system.

-x\  — 1

—x \  - x \

Xy =  1 0  

Here (4.22) and (4.23) give

a ll(* ) =  -® i -  ®1 +  ~  /  ( - x l)
j  2 2 * 2  ^ 2 2d®! =  - * j  -  ®2 -  0* 1  =  “ ~®1 -  *23 1 3

®2l(*) =  1 • ( - * ! )  ~  ( - * 1  “  *1) (” * l)  =  ~ x 2 -  *1 -  * 1*2- 

It can be easily verified from (3.19), (3.10a) and (3.10c) that

Q°(x)  =
1 0 

h \  1
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A°(x) = ■3*1 “  *2

-®2
2J2x i  — xXx1 2

and

c° 1 0

4.1 .3  Case n > 2

The notation D a a ttributed to Schwartz (pp. 54-55 [90]) will be useful in the 

following. Here

Q! — (ftl) ®2 ) • • • » ®Tl)

where a ,, i =  1 ,2 , . . .  ,n  are nonnegative integers. D a is defined by

0*1 0*2 0«n
=  I?"11 >£2 - ••£>£”

9xnn ‘

The order of Da is denoted by

la l =  a l +  a 2 H  ̂a n-

Before expressing (4.1) in terms of this notation, the following observations 

will be helpful:

Applying the operator £  on some ^ n^.1_ ^ 1(*)c(*) generates a 1 x 

n  vector whose elements are composed of and all its first

derivatives d  ^®°n-|_i_i)i(a!)) =  1 ,2 , . . .  ,n  (see (4.4) in the case

n =  2). Applying £  again generates a 1 x n  vector whose elements are 

composed of ®(*n+i_ j)i(* ), all its first derivatives d  ^5 (’n+ i_ j)i(* )^  / ^ Z j j  

l\ — 1 , 2 , . . . ,  n  and all its second derivatives d2 ( « ( U i - i ) i ( x )) / dx i id x i2i 

l\ =  1 ,2 , . . .  , 7i, I2 =  /1 +  1 , fi +  2 , . . .  ,ra. Applying the operator i — 1

64



times on a°n+1_ ^ 1(a:)c(®) generates a 1 x n  vector whose elements are 

composed of *11 its first derivatives, all its second deriva

tives, . . . ,  all its (i — 2 )-th derivatives and all its (i — l)- th  derivatives.

Thus a,2i(x),  ■ • . ,  «nl(®)» the first derivatives of Oji(x), a,2i(x),  . . . ,

o®n_ i)i(x ), the second derivatives of a f^ x ) , 02 l(*)> • • •» afn -2)l(®)’ etc,» (n — 

2 )-th derivatives of a fi(* ) and 0%i(x) and the (n — l)-th  derivative of a jj(x )  will 

be present in (4.1), with all of these appearing linearly since £  is a linear operator. 

Then (4.1) can be rewritten as

£ ” [c(*)] =
M - 0

■ + E ° a
M =i 

H +  ^ 2  Da
\a\=n—2

a ll(* ) a 2l(*) ..............  K \ ( x ) A «(x )

Sll(®) a 2l(*) ••• “ (n - l)^ * )  0

a ll(* )  a2l(*) 0 0 i4a (x )
(4.25)

+  E
|a |= n — 1

afl(x) 0 0 A a {x).

|a|=ft
, k =Here each A a (x) is an n  x n  matrix, where the last k  rows in A a (x )

1 ,2 , . . . ,  n  — 1, are zero. This represents a system of n (n — l)-st-order linear PDEs 

in n  variables and n  unknowns.

Note that a ° j(x ) only appears in the first term  where |a | = 0 .  Thus one of the 

n  equations in (4.25) can be used to express a£j(x) in terms of the other unknowns 

and their derivatives. This expression can then be used to eliminate ®nl(x) from 

the other n  — 1 equations, resulting in a system of n  — 1 (n — l)-st-order linear 

PDEs in n  variables and n  — 1 unknowns of the form
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D (x ) -  X  D<* [ ®2i ( ,T)
|a |= 0  L

+  X  D<X [  a ii(* )  ®2l(®) 
|a |= l L

+  X  ^  f «?!(*) ag^x)
|a |= 2  L

+  •■• +  Y 1 D a
|a |= n —2

+  X  a ^ x )  0
|a |= n —1

• S( n - l ) l ^ J  Ba{x)

®(’n - 2)l(!C) 0 B<* W

a f^ x )  a,2i(x)  0 ••• 0 B a (x) 

B a (x)

(4.26)

Here each B a (%) is an (n — 1 ) x (n — 1 ) matrix, where the last k — 1 rows in

B a (x)
101=*

, k = 1 ,2 , . . .  ,n  —1, are zero and D(x)  is a 1 x n vector. Since deriving

the elements of Ha (x) becomes tedious for higher-order systems, it is recommended 

th a t a program with a symbolic mathematics capability (e.g., MACSYMA [95]) 

be used in such cases.

In general equations of the type (4.26) are quite “rich” in nature, and the 

corresponding theory covers a wide field; thus a complete coverage is impractical 

here. The interested reader is therefore referred to the literature, where studies of 

such equations have been reported; e.g., see Chapter 3 in [90]. Another excellent 

reference is Courant and Hilbert’s classical text, Methods of  Mathematical Physics, 

vol. II [96]. For topics related to the reduction of a (system of) higher-order 

PDE(s) to a (larger) system of first-order PDEs, see Chapter I, §2 and Appendix 

2 to Chapter I. Further, see Chapter III and and §3 in Part I and §15 in Part II of 

Chapter VI, regarding solution approaches.

Special case

An especially simple case of (4.26) arises if B a (x) = B a for |a | =  0, a constant 

matrix, and D(x)  =  D,  a  constant vector. Then, since one has the freedom to
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choose any ^ ( s j ’s, i =  1 , 2 , . . . , n — 1 , that satisfy these equations, these quantities 

can be chosen as constants a°^(®) =  a°-f satisfying

n °  n °  °11 a21 B a =  D.

Then if 

pB a 

one has

|a |=0
=  n

a l l  a 21   a(n -l) l =  D (B a )  .
V W = o /

A number of nonlinear systems and all LTI systems fall into this category (thus 

the assumption a°^{x) =  a°  ̂ in Example 3.2.2 was justified).

E x a m p le  4 .1 .4  A nonlinear, third-order system.

x =

0 1 1

- 1  - 1  0

0 *2  0

x

y = o l  o X .

Here (4.1) becomes

£ J  [c ( e ) ]  =  £ 2 [anteM ® )] +  Cl [a2!(*)c(®)] +  £ u [^(scM ® )]’0 r - o

4 Then

Da [ oJil*) a5x(*)   a ^ x )  ] -  0

for |a| > 0.
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Calculating each term  gives

C° [fig^*)^®)] =  [ 0 ag^®) 0 ] ,

C1 [ag^®)^®)] =  ^  (agi(®)®2) A(x)

0 1 o ] ^ ( * )  +  . . .  

- 1  - 1  0

=  ®2l(®) 

*211 +

where .. ” denotes terms including first- and higher-order derivatives of agi(«),

C2 [ag!(®)c(®)] =  C1 

= C1

=  c 1

0 1 0  

- 1  - 1  0

] A(x)  +  . . .  

] + . . . ]

=  ~5x (®ii(®) ( ~ x l ~  *2 )) A{x)  +  . . .

] A(x)  +  . . .- 1  - 1  0=  " i l l* )

=  ®fi(*) 1 0 - 1  + • • . .

Finally £ 3 (c(®)] can easily be calculated as

£ 3 [c(®)] =  0 1 — x \  1

Thus the first and the third equation in (4.1) give 

0  =  a°i(x)  — agi(*) +  .. •

giving

B a
1 - 1

H = o - 1  0

and

D  = 0 1
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Thus

n °  n °all  a21

/
•  ■

\
• 1  - 1

0  1

I 1

O1—
H1

■

-1

- 1  - 1

It can be easily verified from (3.19), (3.10a) and (3.10c) that this gives

Q°(x) =

A°( x) =

and

c ° =  1 0  0

4 .1 .4  D iscussion

0 1 0

- 1 0 0

0 0 - 1

- 1 1 0

- 1 0 1

- x \ 0 0

In this section various computational aspects of (4.1) were discussed. A so

lution was given for the case n  =  1. For n  =  2, a first-order linear PDE in two 

variables and one unknown a ^ ( x )  was derived and a general solution method was 

described. Then two special cases were discussed where finding a solution is espe

cially easy. For n  > 2 , a system of n  — 1 (n — l)-st-order linear PDEs in n  variables 

and n  — 1 unknowns was derived. However, in this case, the variety of situations 

th a t can arise is large; thus a complete coverage is beyond the scope of this work. 

A special case where a solution can be found easily was discussed.
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4.2 Transformation to controller form

In this case (3.34) must be solved, rewritten here as (4.27) 

d
0 1 c -H * ) (4.27)

or

£ ( r ( * ) )  =  h(x) 

where T ( x ) is a function 

T{x)  = qn-(x)x 

and h(x)  is a vector

(4.28)

(4.29)

h(x)  = 0 0 1 c ! (a:) -  h i ( x ) h.2(x) ............  hn(x )

Eqn. (4.28) represents a system of n  first-order, linear PDEs in n  variables and 

one unknown of the form 

d(T(x))
dxi = hi(x) % —* l j  • • a j 71. (4.30)

If such a  T(x)  exists then the \ n { n  — 1) conditions 

a\T(x)) _  92(r (s))
dx{dxj  dxjdx{  

for i =  1 , 2 , . . . ,  n, j  = i + 1 , i -j- 2 , . . . ,  n or equivalently

(4.31)

dxi dx. (4.32)

must hold. These conditions are necessary and sufficient conditions for (4.28) to 

have a solution (p. 45, [91]). This solution is given by

T(x)  = f  (hi(x)dxi  +  h.2(x)dx2 H \-hn(x)dxn ) + C,
Jx  o

(4.33)
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where C  is an arbitrary constant. This integration is performed by first finding all 

Ti(x),  T2(x), . . . ,  Tn(x) that satisfy (4.30) or equivalently

Ti(x)  =  J  h\{^x)dx\

^M®) = J  h , 2 ( x ) d x i

Tn( x)  =  J h n{x)dx\.

Then the T(x)  is formed from those Ti(x)  tha t also satisfy (4.31). Once T(x)  is 

found, <7n-(®) can be found tha t satisfies (4.29). This <?£.(*) can be chosen in many
r\

different ways, however, it must be chosen such that Qc(x)  and m  (Qc(x)x ) are of 

full rank.

E x am p le  4.2.1 A nonlinear, second-order system.

x =
'  - 1  - x ?  ' 0

X  +

1  - 1 1

Here C(x) becomes from (3.33) 

C(x) =
0 — x\

thus

h(x)  = 0 1 C ~ \ x )  =

Here (4.32) is satisfied since

d{hj (x) )  _  d ( h 2{x))
8x 2 dx\

Thus a solution T(x)  exists and

u.

~ x 2 2 0

=  0 .
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Ti(x)  = +  Cl

2 i («0 =  C2

where C\  and C2 are arbitrary constants. Here

d 2

and

8x 26x 1

&2

Ti(a) =  0

T2(x) = 0.

Thus

r ( * )  =  x j 1 +  c ,

where C  is an arbitrary constant. One possible ?2-(*) *s (taking C  =  1 )

2 +  1 0

Then it can easily be verified from (3.35), (3.10a) and (3.10b) that

Qc(*)
x T2 1

Xj 2 +  x i 1 0

i c(x) =
0u ii+T 

1 0

and

bc =
1

0

In cases where (4.32) does not hold, it may be possible to find an integrating 

factor, fi(x),  such that
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d (fl(x)hj(x))  _  d(fi(x)hj(x))  
dx{ dx j

(4.34)

for i =  1 ,2 , . . . ,  n , j  = i +  1, i +  2 , . . . ,  n. This is equivalent to solving the problem 

d
f x  = 0 ..............  0 fx(x)

or equivalently, if bc in (2.26) is replaced by

C - \ x )

bc (xc) =

H(xc)

0 

0

(4.35)

This is acceptable and (2.29) still results if (2.27) is replaced by

u = — n 1 (xc) k c (xc) x c + v

assuming / / - 1  (*c) does not have singularities in critical areas of the state space. 

This is the approach taken by Sommer [68].

If one such integrating factor exists, then an infinite number of integrating 

factors exists [92]. Further, if the following §n(n — l)(n  — 2) identities are satisfied, 

the existence of integrating factors is guaranteed (p. 4-6 [93]),

(4.36)

where i = 1 ,2 , . . .  ,n , j  =  i + l , i  +  2 , . . .  ,n , k =  j  +  1 , j  + 2 , . . .  ,n . Only

| ( n  — l)(n  — 2) of these are independent. Note that when n — 2 integrating factors

always exist (pp. 56-58, [94]).
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E x am p le  4.2.2 A nonlinear, second-order system.

■ -1  - 1  -  *1 0
* = * +

1 1 1
u.

Here C(x) becomes

C(*) =

thus

h(x) 0 1 C - \ x )  = - 1
1+ 3® ,

0

Here

and

d ( M s ) )
dx2

d ( h 2(x))

—  ( l  +  3x 22 )  6 * 2

=  0 .
dx\  

However, if

//(*) =  1 +  3*2

then

d{fx{x)hi(x))
d x 2

and

d{n(x)h2(x)) _  0 

dx\

Then one may proceed to solve for T(x)  as before.
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4.2.1 D iscussion

In this section computational aspects of (4.27) were discussed. Necessary and 

sufficient conditons for the existence of a solution and an explicit solution were 

stated. Further, the possibility of solving (4.27) through the use of an integrating 

factor and conditions tha t guarantee the existence of such factors were discussed. 

In cases when (4.27) can not be solved directly and no integrating factors exist, it 

may be concluded that neither a transformation to the defined controller form nor 

the modified one (where bc (x c) is given by (4.35)), exists.
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C H A PTER  V

SIM U LA TIO N  ST U D IE S

Simulation studies, undertaken to demonstrate the effectiveness of the m eth

ods developed in this work, are described in this chapter. For this purpose, many 

abstract examples are possible; however, in view of the rather theoretical nature 

of this document, it was considered preferable to choose one that has practical 

applicability. Thus, an empirically derived, nonlinear, model of a vehicle’s longitu

dinal dynamics [97] is employed, and a nonlinear observer/controller is designed. 

The latter has the same closed-loop dynamics as in [98]*, where nonlinear compen

sation, which employed parameter-scheduling and a “linear” observer/controller, 

was employed.

5.1 S ystem  in general form

The longitudinal dynamics of an automobile can be represented as [97]2

1This choice was made for comparison purposes.

3StrictIy speaking, since the model is nonlinear, the differential operator p — d /d t  should be used 

in place of the Laplace variable a. However, it is assumed that velocity-dependent parameters 

vary slowly as functions of velocity and therefore the approximation

p (a (y )F ) =  a(V)pV  + Vpa{V)  «  a(V )pV  

can be made, justifying the use of a rather than p.
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Vw(s) _  kp(V)

Vl{*) ( < p ( F ) s  +  l ) ( s  +  M ^ ) )
and

V(s)  £(V)
M«) s +  t ( v )

Here

(5.2)

: a voltage applied to an electrohydraulic actuator, which controls the position 

of the throttle valve,

kp(V) : a function associated with the throttle actuator and the propulsion system,

tp( V ) : a function associated with the propulsion system and its interaction with 

the roadway interface,

kj(V) : a function associated with aerodynamic drag and vehicle mass,

Vw : speed of the rear wheels,

£(V) : a function associated with the tire-roadway interface,

V  : vehicle speed in an inertial frame of reference.

It has been shown experimentally [97] that 

ki(V)  «  0.05

* m ,  (5'3>
tp(V)  ~  1

for 0 <  V  <  30.5m /s—the speed range of interest. Further, a functional represen

tation is needed for tp{V)  and £ (V"). Here these were chosen as

« V > =  (5-4)

and
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tp ^  1 +  0 .50F ' ^

These functions approximate the experimental curves [99] adequately for the pur

pose of this study, further their simplicity is to advantage here**.

Combining (5.1) and (5.2) and using (5.3) results in

V(«)____________ £00__________
ViM (s +  l / tp(V)) ( 3  + 0.05)(s + { (F )) '

or

V(*)  _ ____________ t j v ) ____________
Vi{s) s3 +  a i{V  )s2 +  a2{V)s  +  a3( V)  ’

where

(5.6)

a i (V)  =  l/<p(F ) +  e(V) +  0.05 

a2(V)  =  0.05£(F) +  l / t p(V)  (£(F) +  0.05) 

a 3(F )  =  0 .05£(F)/tp(F ). 

Then using (5.4) and (5.5) these become 

a i ( F )  =  0.4167 ̂ -+6.12^123.68

a2 (V)  =  0.0208^864^2043,2 (5.7)

« 3 < * 0  =

Since an observer/controller configuration does not affect the “zeros” of a 

system, the nonlinear term  £ (V) in the nominator of F(s)/VJ;(s) was cancelled 

by inverse compensation /3/£(V)  so that the same closed-loop dynamics as in [98] 

could be achieved. This results in

V(s ) I3
u ( s )  s3 +  a 1( F ) s 2 + a 2 ( F ) s  +  a 3 ( F ) ’ (5-8)

8One could get a mote accurate approximation, e.g., by a least-square error technique, however, 

most certainly at the cost of increased analytical complexity.
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where

u  = - 2 - V -  
t ( V )  1

and

g£(^0«ia:r ~  6.

Now an arbitrary state-space representation is chosen4 e.g., (here y  =  V  =  x j)

- « l ( * l )  0  1 0

x  =  j4(x)x +  b(x)u = - 0 3  (x i) 0  0 * + p

—a2 (* l) 1 0 0

©©r-HII'h'II X.

u
(5.9)

It can easily be shown that this state-space representation corresponds to (5.8) 

by calculating5

p jjJ  =  c ( x ) ( s l -  j4(x))_ 1 6(x)

1
1 0  0  ]

-  1 - 0

s3+ o j ( x i ) s 2+ a 2(xi)s-|-a3(®i) P

— — — 0

«^+aj(a!i)52-f-02(a::l)a+a3(a:l ) '

4In this case it is possible to find the observer form directly from (5.8), since the nonlinearities are 

functions of the output, which is one of the state variables in that form. Here, for demonstration 

purposes, it was opted to begin with the system in some general form which was sufficiently 

“close” to the observer form so that the transformation to that form could be easily found.

5This formula, does not hold for nonlinear systems unless, as is the case here, the nonlinear, 

state-space representation was derived from a transfer function.
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5.2 Transform ation from  general form  to  observer form

Here (3.18) becomes

£ 3 [c(®)] =  C2 [fln(®)c(a:)] +  C1 [a2 i(®)c(®)] +  £° [afjfcjcf® )].

Generally—even though the elements of A{x)  are functions of e.g. x \  alone, the 

elements of A°(x)  will not be functions of ®j alone. However, the assumption

a?i(®) =  a°n  (®i) 

o^i(®) =  a ^ (® i)  

ogi(®) =  agj(®i)

is made, since it results in considerable simplification6. Calculating each term  

gives:

C3 [c(i)]

- « 1  (x i) ^  |  ( « l  (X ,)  A .  ( 0 ,  (X1) X1) _  „2 ( x , ) \  x ,

d  1 d
(«1 (®l)  * l )  *3 |  (®l)  +  02 ( * l )  5 1 7  (®1 (®l)  ®l)

dxi
d

dx

’2 r-o

^ - { ^ a i ( ® i ) ~ ( a i ( ® i ) ® i ) - a 2 ( ® l ) ^ * l  -  ^  («1 ( ® l ) ® l ) ® s j j  »

C [Sfi (®i)c(®)]

}
d

~ a2 ( * l ) ^ ( S ? l ( ® l ) * l )dxi

9  ( ® i i ( ® l ) ® l )dx\
d

dx\

eIf a solution cannot be found with this assumption, it must be removed.
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£*  [«2l(*l)c(*)]
d  d

and

£ °  [«31 ( * l ) c(*)]

=  [ a 3 l ( * l )  0  0  ] •

This results in three equations, the second of which is

( a i  ^  =  ^ 7  ^  ’

thus

5 11 ( * l )  =  - « l ( * l ) -

The third equation then becomes 

d
dxi

d
dx i

{ (ai ̂  “ “ 2 Xl  ~  ^  ̂ ai ̂  x ^  *3}
{

0  0  1 
al ( * l ) ^ - ( « l ( * l ) * l ) * l  -  (a l ( * l ) * l ) iC3 j

or

d x i d x i

thus

a 2 l ( * l )  =  —a 2 ( * l )  •

Similarly the first equation becomes, using (5.10) and (5.11),

“31 (*1)  =  “ “3 ( * l )  *

(5.10)

(5.11)
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Then it can easily be verified using (3.19), (3.10a), (3.10b) and (3.10c) and scf =  x\  

tha t

Q ° ( x )  =  Q °  =

1 0  0 

0 0 1 

0  1 0

- a i  (®f) 1 0 «?!•(*?)  1 0

A ° ( x ° )  = - a 2 (®j) 0  1

II

4 i  ( * 1)  0  1

- 0 3  0  0 °31 ( * l )  0  0

b°(x°)

and

c° = 1 0  0

(5.12)

Here, from (5.7) (V  =  ®i)

a (  o \  (  n \  n  .,„_a !?2+6.12*?+123.68
“ 11 (* l)  =  - « i  (*?) = -0 .4 1 6 7 -1  j r f r --------

2

4 . ( , f )  =  - O2(x?) =  - 0 . 0 2 0 8 d ^ ! « £ ! y

“ 31 ( * l )  =  - « 8  ( * ? )  =

These equations, (5.12) and (5.13), specify the desired observer form.

5.3 Transform ation from  observer form  to  controller form

(5.13)

This transformation can be effected by first employing (3.34) in the form



which using (3.33) and some calculation results in 

8
dx 1 0  0

One possible solution is

93- ( x °)  =  03- =  0  1 1 0  0

Then q%. (x°) and q\, (x°)  can be calculated from (3.35) resulting in

92- (*°) =  P 1 a°n  (*?) 1 0

and

flf. (®°)

=  / ? " 1
. a?i (®?) g fi («ii (*?) ®?) +  «2i (®?) sfr  (aii (xi)  *?)

Thus

Qc ( * ° ) = ^ - 1

91 ( * i )  03 ( * i )  1

02 (*?) 1 0 

1 0 0

(5.14)

where

01 ( * i )  =  «?i  (®i)  («?i  (®?) « f )  +  a 21 (®?)

02 (®f) =  «?i (*?)

93 (®f) =  g f j  (ofi (*?) *?) .

Using (5.13), 0 i (®i) and 03  become

( x o)  _  0 3 1 7 2 ai S+15-12ai4+145-167zi 3+ 930-487a!i 2+ 2633-434igi+ 28632-01
91 \ * l )  • (*5+ 4 )3 ~

and (5.15)

.  / _ o \  _  n Oooox i 3+®.06*i2+24.48a!®+247.36
03 (x jj  -  -0.8333-1 fcf + 4 ) 2 

-

•
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Calculating Qc 1 (s°) and  ̂ gives

Q c '  ( O  =  fi

0 0 1

0 1 -0 2  (* i)

1 - 0 3  (* ? )  —®21 ( * l )

and

d{Qc {xO)x°) ! 
dx° P

(01 (*?)*!• +  03 (®?)*S) 03 (®?) 1

g f j  ( 0 2  ( * 1 )  * 1 )  1 0

1  0  0

Then using (3.10a), (3.10b) and (3.10c) gives

a \ i (a ° )  of2 (*°) of3 (*°) 

A c {x°) = 1 0 0

0 1 0

bc =

1

0

0

and

0 0 / 3

where

«11 (® °) =  03 (®?)

5i 2 (® °) =  g f j  (01 ( * l )  ®? +  03 ( * 1)  * 2)  “  03 ( * l )

®13 ( * ° )  =  a 31 ( * l )  •

Using (5.13) and (5.15) here results in
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«?l ( **) =  —0 * 8 3 3 3 —̂ 6a°2 24-4^8 i +  247.36^

(*l + 4)
«12 (*°) =  0.3472 ( x f  + 1 8 x f  +  185.48*?4 +  466.08*?3 -  1630.46*? 

-60418.22*? -  7845.89) /  (*? +  4 ) 4

_ 0 ,83 3 3 ^ ± ^ ? 2 + 4 8 * ? -  3 9 6 .8 ^ >

(® 1 +  4 )

and
- c  /  o \  *?  +  2a?o(*°) = --------

13 v '  *? +  4

Using (5.14) in x c =  Qc (x ° ) x°  gives

*3  =  0 -1 *i> 

and

*2  =  P ~ l (92 (*?) *? +  *2 ) *

thus,

*1 =  0 * 3  =  6 x 3 

and

4  =  0 4  -  « ( 0 4 )  0 4  =  « 4  + <&
Substituting these quantities in (5.16) gives

« n  (*c) a?2 (*c) a?3 (*c)

IIuH

1 0 0

0 1 0

(5.16)

bc =

1

0

0

(5.17)

and
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Cc { x c )  =  0 0 6

where

.<3 - -2wc, /_c> -  5*3 +0-««;S+l-M6
11' ' 5 (*1+0.67?

3 2-c j  *>».c i i *>o-.c 1 £37ac (x c\  — 5 x^ *3 +2x3 + 1 3 3 a , - l .
12 ( j "  5*2 (*3+0.67)

_ 0  25iEa5+ 82-85a!a4+216-48ga3+ 198-29a!a2+72-94a;a+8-41 (5.18)
(*{+0.67)4 ’

and
c / c \  *5+0.33

a 13 (® ) =  - ^ f + 0 7 -

These equations, (5.17) and (5.18) specify the desired controller form.

5.4 O bserver/controller design

The control system to be designed is shown in Fig. 4, where the nonlinear 

vehicle dynamics/inverse compensator correspond to the state-space representation 

of Eqn. (5.9). This is a position controller in which X r is the reference position and 

X  is the actual vehicle position. The position error, X e , is the difference between 

these positions and is to remain as small as possible.

The pole-placement was such that

m =  m   f 5 1 9 )
C(s) s3 +  30.034s2 +  241.384s+  809.68’ v ’

where C  is defined in Fig. 4. The feedback gains were chosen as in (2.28), where

k\  =  30.034 

k% =  241.384 

k l  =  809.68.

The observer gains were chosen as in (2.7), where If, Z£ and Z3 were selected 

corresponding to  observer poles at —6 , —6 , —6  (a similar choice was made in [98]
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Figure 4: Vehicle longitudinal control system



where a  reduced-order observer had 2 poles at —6). Finally, the “outer loop” of 

the control system was chosen as in [98], i.e., a  lag compensator and a gain.

5.5 S im ulation  resu lts

The performance of the system was evaluated by a digital simulation (see 

Appendix C for a  program listing). The system of Fig. 4 was excited with the 

command input given by

X r = 0.65t2 -  0.0045*3 m  0 <  t <  30s 

X r =  463.5 -f 26.85(< — 30.) m  t >  30s.

This large-signed input is used when merging a vehicle from standstill into mainline 

traffic and encompasses virtually the entire speed range of interest. For this input 

several different cases were examined and X e(t) was obtained.

5.5 .1  O bserver— general case

Here the observer was constructed as in (2.3), i.e., x°  was used in A°(x°) ,  

b° (x ° ) and 1° ( i° ) . Simulation results for two different sets of observer initial 

conditions:

Case I. Observer poles: —6, —6, —6; ®j(0) =  0, *2(0 ) =  *3(0 ) =

and

Case II. Observer poles: —6 ,—6 ,—6; *f(0) =  2, *2 (0 ) =  4, *3(0 ) =  —3,

are shown in Fig. 5. In Case I, the observer reconstructs the system states (whose 

initial conditions are also zero) perfectly throughout the simulation. Effectively, 

this is equivalent to using the real system states for state-feedback. In Case II, the 

peak-position error is slightly higher than in Case I but the system recovers in 2-3 

seconds and thereafter follows the trajectory of that case. These results compare
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favorably to those in [98]^; however, the latter show discretized effects because of 

the less-accurate, parameter scheduling technique employed. These results are also 

in close correspondence with those obtained from field studies [99], where a classical 

design with approximately the same poles as the present one, was evaluated. Thus 

the present design is judged to be physically realizable.

The state errors (e° =  x° — x°) in Case II are shown on an expanded time-scale 

in Fig. 6 , from which may be observed that these errors die out in less than  two 

seconds.

The effect of moving the observer poles closer to the yaj-axis while keeping the 

initial conditions the same as in Case II, were evaluated in Case III.

Case III. Observer poles: —1 ,—1 ,—1 ; ®j(0) =  2, x ^(0) =  4, 563(0 ) =  —3.

The simulation results for this case are is shown in Fig. 7, where Case II is also 

depicted. Note the performance degradation in Case III due to the slower recon

struction of the states8; however, the system recovers within 10s and thereafter 

follows the desired trajectory.

5.5.2 Observer— special case

Since the system falls into the category of output-dependent nonlinearities,

the observer can be constructed using (2 .2 2 ), i.e., y  is used in A°(y),  b°(y) and

l°(y). The cases discussed in 5.5.1 are shown in Figs. 8 , 9 and 10, respectively.

Generally the results were identical when the observer poles were —6 , —6 , —6 (Fig.

8 is identical to Fig. 5, Fig. 9 is identical to Fig. 6 ). In Case III, which is shown

7I.e., see Fig. 2.11, p. 18 (digital simulation results) and Fig. 5.1b, p.44 (hybrid simulation 

results).

8Here the observer poles are approximately the same “speed” as the system closed-loop dominant 

poles (—1.04 ±  y'2.16).
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in Fig. 10, there is slightly less oscillation than in the corresponding case in Fig. 

7, however, the oscillations die out in about 10 s in both cases.

5.6 D iscussion

Generally the simulation results were as expected and compared well to those 

previously reported. The results were also in close correspondence with those 

obtained from field studies [99] which indicates that the present controller would 

be physically realizable.

It is interesting how quickly the state error died out for sufficiently fast ob

server poles, even in the general case (where x  is used in the observer). In fact 

all the results were practially identical for the general case and the special case 

(where y  is used in the observer) for sufficiently fast observer poles. This suggests 

that the nonlinearities in the error dynamics are not causing a serious problem, 

nor do they require large observer pole values for good system performance.

Additional simulation studies where the system nonlinearities are functions of 

all the system states are reported in Appendix F.
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CH APTER VI

SU M M A R Y , C O N C L U SIO N S A N D  SU G G E ST E D  F U T U R E  

ST U D IE S

6 .1  Sum m ary

The purpose of this work was to develop a design methodology for observers 

and controllers for a  class of nonlinear systems, where the elements of the system 

matrices (the state m atrix (A(a:)), the input m atrix (&(*)) and the output m atrix 

(c(®))) are C°°-functions of the system states (referred to as the general form).

In Chapter II various observability aspects were briefly discussed, a nonlinear 

observer form was defined, and a corresponding observer using nonlinear observer 

gains was specified. The observer states were used to calculate the nonlinear 

elements of the state and input matrices in the observer (referred to as the “general 

case” ), resulting in nonlinear error dynamics. These matrices satisfy a Lipschitz 

condition1 since their entries are C°° functions and then, by a proper choice of 

nonlinear observer gains, the error dynamics can be made asymptotically stable. In 

a special case, where the state and input matrices are functions of the output only 

(referred to as the “special case” ), the output can be used to calculate the nonlinear 

elements of these matrices in the observer, resulting in linear error dynamics.

Various aspects of controllability were also discussed and a nonlinear controller

1lf  the state matrix is nonlinear, then the output must be bounded. If the input matrix is 

nonlinear, then the input must be bounded.
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form was defined. A controller, using nonlinear controller gains, was devised for 

this form, which resulted in linear closed-loop dynamics with arbitrary eigenvalues.

Transformations from the general form to the defined observer and controller 

forms were derived in Chapter III. In the observer case, this led to a system of n, 

(n — l)-st-order linear PDEs in n  variables and n  unknowns, generally a difficult 

problem to solve. In the controller case, a much simpler system of linear PDEs 

was obtained; i.e., n, first-order equations in n  variables and one “unknown” . The 

transformations were applied to simple nonlinear examples in both cases; further, 

when applied to a general n-th-order linear system, well-known controllability and 

observability conditions were obtained. A method for transforming nonlinear feed

back gains from the defined forms to the general form was also specified.

Various computational aspects of the PDEs derived in Chapter III were con

sidered in Chapter IV. In the observer case a general solution was given for n  =  1. 

In the case n  =  2, the system of two equations was reduced to a single first-order 

PDE in two variables and one unknown, a problem widely documented in the lit

erature. A general solution method for this case was described (pp. 133-137, [89]) 

and an example was given. Two special cases, where the solution can be found eas

ily, were stated and examples given. In the case n  > 2, the system of n  equations 

was reduced to a system of n  — 1, (n — l)-st-order PDEs in n  variables and n  — 1 

unknowns. In general, such a system of equations is quite “rich” in nature, and a 

complete coverage was beyond the scope of this work; thus, the interested reader 

is referred to the literature. However, a special case was solved and an example 

was given.

Solution methods for the equations that arose in the controller case are well 

documented in the literature. Necessary and sufficient conditions (p. 45, [91]) 

were given for the existence of a solution, an explicit solution for the general case
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was stated (p. 45, [91]) and an example was given. In the case when the necessary 

and sufficient conditions for the existence of a  solution are not satisfied, it may 

be possible to find a solution through the use of an integrating factor [68]. The 

conditions that guarantee the existence of such factors (p. 4-6 [93]) were discussed 

together with an example.

Simulation studies were reported in Chapter V. A third-order nonlinear sys

tem, which was based on empirically derived, vehicle longitudinal dynamics, was 

chosen as an example. Transformations from the general form to the observer form 

and from the observer form to  the controller form were found. A nonlinear ob

server/ controller was designed such that the resulting linear closed-loop dynamics 

and observer dynamics matched those of previous studies for comparison purposes. 

Results were shown for different observer initial conditions and different observer 

poles for both the general case and the special case.

6.2 Conclusions

The observer (controller) design methodology, once the system is in the ob

server (controller) form, is basically very simple and analogous to the linear case. 

However, nonlinear systems are frequently difficult to analyze and/or design as 

is exemplified here in finding the nonlinear transformation to the observer form. 

This involves solving a complex system of PDEs and can get extremely involved, 

especially for higher-order systems. On the other hand, a much simpler system 

of PDEs results for the controller form. Further, finding the solution when the 

existence conditions are satisfied, is relatively simple. In both cases, finding the 

coefficients of the PDEs and, once the PDEs have been solved, calculating the final 

observer/controller form is, albeit straightforward2, often tedious.

2This generally involves only differentiation and algebraic manipulation.
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Simulation results showed excellent correlation with previous studies employ

ing the same closed-loop dynamics. Since the latter included a field study, the 

specified design should be physically realizable. All results were practically identi

cal for both the general case and the special case when the observer poles were 2-3 

times larger than the dominant closed-loop poles. This suggests that the nonlin- 

earites in the error dynamics do not require large observer pole values for adequate 

state-error decay, this is also supported by a simulation study reported in Appendix 

F. The state error for initial conditions of 2,4,-3 and observer poles at —6, —6, —6 

died out in less than 2 seconds. Finally, response deterioration caused by slow

ing down the observer poles to approximately the same speed as the dominant 

closed-loop poles was observed.

Note that this system, while chosen for its practicality, is sufficiently complex 

so that it exercises all aspects of the design methodology developed. The method

ology should also work well for other systems of the class treated in this work3 

and further, it has definite advantages over parameter-scheduling, especially for 

systems where the nonlinearities are functions of many state variables resulting in 

a large number of operating points4.

The m ajor goal of this work has been achieved and, despite some practical 

difficulties that may be diminished through future studies, a successful design 

methodology for the chosen class of nonlinear systems has been developed.

sThis has also been indicated by other simulation studies, one of which is reported in Appendix 

F.

4 For example, if the nonlinearities are functions of three state variables and there are 30 operating 

points for each state variable, then the total number of operating points is 30s =  27,000.
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6.3 Suggested future studies

Nonlinear control theory is still relatively young and far from having reached 

maturity, and there are many topics that are candidates for future studies. One, 

related to this study, concerns establishing a strong theoretical basis between the 

observability (controllability) of a nonlinear system and the design of an observer 

(controller). As opposed to the case of linear systems, such a link has not been 

clearly established.

Several topics directly related to this work need further investigation and are 

summarized as follows:

1. The necessity/feasibility of using Theorems 2.1.1 and A.2 as design guide

lines for selecting observer poles is of interest. The former results in bounds 

that can be related to the observer poles. Although these bounds are use

ful for proving asymptotic stability of the error dynamics, they may be too 

conservative and thus result in a choice of unnecessarily fast observer poles, 

thus enhancing the system’s susceptibility to noise. If the use of these theo

rems were feasible for observer design, software programs that ease that task 

should be developed. On the other hand, selecting the observer poles from a 

simulation study may be more attractive due to its simplicity; further, sim

ulation results already obtained have indicated that the nonlinearities in the 

error dynamics do not seriously affect the speed of error decay.

2. Deriving the coefficients of the systems of PDEs in both the observer and con

troller case, while straightforward, is quite cumbersome for higher-order sys

tems. This task could, however, possibly be autom ated using MACSYMA5.

bMACSYMA is a program with a symbolic mathematics capability.
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3. The system of PDEs for the observer case is, especially for higher-order sys

tems, very difficult to solve. This area needs more investigation and even 

though some work is contained in the literature on such systems, the situa

tions that arise are so diverse, that each becomes an interesting challenge.

4. Many of the algebraic tasks involved in calculating the nonlinear observer 

and controller forms, once the PDEs have been solved, may be extremely 

cumbersome. These tasks could also possibly be autom ated using MAC- 

SYMA.

5. A number of preliminary findings involving structural observability (control

lability) of the nonlinear observer and observability (controller and controlla

bility) forms6 are reported in Appendix E. These were not fully investigated 

here since this subject7 was beyond the scope of this work. This seems a 

very profitable area for future investigations.

6. Simulation studies have indicated very favorable performance of a combined 

observer/controller configuration. However, a proof of the overall stability of 

such systems should be worked out.

Looking towards topics that were not addressed here; two seem of immediate 

interest. F irst, it seems relatively straightforward to incorporate the concepts 

developed in this work, toward the design of a reduced-order observer. Second, 

the multiple input-multiple output case was not investigated and should provide 

an interesting challenge.

eTransformations to the nonlinear observability and controllability forms are derived in Appendix 

D.

7This subject is related to the lack of a theoretical basis between the observability (controllability) 

of nonlinear systems and the design of an observer (controller).
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I

A P P E N D IX  A 

P R E R E Q U IS IT E S  F O R  C H A P T E R  I I

A . l  N o rm s

The norm definitions below follow that of [81].

D efin itio n  A . l  The norm of a matrix A is defined as

ll^ll = sup =  sup II-4 ®!!-Z?0 ||*|| ||*|| = 1

This is an induced norm since it is defined through the norm of x. The following 

vector norm, ||®||j, was chosen here from several possible ones, as it leads to a 

convenient m atrix norm, ||A ||j.

D e fin itio n  A .2 The norm of a vector x is defined as

li =  £  1**1- (A -s )
n

K
i=l

For Hsllj, the corresponding m atrix norm, ||A ||j, becomes (using (A.2) in (A .l)) 

IIAHj =  m a x ( £  |oy |). (A.3)
3 i=l
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A .2 A spects o f the nonlinear error dynamics 

Theorem  A .l  If  e° satisfies (2.10) then it also satisfies

e°(t) =  $°(i, <0 )e ° (* o )  +  f  r ) ( 0 a ( * ° ( r ) )  -  «?i(*°(T)))y(T)dT

+  [  $ ° ( t , T ) ( b ° ( x ° ( T ) )  - b ° ( x ° ( T ) ) ) u ( T ) d r  ( A . 4 )
JtQ

w h e r e  4 > ° ( < , r )  =  e ' l4° ( < _ r ) s a t i s f i e s  

=  A°e* ° ( t , r ) .

Proof: This proof follows a similar one in [81] p. 139. Differentiating (A.4) with 

respect to (w .r.t.) t gives

j t e ° ( t)  =  ^ * ° ( M o ) e ° ( < o )

+ j t f to $0(<>T)(a°i(:c0(T)) ” a°i(£° (T)))y(r )d r

+  J t  f t o  $ ° ( i , T ) ( b ° ( x ° ( T ) )  -  b ° ( x 0 ( r ) ) ) u ( T ) d T

+ § t  L 0 $0(/’r)(a°i(a:0(T))_ a°i(£° (T)) )y(T)dT

+  § t l t 0 T K 6 0 ( * 0 ( r ) )  ”  b0 ( x 0 ( r ) ) ) u ( T ) d r

=  A°e* o( t , t 0)e°( t0)

+ $ °(t,t)(a fi(* ° (t))  -  of1(*°(t)))y(i)

+  / o £ $0(<»r )(«0i(* 0(T)) -  <*?i(x°(T)))y{T)dT 

+ $ ° ( t , t ) ( b ° ( x ° ( t ) )  -  b ° ( x ° ( t ) ) ) u ( t )

+  f  ^ $ ° { i , T ) ( b 0 { x 0 ( T ) )  -  b0 ( x 0 ( T ) ) ) u ( r ) d T
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=  A°e $ ° ( M o ) e ° ( < o )
%

+  /  $°(<>T) « l ( a:0(T)) -  a?i(*°(T))M r)rfr 
J t  o

+  f  $ ° ( t , T ) ( b ° ( x ° ( T ) )  — b ° ( x ° ( T ) ) ) u ( T ) d . T
JtQ

+ ( « f 1 ( * ° ( 0 )  -  a f i ( 5 ° ( 0 ) ) y ( < )  +  ( * » ( * ° ( < ) )  “  * W O ) ) « 0 O

=

+ ( a ? i ( « ° ( < ) )  -  « f i ( f i ° ( 0 ) ) y ( 0  +  ( * > ° ( * ° ( * ) )  -  * W * ) ) M < )

a t  < =  <o o n e  h &s

e ° ( t 0 ) =  $°(<o» <o )e ° (< o )  +  Jt ° d r  +  d r  =  e ° ( t 0 )

T h e o re m  A .2 A r e l a t i o n  b e t w e e n  e A ° ^  T) a n d  t h e  e i g e n v a l u e s  o f  A°, Ai, A2 , .. 

A n ,  i s  g i v e n  b y

e A e ( * ~ T) =  Q S e & ' - ^ Q f 1 ( A . S )

w h e r e

Ai

A2

A* =

An

a n d

Q°d = SA,
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E is a lower triangular Toeplitz matrix, with first column [1 Zj 

A is a Vandermode matrix with columns [1 Aj A? • • • A”""*], i = 1, • ..  ,n .

Proof: If

K  =  Q i 4 Q ° r ' ’ (A.6)

then Qfi is composed of the eigenvectors of A°. Further, multiplying (A.6) by the 

scalar t — r  gives

Then from (A.7)

eA ° ( t - r) =  Q O e A * ( i - T ) Q o - i

(A.7)

(A.8)

is valid (easily proved using the Cayley-Hamilton theorem). Thus it suffices to

]T is an eigenvector of A°  (a similar result was stated 

for a m atrix in controller form in [23] pp. 54-55), i.e.,

A°E  i  A A2 • • • An_1 

The L.H.S. of (A.9) gives

1 

A

A°e S  A2

=  AS 1 A A2 ••• A”
- r -

(A.9)

An- l
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-I?  1

~ l °2 0 ■*.

< - 1

~ l°n

~ l \  1 

~ l°2 0

< - 1

~ l°n

1

0

n

l°2

0

1

n

l° n - l l°n -2

0

li  1

1

A

A 2

A ” - l

1

0

1

Z f +  A

q  + x q  +  a2

ln-1  +  A Z £ _ 2 H h  A " - 2 Zj +  A ” - 1

A 

A Z? +  A 2 

A / £ _ 2  +  ■ • • +  A n " 2 / f  +  A n _ 1  

- Z °l n

A 

A Z? +  A 2

A/n - 2  +  • • • +  A n_2^l +  A"_1

A Z ° _ j  H 1- A " - 1 /® +  A ”

The R.H.S. of (A.9) gives

(A.10)
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1 1

A Z? +  A

AS A2 =  A q  +  A +  A2

An-i +  K -2  +  • • • +  +  A” ” 1

A 

A Zf +  A2

\ lo _ 2 +  . . .  +  A n~2l° +  A”" 1 

AZ£_i H h An -1 /f +  An

Comparing (A.11) and (A.10) shows that (A.9) holds.

□

Note that Theorem 2.1.1 can be used to obtain an upper bound on

(A .ll)

ej4e(<- 'r)

Then Theorem A.2 and Eq. (A.3) can be used to relate to the eigenval

ues of A°. This would typically be done by selecting some eigenvalues, calculating 

eAt(t-T) using (A.5), then using (A.3) to find |e 'Ae(*-T ) and checking whether 

(2.12) is satisfied. For higher-order systems, this procedure should be accomplished 

using a digital computer.
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A P P E N D IX  B  

P R E R E Q U IS IT E S  F O R  C H A P T E R  I I I

B . l  A sp ec ts  o f  n o n lin ea r  in d ep en d e n c e

The concept of independence for function-valued vectors is defined as follows 

(analogous to independence for constant vectors):

D efin itio n  B . l  A set V  of n  function-valued row or column vectors

{ p l (* )> P 2 (® ) , - - - ,P m (* )}

in TV1 will be said to be nonlinearly dependent if there exist some functions, possibly 

complex, {ai(® ),. . .  in TV1 and not all zero for which

a i(x )p i(x )  + a 2(x)p2(x) +  • • • +  a m(x)pm (x ) =  0

for all x. Otherwise, V  will be said to be nonlinearly independent.

E x a m p le  B . l  The row vectors

since

x \  0 and ®2

El
*2 x 2 0 On the other hand |  0

0 |  are nonlinearly dependent

and 0 ®2 are

nonlinearly independent, since 

*2 =  0 .

®1 0 #  «(*) 0 *2 , «(*) 7  ̂ 0  unless x \  =

The following four statem ents are equivalent:

1. The set V  is nonlinearly independent in TV1.

109



2.

Pl(*)

P2(x)

n

Pn(x)

( Pk(x ) row vectors).

Pl{x ) P2(x ) ............  pn(x) = n

( Pk(x ) column vectors).

3. The set V  forms a basis for Sf” .

4. The set V  spans Sftn .

Then the following holds: If the set V  forms a basis for 3ft” , then any vector q(x)e^Rn 

can be expressed as 

n
9(*) =  2  a »(*)Pi(*)» »

i=l

i.e., as a nonlinear combination of the p/e(x)’s, k = 1, . . .  ,n .

D efin itio n  B .2  A nonlinear matrix A{x) is nonsingular if  its columns (rows) are 

nonlinearly independent.

B .2  T h e  n o ta tio n  o f  Su a n d  H u n t

The following notation [85] was inspired by Su [86] and Hunt [87].

D efin itio n  B .3  For two vector fields f  and g in TV1, the Lie bracket [f , g ] is a 

vector field in TV1 defined as
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\ f  „i =  2i  f  _  2l n 
[ f ,9] ~ d x f  d x 9 '

Further, the following notation is introduced 

(a< ff,g)  =  g

(adkf ,g )  =  [/, (adfe_1/ , 5)] , fc =  l , 2 , . . . .

Thus

(ad?f,g)  =  g 

(ad1/ ,  <7) =  [f , g ]

(ad?f,g)  =  [ / , [ / ,  g])

(adzf ,g )  =  [ /,[ /,[ /,$ ]]]

etc.

D efin itio n  B .4  For a scalar field (function) h and a vector field f  in %n, the Lie 

derivative of h with respect to f  is defined by
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A P P E N D IX  C

PRO GRAM  LISTINGS

This appendix contains sample program listings of the software developed for 

the simulations studies in this work.

a a i n  p r o g r a m  f o r  s i m u l a t i o n  o f  v e h i c l e  l o n g i t u d i n a l  d y n a m i c s  

n o n l i n e a r  o b s e r v e r / c o n t r o l l e r  

p r o g r a m m e r :  A n n a  S o f f i a  H a u k s d o t t i r  

O S U  1 9 8 7

10

d i m e n s i o n  x ( 8 )

d i m e n s i o n  p ( 3 ) , q ( 3 ) , x l o ( 3 )

d i m e n s i o n  x x ( 4 0 0 2 ) , y y ( 4 0 0 2 )

c o m m o n  x r , x l o

w r i t e  ( 5 , * )  ' i n p u t  o b s e r v e r  p o l e s '  

r e a d  ( 5 , * )  p

x l o ( 1 ) - p ( 1 ) + p ( 2 ) + p ( 3 )

x l o ( 2 ) « p ( 1 ) * p ( 2 ) + p ( 1 ) * p ( 3 ) + p ( 2 ) * p ( 3 )

x l o ( 3 ) - p ( l ) * p ( 2 ) * p ( 3 )

w r i t e  ( 5 , * )  1 

r e a d  ( 5 , * )  q  

x ( 6 ) - q ( l )  

x ( 7 ) - q ( 2 )  

x ( 8 ) - q ( 3 )

i n p u t  o b s e r v e r  i n i t i a l  c o n d i t i o n s '

{ o b s e r v e r  

!  o b s e r v e r  

l o b s e r v e r

s t a t e  x h a t _ l “ o  

s t a t e  x h a t _ 2 * o  

s t a t e  x h a t  3 “ o

i n i t i a l i z e  f o r  s i m u l a t i o n

s e c - 4 0 .

t - 0 .

h - 0 . 0 0 1

n d - 8

l o o p c n t - s e c / h  

d o  j - 1 , 5

x ( j )  -  0 .

e n d  d o

! t o t a l  s i m u l a t i o n  t i m e  

{ r e a l  s i m u l a t i o n  t i m e  

{ t i m e  i n t e r v a l  f o r  r k 4  i n t e g .  

{ n u m b e r  o f  s t a t e  v a r i a b l e s  

I n o .  t i m e s  t h r u  s i m u l a t i o n - l o o p  

{ i n i t i a l i z e  s t a t e  v a r i a b l e s  

!  x ( 1 ) :  p o s i t i o n  

1 x ( 2 ) :  i n t .  o f  p o s .  e r r o r  

{  x ( 3 ) :  s y s t e m  s t a t e  x _ l  

{  x ( 4 ) :  s y s t e m  s t a t e  x _ 2  

{  x ( 5 ) :  s y s t e m  s t a t e  x ~ 3
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c  m a i n  s i m u l a t i o n  s t a r t s

d o  j - l , l o o p c n t

c  l o a d  i n t o  v e c t o r s  f o r  p l o t t e r
x x ( j j )  -  t  

y y ( j j )  -  x r - x ( l )

c  r e f e r e n c e  p o s i t i o n

i f  ( t  . I t .  3 0 . )  t h e n

x r  -  0 . 6 5 * t * * 2 - 0 . 0 0 4 5 * t * * 3
e l s e

x r  -  4 6 3 . 5 + 2 6 . 8 5 * ( t - 3 0 . )
e n d  i f

c  c a l l  R u n g e - K u t t a  i n t e g r a t i o n  a l g o r i t h m

c a l l  r k 4 ( x , t , h , n d )

e n d d o

c  c a l l  p l o t t i n g  r o u t i n e

n - 4 0 0 2

c a l l  h p p l o t ( x x , y y , n , l , 0 . , 4 0 . , - . 1 , 1 . )

w r i t e  ( 5 , * )  ' d o  y o u  w a n t  a n o t h e r  r u n ? '  

r e a d  ( 5 , * )  1  

i f  ( l . e q . l )  g o t o  1 0

s t o p

e n d

*  t h i s  i s  t h e  R u n g e - K u t t a  i n t e g r a t i o n  a l g o r i t h m

s u b r o u t i n e  r k 4 ( y y , t , h , n d )

d i m e n s i o n  y y ( 8 ) , x k l ( 8 ) , x k 2 ( 8 ) , x k 3 ( 8 ) , x k 4 ( 8 )  

d i m e n s i o n  y l ( 8 ) , d y ( 8 )  

d i m e n s i o n  x l o ( 3 )

c o m m o n  x r , x l o

c a l l  d e r f u n ( y y , d y , t )  

d o  i » l , n d

x k l ( i ) - h * d y ( i ) 

y l ( i ) - y y ( i ) + x k l ( i ) / 2 .

e n d d o  

t - t + . 5 * h

c a l l  d e r f u n ( y l , d y , t )  

d o  i - l , n d

x k 2 ( i ) « h * d y ( i )

y l ( i ) - y y ( i ) + x k 2 ( i ) / 2 .

e n d d o

c a l l  d e r f u n ( y l , d y , t )  

d o  i - l , n d

x k 3 ( i ) - h * d y ( i ) 

y l ( i ) - y y ( i ) + x k 3 ( i )

e n d d o  

t - t + . 5 * h

c a l l  d e r f u n ( y l , d y , t )  

d o  i > l , n d

x k 4 ( i ) « h * d y ( i )

e n d d o  

d o  i - l , n d
y y ( i ) - y y ( i ) + ( x k l ( i ) + 2 . * x k 2 ( i ) + 2 . * x k 3 ( i ) + x k 4 ( i ) ) / 6 .

e n d d o

r e t u r n

e n d
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*

*
t h i s  i s  t h e  s u b r o u t i n e  t h a t  c a l c u l a t e s  t h e  f i n i t e  d i f f e r e n c e s  

f o r  t h e  R u n g e - K u t t a  i n t e g r a t i o n

s u b r o u t i n e  d e r f u n ( y , d y , t )  

d i m e n s i o n  y ( 8 ) , d y ( 8 ) , x l o ( 3 )  

c o m m o n  x r , x l o

c  c a l c u l a t e  p a r a m e t e r s  f o r  g e n e r a l  f o r m

a l l  -  - 0 . 4 1 6 6 6 6 4 * ( y ( 3 ) * * 2 + 6 . 1 2 * y ( 3 ) + 1 2 3 . 6 8 ) / ( y ( 3 ) + 4 . )  

a 2 1  -  - < y ( 3 > + 2 . ) / ( y ( 3 ) + 4 . )

a 3 1  -  - 0 . 0 2 0 8 3 3 2 * ( y ( 3 )  * * 2 + 9 6 6  . * y ( 3 ) + 2 0 4 3 . 2 ) / ( y ( 3 ) + 4 . )

c  c a l c u l a t e  p a r a m e t e r s  f o r  o b s e r v e r  f o r m

a o l l  -  - 0 . 4 1 6 6 6 6 4 * ( y < 6 ) * * 2 + 6 . 1 2 * y ( 6 ) + 1 2 3 . 6 8 ) / ( y ( 6 ) + 4 . )  

a o 2 1  -  - 0 . 0 2 0 8 3 3 2 * ( y ( 6  ) * * 2 + 9 6 6 . * y ( 6 ) + 2 0 4 3 . 2 ) / ( y ( 6 ) + 4 . )  

a o 3 1  -  - ( y ( 6 ) + 2 . ) / ( y ( 6 ) + 4 . )

c  c a l c u l a t e  n o n l i n e a r  p a r a m e t e r s  f o r  c o n t r o l l e r  f o r m

g l  -  0 . 3 4 7 2 2 1 7 7 7 8 * ( y ( 6 ) * * 5 + 1 5 . 1 2 * y ( 6 ) * * 4 + 1 4 5 . 1 6 7 2 1 8 7 * y ( 6 ) * * 3  

x  + 9 3 0 . 4 8 6 5 8 7 9 * y ( 6 ) * * 2 + 2 6 3 3 . 4 3 4 2 1 1 * y ( 6 ) + 2 8 6 3 2 . 0 1 3 4 3 )  

x  / ( y ( 6 ) + 4 . ) * * 3

g 2  -  - 0 . 4 1 6 6 6 6 4 * ( y ( 6 ) * * 2 + 6 . 1 2 * y ( 6 ) + 1 2 3 . 6 8 ) / ( y ( 6 ) + 4 . ) 

g 3  -  - 0 . 8 3 3 3 3 2 8 * ( y ( 6 ) * * 3 + 9 . 0 6 * y ( 6 ) * * 2 + 2 4 . 4 8 * y ( 6 ) + 2 4 7 . 3 6 )  

x  / ( y ( 6 ) + 4 . ) * * 2

x c l  -  ( g l * y ( 6 ) + g 3 * y ( 7 ) + y ( 8 ) ) / 6 .  

x c 2  -  ( g 2 * y ( 6 ) + y ( 7 ) ) / 6 .  

x c 3  -  y ( 6 ) / 6 .

a c l l  -  - 4 . 9 9 9 9 9 6 8 * ( x c 3 * * 3 + 1 . 5 1 * x c 3 * * 2  

x  + 0 . 6 8 * x c 3 + l . 1 4 5 1 8 5 1 8 5 ) / ( x c 3 + 0 . 6 6 6 6 6 6 6 6 7 ) * * 2

a c l 2  ■  - 4 . 9 9 9 9 9 6 8 * x c 2 * ( x c 3 * * 3 + 2 . * x c 3 * * 2  

x  + 1 . 3 3 3 3 3 3 3 3 3 * x c 3 - l . 8 3 7 0 3 7 0 3 7 ) / ( x c 3 + 0 . 6 6 6 6 6 6 6 6 6 7 ) * * 3  

x  - 0 . 2 4 9 9 5 6 5 1 * ( x c 3 * * 5 + 8 2 . 8 4 7 3 2 1 * x c 3 * * 4 + 2 1 6 . 4 8 1 6 4 * x c 3 * * 3  

x  + 1 9 8 . 2 8 6 1 * x c 3 * * 2 + 7 2 . 9 4 2 5 6 8 9 7 * x c 3 + 8 . 4 0 9 6 8 9 8 6 7 )

x  / ( x c 3 + 0 . 6 6 6 6 6 6 6 6 6 7 ) * * 4

a c l 3  -  - ( x c 3 + 0 . 3 3 3 3 3 3 3 3 3 ) / ( x c 3 + 0 . 6 6 6 6 6 6 6 6 6 7 )

c  c a l c u l a t e  i n p u t  i n t o  n o n l i n e a r  o b s e r v e r / c o n t r o l l e r

u  ■  2 6 6 . 6 6 6 6 6 6 7 * ( x r - y ( 1 )+ y ( 2 ) ) - ( a c l l + 3 0 . 0 3 4 ) * x c l  

x  - ( a c l 2 + 2 4 1 . 3 8 4 ) * x c 2 - ( a c l 3 + 8 0 9 . 6 8 ) * x c 3

d y ( 1 )  -  y ( 3 )  I p o s .  f i n .  d i f f .

d y ( 2 )  -  x r - y ( l )  S i n t .  p o s .  e r r .  f i n .  d i f f .

c  c a l c u l a t e  s y s t e m  f i n i t e  d i f f e r e n c e s

d y ( 3 )  -  a l l * y ( 3 ) + y ( 5 )  

d y ( 4 )  -  a 2 1 * y ( 3 ) + 6 . * u  

d y ( 5 )  -  a 3 1 * y ( 3 ) + y ( 4 )

c  c a l c u l a t e  o b s e r v e r  f i n i t e  d i f f e r e n c e s

d y ( 6 )  -  a o l l * y ( 6 ) + y ( 7 ) + ( a o l l + x l o ( l ) ) * ( y ( 3 ) - y ( 6 ) ) 

d y ( 7 )  -  a o 2 1 * y ( 6 ) + y ( 8 ) + ( a o 2 1 + x l o ( 2 ) ) * ( y ( 3 ) - y ( 6 ) )  

d y ( 8 )  -  a o 3 1 * y ( 6 ) + 6 . * u + ( a o 3 1 + x l o ( 3 ) ) * ( y ( 3 ) - y ( 6 ) )

r e t u r n

e n d
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*  p l o t  d a t a  a s  x  V 6  y  o n  a  h p  p l o t t e r

*  n  ■  n + 2  -  #  o f  d a t a  p o i n t s  p l u s  t w o

*  i l i n e  -  0  a u t o m a t i c  s c a l i n g

*  1  f i x e d  s c a l i n g

s u b r o u t i n e  h p p l o t ( x , y , n , i l i n e , x m i n , x m a x , y m i n , y m a x )

d i m e n s i o n  x ( n ) , y ( n )

c a l l  h p i n i t ( 0 ,  0 ,  0 ,  1 ,  3 )

c a l l  s c a l e ( x ,  1 6 . 0 ,  n - 2 ,  1 )  

c a l l  s c a l e ( y ,  1 1 . 0 ,  n - 2 ,  1 )

i f  ( i l i n e . e g . 0 )  g o t o  1 0  

x ( n - l ) - x m i n  

x ( n ) - ( x m a x - x m i n ) / 1 6 .  

y (  n - 1  ) « « y m i n  

y ( n ) - ( y m a x - y m i n ) / l 1 .

1 0  w r i t e  ( 5 , * )  ' i n p u t  n o a x '

r e a d  ( 5 , * )  n o a x  

i f  ( n o a x . e g . 1 )  g o t o  2 0

c a l l  a x i s ( 4 . ,  4 . , 5 h t  ( s ) , - 5 ,  1 6 . 0 ,  0 . 0 ,  x ( n - l ) ,  x ( n ) )  

c a l l  a x i s ( 4  . ,  4 . , l l h S T A T E  E R R O R , 1 1 , 1 1 . 0 , 9 0 . 0 , y ( n - l ) , y ( n ) )

2 0  c a l l  p l o t ( 4 . ,  4 . ,  - 2 )

c a l l  l i n e ( x ,  y ,  n - 2 ,  1 ,  0 ,  1 0 )

c a l l  p l o t ( 0 . 0 , 0 . 0 , 9 9 9 )

c a l l  h p i n i t ( l ,  0 ,  0 ,  1 ,  3 )

r e t u r n

e n d
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A PPE N D IX  D

T R A N SFO R M A T IO N S TO O T H E R  N O N L IN E A R  FO R M S

Transformations to nonlinear forms, which are analogous to  the linear “stan

dard forms,” i.e., the observability, controllability and diagonal forms [23], are 

discussed in this appendix.

D .l  O bservability form

A nonlinear observability form for the class of systems (3.1)-(3.2) is defined 

by analogy to the linear observability form (e.g., in [23]) as

xob =  A ob (xob) xob + boh (®<*) u

y  =  A 06

where

A ob (x ob) =

0

• S M  «&(*■*)

0

1

a t  (*°6)

(D .l)

116



b06 (z0*) =

b f  (z06) 

b f  (z0*)

= 1 0

b f  (z°>)

and q is specified as ob.

In this case, the R.H.S. of (3.10a) becomes

i  A ob(x)Qob(x) = ; 0

0   0 1

a ? l ( * )  a n2(* )    « n n (* )

«§?(*)

<^(*)

an l (* ) 9 l? ( x ) +  s S ( * ) ^ ? ( * )  +  ‘ •' +  (*)

Combining (3.14) and (D.3) results in the following:

«§?(*) =  £ '[ ,!? (* ) ]

<!?(*)

(D.2)

(D.3)

(D.4a)

and

+  *&(*)<!$(*) +  ' • ' +  *?»(*)«£(*) =  £* [«£(*)] ■ (D.4b)
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Now upon employing (3.10c)

c{x) =  c ^ Q ^ i x )  = q t ( x ) .

Thus, determining Q°^(x) can be done in one step:

1. Calculate Q°^(x) from (D.4c) and (D.4a) (rewritten here as (D.5))

(D.4c)

«s*oo

c(*)

o  [«?(*)] 

O  [»£(«)] (D.5)

«£(* ) =  [< - i) .(« o ]  •

Comments:

1. Here the rows of Qob(x) can be obtained without any knowledge of a°£(x).

2. Calculating Qob(x) is relatively simple.

E x a m p le  D .1 .1  A simple, nonlinear, second-order system.

„2
* =

~ x \  x 1 

* 1 * 2  — * 1

x  +
1

0
u

x \  X2y =

Here (D.5) gives 

«£(* ) =

x.

* 1  * 2

9 ?(* ) =  I?  (*1 +  *1) A (x ) =

—2x \  +  2x 1X2 2®j — 2®j*2

- X I  x \
2x \  2x 2

®1®2 -* 1
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Thus

q * m
*1  *2  

—2 * i +  2*1*1 2®i — 2* 1*2

« ”*(*) '  =
_1_
A

2*1  —  2 * 1*2  —*2  

2*1 — 2 * 1*2 *1

where

A =  2*i — 2 * 1*2

and

d (Q °b(x )z) _  d
5*

2 i 2 
*1 +  *2

-2* i +  2*1*2 +  2*1*2 — 2* 1*1

2*i 2*2

—6 * i  +  4 * i* 2  "t" 6 * 1*2  — 2 * |  4 * i* 2  +  2*5 — 4*1*2  

Now .A0̂ * ) , 6ot(*) and c°^(x) can be calculated using (3.10a)-(3.10c). Thus,

A ^ i x )  =
2 * i 2*2

—6*i +  4*1*1 +  6*f*2 — 2* | 4* i *2 +  2*® — 4* i *2

—* i  *J

* 1 * 2  — * i

l
£

2 * i — 2* i *2 —*2

2®i — 2* 1*2 *1
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E x a m p le  D . l . 2 A linear, n-th-order system.

x =  Ax + bu 

y  =  ex.

Here, (D.5) gives

ob
91- =  c

ob
92- =  cA

ob
93- = cA

« £  =  c A " - '

or

Qob = 0 .

The required transformation exists if and only if O has full rank. This result is, of 

course, consistent with that in any standard text on linear systems.

D .2 C o n tro lla b ility  fo rm

A nonlinear controllability form of the class of systems (3.1)-(3.2) is defined 

by analogy to the linear controllability form (e.g., in [23]) as

xcb =  A cb (xcb) xcb + bcbu
V ’ (D.6)

y  =  ccb (xcb) x cb

where
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A cb (xcb) =

0 •• • ••• 0 <  (*•*) 1

1 '• ;
° &  (*■*) 0

0 '• . ’*• : i II
■©

;

: •. . 0 : :

0 •• • 0 1 <5, (*ct) .
o

•
Ccb ( x cb) =  [ c f  (xcb) c f  ( s c6) ...................

and q is specified as cb.

In this case, the R.H.S. of (3.10a) becomes

0 ............  0 a^(® )

A cb(x)Qcb{x)

1

0

: «2n(x )

0 :

0 1 acbn(x)

*& (x )q£(x )

q f { x )  + afn(x)q£(x)  

q f ( x )  +  afn(x)q£(x)

9?(*)

q £ ( x )

9(J_1).(*) +  ° £ i ( x )<l£(x ) 

Combining (3.14) and (D.8) results in the following:

-  a£n(x ) A x ) 

$ - ! ) . ( * ) ]  ~ “t - l ) n ( X) A X)

q f ( x )  =  C1 [^ (® )] -  a fn(x )q f ( x )

(D.7)

(D.8)

(D.9a)
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and

£ '  [«?(*)] =  5f.(*)«S(«)-

Now upon employing (3.10b)

(D.9b)

d(qf!(x)x) /dx

d (q£(x )x ) /dx

1

0

d (q £ (x )x ) /d  x

b(x) =

0

(D.9c)

Expressing 9(n-2)-(*)’ * • * ’ *n *erms of q £(x ) using (D.9a) results

m

acb

acb
9(n—2)-

=  C1 [«£(*)] -«?»(® )9S(*)

o  [«£(*)] -  e L i  ?  

c 2 [«£(*)] -  e?=2

~ 5(n - l)„ (* )« S ? (* )

-1

=  [?n-(*)] -  E?= i C{ 1 S ^ +i_ 2)n(*)«S(*)]

- a2n(*)9n.(*)

=  £ " -*  [«?(*)] • ,

Substituting(D.lO) in (D.9b) gives

C" [«£(*)] - £ c ' - '  [<h-,»))-(*)9^(*)] = s?»(*)«2<*)

(D.10)

t=2

or

123



b(x ) =

£ n [9 ^ (* )] =  X ) £ t  1 [a2 ( « ) 9 S ( * ) ]  •
t=l

Using (D.10) in (D.9c) gives

S ( ( £ “ - ' [ ? S W ]
-  E L I1 c - '  [8 ^ +i- ( . - 1))»(*)«S (*)]) * )  /a *

9  ( ( £ ” - 2 [< £ (* )]

- E L - ,2 ^ - 1 [a ^ + i_ („ _ 2))„(*>9S?(®)])  <*) / &

9  ((£*  [<£(*)]. 

- E i = i £ ‘” ‘ [® $+<_i)«(*)9^(*)]) * )  /« *  

a ((£° [«£(*)]) *) /a*

Proceeding as in 3.2.2, (D.12) can be rewritten in the form

d  r
Q^{qn-(x)x) ( -1)°  (ad°u4(®)®,6(®)) ( - 1 ) 1 (ad1i4(x)*,6(«))

••• ( - I ) ”-1 (adn- 1^l(*)®,6(x)) ]

- f a  {&<nnix )9n-(x )x ) [ 0 ( -1 )°  (adPA(x)x, 6(e)) •••

••• ( - l )n~2 (adn~2A{x)x,b(x))  ]

0

- 4 ~  {a 2n(x h n - { x )x )dx

0 ••• 0 1 ]

Thus, determining Qcb(x) can be done in two steps:

1. Solve (D .ll)  and (D.13) for acin{x)^a^n {x)^ ... ,a^n (x) and q^..

2. Calculate Qcb(x) from (D.9a) (rewritten here as (D.14)).

(D .ll)

.(D.12)

(D.13)
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9^(*)] -  a t n W i t i * )  

*$-!)•(*)] "  S $ —i )n(* )« S (*) (D.14)

9 ? (* ) =  C1 [?26(*)] “  « 2 n (* )^ (* )-

Comments:

1. Here d?%(x) and q^.(x) m ust be obtained simultaneously.

2. Eq. (D .ll)  represents n,  n-th-order linear PDEs in n variables and 2n un

knowns (q£(x)x  (one unknown), d^n(x)q^.(x) (n unknowns), a^(x)q^ . (x)x ,  

i =  2 ,3 , . . . ,  n (n — 1 unknowns)). Eq. (D.13) represents n, first-order linear 

PDEs in n variables and n  unknowns (q^.(x)x (one unknown), a^l(x)q^>.(x)x,  

i =  2 ,3 , . . . ,  n (n — 1 unknowns)). Together these equations constitute a sys

tem  which is generally very difficult to solve.

3. Once this system has been solved, the calculation of Qĉ (x) from (D.14) is 

relatively simple.

E x a m p le  D .2 .1  A simple, nonlinear, second-order system.

—*2 0 1
X — x +

1 - 1 0

y = 1 0 X.

u

Here (D.13) becomes

[ s f j  (9?(®)®) (9*(®)®) ]

-  [ 0 s i r  

V °  1 ■
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The first equation gives

d
d x \

(q$  (*)®) =  0

or

92^*) ~  0 ?22(®2)

Taking a ^ { x )  =  ®2 2 (®2 ) and 9^2 (*2 ) =: 1 then gives one solution to the second 

equation, thus

926 (* 2 )  =  92- =  0 1 ] •

Eq. (D .ll)  here becomes

£ 2 [,§?(*)] =  c1 [»&(*)«£(*)] + [s?j(*)«2?(«0] •

Calculating each term  gives

C [c [«£(*)]] =  £ 0 1
-®2 0

1 - 1

1
1 

' 
H to 0

1 - 1

1

1rH
1

=  | - * 2 - 1  1 

&  [«22(*)^(*)] (®22 ( * 2 ) * 2)  M x )

[ °  (S22 (*2) *2)

[ (®22 ( * 2 ) * 2)  - e S j  (®22 ( * 2 ) * 2 )  ] »

—®2 0

1 - 1

and

c° [af2(x )s | l (x)] 0 a $ (x )  
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T h e se  resu lt in  tw o  eq u a tio n s  

—x 2 — 1 : ( “ 22 (* 2 )  *2)

an d

1 =  («22 ( * 2 ) * 2)  + a i 2( x )-

S o lv in g  th e  form er for ( * 2 ) g ives

“22 ( * 2 ) =  ~ \ * 2  ~  1- 

T h e n  th e  la tte r  g ives

®12(* )  =  1 +  (“22 ( * 2) * 2)  =  - 3 2 -

N ow b eco m es from  (D .1 4 )

« ?(* ) =

T h u s

< r \ x )

0 1 

1 \ x 2

1 \ x 2

0 1

—*2  0 

1 - 1
(-2 * 2  “  x) [ 0 1

Q cb( x )  * =
1 - \ x 2 

0 1

an d

d  ( Q cb( x ) x )  d x i  +  \ x \ 1 x 2

d x  d x
*2 0 1

N o w  A cb{x), bcb(x)  an d  c°b(x) can  b e  ca lcu la ted  u sin g  (3 .1 0 a )-(3 .1 0 c ) . T h u s ,
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A c6( * )  =
1 ®2 —*2 0 1 — 2®2

0 1 1 - 1 0 1

*2

O 1

0 —®2

1 - 5 X 2  “  1

-®2

1 - j ®2- 1

N o te  th a t th is  resu lt is  in  a g reem en t w ith  th e  va lu es p rev io u sly  o b ta in e d  for a f y i x )  

an d  a,2 2 ( x ) .  F urther,

Tcbbc”(x )
1 to

*

l

i

o l

i
o

• l
o

and

«“*(*) = 1 0
1

0

3*2
2*2

E x a m p le  D .2 .2  A lin ea r , n -th -o rd er  sy stem .

x  =  A x  +  bu 

y  — cx

E q. (D .1 3 )  g ives ( =  a ^ ,  * =  1 , . . .  , n  from  (3 .9 ))

b A b  A 2b A n ~ 1b 

-«nn?n6 0 b A b  - • • A n ~ 2b

cb
9n-

-cb cb 
"°2 n9n- 0 ...............  0 b

, . . . 0 1

or
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or

or

Qn- {A  -  a f nl )

q t

q t

t  ( A n- 2- -  a\

f. (yl”" 1 -  a ± A n~ 2 -  a *

& A * - 3 - 0

1

1

i

O

i £ i

i
o

- a cbunn 1 i t A 0

“ a(n- l)n - a cb * •. nn
; 6 = J

; : ••• ••• 0 q i A " - * •

- <
„cb . . .  _ ncb -I 
a3n ann 1 i

q f i i 0
-1

0 0

q t A —a cb“ nn 1 0 0

q £ A ' - 2

b = —a cb(n —l)n —a cba nn

0 :

— •
1

T—H1 n cb 
a2 n

n cb 
~ a 3n * *' - a cb 1 unn L 1 1

Thus,

cb
qn- b Ab A 2b A n~ 1b 0 0

or

9i c  = 0 0 ............  1

or

cb _
qn • - o o ............  1 >-i (D.15)
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Eq. (D .ll)  becomes

„cb ati   „cb „cb . „cb „cb a . , „cb „cb ati— 1
qn A  ~  a ln?n- +  a2n<ln-A  +  ■ • • +  ann9n-A

or

q t  (A "  -  < U " “ ‘  < A  -  afnl )  =  0. (D.16)

Since q^. is arbitrary (from (D.15) since A  and b are arbitrary), then

4 ” -  a ' U - 1  a t  A  -  o?nI = 0.

A comparison of this result with the Cayley-Hamilton theorem, which is valid for 

LTI sytems, reveals that — , — a ^ , .. •, — a t  are ^he coefficients of the char

acteristic equation (3.25), i.e., a\ =  —a^n , a,2 =  — • • • , an =  —a in- ®q.

(D.14) finally gives

acb 
(n _  1)‘

acb 
(n —2 ) -

0

0

0 1 

0 1

C- 1 (A -  a t i )

C- 1 ( ^ 2  -  a& A -  < - D „ ^ )

t t  = [ 0  ............  0 1 \ C - ' ( A '~ l -  a t„ A » - 2  a f j ) -

The required transformation exists if and only if C has full rank. This result is, of 

course, consistent with that in any standard text on linear systems.

D .3  D iagonal form

A nonlinear diagonal form for the class of systems (3.1)-(3.2) is defined by 

analogy to the linear diagonal form (e.g., in [23]) as

xd = Ad (xd) xd +  bd (a;**) u
(D.17)

where
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A d (xd)

bd (xd) =

of 1 (xd) 0 ........................... 0

0 a22 (*d)
• • •

: 0

0 ••• 0 « & .(« '') .

6? { f t )  '

5

hi  (*■*)

4 { J ) « * (•* ) - -  4  ( ■ " ) ] .

and q is specified as d. In this case, the R.H.S. of (3.10a) becomes

Ad(x)Qd(x) =

a f i (x )  0

0 dd2 (*)

0

«11 (*)9i.(*) 

022(*)92-(*)

0 ann  ( * ) 9 n ( * )

&i n ( x ) d - i x )

Combining (3.14) and (D.19) results in

(D.18)

(D.19)
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z 1 [?i.(®)] =  « ii(*)9i.(*) 

&  [?2-(®)] =  522(®)?2-(®) (D.20)

£ *  [?n-(®)] =

Thus, the g^(x)’s are the “eigenvectors” and the a - (x ) ’s, i =  are the

“eigenvalues” of the operator £ , and Q^{x) can be determined as follows:

1. Find n  nonlinearly independent vectors qf.(x), q$. (*)>•••» 9n-(®) an^ values 

a f ^ x ) ,  a 2 2(x ) » • • • > ®nn(®) suc^ that each P8̂ 1 9^(®)> ®?i(®) satisfies

(D.21)

Comments:

1. Here qf.(x )i a n(®) must be obtained simultaneously; <?2-(®)> a22(®) must he 

obtained simultaneously, etc.

2. The equations (D.21) to accomplish 1. are generally hard to solve.

3. Note that the state equations in this form are not decoupled, since in general

4  M  *  4  ( 4 ) .  4  (***) + 4  ( 4 ) .  4  (*d) ^  4  ( 4 ) -

E x am p le  D .3 .1  A simple, nonlinear, second-order system.
■ • •

*  = - * i * 1 * 2 *  +
1

* 1 * 2 - * 1 0

y  = 1  0 X.

u

Here (D.21) becomes

(«£(*)*) 3 ^  («£(*)*)
— *1*2 

*1*2 —*1
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This results in two equations

“ * 1 5 5 7  ( ^ ( * > x ) + * 1 * 2 2 ^ W ( * ) * )  =  “Uxhili*)

and

*1 * 2 3 5 7  (^(*)*) “ *1S57 (d(x)x) = 4(*)9i2(*)-

(D.22a)

(D.22b)

By inspection 51. = 1 1 |  and afi(x ) =  —*1 +  * 1*2 satisfies (D.22a) and

and =  —*1 — * 1*2(D.22b). By a similar inspection g-jX*) =  

also satisfies (D.22a) and (D.22b). Since these qf.(x) and qd.(x ) are independent, 

Qd(x) now becomes

F 1 1

and

Qd(x) = Qd =

Q d ~ 1  -  H )

« ( < * )  c d
dx

1 - 1

-1  - 1

- 1  1

Now A d(x), bd(x) and c^(x) can be calculated using (3.10a)-(3.10c). Thus,

1 1 

1 - 1
Ad(x) =

—x\
H )

- 1  - 1

X\X2 —*1 - 1  1

1 1

1 - 1
(“ i)

X\  — x \ X2  x \  +  x \X2  

—x \ X 2  +  x \  —x \ X 2 — *1

—®1 -f X\X2 0

0 —x \  — x \ X 2
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Note that this result is in agreement with the values previously obtained for ^ ^ ( x )  

and a22(*)• Further,

1 1 1 1

1 1
1—fi

1
o

i 1

and

1 /  1 \ - 1  - 1 r
1 OJ

( ” 2 ) - 1  1
1 1

. 5 5

E x a m p le  D .3 .2  A linear, n-th-order system.

x =  Ax  +  bu 

y  =  ex.

Here (D.21) becomes (a -  =  a -  from (3.9))

q fA  = 4 4  * =  1,-

thus Q^ is composed of the (left) eigenvectors of A. The required transformation 

exists if and only if n linearly independent eigenvectors exist. This result is, of 

course, consistent with that in any standard text on linear systems.

D .4  D iscussion

The main advantage of the observability and controllability forms in the case of 

LTI systems, is that their observability and controllability, respectively, is guaran

teed structurally. Likewise the main advantages of the linear observer (controller) 

form are: a) the ease of constucting an observer (controller) b) its observability 

(controllability) is guaranteed structurally. Structural observability (controllabil

ity) will be defined in the next appendix and necessary and sufficient conditions
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for the structural observability (controllability) will be derived for the nonlinear 

observer and observability (controller and controllability) forms.

It is interesting to notice that the elements of and the transformation to the 

diagonal form are given by the eigenvalues and the eigenvectors, respectively, of 

the operator C. Here, however, as opposed to the case of LTI systems the state 

equations are not decoupled.
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A PPE N D IX  E

S T R U C T U R A L  O B SE R V A B IL IT Y  A N D  C O N T R O L L A B IL IT Y

E . l  O b se rv e r fo rm  a n d  o b se rv ab ility  fo rm

Structural observability is defined as follows (this definition is related to com

plete uniform observability in [65]):

D efin itio n  E . l  A time-invariant system is structurally observable, if given one 

measurement at time t of the input and its first n  — 2 derivatives and the output 

and its first n  — 1 derivatives, one can calculate all the states at that time and this 

capability is independent of the system parameters.

LTI systems which can be formulated in either the observer or observability forms 

(see [23] for definitions of these forms) are examples of structurally observable 

systems.

T h e o re m  E . l  The observer form (2.1)-(2.2) is structurally observable1 iff 

“ l l  (*°) =  “ 11 (* i)

“ 2 l ( * ° )  =  «21 ( x V x i )  t ( E 1 j

“ n l ( l 0 ) =  a n l (*1> X2’ * • • >®n)

and

1Note that in the case of output dependent nonlinearities, j4°(y) and b°(y) are of the special form 

(E .l) and (E.2) and thus the form (2.21) is structurally observable.
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6? (*») =  6; (* ;)

62 (*<■) =  65 ( * ; , 4 )
(E.2)

b°(x°)  =  6° ( a : ? ,4 , . . . , z £ )  .

Proof: First assume (E .l) and (E.2) hold. Here the n — 1 first state equations 

and the output equation of (2.1)-(2.2) are given by

*1 =  °11 (* l)  *1 +  ®2 +  bl (x l)  u

*2 =  a21 (* !» * § )  *1 +  *3 +  62 ( * 1> * 2)  «

< _ !  =  «(„_!)! (x l»x2 ^ -* .® n - l)x l + xn +  ^ - l(* l ,® 2 » -  - - ^ - l ) "

V =  *?•

Thus, given one measurement of the input and its first n — 2 derivatives and the 

output and its first n —1 derivatives, one can determine x%, ■ ■ •, z£ by calculating

* 1  =  y = 3i(y)

*2 =  *1 -  a i i  ( * 1) *1 -  6i  ( x i )  u  =  92  (y, y,  u )

*3 =  ®2 ~  °21 ( * 1» * 2)  *1 -  b2 (*?» * 2)  u

=  *? -  4  ( a i i  (* ! )  4 )  i f  -  4  (»? (* ? ))  i f «  -  <■! (*?) *

- “21 ( “ l . * ? )  *?  -  *2 ( * 11* 2)  “

=  9 3 (y ,y , y ,u ,u )

<  =  xn - l - a(’n - l ) l ( a:l>x2 > - - -> < - l) :rl - 6n - l ( :rl>:c2’ - ■ • » < - l ) 11

Now assume that the form (2.1)-(2.2) is structurally observable. Then it is 

structurally observable for u — 0, and the n — 1 first state equations become

137



*1 =  « l l (* ° ) * l  +  *2 

*2 =  a2l(®°)®l +  ®3

=  ° (n -l) l  (*°)*1 +  xn- 

The output equation and the first n  — 1 derivatives of y give

V — x \

y  =  af j (®°) x \  +  x \  = f i  (x°) + x \

V =  f t  (°11  ( * ° )  ® l )  +  “ 21 (* ° )  * i  +  *3 =  h  ( * ° )  +  *3

» (s) =  ^ K ( * ° ) * ! )  +  b («Si (* °)* !)  +  ^ i (* ° )* ! +  *S

=  f s ( x°) +  x4

(E.3)

(E.4)

y {n 1} =  ( ^ i ( ® ° ) ® i )  +  ( “ 2i ( ® ° ) ® ? ) +  ” •

• • '  +  “ ( n — 1 ) 1  ( * ° )  * 1  +  * n  =  f n — 1 ( x ° )  +  * n  

Since the system is observable, there must be information on each state in at 

least one y(k\  k =  0 , l , . . . , n  — 1. Thus at least one y(k) must depend on ®£. 

Now y ,  j j , . . .  , i / n - 2 )  may or may not depend on (  y  depends on if f \  ( ® ° )  

does, y  depends on if (x°)  does, etc.). If, however, one requires / n_ i (®°) =  

f n — 1  ( * i » * 2 » ” ' » * n - l )  then it is structurally guaranteed that y(n depends on 

x n , since there is nothing in / n_ i x%,. . . ,  ®£_i) that can cancel the effect of

x n . One then has

fn —1 (*1>*2»--*>®n-l) =  X )  IJi ( “( n - l - t ) l  (® )® l)  ’
t= 0  a l

and thus must require th a t each of these terms is independent of (otherwise it 

is not structurally guaranteed th a t / n_ i will be independent of ), i.e.,

d l
j  ( ° ( n - l - t ) l  ( ® ° )  ® l )  —  A * ) ( n - 1 - * )  ( ®  1  > ® 2 »  • • • > ® n — l )  ( ® - 5 )d t *
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for i =  0 , 1 , . . .  , n  — 2. Using Lemma E .l this gives 

° 1 1  ( ® ° )  =  a l l ( * l )

a21 (®°) =  (*1**2)

a(n—1)1 (‘B°) =  a(n—1)1 (®1’*2’ • ’ ' ’ *n—l)

< l ( * ° )  =  < 1  • •>*£)  •

Using this in (E.4) gives

/ l ( * ° )  =  / l ( « ? )

/2 (*°) =  /2 (*l> ®§)

fn —1 (*°)  =  / n - 1  l )

fn  (*°) =  /n  (^1, * ••»*£)  •

and thus from (E.4) it is guaranteed that there is information on each state in at 

least one y(*) , k =  0 , 1 , . . .  , n  — 1.

Now suppose b / 0 ,  then the n — 1 first state equations are given by

* 1  =  a l l  ( ® l )  ®  1 +  * 2  +  ^ 1  ( x ° ) u  

*2 =  «2l (®l>*2)*l+®3 +  62(*0) u

The next part of the proof follows an idea from [65]. Here the output equation 

and the first n — 1 derivatives of y give
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y = x °i

y — af j ) x \  + x% +  6? (s°) u 

= h i  (®i>4 ) + 6f (*° ) t t

y = &% (^11  (®f**s)) *1 +  a f f  (®? > *2) )  *2

+ a£* (6? (*°)) + 6? (*0) “

=  h12(x0,u) + b°1 (x0)u  (E.6 )

=  g f 5  ( ^ 1 2  ( * ° » « ) ) * ° +  W i ( h 1 2  ( x ° ,u ) )u

+ g f ^  ( b i  ( x ° ) )  +  b i  ( x ° )  “

=  /ij3 (x° ,u ,u )  +  (®°) u

s '” -11 =

From an examination of the triangular structure of (E.6 ), relative to the succes

sive derivatives, it can be seen tha t u , t i , . . .  ,u(n-2) can be successively selected 

in such a  way that no t/*) }s depending upon x? , j  > 1 at some point x°(t). 

Thus dbj (x ° ) / d x j  = 0 or b\ (x° ) =  b° (e®). Now suppose b° (x° ) depends on 

x ° , ®2 , . . . ,  sjj! only for fc =  1 ,2 , . . . , 1  — 1. Then the n — 1 first state equations are

*1 =  a l l  (®l)  *1 +  «2 +  &1 (®l) u 

x °2 =  a^j ( s f , 4 )® f +  E3 +  62

* ? - l  =  a ( / - l ) l  ( * f  ’  ® 2 >  ■ • ■ > * ? - i )  * 1  +  x l  +  f t f - l  ( ® i » * 2 »  * * • » « 7 - l )  “  

x f  =  a |j  •)*/’) * 1 + * / V i + ^ f ( ® ° ) u

< _ 1  =  a ( n — 1 ) 1  ( * ° )  * 1  " h  * n  +  b n — l  ( * ° )  u *

Here t/ and the first n  — 1 derivatives of y give
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y — x<i

y = a f j  ( i f )  i f  +  i f  +  6f ( i f )  u 

-  h  i ( i f , w ) + i f

y = sff (fen (*?>w))*i + A  (hn  (*?>«)) « + «2i

+ * 3 + fc2 ( * 1**2)  “

=  f c / 2 ( * l i * 2 » u »l i ) + * 3  ( E ’7 )

y(*-J) = h ^ i _ ^  ( i f ,  i f  . . . , x f _ v  « , « , . . . ,  «(Z_2)) +  l f

yW =  feH ( i f ,  i f  . . . ,  i f , « , « , . . . ,  ii(i - 1 )) + l f +1 + 6 f ( l ° ) «

y(n_1) =  fc,(B_ 1)( l ° , l l , « , . . . >tt(*-2) ) + 6 f ( l 0)tt(»^+l))

From examination of the triangular structure of (E.7) relative to the successive 

derivatives of u, it can be seen that can be successively selected

in such a way that no yW is depending upon xj ,  j  > I at some point i° ( t) .  Thus 

dbf ( i° )  /dx?  =  0 or equivalently

bf (x°) = bf ( i f ,  i f , . . . ,  x f ) .

Thus

6 f ( i ° )  =  i f  ( * f )

6 f ( i ° )  =  i f  ( i f , i f )

K i x°) =  K  (*1>*2»-■•>*&) •

This concludes the proof of Theorem E .l.

□
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L em m a E . l  I f  (E.S) and (E.5) hold then

a(n -l-* )l (® ) =  a (n - l- t ) l  (®1>®25 • • • > I =  0 ,1 , . . .  ,71 — 2

Proof: The following is given:

(a( n - l - t ) l  (*°)  * l )  ~  f ( i ) (n - l - i )  (®1> ® 2 j  • ■ •»* n - l )  > 

i = 0 , 1 , . . . ,  n  — 2. However, one has

5*fZi ( d F 1 (° ( i* - l-* ) l  ( * ° ) * l ) )  *»-1

=  ( ° (n —1—i)l M * ? ) )  ( a ( » - l ) l  (*° )*1  +  < )

{ d t ^  ( a (’n - l - i ) l ( !c0) a;l ) ) a:n 

=  4  ( a ( n - l - i ) l  ( * ° ) * ? ) )  < 1

thus ^a (n - i - t ) l  C®0)* ? )  *s no  ̂ guaranteed to be independent of x£ unless

(X  ̂* 0 )  =  0

and

( d F i  K n - l - O l  (X° ) Xl ) )  =  °-

This gives

fa i-1  (a ( n - l - i ) l  (®°) ®l) = / ( t - l ) ( n - l - i )  (®1> ®2> • • • > ®n-2) ■

Now suppose

d f i - l  (a ( n - l - t ) l  (®°) ®l) ~  f ( i - l ) ( n - l - i )  (®1> ®2> • • • * x n - l - l )  

for I =  1 , 2 , . . . ,  k — 1, then
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(  ( ° (n —1—i)l (*°)  * l )  )  x n - l - l + m

=  (“("-1-01 *»))
( a {n—1—(+m)l ( * ° ) * ?  +  < - l + m )  

m  =  0 , 1 , . . . , /  +  1

thus (®°)®l)  *s no  ̂ 6uara-nteed independent of ®°_j+Tn unless

This gives

( a ( n — 1 — * ) 1  ( ® ° ) ® l )  = / ( t - I - l ) ( n - l - » )  ( ® 1 >  ® 2 >  • • * > ® n — 2 — / )  * 

Therefore it has been proven th a t (substitute Z =  i — 1 in (E.8))

a ( n — 1 — i ) l  ( ® ° )  ~  a ( n - l - t ) l  ( ® 1 »  ® 2 »  • • ■ »  ® n — 1 — t )

for i =  0 , 1 , . . .  , n  — 2.

□

(E.8)

T h e o re m  E .2  The observability form (D.1)-(D.2) is structurally observable iff

b f  (®ob) =  b f  (®f) ;

l ? ( x < * ) = i ? ( x f , x ? )  ( E 9 )

Note th a t as a consequence of Theorem E.2, all systems in observability form with 

no input are structurally observable.
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Proof: Proceeding similarly as when proving Theorem E .l, first assume (E.9) 

holds. Here the n  — 1 first state equations and the output equation of (D.1)-(D.2) 

are given by

i f  =  x f  +  b f ( x f ) u

i f  =  x f  +  b f ( x f , x f ) u

i f - 1  =  +

y  =  * ? •
Thus, given one measurement of the input and its first n  — 2 derivatives and 

the output and its first n  — 1 derivatives, one can determine x f , x f , . . .  , x f  by 

calculating

=  v  = 9i(v) 

x f  =  i f  -  b f  ( x f )  u  =  g i ( y , y , u )  

x f  =  x f - b f ( x f , x f ) u

=  -  sir(*?(*>‘)) u  -  bt  K ) 4 - b?  K - *?) “
=  9 3 (y ,y ,y ,u ,u )

x f  =   i l l *

=  9n ( y ,  y, $,■■■, i t , . . . ,  „ ( « - * > ) .
Now assume that the form (D.1)-(D.2) is structurally observable. The n  — 1 

first state equations are given by

i f  =  x f  +  h f ( x ob) u

x f  =  x f  +  b f ( x ob) u

* t - l  =  * ?  +  »?- l M «
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The next part of the proof follows a similar one in [65] for a  different class of

systems. Here the output equation and the first n  — 1 derivatives of y  give

y = x f

y  = x f  + b f  (xob) u

V = x f  + bf(x<}b) u  + ^ B ( b f ( x ob) ) u x ob + b f ( x ob) u

=  h\2 (xob,u)  +  b f  (xob) u

= ^ob  (h i2 (xob, u ) ) x ob + (h 12(®ol> ) ) i i  (E.10)

=  ^13 (x°bi u i«) + bf  (®ol>) u

y (n~ 1} =  h 1{n_ 1) (x°b, u , u , . . . , u ( n- 3)) + b f  ( x 0 6 ) ^ ” - 2 )

From examination of the triangular structure of (E.10) relative to the succes

sive derivatives, it can be seen that u , u , . . .  ,u (n -2 ) can be successively selected 

in such a way that no y ^ )  is depending upon xj  , j  > 1 at some point x°(i).  

Thus db° (x°) /dx°j =  0 and b^(x°) =  6° (* 1)- Now suppose depends on

aij, • • •»x i only for i =  1 , 2 , — 1. Then the n  — 1 first state equations are

i f  =  x f  + b f  ( x f )  u

i f  = x f  + b f ( x f , x f )  «

i f i ,  =  x f  + b f ^ x f . x f ......... * £ , ) «

i f  =  x j* , +  b f  (x”4) « 

i f - l  = +  («**) «•

Here y  and the first n  — 1 derivatives of y  give
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y =  x f

y  =  +  t f  ( * ? ) «

=  hn  (*?>«) + x t

y — ~£st (hn  ( “ ’? > “ ) )  “ i 6  +  5 5  
1

+ x f  + b f ( x f , x ? ) u  

=  h l2 ( * f  ! * ? » « » * )  + * 3 6 ( E -n )

y ^ - 1) =  ^ ( H )  ( * f  I ̂  ■•' l +  * f

y (0  =  /ijj . . . , x f , U , U , . . . +  x f 1 +  b f  ( e ^ )  «'

y ( n - l )  =  fy(n_ 1} (*<* W, « ,  . . . , « (n~ 2)) +  b f  ( x ^ )  u ( « - ( i+ 1))

From an examination of the triangular structure of (E .ll)  relative to the successive 

derivatives of u, it can be seen that u ,u , . . .  can be successively selected

in such a way that no yW  is depending upon x j , j  > I at some point x°^(t). Thus 

d b f  (a;06) / 9 x f  = 0 or equivalently

b f  (x°t ) = b f ( x ? , x f , . . . , x f ) .

Thus

b f ( x ci) =  b f  ( x f )  

bf(x< *) = b f ( x f , x t )

b t(x< *) = b f ( x f , x f , . . . , x f ) .

This concludes the proof of Theorem E.2.

□
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E .2  C o n tro lle r  fo rm  a n d  c o n tro llab ility  fo rm

Structural controllability is defined as follows [66]:

D efin itio n  E .2  A time-invariant system is structurally controllable on the inter

val tf f or every

r 1T
« ( < o ) = [ p i  P2 ............  Pn (E.12)

and any other

(*/) = 91 92 ...............  9n (E.1S)

there exists a calculable control function u(t), te that takes the system from

®(<o) to x (tf'j and the existence of u(t) is independent of system parameters.

LTI systems which can be formulated in either the controller or controllability 

forms (see [23] for definitions of these forms) are examples of structurally control

lable systems.

T h e o re m  E .3  The controller form (2.25)-(2.26) is structurally controllable.

Proof: This proof follows an idea from [66]. Define an n-times differentiable func

tion

([<„,(/])

where

# ( < 0) =  «i 4>{i)( t f ) = 0 i  t =  0 ,1 , . . .  ,n  — 1. (E.14)

Then assume that

<f>(t) = x°n {t) te [to,tf ] . (E.15)
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The n  — 1 last state equations of (2.25)-(2.26) give

*n = * n - l  =  ^ (1)

* n -  1 =  x n—2 =  ^(2)

*3 = x l  =  0 (» -2 )

*2 = x \  =

(E.16)

Thus the boundary values (E.14) are functions of the given initial and final values 

(E.13) of the state trajectory x ( t ) ,  t e  [<o» ̂ /]  and are thereby determined as

«t =  Pt+1

ft  =  9t+l * =  0 , 1 , . . . , n -  1.

The control u(t) can be calculated from the first state equation of (2.25)-(2.26) as

u = i i  -  acn  (®c) x \ -  a l2 (*C) ®2--------- a ln (*C) *n (E.17)

and using (E.15) and (E.16) in (E.17), it can be expressed in terms of <f> as

«(<) =  *<»>(t) -  £  # (*_2,(<). • • • m
i= l

Thus, the required control function exists independently of the system structure, 

and therefore, the form (2.25)-(2.26) is structurally controllable.

□
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Theorem  E.4 The controllability form  (D .6 )- (D .7) is structurally controllable iff

a fn (*<*)

<4, (*■*) 
4  M

=  « & (* ? .  

(*?,n c b
2 n

X%b

x%b x 3 »'

=  a

xcb) • > x n  )

xcb)

xcb)

“ ( £ - l ) »  ( x C t )  ~  “ ( n - l ) n  ( * ? - l > ® « )

(*ct) =  <■& (*?)•

Proof: First assume (E.18) holds. This part of the proof follows a similar one in [66] 

for a different class of systems. Here again define an n -times n-times differentiable 

function

^ C ” ([f0,< /])

where

# (i) (<o) CXi ( i , )  =  f t t =  0 ,1 , . . .  ,n  — 1 (E.19)

and assume

< K i )  =  x n ( t )  ^ [ < 0 , < / ] -  

The n  — 1 last state equations of (D.6)-(D.7) give

* n - l  +  a n n  ( * ? )  * ?i cb =x n

x cb i *71—1

X Ci> n  x n - 2

4

i f

x n - 2  +  a ( n - l ) n  { x f - l ’ x n )  x f

< - 3  +  < # - 2)„ (x t - 2, xt v x t )  x f

x 2 + af n ( x t>xt>-  

xt  + 4 ( x t ’x t ’ -

c b \  _ c 6  
• > x n  /

■•■ *£)*?
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Rewriting the first equation as

4 - 1  =  i t  -  45. (4?) 4 ?  =  * (1) -  7 » - l , - l W  =  fn —1 ( M m ) ■ (E.20)

The second equation gives

xn-2  —  xn - l  —  a ( n - l ) n  * » ? )  x t i  >

or substituting for by differentiating (E.20)

cb ~cb d  ( „cb („ cb \ „cb\ „cb ( „cb „cb\ „cb
xn—2 — ®n ^  ( a nn (* n  /  ®n j  (n— l)n  \® n—l» * n  )  x n •

Then substituting for =  / n- l  this may be written as

® n - 2  =  - 7 n - l , n - 2  -  7 n - 2 , n - 2  =  fn - 2  ( < M ( 1 \ < £ ( 2 ) )  •

Proceeding in a similar manner, one has in general

_cb _  _c6(n - *;) ^ („cb (-cb  cb cb\ cb\
xk ~  xn ~  j t i-k  V (*+!)» l ® * + l ’ ® t + 2 » -  • • > ® n  ) x n )

(E.21)

i=k

= #<”-*> -  E l i *  (* ,^(1), • • • , 4 )

=  A ( * .* (1)........

fc =  1 ,2 , . . .  ,n  — 1.

Then at t = <o one has from (E.21) 

n —1
a n—k =  Pk d" 5Z Tt'ifc (a 0» ®1» • • • > a n— 1—k) > 

i=k

and at t = t f ,

n —1
fln—k~Qk~^~ 7trfc (A)>/^1> • • • ifln— 1—fc)

i=k

for fc =  1 ,2 , . . .  ,n  — 1, i.e., a recurrent formula to determine the boundary values 

(E.19).

Now u can be written from the first state equation as
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■ cb „cb ( c b  cb „cb\ „cb 
U  —  X i  « i n 5 *2 > • • ■»®n )  x n  •

Here is from (E.21)

cb c6(n _1) ^ /’_c6 /_c6 _c6 _cb\ _c6\
* 1  —  x n  “  ^ i - 1  l a ( t + l ) n  (  t + l ’ : c t + 2 > - • • > * » )  * n j -

Using this, u becomes

« =  * « M  ~  E  %  « ! , »  (*&1. *&2>■ ■ • .* ? )  * ? )

(E.22)

=  jjd M  _  V ' —
n ^  d t * »=0 a i

E  „,c6 ciA cb^
J f i  \  (*+l)n  \  i+ 1 ’ i+2> • • • »*n J *n  J

or

u =  <56̂  -  ^  7^0  (E.23)
t= 0

and is thus uniquely determined for all initial and final conditions.

Now assume that the form (D.6)-(D.7) is structurally controllable. Here u can 

be w ritten as (derived similar to (E.22))

« =  * ? w  -  E  §  (< & ,,„  (*■*) * ? )  <E -M )
i=0 ai

Since the form (D.6)-(D.7) is structurally controllable, i.e., the existence of u for 

all initial and final conditons is structurally guaranteed, the R.H.S. of (E.24) must 

be independent of u and its derivatives. Thus one must have

^ 7  (°(H-l)n (*C6) x n ) =  f(i)(i+l) {x t »x<2 »• ■ • > x n )  * (E.25)

for i =  1 ,2 , . . .  ,n  — 1, i.e., independent of « and its derivatives. Using Lemma E.2 

(which is the dual of Lemma E .l) this gives
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<»&(*«*) =  ■ ■ ;*$)

<  (lCl) =  “2» (* ? •* ? '• • ■ .* » )

a3n (xCt) =  “to  ( * ? . * ? . • • • . * ? )

i n - l ) n  (*•*) =  » ( n - D „ k - . . ^ )

< ( ^ )  =  « ?« (* ? )■

This concludes the proof of Theorem E.4.

□

L em m a E .2  I f  (D .6)-(D .7) and (E.25) hold then

„cb („ cb \ _  „cb ( ' c b  „cb „cb\ _  i o ~  i(t+l)n \ ) ~  °(i+l)n v®t+l>®i+2» • • * »®n ) i — l , 2 , . . . , n  1.

Proof: One has

(°(i+l)n (®Ct) xn ) “  f(i)(i+l) (x l ’i x 2’’ • • • >*»?) i =  1 , 2 , . . .  , n

However,

f t c f  U i_1  ̂ (i+1)n  ̂ '  V

-  £ *  ( s £  (a <‘+1)” (lC t) 0  K " K )  *"  +  t t ) -

Thus one must have

such th a t the R.H.S. of (E.24) is independent of u or equivalently

 ( n cb (mcb \   f  („cb „cb ~cb\
fa i - l  Va (t+l)n I® ) Xn ) ~  J(i-l)(i+ l) (®2 > * 3  >•••>*« j •
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Now suppose

f a i - l  ( a ( i + l ) n  ( * C 6 )  x n )  ~  / ( t - Z ) ( i + l )  ( * i + l »  * / + 2 >  • ■ •  » x n )  

for / =  1 , 2 , . . . ,  i  — 1. Here one lias

a ^ ( | £  ( • ? « ) .  ( ■ “ I * ) ) *

ff (£k (“< W  (*■*) ■?)) K » K )  •?  + •)■
d

dx

Thus

d  /  J t-Z -1

a*f (“&-1)" O'*)®*))- 0

such tha t the R.H.S. of (E.24) is independent of u. Further, 

d  ( d1- 1- 1
d x £  \d t i

Q /  j i - l -1

d x t

for m  =  2 , 3 , . . . ,  I +  1. Thus 

d /

—l —l  ( a ( i + l ) n  ( * C6)  X * ) )  X m

( ^ i - Z - 1  (a (H-l)« (* C6) *» ) )  (Xm -1  +  amn (* C6) *5?)

dx& ( j F ^ r  « +1)» ( • * )  - f ) )  - 0
■ ' m

such that the R.H.S. of (E.24) is independent of the derivatives of u. 

(E.26) and (E.27)

d f i - l - 1  ( a ( Z + l ) n  ( * C 6 )  x n )  =  f ( i - l - l ) ( i + l )  (®f+2* *Z+3> • • • i x n )  • 

Therefore it has been proven that (substitute I = i  —  1 in (E.28))

„ c b  ( „ c b \  _  c b  ( _ c b  „ c b  _ c b \
( t + l ) n  V *  j  —  ° ( i + l ) n  V  * + 1  ’  * + 2 ’  •  • • > ® n  J

for i  — 1 , 2 , . . .  , n  — 1.

□

(E.26)

(E.27) 

Thus from

(E.28)
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E.3 D iscussion

In this appendix necessary and sufficient conditions2 that guarantee the struc

tural observability (controllability) of the defined nonlinear observer and observ

ability (controller and controllability) forms were specified. These conditions 

should be incorporated in the nonlinear transformations since the existence of such 

transformations to structurally observable (controllable) forms gives sufficient con

ditions of nonlinear observability (controllability) of the original system. However, 

this subject is related to the lack of a theoretical basis between the observability 

(controllability) of nonlinear systems and the design of an observer (controller) 

and will be left for future investigation since, as such, it is beyond the scope of 

this work.

2As opposed to the case of LTI systems, only the no-input observability form (the controller form) 

is structurally observable (controllable).
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A PPE N D IX  F

A D D IT IO N A L  SIM U LA TIO N  ST U D IE S

F . l  S ystem  in observer form

An abstract system, whose nonlinearities are functions of all the state vari

ables, was chosen for an additional simulation study. The system is given in 

observer form by

a l l (* ° ) 1

•
o

0

• o
X  = “ 2 1 ( x ° ) 0 1 x °  + 0

“ 31C*0) 0 0 1

u

and

y =

where

1 0 0 x

af i (*° )  

“21(*°) 

“ 3 1 (* ° )

= —1 — x° 

=  - 1  -  x f

=  -1 *3

F.2 Transform ation from  observer form  to  controller form

Here (3.34) gives 

d
dx° 1 0 0 ]'
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thus, q$. (s°) may be taken as

„C ( 0 \  c  _
93- (® j — 93- — 1 0  0

Then calculating the remaining rows of Qc (x°) from (3.35) gives

Qc (*°) =

3 x f  +  4 x f  -  x f  - 1  -  Z x f  1

-1 — x ° 

1

1

0

0

0

Now A c (®°) can be calculated using (3.10a) with the result

a°n {x°) ac12{x°) a f3 (a:0)

A c (*°) = 1  0 0

0 1 0

where

S11 (*°) =  - 2*1*2 ~  1 “  3*? ,

a i 2  ( * ° )  = :  6 * 1  +  6 * 1  —  6 * 1  ® 2  —  8 ® i ® 2  —  * 2  _

and

a 13 (* ° )  =  - 1 “  *3 •

F .3  O bserver/controller design

A block diagram of the desired system is shown in Figure l l 1. The pole-

placement was such that the resulting closed-loop poles were —1, —5 and —6,

corresponding to a characteristic equation of

'Note that in general, as is done here, it is possible to use k c ( i° )  in place of k e (£e) since x°  is 

available. This saves some calculation, in that A c (xc) does not have to be determined.
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a3 +  12a2 +  41a +  30 =  0.

The observer poles were initially chosen as three times the dominant closed-loop 

pole or a triple pole at —3.

F .4 A com parable linear system

A “comparable” linear system was chosen with the purpose of comparing the 

speed of error decay. This system was chosen to have approximately the same 

response time as the original system (which is slow) and is given by

x° =
a l l 1

1 
■ ' 

o

1

o
1

°21 0 1 ®° + 0

. °31 0

1

o

1

u

and

V = 1 0  0

where

aU ~  “ 2

a°2l =  -2 .25  

agj =  -1 .25 . 

Here (3.34) gives 

d
dx°

thus, q§, may be taken as

1 0 0

93- = 1 0  0

Then calculating the rest of Q° from (3.35) gives
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1.75 - 2  1

Qc = - 2  1 0

1 0 0

The closed-loop poles and the observer poles were chosen as in the nonlinear

case.

F.5 Sim ulation results

The speed-of-error decay for the two systems was evaluated by a digital sim

ulation, using a step input of unit magnitude. The state errors, resulting from 

initial conditions of 0.3, —0.2 and 0.4 on both the nonlinear and comparable linear 

system, are shown in Figs. 12 and 13, respectively. These are, for all practical 

purposes, identical.

The state errors for a triple observer pole at —0.5 and the same initial condi

tions on both systems are shown in Figs. 14 and 15, respectively. Note that slight 

differences are observed in the error responses in this case. For easier comparison, 

e j, e2 and e$ are shown in Figs. 16, 17 and 18, respectively, for both systems.

Note that the speed-of-error decay is faster for the nonlinear system than the 

linear one. Additional simulations for different initial conditions indicated similar 

behavior for this system.

F.6 D iscussion

These simulation results show excellent behavior of the error dynamics of 

the nonlinear system when compared to those of the linear system. This again 

indicates th a t the nonlinearities in the error dynamics do not degrade the speed- 

of-error decay and that faster decay can be expected in some cases.
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Figure 12: State error for nonlinear system, observer poles at —3
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Figure 13: State error for linear system, observer poles at —3
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Figure 14: State error for nonlinear system, observer poles at —0.5
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