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Abstract

Introduction: Due to the menacing increase in the number of vehicles on a daily basis, abating road congestion is
becoming a key challenge these years. To cope-up with the prevailing traffic scenarios and to meet the ever-
increasing demand for traffic, the urban transportation system needs effective solution methodologies. Changes
made in the urban infrastructure will take years, sometimes may not even be feasible. For this reason, traffic signal
timing (TST) optimization is one of the fastest and most economical ways to curtail congestion at the intersections
and improve traffic flow in the urban network.

Purpose: Researchers have been working on using a variety of approaches along with the exploitation of
technology to improve TST. This article is intended to analyze the recent literature published between January 2015
and January 2020 for the computational intelligence (CI) based simulation approaches and CI-based approaches for
optimizing TST and Traffic Signal Control (TSC) systems, provide insights, research gaps and possible directions for
future work for researchers interested in the field.

Methods: In analyzing the complex dynamic behavior of traffic streams, simulation tools have a prominent place.
Nowadays, microsimulation tools are frequently used in TST related researches. For this reason, a critical review of
some of the widely used microsimulation packages is provided in this paper.

Conclusion: Our review also shows that approximately 77% of the papers included, utilizes a microsimulation tool
in some form. Therefore, it seems useful to include a review, categorization, and comparison of the most
commonly used microsimulation tools for future work. We conclude by providing insights into the future of
research in these areas.

Keywords: Traffic signal timing optimization, Traffic signal control, Urban traffic, Microsimulation, Computational
intelligence

1 Introduction
One of the biggest challenges for urban management

is managing and mitigating traffic congestion. The

number of vehicles in the urban network increasing

day to day basis, which results in deterioration of

traffic conditions. Due to this increase, blockage and

long queues of vehicles form at intersections, leading

commuters to lose valuable time, especially during

rush hours. Apart from this, congestion of traffic also

has detrimental effects on the health, environment,

and the state’s economy.

As to health, traffic congestion causes excessive fa-

tigue, mental illnesses, and problems related to car-

diovascular systems, such as the respiratory system

and nervous system, resulting in a lower standard of

life. Different pollutants are added to the environment

through the heavy use of automobiles, which are one

of the main reasons for different health-related issues

and ecological damages [1, 2]. Environmentally, con-

gestion of traffic leads to increased noise and air pol-

lution [3, 4].
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In terms of economy, it decelerates the transportation

rate of services and goods’ merchandising, the conse-

quences of which have to be borne by the consumers in

terms of higher prices. Due to the aforementioned facts,

there is always a need for an effective methodology that

can tackle congestion resulting from the contemporary

demand for urban traffic [5].

One of the main purposes of signal timing settings

is to move people safely and efficiently through an

intersection. Achieving this goal requires an accom-

modation plan to different users that assign the right-

of-way. The plan should be able to adapt according

to the fluctuations in demand. Many signal timing pa-

rameters affect the performance of the intersection.

These parameters include cycle length, green time,

change interval, phase sequencing, etc. These parame-

ters are further defined under section 3.1. Regulating

the timing of the traffic signals is one of the fastest

and most economical ways to curtail congestion at

the intersection and improve traffic flow in urban

streets. Therefore it is necessary to update the timing

of the traffic signal control (TSC) system to cope with

the prevailing urban traffic conditions [6–8].

Researchers have been working on the use of nu-

merous approaches for optimizing TST. Several

good quality reviews have been written previously

within the problem area of TST or TSC settings [9,

10]. are the two most recently published survey pa-

pers published in the year 2015, covering different

methodological areas utilized until 2014 in this

problem field [9]. reviewed the work, concentrating

solely on fuzzy logic strategies whereas [10] shed

light on fuzzy logic as well as some of the important

work of Q-learning, & neural network approaches

used in the domain of TSC setting [5, 11, 12]. are

some of the other review papers covering the appli-

cation of frequently used CI-based methodologies

for controlling the flow of traffic at the urban traffic

networks. But in terms of technological advance-

ment, the period from January 2015 to January 2020

is huge and significantly important. There is a

dearth of a good literature review paper that should

cover the literature published in these years regard-

ing TSC and TST settings.

The remainder of this paper is structured as fol-

lows. Section 2 describes the research methodology

of the paper, section 3 covers the background of the

TST while giving the structural design of TST and a

review of some frequently used microsimulation

tools respectively. Section 4 comprises a classifica-

tion of TST optimization approaches along with a

concise review of the related approaches. The dis-

cussion and the analysis of approaches are presented

in Section 5, whereas the last section concludes

with promising suggestions for future research

directions.

2 Research methodology
This article analyzes the recent literature for the

simulation-optimization, and CI-based approaches for

optimizing TST and TSC systems, which have been

published from January 2015 to January 2020 in

terms of journal papers and conference proceedings.

One of the main reasons for covering the research

that has been published in the most recent years is

technological advancement. These publications were

selected by meticulously browsing through databases

including Scopus, Web of Science, IEEE Xplore, and

Google Scholar. Keywords used to explore the data-

bases were: “TST optimization”, “traffic congestion

optimization”, “TSC settings”, “microscopic traffic

simulation-based optimization (SimOpt)”, “dynamic

traffic management system”, and “signalized urban

intersection”. From the reference list of selected publi-

cations, further publications were added, which were

published in the above mentioned period. Table 1

and Table 2 lists the search parameters used in this

study and the total number of papers that we have,

respectively.

Table 2 also illustrates the fact that several studies

with one of the key phrases, i.e. TST optimization,

has seen a significant increase over the past years,

due to the continuous advancement in technology

and the increasing number of vehicles on urban traf-

fic. In shortlisting, only the studies about TST and

TSC have been included, which are either dealing

with one of the parameters or the combination of

them. These parameters include cycle length of the

traffic signal, green phase timing of the traffic signal,

offset and phase sequencing of the traffic signal. Stud-

ies that are related to the connected vehicles, pedes-

trians, simulation model calibration, as well as

macroscopic and mesoscopic traffic simulation are ex-

cluded from this study. Figure 1 illustrates the num-

ber of publications included in this study after

shortlisting.

The shortlisted publications have been further

classified into two categories, that are “microsimula-

tion-based optimization models” and “computational

intelligence models”. In the 1st category, papers in-

tegrated any one of the microsimulation tools for

solving the TST problem with the proposed strat-

egy, are included. Whereas, the papers in the 2nd

category uses some sort of an estimation function

to evaluate potential solutions during the search

process, in the hope of finding an optimal or near-

optimal solution. Some of the papers in this cat-

egory also employed a microsimulation tool but only
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for the demonstration of the solution approach (see

section 4 for further detail).

Microsimulation tools are frequently used in TST re-

lated researches. Our review also shows that approxi-

mately 77% of the papers included in this study utilizes a

microsimulation tool. There is a wide range of microsi-

mulation tools available and utilized for research. There-

fore, it is useful to include a review, categorization, and

comparison of the most commonly used microsimula-

tion tools for future work.

3 Background on traffic signal timing
This section sketches out the idea around which the set-

tings and the evaluation of TST and the controllers re-

volve. In subsection 3.1, we describe the important

parameters of TST. Understanding of TSC’s structural

design is provided in section 3.2. Lastly, section 3.3 pre-

sents a critical review of the most commonly used

microsimulation tools along with their common and

unique features.

3.1 Traffic signal timing parameters

One of the main purposes of TST settings is to move

people safely and efficiently through an intersection by

assigning the right-of-way. Some of the TST setting pa-

rameters should be able to adapt to the fluctuations in

traffic demand and some should be controlled by the

traffic management authority. These control parameters

are

� Green Time: The time duration in seconds, during

which a given traffic movement at signalized

intersection proceed at a saturation flow rate

� Cycle Length: Time required by a signal to complete

one cycle.

� Phase Sequence: The order of the signal phases

during the signal cycle.

� Change Interval: It is also known as the clearance

interval. It is the interval of yellow and red signal

timing between phases of traffic signals to provide

clearance at an intersection before the onset of

conflicting traffic movements.

� Offset: The relationship between coordinated phases

in terms of time.

The number of stopped vehicles and the delay can be

reduced by increasing the green phase timing for a par-

ticular movement. However, an increase in the green

time of one traffic movement usually occurs at the ex-

pense of increased delay and the number of stopped ve-

hicles in other movements. Therefore, a good signal

timing plan is one that allocates time so that overall traf-

fic performance, e.g. average wait delay time, is

optimized.

3.2 Structural Design of Traffic Signal Control

Traffic signal control (TSC) strategies have been classi-

fied into fixed-time, adaptive, and actuated control strat-

egies [5, 13, 14]. The main reason behind this

Table 1 Search parameters of the literature review

Table 2 Number of papers covering the literature review keywords per year

Qadri et al. European Transport Research Review           (2020) 12:55 Page 3 of 23



classification is the type of data and the algorithms they

employ to optimize traffic signal plan.

Fixed time TSC strategies are mainly appropriate

for the traffic signals, where the flow of traffic is

somewhat stable and consistent. Based on previously

observed traffic data, these strategies make use of off-

line optimization algorithms for TST and end up with

predetermined cycle length, split setting plan. The

main objective of this strategy is to achieve an overall

goal, such as minimizing average delay, maximizing

the capacity of a network, etc. [15, 16] developed the

initial models, which laid down the foundation of

fixed-time traffic control strategies by minimizing the

average delay. As the traffic system is exceptionally

dynamic in urban areas, any small disturbance in

terms of a traffic collision, construction work, etc.

can suddenly alter traffic volumes and render the

overall performance of a predetermined traffic signal

plan insufficient.

On the contrary to fixed-time control strategies, the

main aim of the adaptive control strategies is to

optimize the TST plan according to the present-time

traffic situations in every phase. Hence the use of

sensor technologies came into practice. Initial sensor

technologies were capable of discerning vehicular

presence when they cross it.

Later on, visual systems came into heavy use. The ac-

tuated control strategies also use sensors and the actu-

ated controller decides the cycle length based on past

information. Whereas the adaptive strategies are the

modified form of actuated control, which uses the

present data to predict the cycle length of real-time traf-

fic conditions. These sensors are placed at every road

within the bounds of the signalized network. However,

these strategies cannot perform as much detailed ana-

lysis as the fixed time strategies, because they have to

regulate traffic signal plans instantly [17].

The traffic systems, especially in urban areas, are

exceptionally dynamic. Any small disturbance can

suddenly alter traffic volumes. So, it is more beneficial

if the system is capable of reducing traffic congestion

in real-time. Now in today’s world, with the use of

sensor technologies and additional strategies, the col-

lection of data in real-time is no more a challenging

task. With the abundance of data and the use of

available computational power, instant traffic manage-

ment, or prediction of traffic scenarios can be

possible.

3.3 Review of frequently used microsimulation tools

Although analytical models are useful in terms of

providing insights into more general system behavior,

simulation tools have a prominent place in analyzing

responses of traffic systems under a variety of condi-

tions. A tool like simulation is very helpful in traffic

engineering to analyze the complex dynamic behavior

of a traffic stream. Simulation can be defined as the

imitation of real-world systems or processes for con-

veniently acquiring the information through analogous

traffic flow models. These models assist in describing

the physical propagation of the flow of traffic. The

use of traffic simulation models is crucial for a

Fig. 1 Journal and conference papers included in this study by year
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comprehensive investigation of the urban transporta-

tion system in a safe and suitable environment.

As a whole, traffic simulation can be dichotomized

broadly into microscopic and macroscopic approaches.

The microscopic simulation approach contemplates

the individual behavior of the driver along with the

interaction with other vehicles or pedestrians, whereas

the macroscopic approach considers the vehicular

flow as a whole. Mesoscopic is another approach,

which is the hybrid of the previously mentioned ap-

proaches. AIMSUN, CORSIM, MATSim, Paramics,

SUMO, VISSIM are some of the widely used microsi-

mulation packages for exploring the wide array of dy-

namic problems in urban traffic. There is a large

number of papers included in this study dealing with

microsimulation in some form (either evaluation or as

a part of the model). Therefore authors at this stage,

consider it necessary to discuss the characteristics of

some of the most commonly used microsimulation

packages for the readers.

Ratrout and Rahman [18] evaluated the attributes

and characteristics of various commonly used traffic

simulation packages and also provided the relative

analysis by focusing on some special features. They

found VISSIM, AIMSUN, and CORSIM suitable for

modeling features like arterial, freeway congestion,

and integrated network of freeways and streets, and

AIMSUN, CORSIM, and PARAMICS for intelligent

transportation systems (ITS) [19]. compared the re-

sults of TransModeler, AIMSUN, and VISSIM at an

International Bridge connecting the US-Mexico

border cities.

We categorize and compare the seven most widely

used microsimulation tools based on eleven (11)

features and present the results in Table 3. Con-

cerning the graphical user interface (GUI), all of the

above-mentioned packages are found to be equally

user-friendly and adequate. For the lane closures

and the modeling of work zones, TransModeler has

great advantages over AIMSUN and VISSIM. In

terms of the decision modeling of vehicular routing,

VISSIM allows easy input of a large amount of data

through Excel spreadsheets. AIMSUN, VISSIM, and

SUMO are the simulation tools that allow the user

to build and control models with an application pro-

gramming interface (API) by an external program-

ming language. The “AIMSUN Next” by AIMSUN

provide the toolkit for the automation of task through

programming environment. Whereas, Component Ob-

ject Model (COM) and Traffic Control Interface

(TraCI) are the programming interfaces provided by

VISSIM and SUMO respectively. The availability of a

hierarchical VISSIM-COM object model makes it eas-

ier to code a network with VISSIM as compared to

SUMO. Previously AIMSUN did not have any feature

of API. One of the most prominent features of AIM-

SUN Next is its speed, which provides its supremacy

to all other current microscopic simulation tools. Say-

ing AIMSUN tried to overcome all of its shortcom-

ings through AIMSUN Next would not be wrong.

Table 3 Classification of most commonly used traffic microsimulation tools
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Except for AIMSUN Next, it is recommended that the

modeler must have moderate knowledge about pro-

gramming on Python, C++, or VBA while using VISS

IM and SUMO for modeling, otherwise, AIMSUN

might be the optimal one. Except for the MatSim, all

of the above-mentioned microsimulation tools provide

the facility for both 2D and 3D visualization.

Figure 2 indicates that, within the search parame-

ters used in this paper, researchers have chosen VISS

IM and SUMO (either for evaluation or as a part of

the model) over all other available microsimulation

tools in their research published over the last five

years. This is a clear proof of the superiority in the

usage of both software. The number of times these

tools are used is also mentioned at the top of each

bar.

4 Categorization of methodologies for traffic
signal timing settings
Traffic signal control is one of the most efficient

methods for urban traffic management, providing a

smoother and more secure traffic flow at every

intersection. From the time when the simple auto-

matic signal controller has been introduced, the

TSC system has been going through interminable

improvements to address the factors that cause im-

pediments in TSC. Some of these impediments are

inadequate transport infrastructure, an increasing

number of vehicles, weather conditions, traffic net-

work structure, etc. Each cause is notable in itself

and has the full potential to generate congestion at

any time in the network. As a whole, mitigating

traffic congestion caused by these reasons is a

challenging, complex, and nonlinear stochastic prob-

lem for engineers and researchers to solve [5]. In

the following subsections, we review traffic signal

control papers in two major categories. These are

papers utilizing “microSimOpt (Microsimulation-

Based Optimization) models” and “computational

intelligence (CI) models”. Each subsection includes a

detailed table summarizing papers belonging to that

subsection based on several carefully selected pa-

rameters. These parameters are context/objectives,

methods and parameters employed, type of intersec-

tion studied, control system strategy, source of data,

micro-simulation tool used as well as additional

comments.

In section 4.1, researches on the SimOpt model

with a focus on microscopic traffic simulation are

introduced. The analysis of papers using CI methods

is given in section 4.2. If one of the studies included

in this review can be categorized into more than

one (sub)section, it is included in the section based

on the most dominant approach.

4.1 Microsimulation-based optimization model

SimOpt, in general, is regarded as a field in which

the optimization techniques are integrated with simu-

lation analysis [20]. The reason for doing this is to

find the best decision variable values among all pos-

sibilities without explicitly evaluating (simulating)

each possibility [21]. In this sub-section, papers in

which a microsimulation tool is integrated with the

proposed strategy for solving the TST problem and

have been utilized as an evaluation function in an

optimization loop are reviewed. Simulation-

Fig. 2 Number of publications utilizing microsimulation tool
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optimization for TST is important because evaluating

the effects of minor changes in decision variables re-

garding TST can be assessed accurately through

microsimulation without actual implementation. For

understanding the concept; the proposed strategy/al-

gorithm asks the microsimulation model of the net-

work to evaluate the current solution and the results

from each simulation run are fed back to the pro-

posed algorithm until some stopping criterion(a). Re-

searchers have used numerous approaches of CI

methods along with traffic simulation tools in the

domain of TSC. These approaches include but not

limited to machine learning approaches, fuzzy logic,

and computational strategies such as Evolutionary

Computation (EC), Swarm Intelligence (SI), and other

population based-metaheuristic algorithms.

Optimization of TST is a complex problem yet

cost-effective to mitigate traffic congestion and to

smooth the vehicular traffic flow. This optimization

problem has been widely addressed in the context

of stochastic equilibrium network design with differ-

ent approaches like deterministic and heuristic

methods. Due to the presence of a large number of

local optimum points in the convoluted solution

space of the problem, deterministic approaches like

gradient-based methods are not effective. On the

other hand, despite the nonconvex nature of the

problem, heuristic approaches like the Genetic Algo-

rithm (GA), Particle Swarm Optimization (PSO) are

quite successful in the exploration of the search

space. However, they may spend a comparatively

long time in finding the global optimum solution. In

the next subsections, categorization, and evaluation

of recent literature on simulation-optimization based

TST approaches are given.

The detailed analysis of the researches published

over the past five years is included in Appendix 1.

Below the categorization and evaluation of relevant

recent literature based on SimOpt. approaches are

presented.

4.1.1 Artificial intelligence-based approaches

The papers [22–28] are employed a type of artificial

learning algorithm for solving the TST problem.

Among these studies, Neural Networks, Adaptive

Neuro-Fuzzy Inference System, Q-Learning, fuzzy

logic, and Deep Reinforcement learning are the

adapted machine learning algorithms. Different objec-

tives have been used in these studies including

minimization of average delay [22, 27], total travel

time [24, 25], average queue length [26], optimization

of TST plan [23], and maximization of the flow rate

[28].

Araghi, et al. [22] utilized a different nature-

inspired algorithm called the cuckoo search algorithm

for the first time to tune the parameters of intelli-

gent controller optimally. The Intelligent controllers

implemented in this study were a Neural Network

(NN) and an Adaptive Neuro-Fuzzy Inference System

(ANFIS). The fuzzy logic-based control system devel-

oped by Jin, et al. [23] was capable of providing traf-

fic light indication during real-time operations after

receiving the messages from the signal controller

hardware. The signal control and optimization tool-

boxes were integrated into the software embedded in

the controller’s device. In [24] Araghi et al. assessed

the performance of three meta-heuristic algorithms,

which were Simulated Annealing (SA), GA, and the

CS on a complex advanced interval type-2 adaptive

neuro-fuzzy inference system (IT2ANFIS) based traf-

fic signal controller. Miletić et al. [25] compared the

effectiveness of two different approaches used in pre-

mature traffic light control systems through six dif-

ferent scenarios of microsimulation models using

real-time data. The first method used in the com-

parison was operated by fixed values for vehicle ar-

rival time and queue length ranges, while the second

was based on fuzzy logic and, therefore it was more

adaptive.

4.1.2 Metaheuristics based approaches

Reference numbers [29–34] employ meta-heuristic

methods for optimization along with a micro-

simulation tool. Among the meta-heuristics imple-

mentations, population-based methods were mostly

employed, where PSO, ACO, and GA are the most

heavily utilized methods. In addition to some com-

mon objectives that are mentioned in the previous

sub(section), Elgarej et al. [32, 33] came up with a

different objective of finding the shortest effective

green time.

Gökçe et al. [29], Dabiri and Abbas [30], Panovski

and Zaharia [31], Chuo et al. [35] utilized PSO for

the fulfillment of their objectives. Among them, [29]

is the only study that has been carried out for the

signalized roundabout containing 28 signal heads,

whereas [30, 31] worked on optimizing the arterial

traffic signals having three intersections and the is-

sues related with traffic flow management in the

urban areas respectively. Jintamuttha, et al. [33] pro-

posed a finite-interval model to achieve the objective

regarding TST. A different swarm-based algorithm,

Bat algorithm, was utilized to relax the computa-

tional complexity. Chuo et al. [35] developed a

multiple-intersection TST system. PSO with the small

adjustment was employed for the consistency of the

results.

Qadri et al. European Transport Research Review           (2020) 12:55 Page 7 of 23



4.1.3 Multi-objective based approaches

Nguyen et al. [36], Hatri and Boumhidi [37], Zheng

et al. [38] are the only papers that employ a multi-

objective simulation-optimization approach. Although

a relevant approach, there seems to be a research

void in implementing multi-objective SimOpt for the

TST problem.

Nguyen et al. [36] integrated a local search (LS)

algorithm with the iterations of NSGA-II in a way

that the output of LS was becoming the next gener-

ation’s parents in their study. Results of the pro-

posed NSGA-II-LS were compared with NSGA-II

and multi-objective differential evolutionary algo-

rithms and found that the proposed algorithm was

better than the other two approaches and good

simulation results were achievable in the early phase

of the optimization procedure. To balance the

equity and efficiency of traffic flow in the urban

network Zheng et al. [38] presented a bi-objective

stochastic SimOpt approach. Two types of surrogate

models were also used to capture the mapping rela-

tionship between decision variables and objectives.

VISSIM was used to model the case study network

and the results demonstrated that the proposed

model outperformed three other counterparts in-

cluding NSGA- II.

4.1.4 Bi-level programming based approaches

There are only two studies [39, 40] that employed a

bi-level programming approach, where signal settings

are determined by the upper and lower level

optimization tasks. With an objective function of

maximizing the weighted trip, Hajbabaie and Beneko-

hal in [39] formulated a program to optimize TST

and system optimal traffic assignment simultaneously.

By relaxing network loading and traffic assignment

constraints, the study also proposed a framework for

the calculation of the upper-bound value of the ob-

jective function.

To obtain the optimal TST setting, Li et al. [40]

designed a framework in such a way that the settings

of traffic signals were determined by the upper level.

The upper level was intended to minimize the aver-

age travel time of drivers, whereas the task for

achieving the network’s equilibrium was attained by

the lower level through the settings provided by the

upper level.

4.1.5 Miscellaneous approaches

References [41–48] employ a mathematical

optimization method along with micro-simulation.

The methods employed range from dynamic program-

ming to backpressure to optimal control. These ap-

proaches are more likely to be useful for design phase

problems rather than operational, due to the difficul-

ties involved in solving them for large instances in an

acceptable amount of time. Based on a dynamic pro-

gramming approach with NEMA configuration, the

real-time signal control algorithm was formulated by

Chen et al. [41]. Dakic et al. [43] also proposed two

signal control algorithms based on the backpressure

model to maximize throughput through an urban

traffic network. These two models were initialized

and modified backpressure. Results revealed that the

proposed algorithms outperformed the fixed time and

actuated control strategies

To deal with the reliable TSC problem, Chen

et al. [45] presented an approach in which the

higher-order distributional information that was de-

rived from a stochastic microscopic simulator was

used. The TSC problem was based on a linear com-

bination of the expectation of total travel time and

its standard deviation. For enhancing the computa-

tional efficiency of the algorithm, the analytical ap-

proximation of the simulated metrics was combined

with the simulated data. According to the authors,

such kinds of approaches can be utilized to inform

the design and operation of the transportation

system.

4.2 Computational intelligence based models

The researches, which incorporates the CI-based ap-

proaches, are analyzed in this section. Papers in this

section, use some sort of an estimation function to

evaluate potential solutions during the search

process, in the hope of finding an optimal or near-

optimal solution. Some of the papers also utilize

microsimulation tools. But the usage of microsimula-

tion tools here is not for the development of the

proposed solution but rather to demonstrate possible

or potential benefits of the proposed solution. In this

category, the approaches like fuzzy models, neural

networks, machine learning algorithms, evolutionary

computation (EC), swarm intelligence (SI), and other

population-based metaheuristic algorithms are dis-

cussed. Similar to Appendix 1, Appendix 2 presents a

detailed analysis of work in this field under the same

categories.

One of the strategies to optimize the traffic in

urban areas is the use of ITS, which implements the

CI method to facilitate problem-solving that previ-

ously seemed very difficult. CI is a collection of

“intelligence” methods, including evolutionary com-

puting, fuzzy logic, and artificial neural networks with

a claim of being the successor of Artificial

Intelligence [49]. Moreover, CI can also capitalize on

other approaches, like swarm intelligence and

reinforcement learning, etc.
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The inspiration for both EC and SI algorithms often

comes from nature, like biological evolution. Classical

ECs, encompass evolution strategies, evolutionary pro-

gramming, GA, and genetic programming (GP). They

all are metaheuristic optimization techniques for find-

ing the optimal or near-optimal solutions to the non-

linear complex problem within an acceptable time

limit. They imitate natural processes, such as natural

evolution under the principle of fit or adapted to the

environmental condition best, well known as the

phenomenon of the survival of the fittest [49]. The

origin of SI algorithms is from the behaviors of some

social living beings such as birds, ants, and fishes

[50]. The main strength of SI based research mainly

depends on two families of algorithm namely ant col-

ony optimization and particle swarm optimization.

They all are very successful in various kinds of

optimization problems.

One of the motivations behind the development of

EC was the growing demand for robust automated

problem solvers in the second half of the twentieth

century, which should apply to a wide range of prob-

lems without the need for much tailoring, along with

satisfactory performance [51]. Montana et al. [52]

presented one of the initial works through an evolu-

tionary approach for intelligent TSC. A hybrid ap-

proach of GA and strongly typed GP [53] was

employed to optimize fixed cycle signal timings. On

the comparison, of both the strategies for three small

different network settings, it was found that in all

the cases, GP’s performance was better than that of

GA. These were some details of the preeminent early

work that came into the category of CI-based

optimization for TST. The detailed summaries of the

work that fits with our literature search parameters

are given in Appendix 2. This table reflects the di-

versity of TST optimization in terms of solution

methodology and lists the details of recently pub-

lished research.

Below the categorization and evaluation of relevant re-

cent literature are presented based on CI methods

utilized.

4.2.1 Artificial intelligence-based approaches

A variety of different AI-based methods [54–61] were

used for eliminating bottlenecks or to increase the

throughput at the signalized intersections.

Xiang and Chen [54] proposed a Back Propagation

neural network-based Grey Qualitative Reinforcement

Learning algorithm to eliminate bottlenecks and to avoid

reducing traffic flow and timing plan function relation-

ships. Benhamza et al. [55] used a multi-agent frame-

work for the development of an adaptive TST scheme

for multiple intersections. In the developed scheme, each

intersection was managed by an autonomous agent.

Vidhate et al. [56] and Genders et al. [57] modeled

TSC using the RL algorithm based on real-time traf-

fic data whereas Liang et al. [58] proposed a deep RL

model to decide the TST and to control the cycle

length of traffic signal based on the data collected

through different sensors. Ozan et al. [61] presented

a modified RL algorithm that was based on Q-

Learning. The algorithm was further combined with

Transfyt-7F for finding the optimal TST of the coor-

dinated network. The proposed approach was better

than other RL based algorithms because of its ability

to produce a sub-environment in each learning event.

The similarity in terms of size was kept constant

among the new and the original environment using

the best solution obtained from the previous learning

event.

A decentralized TSC strategy based on the data

collected from sensors was introduced by Bemas

et al. [59]. A neuroevolution strategy was used to im-

prove the coupling configuration of the introduced

NN and SUMO was employed for the extensive

microsimulation based investigation of the proposed

model.

4.2.2 Metaheuristics based approaches

Metaheuristic approaches are one of the widely imple-

mented by researchers in the optimization of TSC strat-

egies. References [62–75] implemented metaheuristic

algorithms such as SI, SA, GA, Bee colony, memetic al-

gorithm, PSO, differential evolution, HS, etc. Our ana-

lysis shows that the population-based algorithms are the

most widely used metaheuristic algorithms in optimizing

TSC strategies.

Li et al. [62] presented a hybrid solution algorithm

for arterial TST optimization based on SA and GA.

Gao et al. [63] and Gao et al. [72] considered the

scheduling of urban traffic light as the model-based

optimization problem. To solve this problem, the

discrete harmony search algorithm was employed in

[63], whereas, five metaheuristics were implemented

in [72]. Bie et al. [64], Guo et al. [71] and Tan et al.

[65] developed GA to optimize the TST settings of

the respective networks and objective functions. Jova-

nović et al. [66] used the BC algorithm to solve TST

of isolated intersection in an undersaturated and

oversaturated traffic conditions.

To control the flow of traffic, Manandhar and Joshi

[68] developed a hybrid system that incorporated the

Statistical Multiplexing technique and PSO. Based on

PSO Tarek et al. [67] also developed a TST control

strategy for the signalized roundabout that was com-

bined with the three different sub-controllers.
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4.2.3 Multi-objective based approaches

Due to conflict among different objectives of TST

optimization, some of the research in the literature con-

sidered multi-objective models to optimize the TST

problem. References [76–78] refer to the problem of

TST optimization with multi-objective models.

Optimization of traffic capacity was the common object-

ive among the above-mentioned studies. Other than this,

popular objectives were the minimization of vehicle

delay, stopping time, and vehicle emission.

Yu et al. [76] employed a fuzzy compromise pro-

gramming approach. In this approach, different weight

coefficients were assigned to various optimization ob-

jectives. These weights could be different depending

on the states of the traffic flow ratio. After assigning

the weights, the multi-objective function was con-

verted to a single objective which was solved through

GA. Zhao et al. [77] and Jia et al. [78] used PSO with

some improvement for their multi-objective TST

models.

4.2.4 Dynamic, MILP & non-linear programming based

approaches

References, [79–83] formulated the TST optimization

problem as mixed-integer linear programming (MILP)

whereas references [84, 85] presented as the non-linear

programming models

Countering the oversaturated condition problem of

TSC, He et al. [79] introduced the partial grade separ-

ation at a signalized intersection. A lane-based

optimization model for lane configuration and TST set-

tings was formulated as MILP, which was solved by

branch and bound method. Mehrabipour et al. [80] also

modeled TST of network-level as MILP. To find the

near-optimal TST parameters, a rolling horizon solution

methodology was developed. Based on the vehicle trajec-

tory data in urban road networks, Yan et al. [82] formu-

lated a network-level multiband signal coordination

scheme as MILP to provide progression bands for major

traffic streams. For optimizing TST parameters Köhler

et al. [81] presented an approach based on a cyclically

time-expanded network model. The model was able to

optimize traffic assignment problems at the same time.

The MILP model was for optimizing the control

parameters.

Mohebifard et al. [84] formulated the network-level

TST optimization problem as a Mixed-Integer Non-

Linear Program (MINLP) which was based on the

Cell Transmission Model (CTM) and presented a cus-

tomized methodology to solve it with a tight optimal-

ity gap. Yu et al. [85] put forward a non-linear

programming model for an optimal TSC setting. A

new aspect of this model was combining the double

queue traffic flow model to the signal-controlled

traffic network to record the traffic dynamics and

queue spillback in real-time. In [86] a convex (quad-

ratic) programming approach was utilized to optimize

the pedestrian as well as vehicular TST at an isolated

intersection.

4.2.5 Miscellaneous approaches

References [87–100] present miscellaneous approaches

to optimize TST settings and TSC strategies. These

approaches include stochastic programming, semi-

analytic, stage-based sequencing, elimination pairing,

etc.

A multi-stage stochastic program for the adaptive

TSC system, which was based on phase clearance reli-

ability, was proposed by Ma et al. [87]. In the first

stage, a base timing plan that included the cycle

length and green timing of each phase was developed,

while in the second stage, the green splits and offsets

were adapted to the current traffic conditions. Differ-

ent from the existing methods, Jiao et al. [88] pro-

posed a model that was intended to minimize average

delay time per person, rather than the delay of vehi-

cles from traffic intersection. In the first stage, the

curves of the accumulative arriving and departing ve-

hicles were fitted and the delay functions of the vehi-

cles were formulated during each phase of the signal.

Subsequently, the delay time of the vehicle was

shifted to personal delay time, taking into account the

passenger load of the vehicles. This personal delay

time was further employed as the objective function

and proposed a TST optimization model for attaining

real-time signal parameters. Simoni et al. [89] intro-

duced a Hamilton–Jacobi formulation to model the

TST over the arterial road based on the Lighthill

Whitham Richards model.

Keeping the focus on Network Signal Setting Design,

Memoli et al. [90] introduced scheduled

synchronization. This scheduled synchronization in-

cluded the scheduling of green phase timing and

synchronization to a single optimization problem. The

stage-based method was proposed to solve the problem,

which was the extension of the synchronization method

and the flow model of traffic. Eriskin et al. [91] proposed

a new method, elimination pairing system, for designing

TST at the oversaturated condition. Afdelghaffar et al.

presented the idea of an isolated and adaptable decentra-

lized cycle free TST controller in [92, 93]. The

optimization of TST was achieved through the Nash-

Bargaining game theory approach. Wu et al. [96] pre-

sented a distributed TSC strategy for the traffic lights in

the network. Tang et al. [97] formulated a non-

centralized TSC paradigm to control phase timing based

on fog computing.
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5 Discussion
5.1 Analysis of findings

TST optimization is a difficult and complex problem to

solve. It usually involves stochasticity due to the ran-

domness of demand for flow and behavior of players.

Realistic problems’ solution space is so vast that search-

ing for optimal or near-optimal solutions is a challenging

task, to say the least.

Jin et al. [23], Vogel et al [26] developed a fuzzy

logic based traffic light controller for an isolated traf-

fic intersection. Results were very encouraging in

terms of congestion, travel time, etc. But according

to [31, 75] fuzzy logic and machine-learning-based

traffic controllers are not economically feasible and

require a large investment for their configuration and

maintenance. In terms of parameters, it has also been

observed that the offset in the network of intersec-

tions has been targeted for optimization in a very

limited number of studies.

Figure 3 shows that the number of studies using a

SimOpt model over the past 5 years is relatively

fewer in number. Our analysis shows that the

population-based algorithms are the most widely

used metaheuristic algorithms in optimizing TSC

strategies. In terms of approaches developed for both

the control strategies that are fixed time and real-

Fig. 3 Publications per year according to the category

Fig. 4 Research publication according to approaches
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time, the majority of the researchers preferred to

work on fixed time controls over the real-time sys-

tems. Metaheuristic approaches are utilized mostly

for optimization, in 69% of studies with fixed-time

control strategies and 49% of studies with real-time

control strategies. It is also quite clear that the solu-

tion to the problem of optimizing TST lies in the

real-time traffic control strategy that can deal with

the fluctuation of traffic.

We also find out that microsimulation tools are

used at an increasing rate. Among the many available

microsimulation tools, VISSIM and SUMO have been

used in 60% of the studies either for evaluation or as

a part of the model published over the last five years.

This is a clear proof of the superiority in the usage of

both software.

5.1.1 Analytical vs simulation-optimization and CI methods

As mentioned in section 2, 77% of studies that were

analyzed utilized a microsimulation tool. Besides, we

have also come across some papers utilizing analyt-

ical methods. The search for 2015–2020 resulted in

a total of 10 such papers [76, 84, 88, 91, 101–106]

utilizing an analytical approach. Only 3 papers [84,

103, 105] considered a network problem, and the

remaining 7 considered a single network problem.

But the size of the realistic problems and the

amount of interaction that needs to be included in

the model for them to be interesting, make use of

analytical methods significantly less practical (prom-

ising) for TST problems. Analytical models are use-

ful to gain insights into the problem but getting

useful results is difficult for two reasons. Either the

number of interactions that need to be included in

the model or the solution time required, make use

of these analytical models prohibitive. For these rea-

sons, analytical models are not included in this re-

view paper.

5.1.2 Single vs network of intersections

Traffic is a very much a flow problem. Therefore, it

may not be enough to improve traffic at a single

intersection or roundabout when the next intersec-

tion is blocked. Traffic conditions are very much af-

fected by driver characteristics, roadway conditions,

and environmental conditions. Therefore effective

TST methods should be able to solve for a network

of intersections, representing problematic areas in an

urban setting. Our analysis shows that only about

53.5% of simulation-optimization papers and 54.3% of

CI papers worked on some sort of network of

intersections.

5.1.3 Real-time vs. fixed-time control

Our analysis finds out that, still a significant amount

of research is performed for fixed-time controllers, ra-

ther than real-time controllers. Among simulation-

optimization methods, 63% of papers utilized fixed-

time compared to 37% of papers utilizing real-time

control. For papers in the CI category, 42% of papers

worked on a fixed-time control problem compared to

58% of papers on real-time control.

Furthermore, Fig. 4 epitomizes the types of ap-

proaches developed for both the control strategies

that are fixed time and real-time. We observe the

dominance of Metaheuristic approaches in both strat-

egies and machine learning algorithms, especially for

real-time control.

5.1.4 Signalized roundabouts

Although in many countries, roundabouts used to be

non-signalized, more and more countries are adapting

signalization of roundabouts led by the UK, France,

Sweden, and Turkey [107, 108]. United States Depart-

ment of Transportation Federal Highway Administra-

tion discourages the use of fully signalized

roundabouts but also concedes that unexpected de-

mand may require signalization [109, 110]. In any

case, one should expect a significant amount of litera-

ture on the signal timing of roundabouts. We have

come across only two studies [29, 67] on signalized

roundabouts.

5.1.5 Experimentation with realistic conditions

Testing proposed solution methods to TST is im-

portant to truly evaluate its effectiveness. Traffic flow

data is complex and presents particular challenges in

imitating. That is probably one of the reasons, why

there are no well-established data sets that one could

test his/her proposed method, like the ones found,

e.g. for scheduling problems. For this reason, testing

with real-life data is important. From our analysis,

we found that about 44.4% of researches utilizing

simulation-optimization methods tested with real-life

data compared to about 42.2% of research utilizing

CI methods.

5.1.6 Evaluation of solutions

Appendices 1 and 2 list the objective functions used

to compare solutions in search of the best. We find

out that 61% of papers use average delay, average

travel time, queue length, and flow rate (or some

function of them) for this purpose.

5.2 Implications for practice

In this subsection, we summarize some of the implica-

tions for practice from the analysis of findings.
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Real-time controllers are more flexible to adapt to

ever-changing requirements. We believe that fixed-

time controllers will have a less practical impact and

therefore more research effort can be expected to

real-time control strategies.

Working with real-time control strategies, with real

data over a large network of intersections all contrib-

ute to already high computational requirements for

solving TST problems. This means difficulty for ana-

lytical approaches and increased utilization of heuris-

tic approaches. There are studies [7, 62, 65, 69, 71,

96, 97], especially under the heading of metaheuristic-

based approaches (subsection 4.2), that utilize heuris-

tics; though these applications are not enough and

most of them found so far, are far away from being

extensively customized. In addition, few utilize cus-

tomized representations and data structures, which

can be crucial in performance. Also due to the nature

of the traffic problem, the management of a large

network of intersections’ TST becomes important. We

realize larger the network, the more difficult solution

or even representation of a solution is.

6 Conclusion, directions for future research
Based on the categorization and analysis of state-of-

art for TST, the authors propose a number of direc-

tions for future research, associated opportunities, and

challenges.

Today’s urban traffic system comes under great

stress during sudden transient peak demand that

forms, either with or without prior information. These

events diverge from the regular traffic in important

characteristics; like being transient, specific to a re-

gion, resulting from an emergency, disaster requiring

evacuation, or a large public event. Modeling and so-

lution for TST after such events is a research gap

that must be filled.

Our analysis found out that only two papers dealing

with signalized roundabouts. Roundabouts have a differ-

ent flow dynamic compared to regular intersections.

With the increasing use of signalized roundabouts, espe-

cially in metropolitan areas, we believe TST for signal-

ized roundabouts presents a particular research gap

within this area.

We found that still less than half of the papers on

TST optimization are performed utilizing real-life

data. The lack of standardized data sets and the com-

plexity of traffic flow data suggests studies tested with

real-life data will have more impact in the field.

Although there are studies made using real-life data

and real-time control, there are few or almost no

mention of findings and/or methods being applied or

adapted in real life. One of the important challenges

for the researchers in this area would be getting these

methods to the decision-makers and adapters.

Papers studying fixed time controllers are made to set

the best possible timings for expected traffic flow. The

rest of the studies are made to employ real-time data (ei-

ther using sensors or cameras) and react to the conges-

tion and try to mitigate the resulting problem.

Recent years have witnessed a significant increase in

the advancement of prediction algorithms, computing

power, and the availability of real-time data. These

facts along with advances in the heuristic algorithms

can lead to proactive models, which may now be suc-

cessfully developed. Proactive models can predict a

traffic flow problem before it happens and calculate

necessary changes in the TSC system to either pre-

vent it totally or decrease the adverse effects. These

proactive models may also be combined with a new

area of simulation-optimization. The concept of a

digital twin has been gaining popularity for the manu-

facturing environment. By definition, “Digital twins

integrate internet of things, AI, machine learning, and

software analytics with spatial network graphs to cre-

ate living digital simulation models that update and

change as their physical counterparts change.” [111].

With the aforementioned advances, it is possible and

interesting to apply the idea of a digital twin to an

urban traffic model. The use of a digital twin for the

urban traffic system within the correct framework

may enable estimating possible problems earlier and

lead to an improvement in the computational power

almost real-time.

The great majority of papers found on the relevant

topic singles out traffic signal timing and its effects on

usually average delay and/or emissions. An important

part of heavy traffic intersections, especially in metropol-

itan areas are pedestrians. Except for [86, 98], pedes-

trians and the effect of their behavior are not modeled

into the studies. The same goes for driver behavior. An

important avenue of research would be to analyze the ef-

fects of pedestrian and driver behavior on the models.

There is a big increase in the number of studies

dealing with autonomous vehicles and technologies.

To the best of the author’s knowledge, all these stud-

ies exclusively study the general area of how autono-

mous vehicles, flow in traffic safely and/or efficiently

and/or environmentally friendly, etc. However, we

did not come across studies that benefit from au-

tonomous vehicles and related technologies for TST

optimization. A great majority of research on autono-

mous technologies and TST are studied in rural

highway environments, rather than urban. We believe

there is a research opportunity to study TST in

urban settings with the heavy use of autonomous

vehicles.
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7 Appendix 1
7.1 Categorization of existing literature on the SimOpt

mode
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8 Appendix 2
8.1 Categorization of existing literature on CI based model

The researchers from the transportation field working

in the area of TST are moving towards the imple-

mentation of hybrid algorithms. The main idea be-

hind this is to overcome flaws in one algorithm,

especially to reduce complexity and speed up the pro-

cesses so that they can be more useful in optimizing

TST. Sign of addition i.e. “+” between the two differ-

ent strategies in the “Method / Tool” column of sum-

mary in Appendix 2 showing the hybrid of those two

strategies, like [62, 75] presented the hybrid of SA-

GA and TS-ABC based algorithms respectively for

solving the problem. Additionally, the table also indi-

cates whether the results generated from the underex-

amined strategy is verified by any simulation means

or not.
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