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ABSTRACT Accurate state-of-charge (SOC) estimation is critical for driving range prediction of electric

vehicles and optimal charge control of batteries. In this paper, a stacked long short-term memory network

is proposed to model the complex dynamics of lithium iron phosphate batteries and infer battery SOC from

current, voltage, and temperature measurements. The proposed network is trained and tested using data

collected from the dynamic stress test, US06 test, and federal urban driving schedule. The performance on

SOC estimation is evaluated regarding tracking accuracy, computation time, robustness against unknown

initial states, and compared with results from the model-based filtering approach (unscented Kalman filter).

Moreover, different training and testing data sets are constructed to test its robustness against varying loading

profiles. The experimental results show that the proposed network well captures the nonlinear correlation

between SOC and measurable signals and provides better tracking performance than the unscented Kalman

filter. In case of inaccurate initial SOCs, the proposed network presents quick convergence to the true SOC,

with root mean square errors within 2% and mean average errors within 1%. Moreover, the estimation time

at each time step is sub-millisecond, making it appropriate for real-time applications.

INDEX TERMS State-of-charge estimation, lithium iron phosphate batteries, long short-term memory,

recurrent neural network, unscented Kalman filter.

I. INTRODUCTION

Due to long cycle life and high energy/power density, lithium-

ion batteries have become the main energy storage device for

electric vehicles (EVs). To ensure the safe, reliable and effi-

cient operation of EVs, it is critical to establish an advanced

battery management system (BMS) to accurately and timely

monitor the battery status [1]. The state-of-charge (SOC),

as one of the key states of the BMS, quantifies the remaining

energy of the battery in the current cycle and indicates the

remaining time before charge is needed [2]. In analogy to the

fuel tank of a car, SOC can be regarded as the ‘‘gas gauge’’

or ‘‘fuel gauge’’ of a battery, which is formally defined as the

ratio of the remaining capacity to the nominal capacity of a

battery. Mathematically, SOC can be evaluated as a function

of time and current:

SOC(t) = SOC(0) −
1

Cn

∫ t

0

I (t)dt, (1)
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where Cn is the cell nominal capacity and I (t) is the cell

current at time t .

Accurate SOC estimation is essential for EV mileage esti-

mation and trip planning. Moreover, it can ensure the battery

working within a safe operating window to extend the battery

cycle life. However, SOC cannot be directly measured, and it

is generally inferred from other measurable variables such as

voltage, current, and temperature. Accurate SOC estimation

is still a challenging task due to the complex dynamics inside

the battery, especially for the lithium iron phosphate (LFP)

battery, which features a typical flat open circuit voltage

(OCV) - SOC curve [3].

Common methods used for SOC estimation of lithium-ion

batteries mainly include OCVmethod, Ampere-Hour integral

method, model-based filtering method, and machine learning

method.

The OCV method estimates the SOC by a one-to-one

correspondence between SOC and OCV, which requires

establishing a corresponding OCV-SOC lookup table in

advance [4]. This method is simple, but it cannot be applied
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on-board because the precise OCV value needs to be mea-

sured at a stable open-circuit condition, which usually

requires the battery to be disconnected from the load for

a sufficiently long time. In addition, differences between

battery samples and battery degradation levels also influence

the relationship between OCV and SOC. Moreover, when the

OCV-SOC curve is very flat, the SOC estimate becomes very

sensitive, in which case small OCV errors account for large

SOC estimation errors.

The Ampere-Hour integral method is an open-loop esti-

mation method for estimating the SOC of a battery by

time-integrating the discharge current, which is simple to

operate and can be adopted for real-time application [5].

Nonetheless, the Ampere-Hour integral method requires the

initial SOC as a priori and is totally dependent on the accuracy

of the current sensor. In case low precision sensor is used or a

biased noise exists in the measurements, the estimation error

would accumulate over time and there is simply no way to

correct the estimation.

The model-based filtering method relates the hidden SOC

state to the measured variable such as voltage and current

by constructing a state-space model, and then uses filtering

technique such as extended Kalman filter and unscented

Kalman filter (UKF) to obtain the optimal estimate of bat-

tery SOC, which is essentially to correct estimated SOC

from Ampere-Hour integral method with measured voltage

value [6]. This method is robust to unknown initial SOC

values and measurement noise, is suitable for real-time appli-

cations, and shows a good performance for on-board battery

SOC estimation. But its performance is heavily dependent on

the accuracy of battery model [7]. Moreover, to account for

other factors, such as degradation level, a new model must be

established. Finally, model parameters, such as measurement

noise, must be fine-tuned to obtain a satisfying performance.

The machine learning method treats the battery as a black

box, and directly learns its internal dynamics throughmassive

charge-discharge data to establish the nonlinear relationship

between battery SOC and measured variables [8]. The com-

monly used machine learning methods for SOC estimation

include fuzzy logic [9], support vector machine [10] and neu-

ral network (NN) [11], [12] and so on. This kind of method

does not require a specific mathematical model and can be

easily extended to account for other influencing factors. How-

ever, its accuracy depends heavily on the quantity and quality

of the training data, and the training time is quite long in the

case of a large amount of data.

In recent years, with the rapid development of graphics

processing units (GPUs), the computing power has increased

steadily, the training time of NNs is greatly shortened.

Deep learning neural network-based methods have attracted

a lot attention from the research world. For on-board bat-

teries, massive complex field data can be obtained via

online BMS and then continuously upload to offline data

server. The battery data can also be collected by laboratory

simulation under dynamic driving profiles. He et al. [13]

combined an artificial NN and UKF to estimate the

battery SOC. Sahinoglu et al. [14] proposed a recurrent neu-

ral network (RNN) to estimate the SOC of lithium-ion batter-

ies. Chaoui et al. [15] then used the RNN to estimate the SOC

and state-of-health of lithium-ion batteries and assessed the

estimation performance on two different batteries. Compared

with the traditional feedforward neural network, the RNN

correlates the past charge-discharge information of the bat-

tery and associates the current SOC state with the previous

state and measured values, thus showing an excellent estima-

tion performance.

However, due to the gradient vanishing or explosion phe-

nomenon in the training process, RNN generally fails to

capture long-term dependency [16]. Long short-term mem-

ory (LSTM), as the most well-known extension of RNN,

is proposed by [17] to address this problem, which can store

information for much longer temporal steps. The LSTM has

achieved great success in various scenarios including natu-

ral language processing [18], machine translation [19], and

bearing degradation assessment [20].

In this paper, a stacked LSTM network with multiple hid-

den LSTM layers is proposed to estimate the SOC of LFP

batteries.With the current, voltage, and temperaturemeasure-

ments as input and the SOC as output, the proposed network is

trained offline to model the complex battery dynamics, using

data collected from dynamic stress test, US06 test, and federal

urban driven schedule. Its performance on SOC estimation

is then evaluated and compared with the UKF method, with

regard to tracking accuracy, computation time, and robustness

against unknown initial SOCs. Moreover, the performance of

proposed LSTM network with different training and testing

data sets is also studied.

The rest of the paper is organized as follows. Section II

illustrates the experiment design and data collection.

A stacked LSTM network is proposed for battery SOC esti-

mation in Section III. Results and discussions are presented

in Section IV. Finally, Section V concludes this paper.

II. EXPERIMENTS

The test platform is shown in Fig. 1. It includes an

Arbin BT2000 tester for testing batteries, a Votch tem-

perature chamber for controlling operating temperatures,

and a PC with Arbins’ Mits Pro Software for battery

charging/discharging control and data collection. Collected

data are then transferred to a PC with MATLAB R2018a

and Python 3.7.2 for post-analysis. The cylindrical A123

18650 battery samples with LFP cathode and graphite anode

were used in the experiments, the specifications of which are

listed in Table 1.

To simulate real-world EV battery load behaviors, the DST,

US06, and FUDS profiles were employed to discharge the

battery samples under room temperature. While all the

profiles are designed by the US Advanced Battery Consor-

tium [21], they simulate different battery usages. Specifically,

the DST profile, which consists of a series of current steps

with different lengths and amplitudes, considers the bat-

tery capacity regeneration, while the FUDS profile simulates
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FIGURE 1. Battery charging and discharging platform.

TABLE 1. Specifications of the batteries used in the experiment.

a city driving profile with fast speed fluctuations and the

US06 simulates the highway driving with high acceleration

and rapid speed fluctuations. Fig. 2(a) plots their current

profiles, respectively. In one test, the battery was first fully

charged under a constant-current/constant-voltage charge

mode. Then during discharge, one of the above profiles were

adopted repeatedly until fully discharge. The current, voltage,

and temperature information were recorded every 1 second.

Fig. 2(b) plots measured voltage data during the discharge

process of DST, US06, and FUDS tests, respectively. The

DST and US06 data set are used to train the model, while

the FUDS data set is used to test the performance of SOC

estimation.

III. STATE-OF-CHRAGE ESTIMATION BASED ON

STACKED LONG SHORT-TERM MEMORY NETWORK

A. LONG SHORT-TERM MEMORY

The LSTM network, proposed by Hochreiter et al. [17], was

developed on the basis of classical RNNs, which uses mem-

ory units instead of ordinary hidden nodes to avoid gradient

vanishing or explosion after passing many time steps, thus

overcoming the difficulties encountered in traditional RNN

training. An illustrative structure of LSTM unit is shown

in Fig. 3. The calculation process at time k for the forward

pass of an LSTM unit is summarized as followings:

fk = σg
(

Wf xk + Uf hk−1 + bf
)

FIGURE 2. Current profile and measured voltage in one discharge cycle:
(a) current profiles of DST (top), US06 (middle), and FUDS (bottom);
(b) measured voltages during the DST test (top), US06 test (middle), and
FUDS test (bottom).

FIGURE 3. Structure of the LSTM unit.

ik = σg (Wixk + Uihk−1 + bi)

ok = σg (Woxk + Uohk−1 + bo)

ck = fk ◦ ck−1 + ik ◦ σc (Wcxk + Uchk−1 + bc)

hk = ok ◦ σh(ck ), (2)

where xk is the input of the LSTM unit at time k; hk is the

output of the LSTM unit as well as the network hidden state;

ck is the unit memory; ik , fk , and ok are the activation vec-

tors of input gate, forget gate, and output gate, respectively;
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FIGURE 4. Architecture of the proposed stacked LSTM network.

W , U , and b are weight matrices and bias parameter which

need to be learned during training; σg, σc, and σh are smooth,

bounded activation functions including a logistic sigmoid

function, a hyperbolic tangent function, and a hyperbolic

tangent function, respectively.

The output of a sigmoid function is bounded between

0 and 1, which in the LSTM framework can interpreted as a

forgetting factor. For a trained network, when the value of the

forget gate is close to 0, it means there is no need to store old

memory anymore, hence the past memory is eliminated. The

same interpretation applies to the input gate and the output

gate analogously. For instance, if then value of the input gate

is close to 0, it means that the LSTM unit decides that the

input is trivial and need not to be memorized.

B. THE PROPOSED STACKED LSTM NETWORK

Fig. 4 shows the proposed stacked LSTM network. The

network starts with a sequence input layer, where the bat-

tery variables including measured current, voltage and tem-

perature are the input vectors. The following three layers

are hidden LSTM layers each with 50 nodes. The stacked

LSTM layers can recombine the learned representation from

prior layers and create new representations at high levels of

abstraction. They perform nonlinear transformation on the

input data, generate a memory state for the past informa-

tion, and establish a dependency relationship between SOCs

of different time periods. A fully connected layer is added

later to further scale and transform the LSTM outputs to

improve the ability of the model in processing nonlinear

data. Finally, an output layer gives the SOC estimation. The

size of the memory unit (50 nodes) is selected by taking

the best compromise between the training workload and

the testing performance. We trained another network with

100 nodes per layer, but the performancewas not significantly

improved.

The model was trained using the back propagation through

time algorithm [22]. Considering possible over-training dur-

ing the training phase, the dropout algorithm with a dropout

percentage of 50% is used in each of the hidden layers [23].

The learning rate is initialized to 0.01. With a well-trained

network, the SOC estimation can then be performed on the

online testing process.

FIGURE 5. Results of SOC estimation with an initial SOC = 100%: (a) SOC
tracking; (b) estimation error.

C. PERFORMANCE EVALUATION

The performance of the stacked LSTM network is evaluated

using root mean square error (RMSE) and mean absolute

error (MAE) criteria:

RMSE =

√

√

√

√

1

K

K
∑

k=1

(

yk − ŷk
)2

,

MAE =
1

K

K
∑

k=1

∣

∣yk − ŷk
∣

∣ (3)

where y is the true value while ŷ is the estimated value. The

MAE measures how close estimates are to the corresponding

outcomes without considering the sign. The RMSE is more

sensitive to large errors than the MAE. It characterizes the

variation in errors.

IV. RESULTS AND DISCUSSIONS

In this section, a stacked LSTM network with three hidden

LSTM layers is trained to approximate the nonlinear battery

dynamics. Data collected from the DST test (7460 samples)

and theUS06 test (7013 samples) are used to train the network

parameters. The input of the network is xk = [Vk , Ik ,Tk ]

while the output is the estimated SOC at the same time step,

namely yk = [SOCk ]. The performance of the network is

evaluated with data from the FUDS test (7451 samples).

All the training processes are carried out on our lab server,

equipped with two GeForce GTX 1080 Ti GPUs.

A. EXPERIMENTS ON A FULLY CHARGED BATTERY

Fig. 5 shows the estimation results when the battery is fully

charged, namely the initial SOC is 100%. The tracking results
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FIGURE 6. Performance of the LSTM network versus epoch number:
(a) RMSE; (b) training time.

are showed in Fig. 5(a). The estimation error (evaluated as

true value minus estimated value) is plotted in Fig. 5(b).

The network tracks the true SOC during the whole discharge

process, with overall maximum absolute error around 2%.

The RMSE is 1.07% while the MAE is 0.84%. Under a GPU

environment, the training time of the network is about 260

minutes, with 10000 epochs. For the testing, the average com-

putation time at each time step is 0.058ms on our lab com-

puter (OS: Win10 64-bit, CPU: Intel i7-7500U @2.70GHz,

Memory: 8GB), which is apparently fast enough for real-time

on-board applications.

Fig. 6 shows the training and testing performance versus

epoch numbers. The RMSEs under different training epochs

are plotted in Fig. 6(a), which drop sharply in the first few

hundred cycles, and then decrease slowly until around 10000

epochs, after which the RMSEs keep steady. While in gen-

eral the increase of epoch number reduces the training and

testing errors, the training time grows accordingly, which is

demonstrated in Fig. 6(b), where a strong linear correlation is

observed between training time and epoch number. Trading

off between testing performance and training time, 10000 is

selected as an optimal choice in this work, with a local

optimal testing accuracy and a reasonable training time.

B. EXPERIMENTS WITH UNKNOWN INITIAL STATES

In real applications, it is unrealistic to know the precise

initial SOC, such as when recover from hardware failure,

reboot after battery replacement, or use after charge for a

short time. It’s thus important to test the robustness of the

proposed network against unknown initial states. Fig. 7 shows

the experimental results when the initial SOC starts from

80%. A large error is observed at the beginning for the

FIGURE 7. Results of SOC estimation with an initial SOC = 80%: (a) SOC
tracking; (b) estimation error.

FIGURE 8. Results of SOC estimation with an initial SOC = 60%: (a) SOC
tracking; (b) estimation error.

estimation of proposed LSTM network. Then it converges to

within 10% after several seconds. After about 500s, the esti-

mated SOC approaches the true value. The overall RMSE

and MAE are 1.76% and 0.96%, respectively. Fig. 8 shows

the result with an initial SOC at 60%, where the estimation

of proposed LSTM network converges to the true values in

several seconds. The RMSE is 1.07% and the MAE is 0.53%.

In both cases, the proposed network provides satisfying esti-

mation results and presents a fast convergence ability against

unknown initial states.
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TABLE 2. Results of SOC estimation when initial SOC starts from various
values.

TABLE 3. Results of SOC estimation when the network is trained using
two data sets.

TABLE 4. Results of SOC estimation when the network is trained using
one data set.

More experimental results are shown in Table 2, with initial

SOC values among 100%, 80%, 60%, 40%, and 20%. The

performance of the proposed network is also compared with

the UKF method, which is experimentally shown to have

a more stable, robust, and efficient estimation performance

compared with other state-of-art model-based filtering meth-

ods such as extended Kalman filter and particle filter [6].

In this paper, the UKFfilter for SOC estimation is constructed

following basically the same work as in [6]. A combined

model is adopted to construct the state-space model, and the

variances of state function and measurement function are

fine-tuned as 1e-8 and 1e-2, respectively.

When the initial SOC value is known (100%), the RMSEs

of LSTM and UKF are 1.07% and 0.42% respectively, while

the MAEs are 0.84% and 0.36%, respectively. The UKF

outperforms the LSTM. The total computation time over

7451 timestamps is 0.436s for the LSTM and 0.235s for the

UKF. The LSTM takes about two times as much computation

time compared with the UKF.

When the initial SOC value varies from 80% to 20%

(but keep the initial guess at 70%), the RMSE and MAE

values of UKF increase, as in Table 2. The overall RMSE

and MAE values are larger than those of LSTM. The blue

dash-dot lines in Figs. 7 and 8 plot the estimation results

when the initial SOC is 80% and 60%, respectively. In both

cases, it takes more time for the UKF to track the true SOC.

After approaching the true SOC, the UKF presents relatively

FIGURE 9. Results of SOC estimation on FUDS data set when the network
is trained using US06 data set: (a) SOC starts from 80%; (b) SOC starts
from 60%.

larger tracking errors as well. For the proposed LSTM net-

work, in all cases, the RMSE values vary within 2% and

the MAE values vary within 1%. Compared with the UKF,

the proposed LSTM network has stronger robustness against

unknown initial SOC values and provides better tracking

performance.

C. EXPERIMENTS WITH DIFFERENT TRAINING DATA SETS

The quantity and quality of training data sets have a sig-

nificant influence on the estimation results. In this section,

we train the network by using different training data

sets.

In the first simulation, the network is trained using two

different data sets and is tested on the remaining data

set. The training epoch is still 10000, which carefully bal-

ances between the training time and testing error. The

average training time is about 250 minutes. Table 3 sum-

marizes the results of all cases. The RMSEs range from

1.07% to 1.39%, while the MAEs range from 0.84%

to 2.02%.

In the second simulation, the network is trained using only

one data set and then tested on the other two data sets. The

training epoch is set to 3000 and the average training time is

about 100 minutes. Table 4 tabulates the RMSE and MAE

results of SOC estimation of all cases. The RMSEs range

from 1.58% to 3.41%, while the MAEs range from 0.94%

to 2.45%. The RMSEs and MAEs are almost double of those

obtained in the first simulation. Fig. 9 shows the estimation

results on FUDS data set when the network is trained using

US06 data set. Fig. 9(a) plots the SOC tracking results when

the initial SOC starts from 80% while Fig. 9(b) plots the

results when initial SOC starts from 60%. Fig. 10 provides the
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FIGURE 10. Results of SOC estimation on FUDS data set when the
network is trained using DST data set: a) SOC starts from 80%; b) SOC
starts from 60%.

estimation results when the network is trained using DST data

set. Compared with results using two data sets for training

(shown in Section IV-B), the estimation results show a com-

parative convergence ability against unknown initial states,

however, presents more fluctuate estimation results. It is obvi-

ous that as more diversified data is provided, the estimation

performance of proposed LSTM network increases.

V. CONCLUSIONS

In this paper, a stacked long short-term memory network was

proposed to estimate the SOC of lithium iron phosphate bat-

teries. Data were collected using different charge-discharge

profiles, including DST, US06, and FUDS. These data were

utilized for off-line training of the proposed network. Its

performance on SOC estimation was then evaluated on the

FUDS data set. Experimental results showed that the pro-

posed network can successfully capture the non-linear cor-

relation between SOC and measurable signals, namely cur-

rent, voltage, and temperature, with maximum absolute error

within 2%. In case of inaccurate initial SOCs, the network

presented quick convergence to the true SOC, with slight

increases of RMSE and MAE. As a comparison, UKF, the

well-known model-based filtering method, showed worse

tracking accuracy. Moreover, the average evaluation time on

our lab computer was sub-millisecond, meeting the require-

ments of real-time applications such as modern EV BMSs.

As a supplement, the performance of proposed LSTM net-

work with different training and testing data sets was also

studied. The estimation performance enhanced with more

diversified data involved in the training process.

The proposed method is also a powerful framework for

SOC estimation of lithium-ion batteries. It can be easily

extended to consider more factors, such as humidity, degra-

dation, and battery materials.
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