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Abstract—This paper presents a new battery state of charge
(SOC) estimation method for lithium-ion batteries based on a
nonlinear fractional model with incommensurate differentiation
orders. A continuous frequency distributed model is used to
describe the incommensurate fractional system. A Luenberger-
type observer is designed for battery SOC estimation. The
observer gain that can stabilize the zero equilibrium of the
estimation error system is derived by the Lyapunov’s direct
method. The proposed SOC observer is examined using real-
time experimental data of lithium-ion batteries. The robustness
of the observer under different test conditions, including different
aging levels, different driving cycles and different cells, is also
presented.

Index Terms—Lithium-ion battery, state of charge, incom-
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inequality.

I. INTRODUCTION

L ITHIUM-ION batteries (LIBs) have emerged as the most-

promising enabling technology for electrified vehicles.

When using LIBs in practical applications, accurate battery

state of charge (SOC) estimation is especially important to

maintain safe and efficient operation [1]. In addition, accurate

SOC estimation enables larger usable energy capacity by

reducing uncertainty at the voltage limits, thereby enhancing

range.

Accurate and reliable SOC estimation has been a long-

standing challenge. Existing studies can be roughly classified

into two categories: open-loop and closed-loop methods. The

former typically includes ampere-hour counting and open-

circuit-voltage (OCV) calibration [2]. The ampere-hour count-

ing method is trivial to implement, but suffers from drift

due to current measurement bias and requires a known initial

condition [3]. The OCV calibration method requires exact

knowledge of OCV as a function of SOC. In practice, the OCV

relationship changes over time and temperature. Closed-loop

methods can provide improved accuracy compared to their
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open-loop counterparts, since they are fundamentally robust

to modeling and measurement errors. The main idea is to fuse

a battery model with measurable signals, i.e., battery voltage,

current and temperature, to predict the internal state, i.e., SOC.

Accurate battery models are of essential importance for closed-

loop methods. Equivalent circuit models (ECMs) have been

widely used in SOC estimation due to their intuitive structure

and (often, but not always) low computational requirements

[4], [5]. One shortcoming of ECMs is that they are unable

to accurately characterize the electrochemical dynamics since

they mimic the input-output behavior by electric components,

e.g., resistors and capacitors. The electrochemical models

conquer some shortcomings of ECMs by using coupled and

nonlinear partial differential equations (PDEs) [6], [7]. These

PDEs describe ion transport phenomena and electrochemical

reactions to achieve higher accuracy, but inevitably require

advanced numerical implementation methods. Even with the

simplest electrochemical models, i.e., the single particle model

(SPM) [8], such a SOC estimator can include tens of unknown

parameters to be designed.

Impedance-based models are an alternative choice for SOC

estimation. A key feature of impedance-based models is they

naturally cast themselves into fractional impedance compo-

nents, e.g., the constant phase element (CPE) and Warburg

element [9]. The potential advantages of fractional models has

been discussed for accurate representation of battery dynamics

[10], [11]. The commonly used ECMs, e.g., the first-order RC

and second-order RC models, can be considered as low-order

approximations of fractional battery models [12]. In addition,

a key advantage of fractional models is they model infinite

dimensional systems with only a few parameters [13]. Conse-

quently, fractional models hold interesting advantages for SOC

estimation. A pioneering work has been done by Sabatier, et

al. (2006), in which a fractional model for lead acid battery

is built, and its parameters are identified after approximation

in the frequency domain. [14]. A similar fractional model was

derived by Xu, et al. (2013), the Kalman filter was applied to

estimate battery SOC after approximating the model based on

the Grünwald-Letnikov definition [9].

The observer design methods for integer systems have been

extended to fractional systems in recent years. For instance,

a pole placement-based observer was reported for both com-

mensurate and incommensurate fractional systems [15]. This,

however, is not extendable to nonlinear systems. Lyapunov’s

approach has not been explored until recently. Trigeassou,

et al., proposed a method to analyze stability for fractional

systems using Lyapunov stability theory [16], where the key



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. XX, NO. X, XX XXXX 2

is to introduce a continuous frequency distributed model and

an appropriate Lyapunov function. Following this concept,

Boroujeni and Momeni designed a fractional observer for

a class of commensurate nonlinear fractional systems [17].

Lan and Zhou incorporated a positive definite matrix into

Boroujeni’s Lyapunov function to mitigate conservation for

commensurate fractional systems [18]. Consequently, one can

prove Lyapunov stability using the framework of linear matrix

inequalities (LMIs), which we leverage in this paper. Never-

theless, it is more reasonable to model physical systems with

incommensurate fractional equations [13], e.g., the fractional

model used for LIBs in this paper, which needs observer de-

sign methods applicable to incommensurate fractional system.

The major contribution of this paper is to design an ob-

server for battery SOC estimation using a nonlinear fractional

battery model with incommensurate differentiation orders. The

observer is designed for the original fractional model, rather

than an approximation. We design this observer to be provably

stable via Lyapunov theory. The remainder of this paper

is organized as follows: Section II introduces the fractional

model for LIBs. Section III proposes the novel nonlinear

fractional observer for SOC estimation. Section IV introduces

the battery tests and realization methods for the fractional

systems. Experimental results and discussions are provided in

Section V. Conclusions are presented in Section VI.

II. FRACTIONAL MODEL FOR BATTERIES

A. Definitions for Fractional Calculus

Fractional calculus, which involves non-integer derivatives

and integrals, was first introduced by Leibniz in 1695. It

has not attracted significant attention within engineering until

recently, where several physical systems were found to be

better characterized by non-integer derivatives and integrals

[19], [20]. In general, physical systems with mass transport,

diffusion dynamics and memory hysteresis can be elegantly

described by fractional calculus. One reason for this is that

fractional differential equations are a natural mathematical tool

to describe distributed-parameter systems [21]. Consequently,

fractional calculus is an appropriate tool for characterizing the

electrochemical dynamics in batteries.

In fractional calculus, the operator t0D
q
t is used to represent

the derivative or integral of arbitrary order q with respect to

t, in which t0 is the initial time. Here, t0 is considered as

0 in this paper. When q > 0, t0D
q
t represents the fractional

derivative; when q < 0, it stands for the fractional integral. In

this paper, we consider only fractional derivatives, i.e., q > 0,

and the operator is then simplified as Dq .

The Grünwald-Letnikov definition is one of the most com-

monly used definitions [22], [23]. The q-th order Grünwald-

Letnikov fractional derivative of x (t) is defined as:

D
qx (t)= lim

∆T→0

1

∆T q

[t/∆T ]
∑

i=0

(−1)
i

(

q
i

)

x (t− i∆T ) (1)

where ∆T is the sampling time, [t/∆T ] stands for the

integer part of t/∆T ,

(

q
i

)

represents the Newton binomial

coefficient generalized to real numbers, expressed as:
(

q
i

)

=
Γ (q + 1)

Γ (i+ 1)Γ (q − i+ 1)
(2)

where Γ (q) represents the Gamma function, defined by:

Γ (q) =

∫ ∞

0

ξq−1e−ξdξ.

The Gamma function plays a very important role in fraction-

al calculus, which is a generalization of the factorial operator

for real numbers. In addition, the state-space representation of

a linear time-invariant fractional system is similar to that of

an integer system:

D
αx (t) = Ax (t) +Bu (t)

y (t) = Cx (t) +Du (t)
(3)

where x (t) ∈ Rn is the state vector, u (t) ∈ Rr is the system

input vector, y (t) ∈ Rp is the system output vector, A, B,

C, and D are the matrices with appropriate dimensions, and

α =
[

α1 α2 . . . αn

]

is the differentiation order

vector. Note that, if all the elements of α are the same, i.e.,

α1 = α2 = . . . = αn, (3) is a commensurate fractional system,

otherwise it is incommensurate [22].

For engineering implementation, (3) can be discretized in

time based on the Grünwald-Letnikov fractional derivative, for

k ≥ 1:

x (k + 1) = [∆TαA+ diag (α) I]x (k)

−

N+1
∑

i=2

(−1)
i

(

α
i

)

x (k + 1− i) (4)

+∆TαBu (k)

and for k = 0:

x (k + 1) = [∆TαA+ diag (α) I]x (k) + ∆TαBu (k) . (5)

Above are the basic definitions used in this paper.

B. Fractional Modeling with Incommensurate Differentiation

Orders

A typical electrochemical impedance spectroscopy (EIS)

diagram for LIBs is shown in Fig. 1. For the EIS analysis,

fractional elements, e.g., CPE and Warburg element, are

frequently used instead of common RC circuits to achieve

higher accuracy. The advantage of this replacement has been

noticed for some time-domain applications in recent years

[10], [11]. Due to the lack of effective techniques, those

fractional elements are usually approximated by a series of RC

circuits for battery applications, which inevitably introduces a

certain level of approximation error. Different from previous

studies, this paper presents a method to directly apply a

fractional battery model to design robust SOC estimator. A

fractional battery model, shown in Fig. 2, is used to describe

battery behaviors. This model can be regarded as a variant of

the second-order RC model, with two capacitors replaced by

two CPEs.

Note that, although the CPE is usually characterized with

arbitrary differentiation orders within [0, 1] in the literature,
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Fig. 1. Typical EIS diagram for LIBs.

Fig. 2. Fractional battery model structure used in this paper.

the two boundary values are not considered here. Hence, the

two differentiation orders are defined in the range of (0, 1) in

this work. The dynamic equation of a CPE in parallel with a

resistor is derived as bellow:

D
αiVCPEi

(t) = −
1

RiCi
VCPEi

(t)+
1

Ci
IO (t) , i = 1, 2 (6)

where VCPEi
(t) represents the CPE voltage, IO (t) is the

battery current, Ri and Ci are the element parameters, αi ∈
R, 0 < α < 1 is the differentiation order. Another state of the

fractional battery model is SOC, usually expressed as:

dSOC (t)

dt
= −IO (t)

η

Qn
(7)

where, η is charging/discharging efficiency, Qn is the nominal

battery capacity.

Consequently, the battery is modeled as a nonlinear fraction-

al system with incommensurate differentiation orders. Since

the two CPEs are used to represent different dynamics, the

two differentiation orders have no connection with each other

and are defined as two independent parameters.

The battery can then be expressed by the following state-

space representation:

D
αx (t) = Ax (t) +Bu (t)

y (t) = Cx (t) +Du (t) + f [x (t)]
(8)

where x (t) =
[

VCPE1
(t) VCPE2

(t) SOC (t)
]T

is the

state vector, y (t) is the system output (battery terminal voltage

VO), u (t) represents the system input (battery current IO),

α =
[

α1 α2 1
]

represents the incommensurate order

vector, A, B, C, and D are the matrices with appropriate

dimensions:

A =





− 1
R1C1

0 0

0 − 1
R2C2

0

0 0 0





B =
[

1/C1 1/C2 −η/Qn

]T

C =
[

−1 −1 d1
]

D = −R0

(9)

where, dk, k = 0, 1, · · · ,M are the coefficients of f∗ [x (t)] =
M
∑

k=0

dkSOCk (t). The function f∗ [x (t)] has been extensively

and successfully used to represent the OCV-SOC relationship

for many different batteries [4], [24]. The function f [x (t)] in

(8) is defined as:

f [x (t)] =

M
∑

k=0,k 6=1

dkSOCk (t) . (10)

In other words, the linear term d1SOC (t) is excluded

from f∗ [x (t)] and incorporated into the input matrix C. For

most battery chemistries, it can be easily shown that (10) is

Lipschitz continuous within 0 ≤ SOC ≤ 1, i.e.,

‖f (SOC1)− f (SOC2)‖ ≤ γ ‖SOC1 − SOC2‖ (11)

where γ is the Lipschitz constant, provided that |dk| < ∞ for

all k = 0, · · · ,M and M > 0. Condition (11) is frequently

used to deal with Lipschitz nonlinearities, which may lead to

unfeasible LMIs when the Lipschitz constant is too large.

The fractional model governed by (8)-(10) includes both

integer and fractional states. The two differentiation orders

for the CPEs are defined as arbitrary parameters in the range

of (0, 1) to achieve higher accuracy. However, most existing

methods for fractional observer design are applicable to com-

mensurate fractional systems. Our objective is to design an

observer for an incommensurate nonlinear fractional system

for battery SOC estimation based on the Lyapunov approach.

III. FRACTIONAL OBSERVER FOR SOC ESTIMATION

In this section we design a novel state observer using a

continuous frequency distributed model representation of the

fractional model, and Lyapunov stability theory. Specifically,

sufficient conditions are derived for the stability of an incom-

mensurate nonlinear fractional observer via Lyapunov’s direct

method.

Considering the fractional battery model defined by (8)-(10),

the following observer is proposed:

D
αx̂ (t) = Ax̂ (t) +Bu (t) + L [y (t)− ŷ (t)]

ŷ (t) = Cx̂ (t) +Du (t) + f [x̂ (t)]
(12)

where x̂ (t) is the state estimation, ŷ (t) denotes the output

estimation, and L is the observer gain to be designed. The

following lemma is used for deriving sufficient conditions for

observer stability.
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Lemma 1 [16], [25]: A fractional differential equation,

Dαixi (t) = gi (t), is equivalent to the following continuous

frequency distributed model, for 0 < αi < 1:

∂zi (ω, t)

∂t
=− ωzi (ω, t) + gi (t)

xi (t) =

∫ ∞

0

µi (ω) zi (ω, t) dω (13)

µi (ω) =
sin (αiπ)

π
ω−αi

and for αi = 1, Dαixi (t) = gi (t) can be represented as:

∂zi (ω, t)

∂t
=− ωzi (ω, t) + gi (t)

xi (t) =

∫ ∞

0

µi (ω) zi (ω, t) dω (14)

µi (ω) = δ (ω)

where gi (t) represents the input, and xi (t) denotes the output,

zi (ω, t) is the frequency distributed state variable, µi (ω) is

the frequency weighting function. Interested readers may refer

to [16], [25] for additional details.

It should be noted that a fractional differential equation can

be exactly converted into a continuous frequency distributed

state model by Lemma 1. In addition, xi (t) is the weight-

ed summation of the frequency distributed state variables

zi (ω, t), where ω is defined in the range of [0,∞). Therefore

we have a continuum of frequency distributed state variables,

e.g., zi (ω1, t), zi (ω2, t), · · · , in other words, zi (ω, t) is

the true state variable. This is also the basis for defining a

Lyapunov function for the fractional system described by a

continuous frequency distributed model.

The following theorem provides sufficient conditions for the

zero equilibrium of the estimation error dynamics.

Theorem 1: Consider the following error dynamics associ-

ated with fractional observer (12):

D
αx̃ (t) = Aclx̃ (t) + LF (t) (15)

where x̃ (t) = x (t) − x̂ (t), L is the observer gain, Acl =
A−LC, F (t) = f [x̂ (t)]− f [x (t)]. The zero equilibrium is

globally asymptotically stable, if there exists a positive definite

diagonal matrix P and a scalar ε > 0, together with a matrix

L0 of appropriate dimensions, such that:

[

ATP + PA− L0C − CTLT
0 + εγ2I L0

LT
0 −ε

]

< 0 (16)

where L0 = PL, and the observer gain can be derived by

L = P−1L0.

Proof: The observer error dynamics (15) usually cannot

be directly analyzed with Lyapunov theory, as is the case for

its integer counterpart. According to Lemma 1, (15) can be

exactly converted into:

∂z (ω, t)

∂t
= − ωz (ω, t) +Aclx̃ (t) + LF (t)

x̃ (t) =

∫ ∞

0

µ (ω) z (ω, t) dω (17)

where:

z (ω, t) =
[

z1 (ω, t) z2 (ω, t) z3 (ω, t)
]T

x̃ (t) =
[

ṼCPE1
(t) ṼCPE2

(t) S̃OC (t)
]T

µ (ω) = diag
[

µ1 (ω) µ2 (ω) µ3 (ω)
]

=





sin(α1π)
π ω−α1 0 0

0 sin(α2π)
π ω−α2 0

0 0 δ (ω)



 .

Let us define a Lyapunov function:

V (t) =

∫ ∞

0

v (ω, t) dω (18)

where v (ω, t) = zT (ω, t)µT (ω)Pz (ω, t) is a monochromat-

ic function with respect to elementary frequency ω, and P is

a positive diagonal matrix. It can be seen that the Lyapunov

function, V (t), is the summation of all the monochromatic

functions v (ω, t) in the frequency domain.

Theoretically, the zero equilibrium of the error dynamics

(15) is globally asymptotically stable if V (t) is positive

definite and its time derivative is negative definite. Lyapunov

functional V (t) can be expanded as:

V (t) =

∫ ∞

0

[

p1µ1 (ω) z
2
1 (ω, t) + p2µ2 (ω) z

2
2 (ω, t)

+ p3µ3 (ω) z
2
3 (ω, t)

]

dω

(19)

where p1, p2 and p3 are the scalar diagonal elements of

P . Note that in the third term on the right side of (19),

µ3 (ω)=δ (ω), then we have:

∫ ∞

0

δ (ω) z23 (ω, t) dω = z23 (0, t) . (20)

As a result, (19) is equal to:

V (t) =

∫ ∞

0

[

p1µ1 (ω) z
2
1 (ω, t) + p2µ2 (ω) z

2
2 (ω, t)

]

dω

+ p3z
2
3 (0, t) . (21)

In (21), p1, p2 and p3 are always positive, and thus V (t)
is positive definite.

In the following, we will prove that the proposed observer

gain ensures V̇ (t) < 0. The derivative of V (t) takes the

form of (22). Note that the term µT (ω)P in (22) obeys the

commutative law of multiplication, i.e., µT (ω)P=PµT (ω),
using the assumption that P is positive definite and diagonal.

As a result, (22) is simplified to:

V̇ (t) = − 2

∫ ∞

0

ωzT (ω, t)µT (ω)Pz (ω, t) dω

+ 2x̃T (t)AT
clPx̃ (t) + 2x̃T (t)L0F (t) .

(23)

Note that
∫∞

0
ωzT (ω, t)µT (ω)Pz (ω, t) dω is nonnega-

tive, and thus V̇ (t) < 0 can be ensured if the following

inequality holds:

x̃T (t)
(

PAcl +AT
clP

)

x̃ (t) + 2x̃T (t)L0F (t) < 0. (24)
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V̇ (t) =

∫ ∞

0

zT (ω, t)µT (ω)P [−ωz (ω, t) +Aclx̃ (t) + LF (t)] dω

+

∫ ∞

0

[−ωz (ω, t) +Aclx̃ (t) + LF (t)]
T
µT (ω)Pz (ω, t)dω

= − 2

∫ ∞

0

ωzT (ω, t)µT (ω)Pzdω +

∫ ∞

0

zT (ω, t)µT (ω)PAclx̃ (t) dω +

∫ ∞

0

zT (ω, t)µT (ω)L0F (t) dω (22)

+

∫ ∞

0

x̃T (t)AT
clµ

T (ω)Pz (ω, t) dω +

∫ ∞

0

FT (t)LTµT (ω)Pz (ω, t) dω

To simplify inequality (24), apply Youngs inequality [26],

giving:

x̃T (t)
(

PAcl +AT
clP

)

x̃ (t) + 2x̃T (t)L0F (t)

≤ x̃T (t)
(

PAcl +AT
clP

)

x̃ (t)

+

[

1

ε
x̃T (t)L0L

T
0 x̃ (t) + εFT (t)F (t)

]

.

(25)

Substituting inequality (11) into (25), concludes that:

x̃T (t)
(

PAcl +AT
clP

)

x̃ (t)

+

[

1

ε
x̃T (t)L0L

T
0 x̃ (t) + εFT (t)F (t)

]

≤ x̃T (t)
(

PAcl +AT
clP

)

x̃ (t)

+
1

ε
x̃T (t)L0L

T
0 x̃ (t) + εγ2x̃T (t) x̃ (t)

(26)

and thus if inequality (27) holds, V̇ (t) < 0 can be guaranteed.

ATP + PA− L0C − CTLT
0 +

1

ε
L0L

T
0 + εγ2I < 0. (27)

Equation (27) can be converted into the following LMI

based on the Schur complement:
[

ATP + PA− L0C − CTLT
0 + εγ2I L0

LT
0 −ε

]

< 0. (28)

Consequently, V̇ (t) < 0 is verified if LMI (28) holds, which

completes the proof.

IV. MODEL IDENTIFICATION AND OBSERVER

REALIZATION

In this section, we introduce the experimental battery tests,

time domain parameter identification, and numerical imple-

mentation of the SOC observer.

A. Battery Tests and Parameter Identification

Eight cylindrical lithium-ion cells are tested and used for

verification. The battery cell model is UR14650P from Sanyo.

The experimental setup is provided in Fig. 3. The test

instruments include an Arbin BT2000 tester for voltammetric

measurement, a thermal chamber for environmental control,

a computer for user-machine interface, a switching board

for cable connection, and a cell tray for testing insider the

chamber. Both current and voltage are recorded at 8 Hz, and

therefore the sampling time is ∆T = 0.125 s. The cells are

tested under three different test cycles, including a Dynamic

Arbin BT 2000 tester

Ethernet 
cable

Switch board

Thermal chamber

Computer

Cells 

⋯⋯

Fig. 3. Battery test setup.

Stress Test (DST), a Federal Urban Dynamic Schedule (FUDS)

and a Hybrid Pulse Power Characterization (HPPC). One of

the FUDS datasets for an arbitrarily selected cell under 35 oC
is used for parametric identification. We refer to this data as

the “training” dataset.

Evolutionary algorithms, e.g., the hybrid multi-swarm par-

ticle swarm optimization (HMPSO) and genetic algorithm,

have been previously applied to identify fractional model

parameters including differentiation orders [27]. In this paper,

the parameters of the resistor and two CPEs, as well as

coefficients of the OCV-SOC polynomial are identified using

HMPSO for the training dataset and listed in Tables I and II,

respectively.

TABLE I
IDENTIFIED PARAMETERS FOR RESISTORS AND CPES

R0 R1 C1 R2 C2 α1 α2

0.0932 1.0157 615.93 0.2840 157.18 0.4218 0.4399

TABLE II
IDENTIFIED COEFFICIENTS FOR THE OCV-SOC POLYNOMIAL

d0 d1 d2 d3 d4

3.6064 1.2264 -3.5299 5.4483 -2.6775

Fig. 4 illustrates the model accuracy by comparing the

identified results with the training dataset. The root-mean-

square error (RMSE) in voltage is 4.98 mV. Consequently,

the identified fractional model accurately captures the battery

dynamics.
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Fig. 4. Model validation using training dataset. (a) Estimated battery voltage
vs. measured battery voltage. (b) Estimated battery voltage error.

B. Observer Realization

Numerical techniques are critical for fractional system im-

plementation, and the key is to approximate the fractional

derivatives by a series of integer derivatives and/or special

functions of the states. For instance, Taylor series expansion

is employed in [28] to approximate fractional differential

equations. Atanackovic and Stankovic proposed a method that

uses the first derivative only to reduce computational burden

[29]. The Oustaloup recursive approximation is an alternative

approach, and has been widely used to approximate fractional-

order transfer functions as integer-order transfer functions

[30]. This paper employs the Grünwald-Letnikov fractional

derivative in (4) and (5), which is the most straightforward

method for numerical implementation. For instance, when

k ≥ 1, the SOC observer (12) is approximated by:

x̂ (k + 1) = [∆TαA+ diag (α) I] x̂ (k)

−

N+1
∑

i=2

(−1)
i

(

α
i

)

x̂ (k + 1− i)

+ ∆TαBu (k) + ∆TαL [y (k)− ŷ (k)]

ŷ (k) = Cx̂ (k) +Du (k) + f (x̂ (k))

(29)

where:

∆Tα = diag
[

∆Tα1 ∆Tα2 ∆T
]

(

α
i

)

= diag

[ (

α1

i

) (

α2

i

) (

1
i

) ]

.

Theoretically, in (29), the entire past history of state es-

timates should be involved. This is impractical in real ap-

plications where microcontrollers have finite memory limits.

Therefore, we truncate past data, which is justified by the short

memory principle proposed by Podlubny [31].

V. ESTIMATION RESULTS AND DISCUSSIONS

This section provides SOC estimation results and discussion

for different datasets. These datasets include different cells,

various test cycles and aging levels.

A. Main Results

The proposed observer design involves the selection of

several critical parameters and matrices. The lower bound of

the Lipschitz constant γ can be calculated based on (10) and

(11), which gives 0.937 in the SOC range of [0.1, 0.9]. The

parameter γ is selected to be 0.94 in our case, and this is

determined by balancing convergence rate and steady-state

error fluctuation. Therefore, the LMIs can be solved using the

LMI Toolbox in MATLAB:

ε = 5.4914× 105

P =





5.0729 0 0
0 2.4231 0
0 0 1.4951



× 108

L =
[

−1.0135 −2.0827 4.3176
]T

× 10−3

(30)

The initial estimated state vector is selected to be x̂ (0) =
[

0 0 0.8
]T

, while the true SOC is initialized at 0.9. Since

the datasets are measured by the Arbin BT2000 tester with

high accuracy, the reference SOC curve is calculated based on

the ampere-hour counting method with the original datasets.

As for the observer, zero mean Gaussian noises are added

to the measured current (variance is 0.0004 A2) and voltage

(variance is 0.005 V2), respectively. In addition, the sampling

rate for the observer is set to 1 Hz. In this study, the parameter

N for (29) is selected to be 1625 to achieve high accuracy.
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Fig. 5. SOC estimation results for the FUDS reference dataset, ŜOC (0) =
0.8. (a) Estimated SOC vs. measured SOC. (b) SOC estimation error. (c) SOC
estimation error distribution and CDF of SOC error.

Fig. 5 shows the SOC estimation results. It can be seen

that the proposed observer accurately estimates SOC, and the

SOC error is limited within a very narrow error bound, i.e.,

less than ±0.01 after convergence. The cumulative distribution

function (CDF) of the absolute of SOC error also demonstrates

that the estimation error mainly distributes between −0.01 and

0.01. This is essentially related to accurately modeling battery

terminal voltage, which is used to correct the estimated SOC.

To further illustrate the observer effectiveness, another sim-

ulation is conducted as shown in Fig. 6. Here, the true initial

SOC is fixed at 0.9, and the estimated SOC is initialized at
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0.3 (In practice, the initial error cannot be so much). Even

though the convergence rate is slowed down because the initial

estimated SOC is far away from the true value, the estimated

SOC finally converges to the true value and then fluctuates in

a narrow range.
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Fig. 6. SOC estimation results for the FUDS reference dataset, ŜOC (0) =
0.3. (a) Estimated SOC vs. measured SOC. (b) SOC estimation error.
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Fig. 7. SOC estimation comparison between EKF + second-order RC model

and the proposed method, ŜOC (0) = 0.8.

The frequently used second-order RC model, together with

the aforementioned polynomial for OCV-SOC relationship,

is employed for comparison. The second-order RC model is

calibrated with the same reference dataset, of which the RMSE

in voltage is 8.17 mV. In addition, the extended Kalman filter

(EKF) is applied for SOC estimation, which is well tuned

with similar convergence rate as the proposed method. The

comparison can be seen in Fig. 7, illustrating the improved

accuracy of the proposed method. The RMS of SOC estimation

error for EKF is 8.04 × 10−3, while that of the proposed

method is 3.60× 10−3.

The estimation error convergence is related to the Lipschitz

constant of the OCV-SOC relationship. Fig. 8 illustrates the

SOC estimation errors with different Lipschitz constants. It can

be seen that smaller Lipschitz constants accelerate convergence

at the expense of noise attenuation. This can help to find the

desired observer gain in practice.

B. Robustness Analyses of SOC Estimation

To investigate the robustness of the proposed method,

additional numerical tests are performed in this section. In
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Fig. 8. SOC estimation error with different Lipschitz constants.

the following, the model parameters, listed in Tables I and II,

and the observer gain given by (30), are fixed and applied to

datasets measured under different test conditions.
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Fig. 9. SOC estimation errors for different test cycles.

We first consider the datasets from different test cycles, i.e.,

FUDS, DST and HPPC, which have been widely used for

battery related studies. Fig. 9 illustrates the SOC estimation

results for these three test cycles. The DST dataset produces

similar results to FUDS, Nevertheless, the SOC estimation

accuracy for HPPC decreases, but remains in the range of

± 0.03. This can be explained by Fig. 10. The DST and

FUDS cycles have similar frequency content, while the HPPC

has significant low frequency content. Another reason can be

attributed to the different C-rates of the three test cycles. The

FUDS and DST have similar average C-rates, while that of

the HPPC is different. This is a common shortcoming for

models that neglect the influence of C-rate to maintain simple

equations.

Battery aging issues are critical for electric vehicles [32],

since aged cells exhibit significant parameter variation com-

pared to fresh cells. Consequently, it is necessary to evaluate

the SOC estimation performance applied to aged cells. We use

the datasets measured from Cycles 300 (reference cycle), 500,
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Fig. 10. FFT results of the three test signals (current).

700 and 900 of the reference cell to assess SOC estimation

performance (shown in Fig. 11). It can be seen that the

estimation performance deteriorates as the cell ages. However,

the SOC estimation error remains in the range of ± 0.03
after 400 aging cycles. The SOC estimation error evolves

outside the ± 0.03 bounds at Cycle 900, illustrating the limi-

tations of the proposed observer and motivating simultaneous

state/parameter estimation methods such as [33].
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Fig. 11. SOC estimation errors for different aging cycles.

Fig. 12 shows how the SOC estimation error varies for

different cells with the same chemistry and same cycle count,

illustrating robustness across cells of the same model and cycle

count. There is little variation in SOC estimation accuracy

across these cells.

VI. CONCLUSION

This paper presents a novel battery SOC estimation method

for lithium ion batteries based on a nonlinear fractional model

with incommensurate differentiation orders. A Luenberger-

type observer is designed for the SOC estimation. We prove

global asymptotic stability of the zero equilibrium of the
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Fig. 12. SOC estimation errors for different cells.

estimation error system using the Lyapunov’s direct method.

Experimental and simulation results illustrate how the frac-

tional model and observer accurately predict battery dynamics.

The robustness of this observer under different test conditions

is also discussed.
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