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)is paper studies the state of charge (SOC) estimation of supercapacitors and lithium batteries in the hybrid energy storage
system of electric vehicles. According to the energy storage principle of the electric vehicle composite energy storage system, the
circuit models of supercapacitors and lithium batteries were established, respectively, and the model parameters were identified
online using the recursive least square (RLS) method and Kalman filtering (KF) algorithm.)en, the online estimation of SOCwas
completed based on the Kalman filtering algorithm and unscented Kalman filtering algorithm. Finally, the experimental platform
for SOC estimation was built and Matlab was used for calculation and analysis. )e experimental results showed that the SOC
estimation results reached a high accuracy, and the variation range of estimation error was [− 0.94%, 0.34%]. For lithium batteries,
the recursive least square method is combined with the 2RCmodel to obtain the optimal result, and the estimation error is within
the range of [− 1.16%, 0.85%] in the case of comprehensive weighing accuracy and calculation amount. Moreover, the system has
excellent robustness and high reliability.

1. Introduction

In recent years, with the increasingly serious energy crisis and
environmental pollution problems, ecological environment
[1–8] and energy have become the focus of human concern.
New energy sources, such as solar, geothermal, wind, and
oceanic energy, are being exploitedmore andmore widely.)e
development of modern industry and manufacturing industry
[9, 10] makes the application of electric energy more and more
extensive [11–15], and in order to meet the power demand of
small electronic equipment, a nanogenerator has emerged,
which can effectively collect all kinds of energy and convert
mechanical energy into electrical energy [16–18]. At the same
time, fuel vehicles are facing challenges, and electric vehicles
have become a potential choice to solve such crises [19]. )e

energy storage components of the hybrid energy storage system
in pure electric vehicles mainly include supercapacitors of high
power density [20, 21] and lithium batteries of high energy
density [22, 23]. Supercapacitors are new components that
store energy through a two-layer interface between an electrode
and an electrolyte. Compared with traditional capacitors, it has
larger capacity, specific energy or energy density, wider op-
erating temperature range, and longer service life [24–26].
Although ultracapacitors are affected by voltage, current,
temperature, and electrode materials [27–44], their cycle life is
still long. With high energy density and high average output
voltage, the aging of lithium batteries is a long-term gradual
process [45–47], and their life is affected by temperature,
current ratio, cutoff voltage, and other factors [48]. )e
evaluation of the parameters such as the state of charge and the
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remaining useful life has guiding significance for the use,
maintenance, and economic analysis of lithium batteries. )e
SOC of the compound energy storage system of electric ve-
hicles is the basis of rational energy management [49–51], so
accurate SOC information is of great significance to improve
the dynamic performance [52, 53] and range of electric vehicles
[54–58].

Wang et al. proposed a joint estimator to estimate both
model parameters and SOC. )e extended Kalman filter is
used for parameter updating, the recursive least square al-
gorithm provides the initial value with small deviation, and
the Unscented Kalman filter is used for SOC estimation [59].
)e joint estimator is designed to form a closed-loop control
of the real-time changing model parameters and the esti-
mation results of SOC. In order to improve the model ac-
curacy, adaptive learning and online parameter
identification methods in other fields are still applicable to
the estimation of SOC [60–62]. Jarraya et al. proposed a real-
time estimation method for the SOC of lithium ion batteries
based on extended Kalman filter [63]. Extended Kalman
filter linearizes nonlinear systems and is therefore applied to
the SOC estimation of supercapacitors [64–68]. Chen et al.
proposed an open circuit voltage online estimation based on
the particle filter to achieve SOC estimation and based on
this proposed open loop residual discharge time prediction
algorithm [69]. )e particle filter has irreplaceable advan-
tages in both nonlinear and non-Gaussian systems [69–71].
Zhang et al. used fractional order models to synthesize
fractional Kalman filters to recursively estimate the SOC of
supercapacitors [72]. To predict SOC based on data, only the
associated data of SOC and relevant parameters are used to
train the model, and the model completed by training is used
to estimate the future trend [73–77].

In this paper, the circuit models of supercapacitors and
lithium batteries are established, model parameters are
identified online by using recursive least square method and
Kalman filter algorithm. SOC estimation of the composite
energy storage system is performed by using unscented
Kalman filter algorithm, and the effectiveness and feasibility
of the estimation method are verified.

2. Method

In this paper, the process of SOC estimation of supercapacitors
is mainly composed of four parts: establishment of super-
capacitor model, online identification of model parameters, and
estimation ofmodel open circuit voltage by the Kalman filtering
method and estimation of SOC by the lookup table method, as
shown in Figure 1(a).)e process of SOC estimation of lithium
battery mainly includes three parts: firstly, the lithium battery
model is established; secondly, the model parameters are
identified online based on the recursive least squaremethod and
Kalman filtering algorithm; finally, unscented Kalman filtering
algorithm estimates SOC, as shown in Figure 1(b).

2.1. Model Establishment. )e experimental supercapacitor
used in this paper is shown in Figure 2.)e supercapacitor is
25mm in diameter and 2mm in height. Nitrogen-doped

graphene was selected as the negative electrode material,
nickel hydroxide was used as the positive electrode, and the
electrolyte was potassium hydroxide solution. Its operating
voltage is 0.9 V–1.5V, and its rated capacity is 0.5 F under
the condition of 0.1 A rated charge-discharge current. )e
experimental battery model in this paper is Samsung ICR
18650-20R, with rated voltage of 3.6 V, rated capacity of
2.15Ah, and charge-discharge cutoff voltage of 4.2 V and
3.0V, respectively.

An appropriate circuit model is the prerequisite for
accurate estimation of SOC. )e positive pole of the circuit
model of the supercapacitor used in the experiment can be
built by the branch structure of resistor and capacitor in
parallel, where Rf is Faraday resistance and Cf is pseudo-
capacitance. )e negative electrode of an ultracapacitor can
be equated with an ideal flat plate capacitor, represented by a
Cd. Rs is equivalent series resistance. In addition, there
should be equivalent parallel resistance Rp on the electrode,
as shown in Figure 3(a). )evenin’s equivalent circuit model
includes equivalent internal resistance Re, a RC network, and
voltage source Uoc. In the RC network, Rs is the polarization
internal resistance, Cs is the polarization resistance, and Uoc

is the open circuit voltage of lithium battery. In this paper, n
additional RC networks were added on the basis of the
)eveninmodel to improve the model accuracy and denoted
as the nRC model, as shown in Figure 3(b).

2.2. 3e Function of Open Circuit Voltage and SOC. In this
paper, programmable electronic load and power supply are
selected to constitute the charging-discharge test module.
Both of them communicate with the computer through R232
port to conduct charging-discharge cycle experiment on
energy storage components. A three-electrode super-
capacitor testing system was set up for constant current
charge and discharge test, cyclic voltammetry test, and life
test. )e instrument used was CHI608A electrochemical
workstation produced by the Shanghai Chenhua Instrument
Company.

)is paper mainly uses the NI PCI 6221 high-speed data
acquisition card to complete the collection of voltage and
current signals of energy storage components in working
state, then uses LabVIEW to transmit the data to the sub-
sequent data processing module, and uses Matlab for cal-
culation operation to complete the real-time estimation of
the SOC of supercapacitors and lithium batteries. )e
computer used was Intel E5400 CPU, 2GB RAM, and
Windows XP operating system, as shown in Figure 4

In general, when lithium batteries and supercapacitors
work normally, their open circuit voltage cannot be directly
obtained, so the functional relationship between open circuit
voltage and SOC needs to be obtained in advance. )e open
circuit voltage of the supercapacitor model is monitored in
real time, and then the functional relationship between open
circuit voltage and SOC is determined. )e specific steps are
shown in Table 1.

Complete the above experimental steps and fit the data.
Firstly, the minimum value of the voltage in the 8 standing
intervals in Step 2 and the maximum value of the voltage in
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the 8 standing intervals in Step 3 are obtained, respectively;
then, the average value of the two is taken at each point, and
then the curve is fitted to obtain the functional relationship
between the open circuit voltage and SOC as shown in
equation (1), and the curve is shown in Figure 5:

OCV � 0.004525SOC5
+ 0.5864SOC4

− 1.265SOC3

+ 0.6658SOC2
+ 0.6116SOC1

+ 0.8972.
(1)

Similarly, experimental steps of the relationship between
open circuit voltage and SOC function of lithium battery are
shown in Table 2.

Complete the above experimental steps and fit the data.
Firstly, the minimum value of the voltage in the 10 static
intervals in Step 2 and the maximum value of the voltage in
the 10 static intervals in Step 3 are obtained, respectively.
)en, the average value of the two points is taken for curve
fitting to obtain the functional relationship between open
circuit voltage and SOC of lithium battery as shown in
equation (2), and the curve is shown in Figure 6:

OCV � 14.42SOC5
− 40.89SOC4

+ 44.02SOC3
− 21.76SOC2

+ 5.11SOC + 3.30.

(2)

2.3. Identification Model Parameters. In order to improve
the model accuracy, the recursive least square method with
forgetting factor is used to identify the parameters of the
supercapacitor model online. )e forgetting factor can re-
duce the weight of the outdated data in the system, while the

newly sampled data will assign the weight value to ensure the
accuracy and real-time performance of the system. )e
recursive least square method with forgetting factor is shown
below.

Firstly, the system in formula (3) is defined as follows:

yk � φTn(k)θn(k) + e(k). (3)

In the above equation, yk is the system output variable;
θn(k) is the parameter to be estimated; e(k) is the error
matrix; k is the kth period, and the length of the period is T.

)e gain matrix of the system is

K(k + 1) �
P(k)φn(k + 1)

λ + φTn(k + 1)P(k)φn(k + 1)
. (4)

System variance is updated as

P(k + 1) �
P(k) − K(k + 1)φTn(k + 1)P(k)

λ
. (5)

Figure 2: Supercapacitors used in the experiment.
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Figure 1: SOC estimation process for supercapacitors and lithiumbatteries. (a) Flowchart of SOC estimation of supercapacitors; (b) flowchart of SOC
estimation of lithium batteries.
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System parameter identification is updated as

θ̂n(k + 1) � θ̂n(k) + K(k + 1) y(k + 1) − φTn(k + 1)θ̂(k)[ ].
(6)

In the above equation, θ̂n(k)is the optimal identifi-
cation of the system, namely, model parameters; K(k) is
the system gain matrix; P(k) is the system variance matrix;
λ is the oblivion factor, and λ ∈ [0.95, 1]. )erefore, if the

recursive least square method with forgetting factor is to
be used, the equation of state should be adjusted to meet
the requirements of the parameter identification algo-
rithm, as shown in equation (7):

yk � φT(k)θ(k). (7)

According to the supercapacitor model in Figure 3(a),
equation (8) can be obtained:
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U1 Un

Uoc

i

U
+

+

– + –

–

(b)

Figure 3: Model of supercapacitor and lithium battery. (a) Supercapacitor equivalent circuit model; (b) nRC equivalent circuit model of
lithium battery.

(a) (b)

Figure 4: (a) )e NI PCI 6221 acquisition card; (b) experimental platform of supercapacitor and lithium battery charged state estimation
system.

Table 1: Experimental steps of the relationship between open circuit voltage and SOC function of supercapacitors.

Step 1: initialize the supercapacitor
)e supercapacitor was continuously discharged by 0.1 A current for 0.5 s, and then it was cut off and placed in a standing state for 5 s
Step 2: supercapacitor charging process
(1) 0.1 A current is used to charge the supercapacitor in a constant current for 0.5 s, and then the supercapacitor is disconnected and placed
in a standing state for 5 s
(2) 0.1 A current is applied to charge the supercapacitor in a constant current for 1 s, and then the circuit is cut off and placed in a standing
state for 5 s. Repeat this step for 6 times, and then the supercapacitor is fully filled (SOC� 1)
Step 3: discharge process of supercapacitor
(1) 0.1 A current is used to continuously discharge the supercapacitor for 0.5 s, and then the supercapacitor is cut off and placed in a
standing state for 5 s
(2) 0.1 A current is used for constant discharge of the supercapacitor for 1 s, and then it is cut off and placed in a standing state for 5 s.
Repeat this step for 6 times, and then the supercapacitor is completely emptied (SOC� 0)
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I(s) � I1(s) + I2(s),

U(s) � I2(s)Rp � I1(s) Rs +
1

Cds
+

Rf

1 + RfCfs
( ).

 (8)

For the simultaneous equations, equation (9) can be
obtained:

G(s) �
U(s)

I(s)
�

Rp CdCfRsRfs
2
+ CdRf + CfRf + CdRs( )s + 1[ ]

CdCfRf Rs + Rp( )s2 + CdRp + CdRf + CfRf + CdRs( )s + 1
. (9)
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Figure 5: )e relationship between SOC and OCV in supercapacitor.

Table 2: Experimental steps of the relationship between open circuit voltage and SOC function of lithium battery.

Step 1: initialize the lithium battery
(1) )e experimental battery model in this paper is Samsung ICR 18650-20R, with rated voltage of 3.6 V, rated capacity of 2.15Ah, and
charge-discharge cutoff voltage of 4.2V and 3.0V, respectively
(2) Under the condition that the battery is fully full, namely, SOC� 1.)e 0.215A current is used to continuously discharge the battery until
it is completely emptied, that is, SOC� 0, and then the battery is disconnected and left standing for 12 h
Step 2:
(1) 0.43A current is used for constant current charging of the lithium battery until its capacity increases by 215mAh, and then it is cut off
and kept in a standing state of 90 s
(2) Repeat Step 1 for a total of 9 times, and at this moment, SOC� 1; then, disconnect the lithium battery and leave it for 12 h
Step 3:
(1) 0.43A current carries out constant current discharge on the lithium battery until its capacity is reduced by 215mAh and then puts it in a
static state of 90 s
(2) Repeat Step 1 for a total of 9 times. At this moment, SOC� 0, and then disconnect the lithium battery and leave it in a standing state for
12 h
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Figure 6: )e relationship between SOC and OCV in lithium battery.
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Using bilinear transformation s � (2(1 − z− 1)/
T(1 + z− 1)), we can get

G z− 1( ) � a3 + a4z− 1 + a5z− 2
1 − a1z

− 1
− a2z

− 2 . (10)

)erefore, the difference equation is shown in the fol-
lowing equation:

U(k) − a1U(k − 1) − a2U(k − 2) � a3I(k) + a4I(k − 1)

+ a5I(k − 2),

(11)
transposition to

U(k) � a1U(k − 1) + a2U(k − 2) + a3I(k)

+ a4I(k − 1) + a5I(k − 2).
(12)

In the form of formula (3), we can get

φTc (k) � U(k − 1) U(k − 2) I(k) I(k − 1) I(k − 2)[ ],
θc(k) � a1 a2 a3 a4 a5[ ]T.


(13)

To sum up, the model parameters of the supercapacitor
can be identified online according to equation (13).

)e charge and discharge process of lithium batteries is
much more nonlinear than that of supercapacitors. In this
section, the recursive least square method with forgetting
factor and Kalman filter algorithm are used to identify the
online parameters of the lithium battery model. Considering
the hardware processing capacity of the laboratory, 1RC,
2RC, and 3RC models are mainly used for analysis in this
paper. As shown in Figure 3(b), the state equation of the nRC
equivalent circuit model is shown in

SOC′(t) � −
i(t)

Qn
,

Ui′(t) � −
1

τi
Ui(t) +

1

Ci
i(t), i � 1, 2, 3, . . . ,

U(t) � Uoc(SOC, t) − ∑n
i�1

Ui − Rei(t).



(14)

Among them, τ is the time constant; Uoc(SOC, t) is the
relationship between open circuit voltage and SOC, namely,
equation (2). After sorting out equation (14), the complex
frequency domain form can be obtained as follows:

U(s) � Uoc(s) − I(s) Re +∑n
i�1

Ri
1 + RiCis

 . (15)

When n�m, the space-state equation of the nRC model
is shown as follows:

U(s) � Uoc(s) − I(s) Re +∑m
k�1

Rk
1 + RkCks

 . (16)

According to the bilinear transformation factor, we can
get

G z− 1( ) � bm+1 + bm+2z− 1 + · · · + b2m+1z− m
1 − b1z

− 1
− · · · − bmz

− m

�
bm+1 +∑2m+1

q�m+2bqz
− q+m+1

1 − ∑m
q�1 bqz

− q .

(17)

Discrete equation (17) can be obtained as follows:

UΔ(k) � 1 − ∑m
q�1

bq U(k) +∑m
q�1

bqU(k − q) + ∑2m+1
q�m+1

bqI(k − q +m + 1),

U(k) � 1 − ∑m
q�1

cq Uoc(k) +∑m
q�1

cmU(k − q) + ∑2m+1
q�m+1

I(k − q).

(18)

It can be obtained in the form of formula (7):

φTm(k) � 1 U(k − 1) U(k − 2) · · · U(k − m) I(k − 1) I(k − 2) · · · I(k − m)[ ],
θm(k) � 1 − ∑m

q�1

cq Uoc(k) c1 c2 · · · c2m+1
 T.

 (19)

In this section, the recursive least square method with
forgetting factor and Kalman filter algorithm are used to
complete the online identification of lithium battery model
parameters. )e principle of the former has been introduced

in the parameter identification part of the supercapacitor
model, so it will not be repeated. In the specific application of
the latter, it should be assumed that the system state variable
x� θ, the output variable y�U, and the noise is an
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independent Gaussian white noise whose variance is, re-
spectively, r and e. )en, based on the principle of the
Kalman filtering algorithm, the corresponding parameter
identification process is shown as follows:

θ(k + 1) � θ(k) + r(k),

y(k) � φ(k)Tθ(k) + e(k),
{ (20)

where the corresponding parameter matrix is A � I4×4,
B � 0, C � φT(k), D � 0, so the parameters of the lithium
battery model can be identified in real time as the state
variable.

2.4. SOC Estimation. )e Kalman filtering algorithm is used
to estimate SOC of supercapacitors. Firstly, the system in
equation (21) is defined as follows:

xk+1 � Akxk + Bkuk + wk,

yk � Ckxk +Dkuk + vk,
{ (21)

where xk is the system state variable; yk is a systematic
observation variable; uk is the system input, which can also
be regarded as the system control variable; Ak is the transfer
matrix; Bk is the input matrix; Ck is the measurement matrix;
Dk is feedforward matrix; wk and vk are the system state
equation and measurement equation noise, respectively, and
wk ∼ N(0, Qk), vk ∼N(0, Rk).

According to the Kalman filtering algorithm, the time of
the system is updated as follows:

x̃−k � Ak− 1x̃
+
k− 1 + Bkuk,

P−kAk− 1P
+
k− 1A

T
k− 1 + Q.

 (22)

)e Kalman gain matrix is

Kk � P
−
kC

T
k CkP

−
kC

T
k + R( )− 1. (23)

)e system status measurement is updated as

x̃+k � x̃
−
k +Kk yk − Cx̃

−
k − Duk( ),

P+k � I − KkCk( )P−k .
 (24)

In the above equation, x̃+k is the optimal estimation of
system state variable at time k; P+k is the best estimate of
variance at time k.

In this paper, the state equation of the supercapacitor
model is not fixed under charging and discharging

conditions, so the charging and discharging conditions
should be discussed separately.

2.4.1. Space-State Equation of Supercapacitor Charging
Process. )e current flow direction during charging is
shown in Figure 7(a).

Based on Ohm’s law, equation (25) can be obtained:

U − U0 � I2Rp � I1Rs + Ud + Uf,

I � I1 + I2,
{ (25)

where Uf and Ud are the partial pressures on capacitance Cf

and Cd, respectively.
From the above equation, equation (26) can be obtained:

I1 �
IRp − Ud − Uf( )

Rp + Rs( ) ,

I2 �
IRs + Ud + Uf( )

Rp + Rs( ) .


(26)

On the capacitor branch, the current relationship as
shown in equation (27) is established:

I1 �
Uf

Rf
+ CfUf′ � CdUd′. (27)

From equation (26) and (27), equation (28) can be
obtained:

Uf′ � −
1

Rp + Rs( )Cf Uf + Ud − IRp( ) − Uf

RfCf
,

Ud′ � −
1

Rp + Rs( )Cd Uf + Ud − IRp( ).


(28)

From equation (25) and (28), we can get

U �
Rp

Rp + Rs
Uf + Ud + IRs( ), (29)

and with x� [Uf Ud]
T and y�U, the state equation of

supercapacitor can be arranged as follows:

Uf(k + 1)

Ud(k + 1)

  �
1 −

T

Cf

1

Rp + Rs
+

1

Rf
( ) −

T

Rp + Rs( )Cf
−

T

Rp + Rs( )Cd 1 −
T

Rp + Rs( )Cd



Uf(k)

Ud(k)

  +
TRp

Rp + Rs( )Cf
TRp

Rp + Rs( )Cd



I(k) + w(k),

y(k) �
Rp

Rp + Rs

Rp

Rp + Rs
[ ] Uf(k)

Ud(k)

  + RpRs

Rp + Rs
I(k) + v(k).



(30)
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2.4.2. Space-State Equation of Supercapacitor Discharging
Process. )e current flow direction during discharging is

shown in Figure 7(b). Similarly, the state equation of the
discharge process can be expressed as

Uf(k + 1)

Ud(k + 1)

  �
1 +

T

Cf

1

Rp − Rs
+

1

Rf
( ) T

Rp − Rs( )Cf
T

Rp − Rs( )Cd 1 +
T

Rp − Rs( )Cd




Uf(k)

Ud(k)

  +
−

TRp

Rp − Rs( )Cf

−
TRp

Rp − Rs( )Cd




I(k) + w(k),

y(k) �
Rp

Rp − Rs

Rp

Rp − Rs
[ ] Uf(k)

Ud(k)

  − RpRs

Rp + Rs
I(k) + v(k).



(31)

)erefore, the voltage Uf and Ud of capacitors Cf and
Cd in the ultracapacitor model can be estimated in real
time by the Kalman filtering algorithm. )e open circuit
voltage is the sum of the above two, and its charged state
can be obtained by using the known relationship between
the open circuit voltage and SOC function of the ultra-
capacitor. In the experiment, the open circuit voltage of
the supercapacitor is 1.5 V, so its initial SOC value is 1.
)erefore, the initial state of the Kalman filter operator is
as follows:

x0 � 1 0.5[ ]T,
P0 �

1

1
[ ]. (32)

)ere are complex electrochemical reactions in the
charging and discharging process of lithium battery, so its
SOC cannot be directly observed or measured. )erefore, its
SOC is regarded as a state variable and put into its space-
state equation. )e unscented Kalman filter algorithm is
used to complete the estimation, and the steps are as follows.

U

I1 I2

Rs

Cd

Cf

Rf

Rp

Ic
f

IR
f

I

(a)

I1 I2

Rs

Cd

Cf

Rf

Rp

Ic
f

IR
f

I

U

(b)

Figure 7: Charge-discharge current flow diagram of the supercapacitor model. (a) )e supercapacitor model in charge process; (b) the
supercapacitor model in discharge process.

8 Complexity



Step 1. System initialization

x̃0 � E x0[ ],
P0 � E x0 − x̃0( ) x0 − x̃0( )T[ ].

 (33)

Step 2. Sampling the sigma point set

χ0,k− 1 � x̃
a
k− 1,

χi,k− 1 � x̃
a
k− 1 +

����������
(N + λ)Pik− 1

√
, i � 1, . . . , L,

χi,k− 1 � x̃
a
k− 1 −

����������
(N + λ)Pik− 1

√
, i � L + 1, . . . , 2L,

W(m)
0 �

λ

L + λ
;W(c)

0 �
λ

L + λ
+ 1 − α2

+ β( ),
W(m)

i �Wc
i �

1

2(L + λ)
, i � 1, . . . , 2L,

χak− 1 � x̃ak− 1, x̃
a
k− 1 +

����������
(N + λ)Pk− 1

√
, x̃ak− 1 −

����������
(N + λ)Pk− 1

√[ ]; λ � α2
(L + κ) − L.



(34)

In the above equation, α is the distance between the set of
sigma points and the points of the state variable, which
generally takes a smaller value; k is usually 0 or 3 − n; β can
incorporate the prior information into the state variable,
which is usually β� n for Gaussian distributions.

Step 3. Time update
)e set of sigma points is substituted into the nonlinear

system:

χxk|k− 1 � F χik− 1( ), i � 1, . . . , 2L. (35)

State variables and their variances are predicted
according to the centralized value of sigma points:

x̃−k �∑2L
i�0

W(m)
i χxi,k|k− 1,

P−x �∑2L
i�0

Wc
i χxi,k||k− 1 − x̃

−
k( ) χxi,k|k− 1 − x̃

−
k( )T.


(36)

Step 4. Measure update
)e predicted value and variance of the output can be

obtained from the new sigma point set after the above time
update:

yk|k− 1 � H χxk|k− 1, χ
n
k|k− 1( ),

ỹ−k �∑2L
i�0

W(m)
i yi,k|k− 1,

Pỹkỹk �∑
2L

i�0

W(c)
i yi,k|k− 1 − ỹ

−
k( ) yi,k|k− 1 − ỹ−k( )T,

Px̃kỹk �∑
2L

i�0

W(c)
i χi,k|k− 1 − x̃

−
k( ) yi,k|k− 1 − ỹ−k( )T.



(37)

According to the above calculation results, the posterior
estimation of the state variable is modified:

ỹk � zk − z̃k|k− 1,

K � PxkykP
− 1
ỹkx̃k

,

x̃k � x̃
−
k + K yk − ỹ

−
k( ),

Pk � P
−
k − KPỹkỹkK

T.


(38)

)erefore, the SOC of lithium batteries can be estimated
in real time by updating the system state variable x̃k.

)e unscented Kalman filtering algorithm does not need
to preprocess the nonlinear system, so it only needs to
discretize formula (14), as shown below.

Let x � SOC U1 U2 · · · Un[ ]T, y � U, then the state
equation of lithium battery is

Complexity 9



Cd

0 20 40 60 80 100 120 140 160 180 200
1.02

1.04

1.06

1.08

1.1

1.12

Time (s)

C
d

/F

(a)

0 20 40 60 80 100 120 140 160 180 200
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time (s)

R
d

/Ω

Rp

(b)

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1
×10–3

Time (s)

R
s/

Ω

Rs

(c)

0 20 40 60 80 100 120 140 160 180 200
0.445

0.45

0.455

0.46

0.465

0.47

0.475

Time (s)

C
f/
F

Cf

(d)

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

1.2
×10–3

Time (s)

R
f/

Ω

Rf

(e)

Figure 8: Parameter identification of the supercapacitor model. (a) Identification results of negative capacitance parameter Cd; (b)
identification result of equivalent parallel resistance Rp; (c) identification result of equivalent series resistance Rs; (d) identification results of
positive capacitance parameter Cf; (e) identification result of Faraday resistance Rf.
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(39)

)e output equation is

y(k) � Uoc(SOC) − ∑n
i�1

Ui + I(k)Re  + v(k). (40)

In the experiment, the open circuit voltage of the lithium
battery is measured at 4.18V, so its initial charged state value
is 0.995. )erefore, the initial state of the unscented Kalman
filter operator is as follows:

x0 � 0.995 0 0 · · · 0[ ]T,

P0 �

1

1

1

⋱
1


.

(41)

3. Experimental Results and Analysis

3.1. SOC Estimation and Analysis of Supercapacitors. )e
parameter identification results of the supercapacitormodel are
shown in Figure 8. All the five parameter identification curves
tend to be stable at the initial stage of the charge-discharge
experiment, where the capacitance values of capacitor elements
Cd and Cf tend to be 1.05f and 0.45f, respectively. )e variation
trend of capacitance Cf is approximately opposite to that of
resistance Rf, which proves that the time constant of the RC
network structure is relatively stable.

)e estimated SOC of the supercapacitor is shown in
Figure 9. )e error range of SOC based on the Kalman
filtering algorithm is [− 0.94%, 0.34%], and the root mean
square error (RMSE) is 0.0044, indicating that its true value
is in good agreement with the estimated value.

3.2. SOC Estimation and Analysis of Lithium Battery.
According to the second section, the estimated SOC of 1RC,
2RC, and 3RC models identified by the least square method
is, respectively, recorded as SOCL1, SOCL2, and SOCL3.

Similarly, those identified by the Kalman filtering algorithm
are denoted as SOCK1, SOCK2, and SOCK3, respectively.

Figure 10 shows the estimation curves of SOCL1,
SOCL2, and SOCL3 and their corresponding errors. In
contrast, the errors of SOCL2 and SOCL3 are relatively low,
changing within the range [− 1.16%, 0.85%] and [− 0.61%,
0.90%], respectively, indicating that the 3RC model can
describe lithium batteries more accurately.

Figure 11 shows the estimation curves of SOCK1,
SOCK2, and SOCK3 and their corresponding errors.
Different from the SOCL approach, the accuracy of SOCK1
and SOCL1 is significantly improved. In addition, SOCK2
and SOCK3 errors belong to the interval [− 0.6%, 0] and
[− 0.40%, 0.31%], respectively. It is proved that the model
parameter identification ability of the Kalman filter algo-
rithm is better than the recursive least square method
(Table 3).

To evaluate an algorithm, the accuracy and the amount
of calculation should be considered comprehensively. In this
paper, the accuracy of the algorithm is the integral after
taking the absolute value of the errors of different algo-
rithms. )e real-time working voltage and current data of
lithium battery during the experiment were recorded and
saved and then brought into Matlab for offline calculation.
)e data were repeated for 20 times, and the mean value of
the calculation time was taken, so as to simulate the real-time
calculation amount during the experiment. )e above cal-
culation is shown in Table 4.

As shown in Table 4, the more RC networks in the
model, the smaller the estimation error, but the calcu-
lation amount also increases correspondingly. At the same
time, more RC network will weaken the improvement
effect of model accuracy. In addition, SOCK path preci-
sion is higher than SOCL path precision, but the calcu-
lation time is longer. To sum up, the 1RC model has low
accuracy, the 3RC model is more complex, and the 2RC
model is the appropriate choice. If the system requires
high accuracy and has strong data processing capacity, the
SOCK2 method should be selected; otherwise, the SOCL2
method is more reasonable.
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Figure 11: )e SOC estimation results and errors of nRC models identified by the KF method.
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Figure 10: )e SOC estimation results and errors of nRC models identified by the RLS method.
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Figure 9: SOC estimation results and errors of supercapacitors.

Table 3: )e error and RMSE of SOCL and SOCK.

SOC Error range (%) RMSE

SOCL1 [− 4.41, 1.91] 0.0175
SOCL2 [− 1.16, 0.85] 0.0067
SOCL3 [− 0.61, 0.90] 0.0030
SOCK1 [− 1.04, 2.08] 0.0113
SOCK2 [− 0.60, 0] 0.0034
SOCK3 [− 0.40, 0.31] 0.0018
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4. Conclusions

Based on the operating characteristics of supercapacitors and
lithium batteries, the equivalent circuit models are established,
respectively. In the supercapacitor model, the recursive least
square algorithm with forgetting factor is used for parameter
identification, then theKalman filtermethod is used to estimate
the open circuit voltage, and finally, the corresponding rela-
tionship between the open circuit voltage and SOC is used to
complete the SOC estimation. For lithium batteries, nRC
networks are set in themodel because the charge and discharge
process is much more nonlinear than that of supercapacitors.
)e recursive least square method and Kalman filter algorithm
were used to identify the parameters of the lithium battery
model, and then the unscented Kalman filter algorithm was
used to estimate SOC.

)e experimental results show that the estimation results of
supercapacitor reach a high accuracy, and the error range of the
whole estimation is [− 0.94%, 0.34%]. For lithium batteries,
considering the accuracy and calculation amount compre-
hensively, the recursive least square method is combined with
the 2RC model to obtain the optimal result. )e estimation
error is within the range of [− 1.16%, 0.85%], and results verify
the effectiveness of the SOC estimation system in this paper.
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