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ABSTRACT
Supercapacitors are an attractive option for energy buffering

because of their high efficiency, durability, and low environ-

mental impact. For energy-aware applications, it is desirable

to accurately estimate the buffered energy. Under conditions

of varying energy supply and demand, estimation of buffered

energy by using only the supercapacitor terminal voltage is in-

accurate because this does not fully comprehend the physical

state of charge. To address this problem, we present a Kalman

filtering formulation, using the accepted three-branch circuit

model for supercapacitors. Compared with an ideal capacitor,

the physically-motivated three-branch model provides a much

more accurate representation of the state of charge via three

internal state voltages associated with short, medium, and

long term charging constants. The proposed Kalman formu-

lation tracks these unobservable internal states. This method-

ology demonstrates a significantly more accurate estimate of

the buffered energy as compared with the alternative models

of ideal capacitance or a recursive computation of the stored

energy. Simulations conducted with variations that approxi-

mate recorded solar intensity profiles, our proposed approach

has an error of 1% compared with 31% and 85% for the re-

spective alternative models.

Index Terms— supercapacitor, ultracapacitor, electric

double layer capacitor, solar energy, kalman filter, state of

charge, energy awareness.

1. INTRODUCTION

Supercapacitors are established as a compelling solution for

high power buffering applications. These applications favor

supercapacitors due to their ability to bank and supply power

at levels an order of magnitude beyond the capabilities of

electrochemical battery technologies per unit weight. This su-

perior power density has been utilized for regenerative break-

ing [1], elevator [2], and automating starting systems for com-

bustion engines [3]. Supercapacitors can also provide suf-

ficient energy density (e.g., Maxwell 3000F [4] with a stor-

age capacity of 11,000 Joules) for deployment in field sys-
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tems demanding much lower power consumption levels (e.g.,

10 mW–10 W [5, 6]). For these systems, where energy is at

a premium, being able to predict the remaining energy (i.e.,

time-to-full-depletion) plays an extremely important role for

operational efficiency. Although the remaining supercapac-

itor energy can be naı̈vely predicted as E = 1
2CV 2, this is

far from accurate for systems where the range of operational

power consumption is wide (e.g., two orders-of-magnitude).

This fact is due to the non-ideal behavior of supercapacitors,

modeled in [7, 8, 9]. Due to the electrochemical make-up of

the supercapacitors, significant electrical and chemical phe-

nomena effect its response, thereby creating unobservable in-

ternal states of charge.

In this paper, we describe a model which treats these in-

ternal states as unobservable variables, as well as the superca-

pacitor current and voltage as the controllable input and ob-

servable output, respectively. By using a extended Kalman

filter (EKF), the internal states are continuously estimated

and updated based on the observed input voltage/current. Our

simulations, implementing the three branch equivalent circuit

model [9], demonstrate an improved energy estimation accu-

racy from 31% to 1%. The remainder of this paper is or-

ganized as follows: In Section 2, background information is

provided on supercapacitor modeling. An introduction to the

EKF and our modeling of the supercapacitor to allow Kalman

filtering for internal state estimation are provided in Section 3.

Naı̈ve estimation-based as well as our Kalman-based simula-

tion results are provided in Section 4, followed by our con-

clusions and future directions in Section 5.

2. SUPERCAPACITOR MODELING

Compared to electrolytic capacitors, supercapacitors provide

significantly higher capacitance. This higher capacitance is

obtained by having porous, activated carbon electrodes with a

very large effective surface area, and enables kilo-Farad level

capacitances to be packaged in hand-held form factors. At

the same time, however, when supercapacitors are charged or

discharged, the charge from the terminal takes significantly

different amounts of time to migrate through the porous sur-

faces to or from the different regions of the electrode area. As

a result, under rapid charging or discharging, charge buildup
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Fig. 1. Three-branch supercapacitor equivalent circuit [9].

in different regions of the electrode area is not homogeneous

and charge re-distribution side effects are encountered. After

the current stops after a period of rapid discharging, terminal

voltage rebounds as charge “redistributes” from deeper pores.

Vice versa, after rapid charging, charge redistribution causes

a fall in terminal voltage. Leakage can also impact how much

usable energy remains in a supercapacitor, but this long term

effect can be insignificant for the time frame of charge re-

distribution [7, 8]. Because of charge redistribution, termi-

nal voltage is insufficient to measure supercapacitors’ state of

charge (SOC).

Diffusion through the porous electrode can be precisely

modeled using series RC-transmission line representation [10].

The distributed transmission line model is, however, in-

tractable to work with and therefore a simplified three-branch

model shown in Fig. 1, which accounts for charge redis-

tribution with just three parallel RC-branches, has been

proposed [9]. The model is much more tractable because it

uses only lumped circuit elements and has been shown to be

effective in modeling SOC, when used with parameter val-

ues estimated for the R and C elements from experimentally

measured device data [9].

Using the three branch model in Fig. 1, this paper presents

an extended Kalman filter (EKF) approach for tracking the

buffered energy in a supercapacitor. The EKF uses the in-

ternal voltages across the capacitances in each of the three

branches to represent the SOC. Because these voltages are

not directly observable the EKF is needed to track them. Our

approach shares some similarities with prior work on the SOC

observability problem for battery systems, where Kalman fil-

tering is a widely implemented solution [11, 12, 13]. The

device models are very different in the two scenarios and so

are the Kalman filter formulations.

3. EXTENDED KALMAN FILTER

The EKF tracks the hidden SOC in the three-branch superca-

pacitor model using recursive predict and update operations.

For each time interval Δtk, the EKF predicts the current SOC,

xk = [V1 V2 V3]
T, and terminal voltage zk = Vsc:

x̃k = fk(x̂k−1,uk−1,Δtk). (1)

z̃k = hk(x̃k,uk). (2)

The predictions x̃k and z̃k depend on the input current,

uk−1 = Isc, and previous estimate, x̂k−1. x̃k is updated to

incorporate new information from the observation zk, accord-

ing to the Kalman gain matrix [14, 15], Kk:

x̂k = x̃k +Kk (zk − z̃k) , (3)

Kk balances between predict and update by treating uncer-

tainty in each as normally distributed random variables, and

tracking their respective covariance matrices, P̃k, and S̃k.

This allows whichever has lower uncertainty to be favored.

The critical EKF implementation details are: a) evaluat-

ing the prediction and update operations, and b) modelling

uncertainty with the covariances P̃k, and S̃k to achieve ac-

ceptable balance in Kk.

The prediction functions f and h, are numerically evalu-

ated using the system of differential equations from the equiv-

alent circuit in Fig. 1, viz.,

d

dt
x = Fkx+Bku, (4)

z = Hkx+Dku. (5)

where the matrices Fk, Hk, Bk, and Dk can be obtained in

terms of the values for the circuit elements in Fig. 1 as sum-

marized in the equations listed at the top of the next page (in

two column format). The numeric solver produces x̃k and z̃k
from (4) and (5) using the time interval Δtk and initial condi-

tions x̂k−1.

Balancing the Kalman gain (matrix) Kk between predic-

tions from an approximate model, and observations that may

be noisy or incomplete, is difficult. Disregarding uncertainty

allows exact prediction via solution of the equivalent circuit.

However, without modeled uncertainty, P̃k, and S̃k decrease

each iteration, eventually leaving Kk undefined.

Our EKF models uncertainty using the additional unob-

served noise current, Inoise in Fig. 1. Inoise is a random, zero

mean signal with bandwidth and power proportional to uk.

Inoise can be accurately modelled by the process and obser-

vation noise covariances, Qk and Rk, in the EKF first-order

approximation1:

xk ≈ xk−1 + (Fxk−1 +Buk−1)Δtk +N (0,Qk), (6)

zk ≈ Hxk +Duk +N (0,Rk). (7)

Qk and Rk are then used to calculate the Kalman gain:

P̃k = (I+ Fk) P̂k−1 (I+ Fk)
T
+Qk, (8)

S̃k = HkP̃kH
T
k +Rk, (9)

Kk = P̃kH
T
kS̃
−1
k . (10)

The intuition behind calculating Qk and Rk from Inoise

is: uncertainty should be proportional to the rate-of-
change of the individual internal states. Slowly charging

1The UKF (unscented Kalman filter) can improve the accuracy of propa-

gating uncertainty P̂k through the model [16, 12], but does not address how

to characterize process noise as the Gaussian process, N (0,Qk). Because

xk represents capacitor voltages which are continuous in time, linear EKF

approximations are adequate.
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(small uk), decreases the bandwidth of Inoise, penetrating all

three branches (low-pass filters) regardless of time-constant.

Hence, uncertainty in all branches allows predictions of V2

and V3 to be updated when voltage settles and branch voltages

are most apparent from the observation. Quickly charging

(large uk), increases the bandwidth, decreasing prediction

uncertainty for branches that do not react to abrupt charging.

Formulating Qk and Rk from the continuous random

Inoise signal is done by applying the linear approximation (6)

recursively to the noise signal N times within the interval

Δtk:

N (0,Qk) =

N∑
n=1

(
I+ FΔtk

N

)n−1
BΔtk

N Inoise|n−1 . (11)

Because (11) is a weighted sum of the normally distributed

values of Inoise, finding the covariance Qk is straightforward.

The output covariance Rk is determined by the value Inoise,N

when zk is observed, and is uncorrelated with the process

noise:

N (0,Rk) = DInoise,N . (12)

4. EVALUATION

For evaluating our proposed framework we used the three-

branch model for two devices: a 1500F supercapacitor whose

parameters were reported in [9] and a 50F supercapacitor for

which we measured parameters in our lab, following the pro-

tocol recommended in [9]. Both sets of parameters are listed

in Table 1. These devices have a rated voltage of 2.7V and for

evaluating SOC tracking performance, we consider a charging

profile motivated by a solar harvesting application. Measured

solar variability, and corresponding power variation that must

be buffered by the supercapacitor are shown in Fig. 4. Fig-

ure 4 demonstrates a two decade dynamic range for power

availability in solar harvesting. To simplify the evaluation

of SOC tracking performance under such variability, we con-

sider a synthetic profile for the input charging current Isc that

is shown in Fig. 2(a), where the current profile is designed

to test SOC tracking by repeatedly charging and discharging

the supercapcitor between 0V and its rated voltage 2.7V at

decreasing rates each cycle. Average power for each cycle is

annotated on the voltage output in Fig. 2(b). The logarithmic

scale allows Fig. 2 to show very fast charging (∼1 minute) ini-

tially, with progressively slower charges (up to ∼9 hours) on

the same axes. Using the logarithmic scale, the corresponding

Maxwell 50F BCAP 1500F DLC

(measured) (ref. [9])

Crated 50F 1500F

C1 42.5F 900F

C1var 5.1F
V 600F

V
R1 16 mΩ 1.5 mΩ
C2 10.5F 200F

R2 112 Ω 400 mΩ
C3 4F 330F

R3 628Ω 3.2Ω
Rleak 36kΩ 4kΩ

Table 1. Parameters for the three branch model.

solar power variability region is plotted in Fig. 2(b) for the

1500F capacitor. Doubling the solar array size or halving the

capacitance for the system shifts the solar power variability
region left, while opposite changes push it right into the more

benign supercapacitor power levels.

The wide range of powers applied to the supercapacitor

bring out the relevance of the three-branch internal state, es-

pecially for the initial high power cycles that cause the in-

ternal states, V2 and V3 to deviate significantly from the ob-

served voltage. For low power cycles, internal states remain

very close to the observed terminal voltage and the observ-

ability problem motivating the EKF is not as significant. This

is the situation for low power sensor node applications [17],

for instance.

EKF iterative SOC estimations are shown as points in

Fig. 2(b), and separated by Δtk ∝ Isc such that change in

Vsc each iteration is approximately 10% of the rated voltage.

Sampling rate N
Δtk

, for the Inoise signal is also proportional to

Isc:

Tcharge(k) ≈ (1500F)(2.7V)÷ Isc|k = 10Δtk = 40Δtk
N (13)

Ground truth for the supercapacitor behavior shown in

Fig. 2 is generated using Simulink to provide truth data for

three-branch internal states that cannot be accessed in phys-

ical devices. Parameters given in Table 1, measured from a

1500F supercapacitor are used to calibrate the simulation. Isc

and Inoise sum together to produce the input current to the ref-

erence simulation. Inoise models uncertainty and is randomly

generated such that 20 log10

∣∣∣ Isc

σnoise

∣∣∣ = 20dB.

Accuracy for four energy-accounting schemes is shown in

Fig. 3. The first is a recursive “Coulomb count” technique that

tracks energy by integrating net power over each time interval.
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Fig. 2. The current (a), and voltage (b) charge-discharge profiles tests EKF state tracking over a range of power levels. The logarithmic scale shows cycles

ranging from in duration from ∼1minute to ∼ 9 hours.

Integrating fails to account for internal losses in the superca-

pacitor and allows error from unobserved Inoise to accumulate,

especially at high power levels. The second method, estimates

energy using the idealized capacitor model of “1/2CV 2
sc”. Be-

cause Vsc is observed, error does not accumulate, but there

is significant error because the dynamics of the three-branch

model are ignored in this over-simplification. The third and

final “predict only” technique models the true three-branch

dynamics, but sets Kk to zero throughout, disregarding Vsc

observations. This provides the best accuracy among meth-

ods other than the EKF, but still allows error to accumulate.

The EKF “Kalman” provides the best accuracy by accounting

for the true three-branch dynamics of the internal SOC and

also the uncertainty associated with observations.

5. CONCLUSIONS

The naı̈ve remaining energy formula of E = 1
2CV 2 yields

inaccurate results for the energy stored in a supercapaci-

tor, especially when the power consumption range of the

supercapacitor-based system is wide (two or more orders of

magnitude). This formula, which is suitable for a regular

capacitor proves inaccurate because the physical phenomena

associated with supercapacitor charging create unobservable

internal states of charge (SOC).

A Kalman Filter-based method is introduced to contin-

uously predict and estimate the internal states by sampling

the supercapacitor terminal voltage and current, which are

the only two observable values. The methodology is vali-

dated via simulations using a synthetic charge-discharge pro-

file that spans measured dynamic range in solar power vari-

ation. Results indicate that the proposed approach signifi-

cantly improves the estimates of available energy, attaining

root mean squared error of 1% compared to 31% for the naı̈ve

E = 1
2CV 2 model.
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Fig. 3. Comparison of the accuracy of energy-awareness methods
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