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Abstract— State of charge (SOC) estimation is an important 

aspect for modern battery management system. Dynamic and 

closed loop model-based methods such as extended Kalman 

filter (EKF) have been extensively used in SOC estimation. 

However, the EKF suffers from drawbacks such as Jacobian 

matrix derivation and linearization accuracy. In this paper, a 

new SOC estimation method based on square root unscented 

Kalman filter (Sqrt-UKFST) using spherical transform with 

unit hyper sphere is proposed. The Sqrt-UKFST does not 

require the linearization for nonlinear model and uses fewer 

sigma points with spherical transform, which reduces the 

computational requirement of traditional unscented 

transform. The square root characteristics improves the 

numerical properties of state covariance. The proposed 

method has been experimentally validated. The results are 

compared with existing SOC estimation methods such as 

Coulomb counting, portable fuel gauge and extended Kalman 

filter. The proposed method has an absolute root mean square 

error (RMSE) of 1.42% and an absolute maximum error of 

4.96%. These errors are lower than the other three methods. 

When compared with EKF, it represents 37% and 44% 

improvement in RMSE and maximum error respectively. 

Furthermore, the Sqrt-UKFST is less sensitive to parameter 

variation than EKF and it requires 32% less computational 

requirement than the regular UKF. 

 
Index Terms— Lithium-ion batteries, spherical unscented 

transform, square root unscented Kalman filter, state-of-charge 

(SOC) 

I. INTRODUCTION 

ITHIUM ion battery has gained its popularity as the energy 

source for many applications ranging from portable 

equipment, electric vehicles, renewable energy systems to 

satellite application. The lithium ion battery has a higher energy 

densities, low self-discharge rate and long cycle life when 

compared to other battery types such as lead acid and Nickel 

cadmium [1]. However, over-charging and discharging of 

lithium ion battery can cause an irreversible damage to the 

battery which compromises its performance and life span.  To 

safeguard the safety and performance of the battery, a reliable 

and accurate SOC estimation method is highly desired in 
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modern battery management system [2].  

Several SOC estimation methods have been presented in the 

literatures [3-14]. Among them, the Coulomb counting method 

is the most popular due to its simplicity and low computational 

cost. However, its accuracy depends on the sensor accuracy. Its 

performance also suffers from the initial error and the 

accumulated measurement errors. The Coulomb counting 

method is an open loop estimator as it only relies on the 

integration of current flowing in and out of the battery. The 

accumulated current measurement errors can give erroneous 

estimation as high as 25%.  

An improved Coulomb counting method which uses the 

charging/discharging cut off voltage for periodic reset has been 

presented in [15, 16]. However, the voltage is highly dependent 

on the current magnitude, and a fully charging/discharging 

cycle is required. In [10], the SOC is estimated from the 

electromotive voltage (EMF) estimation using the impedance 

and load current. As it requires the alternative current (AC) to 

measure the impedance, it is more suitable for laboratory test 

but not in the actual application. 

Computational intelligence methods using fuzzy logic and 

artificial neural networks [12, 17] have been developed for SOC 

estimation. Although it provides an accurate estimation, its 

computational cost is high. In addition, it suffers from the 

training process and the quality of training data set. Recently, 

the impulse response (IR) method [8] and the multivariate 

adaptive regression splines (MARS) technique [4] have been 

implemented for the SOC estimation. The IR method requires a 

pre-stored look up table to determine the SOC, and the MARS 

technique’s accuracy has a limited operating range (25~90% of 

the SOC). 

The state space based SOC and state of health (SOH) 

estimation method such as the H∞ observer [18] , the sliding 

mode observer [6, 19, 20] , and the extended Kalman filter 

(EKF) [5, 7, 9, 21] have been reported in the literatures. 

Although sliding mode observer can handle the nonlinearity 

effects of the model well, its performance deteriorates when 

there is noise in the output. The EKF has been widely used for 

the SOC estimation. However, the linearized approximations of 

nonlinear function (or Jacobian matrix) in EKF increases the 

implementation complexity. In addition, its error convergence 

is sensitive to the initial state estimation error, and inaccurate 

Jacobian matrix estimation could lead to filter divergence and 
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affect its stability. 

To overcome these shortcomings, the square root unscented 

Kalman filter with spherical transform (Sqrt-UKFST) in a unit 

hyper sphere is proposed for the SOC estimation in this paper. 

The Sqrt-UKFST does not require the linearization for a 

nonlinear model, and it has a higher error order (second order) 

than EKF (first order) [22]. In addition, the Sqrt-UKFST does 

not require refactorization on state covariance as in the regular 

unscented Kalman filter (UKF). The spherical transform 

requires fewer sigma points than the regular UKF leading to 

lower computational cost [23-26]. Furthermore, the spherical 

transform requires only one weighting parameter instead of 

three required by the regular UKF. To allow a better 

controllability of sigma point distribution, a unit hyper sphere 

model is introduced in this paper such that the distribution is 

independent of the number of sigma points as in the standard 

spherical transform method.  

The proposed method has been validated with experimental 

results and benchmarked with EKF, a portable fuel gauge 

integrated circuit and the Coulomb counting methods. The 

results have shown that the proposed Sqrt-UKFST has a lower 

absolute mean, absolute maximum and root mean square error 

(RMSE) than all the other methods. Furthermore, it is 

computationally more efficient than regular UKF. 

The outline of this paper is as follows. In section II, the 

lithium ion battery model and the battery parameters extraction 

are presented. Section III presents the proposed Sqrt-UKFST 

SOC estimation approach. Section IV shows the experimental 

setup and results.  Section V concludes this paper.  

II. LITHIUM-ION BATTERY MODEL 

Different battery models have been proposed to describe the 

battery operations in the literature. It can be divided into two 

broad categories namely the electrochemical  and equivalent 

circuit models [27]. Electrochemical model uses 

electrochemical laws to describe the battery operations. 

However, this method is computationally intensive and is more 

suitable for the study of electrode and electrolyte aspects. 

Equivalent circuit model uses electrical components such as 

resistors and capacitors to model the battery dynamic 

operations [28, 29]. It is simpler than the electrochemical 

models and is able to capture the battery dynamic response 

accurately. Thus, it is more suitable for control and simulation 

purposes.  

 
Fig. 1. Equivalent circuit model of lithium ion battery 

 Fig. 1 shows the double polarization model of a lithium 

ion battery [30, 31]. The resistor RO represents the 

instantaneous voltage drop during the battery charge/discharge 

process. Two resistor-capacitor (RC) networks are used to 

model the relaxation effects of battery charge/discharge 

process. In general, it provides a better modelling accuracy than 

a single RC network battery model [32]. The RD and CD network 

branch models the short term transient response of battery, 

whereas RK and CK are used to represent the long term transient 

response. In the circuit, the VOC represents the battery open 

circuit voltage (OCV), Vt is the battery terminal voltage and IB 

is the battery current.  

A. Relationship between Open Circuit Voltage and State of 

Charge 

The open circuit voltage of the battery VOC has a nonlinear 

relationship with SOC. To obtain this nonlinear function, the 

OCV test is conducted using the Panasonic NCR 18650 lithium 

battery with 2.9Ah capacity as a case study. In this study, the 

hysteresis effect is neglected. The hysteresis effect can be included 

if an additional voltage source is placed in parallel to Voc in Fig. 1 

at the expense of increased complexity. The battery is first fully 

charged through the CC-CV method and is then rested for an 

hour to allow it to reach the steady state voltage before VOC is 

measured. For the subsequent VOC measured at different SOC 

levels, the battery is discharged at 0.29A for an hour, and rested 

for another hour to reach the steady state before another test is 

conducted. Fig. 2 shows the SOC-VOC graph obtained from the 

experiment. 

 
Fig. 2. VOC versus SOC Graph 

To describe the relationship between the open circuit voltage 

and the state of charge in Fig. 2, a polynomial curve fitting is 

used: 
7 6 2

1 2 6 7 8
( ) ........

OC
V f m m m m m             (1) 

where   denotes the SOC. Based on the experimental data in 

Fig. 2, the coefficients are obtained as: m1=-20.553, 

m2=80.694, m3=-120.81, m4=83.352, m5=-22.502, m6=-1.542, 

m7=2.418 and  m8=3.124. A 7th order equation is found to be 

adequate yielding an error norm of 0.0195. This VOC and   

relationship is used in the estimation of battery terminal voltage 

in the next section.  

B. Battery State space Equations 

Denote the SOC of the battery as , and it can be expressed 

in discrete time as  
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where Qb is the battery discharge capacity, IB is the battery 

current, ∆t is the sampling time and  is the Coulomb 

efficiency. Using Kirchhoff’s circuit laws, the circuit dynamics 

of the two RC networks can be written as: 
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From Fig. 1, taking the battery terminal voltage, Vt, as the 

system output and the battery current, IB, as the system input, 

the Vt measurement function H can be obtained as: 
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( ( ), V , ) 1 1 1
t D K D B O
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  (6) 

To estimate  , 
DV and

KV , the battery parameters (RO, RD, RK, 

CD and CK) are required. These parameters will be 

experimentally identified and discussed in the next section. 

C. Battery Parameters Extraction 

In this study, the transfer function method is used to identify 

the required battery parameters. Using (3)-(4), the battery 

terminal voltage in the frequency domain can be written as: 

( ) ( )
( ) ( ) ( )

1 1
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By considering Vt – VOC as the output and the current IB as 

the input, the transfer function G(s) can be derived as 
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  (8) 

To extract the battery parameters, various charge/discharge 

pulses are injected into the battery at different SOC intervals 

and the corresponding voltage responses are measured. To 

obtain the required voltage responses, the battery is fully 

charged through the CC-CV method. It is then discharged at 

0.58A for 30 minutes with 30 minutes rest interval as shown 

in Fig. 3. At the end of each rest interval, different charge 

(0.29A, 0.58A, 1.16A, 1.45A) and discharge (0.58A, 1.45A, 

2.175A, 2.9A) current pulses with 5s duration are injected 

into the battery, as shown in Fig. 4. Assuming VOC remains 

unchanged over the short duration, the corresponding voltage 

responses with respect to each current pulse are recorded. The 

cycle is repeated at every 10% SOC interval until the battery 

is fully discharged.  The voltage responses from the injected 

current pulses across different SOC are then used in 

identifying the transfer function and the parameter 

identification. Fig. 5 shows one example of the voltage 

responses at 90% SOC.  

 
Fig. 3. Battery parameters extraction discharge current profile 

 
Fig. 4. Injected discharge pulses at the end of each rest period 

 
Fig. 5. Discharge pulses voltage responses at 90% SOC 

Using the voltage responses and the corresponding injected 

current pulses, the transfer function coefficients (a2, a1, a0, b1 

and b0) of G(s) can be obtained. The battery parameters (RO, RD, 

CD, RK and CK) can then be obtained by solving these 

coefficients. Different set of transfer functions and parameters 

are identified with respect to each measure voltage at each SOC 

level. As the variation of parameters with respect to SOC are 
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insignificant, the average identified parameters are used. Table 

I lists the identified battery parameters. 
Table I. Identified battery parameters 

RO 54.28mΩ 

RD 10.58 mΩ 

RK 40.16 mΩ 

CD 330 F 

CK 1020 F 

 

To verify the identified battery parameters, a hybrid pulse 

power characterization (HPPC) load profile as shown in Fig. 6  

is used [9].The comparison of experimental and estimated 

voltages as well as the estimation error are shown in Fig. 7 and 

8 respectively. 

 
Fig. 6. Hybrid pulse power characterization (HPPC) load profile 

 
Fig. 7. Comparison of experimental and estimated voltages of discharge 

pulses 

 

Fig. 8. Voltage estimation error of discharge pulses 

From Fig. 8, the results show that the state space model of 

the battery using the identified battery parameters could 

accurately estimate the battery voltage. The mean estimation 

error is 10mV and the maximum error is 50 mV at the time that 

the charge and discharge pulses are applied. 

III. SQUARE ROOT SPHERICAL UNSCENTED KALMAN FILTER 

(SQRT-UKFST) BASED SOC ESTIMATION 

The EKF has been extensively used in the SOC estimation in 

the literatures [5, 11, 21, 33]. Although the EKF performs well 

by integrating with other estimation methods including 

observers and neural network; it experiences limitation such as 

the filter stability due to Jacobian matrices [34]. To achieve 

better stability and accuracy, the unscented Kalman filter 

(UKF) has been introduced as it does not require the 

computation of Jacobian matrices. The UKF uses a selection of 

weighted sigma points to estimate the sample mean and 

covariance. In the following sections, the unit hyper sphere 

spherical unscented transform and the Sqrt-UKFST algorithms 

are presented. 

A. Unit hyper sphere Spherical Unscented Transform 

There are several sigma point transformation methods: 

unscented, simplex and spherical transforms. Due to the fact 

that the computation cost of UKF is proportional to the number 

of sigma points, it is beneficial to have fewer sigma points. The 

unscented transform requires 2n+1 sigma points selection, 

where n is dimension of the system. The simplex transform 

requires only n+1 sigma points. However, it suffers from 

numerical stability issues due to the fact that the sigma points 

lie on the sphere with a radius of /22n  [35].  

The spherical transform considered in this paper for SOC 

estimation requires n+2 sigma points. However, its numerical 

stability is improved by reducing the sphere radius to

0(1 )n W . In the spherical transform of a n dimensional 

system, the initial weight W0 is set first and the choice of W0 

affects only the fourth and higher order moments of the set of 

sigma points. Using W0 and n, the rest of the weight (W1 to Wn) 

are selected.  The three element vectors ( 1
0

 ,
1

1 and 1
2

 ) are 

generated using W1. To generate the required n+2 set of sigma 

point vectors with n dimension, the element vectors are 

recursively expanded.  
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In this study, it was discovered that several stability issues 

remain in the spherical transform UKF, such as negative battery 

parameters. This is due to the fact that the sphere radius for 

sigma point distribution depends on the size of estimated state 

vector. To ensure the sphere radius is independent on the 

estimated state vector size, and ζ always fall within the range of 

the expected variance of f(ζ), all sigma points are normalized 

with respect to 
0(1 )n W . Thus, all the sigma points are 

guaranteed to be projected within a unit hyper sphere. The 

spherical transform is summarized in Table II. 
Table II. Proposed unit hyper sphere spherical unscented transform 

Step 1: Choose the initial weight, W0 

0
0 1W    

Step 2: Compute the rest of the weights, Wi 

0
1

1
i

W
W

n





  

Step 3: Initialize the following element vectors, 

 1 1 1

0 1 2

1 1

1 1
0 , ,

2 2W W
     

   
   
   

  

 

Step 4: Recursively expand the following vectors, for j=2,…,n, 

1

0

1

1

1

1

                  for i = 0
0

     for i =1,....., j  1

( 1)

0

      for i = j+1

( 1)

j

j

i

j

i

j

j j W

j

j j W






















 
   


 

  
  
   
  
  
  
    

 

Step 5: Arrange 
j

i  vectors in a unit hyper sphere 

0
(1 )

j

i

n
W





 

B. Square Root Unscented Kalman Filter 

In a standard UKF, the state covariance Pk is recursively 

updated and propagated by decomposing into matrix square-

root, Sk, for sigma point mapping at each time step where Pk = 

SkSk
T. Then, Pk matrix is reconstructed from all the propagated 

sigma points for updating purpose. On the other hand, the Sqrt-

UKFST directly propagates and updates the Sk without the 

needs of decomposing and reconstructing matrix Pk. This 

avoids the needs of refactorization on Pk at each time step. Thus 

positive semi-definiteness of the Pk could be guaranteed [22]. 

The square root UKF makes use of three linear algebra 

techniques for square-root covariance update and propagation: 

QR decomposition (qr), Cholesky factor updating (cholupdate) 

and efficient least squares [22]. 

Given a n dimensional state space model of a nonlinear 

system and output equations as follows: 

1
( , )

k k k k
x f x u Q


    (9) 

( , )
k k k k

y h x u R    (10) 

where uk is the system input variables,
kx  is the system state 

variables and 
ky is the state output variables. The state-space 

and the measurement models are f(x,u) and h(x,u) respectively. 

Let Qk ~ N(0, covQ) and Rk ~ N(0, covR) represent the Gaussian 

process and measurement noises respectively. Through the 

spherical transform, the n state variables can be transformed 

into n+2 sigma points
i with the weight wi (as shown in Table 

II). The sigma points are propagated through the state function 

f(xk,uk) in (9). These propagated sigma points are used to 

estimate the system output, y, using h(xk,uk) in (6). The Kalman 

filter gain K is calculated through Sk and the cross covariance 

Pxy. Then the state mean and covariance are updated using the 

computed Kalman gain, K. Table III summarizes the Sqrt-

UKFST algorithm. 
Table III. Spherical square root unscented Kalman filter 

Step1: Set the initial state mean  
0

ˆ
T

D K
x V V and covariance S0: 

   
0 0 0 0 0 0 0

ˆ ˆ ˆ, [( )( ) ]
T

x E x S chol E x x x x     

Step 2: Compute the sigma points
i , 

, 1 1 1
ˆ ,     0,1,...., n 1

n

i k k k i
x S i 

  
   

 

where
j

i is computed based on Step1-5 in Table II 

Step 3: State estimates propagation, 

| k 1 1 1
( , )

k k k
F u 

  
  

Step 4: Calculation of mean estimates, 
1

| 1

0

ˆ ˆ ˆˆ
n

T

k k D K i k k

i

x V V W 


   





      

where Wi is computed in Step 2 in Table II. 
Step 5: Square root covariance propagation and update, 

 1: 1, | 1
ˆ( )    

k i n k k k
S qr W x Q

 

 
     

0, | 1 0
ˆ{ , , }

k k k k k
S cholupdate S x W

  


   

Step 6: Calculation of estimated measurement 
k and mean ˆ

ky 
 

1

| 1 | 1 , | 1

0

ˆˆ[ ]      

n

k k k k k t i i k k

i

H y V W


 

  



      

Step 7: Compute the measurement covariance 
kyS and its update 

1: 1, | 1
ˆ{[ ( )    ]}

k
y i n k k k

S qr W y R


 
    

0, | 1 0
ˆ{ , , }

k k
y y k k k

S cholupdate S y W



  

 

Step 8: Calculation of cross covariance matrix 
k kx yP  

1

, | 1 , | 1

0

ˆ ˆ( )( )
k k

n

T

x y i i k k k i k k k

i

P W x x y



  

 



     

Step 9: Calculation of Kalman gain Kk and state estimate update ˆ
kx 

 

through measurement (
k ty V ) 

1

1

k k k k

T

k x y y y
K P S S





  

ˆ ˆ ˆ( )
k k k k k

x x K y y
  

    

Step 10: Covariance matrix update 

k
k y

U K S  

{ , , 1}
k k

S cholupdate S U


   

First, the initial covariance and state estimates are selected. Then, Steps 2 

to 10 are recursively processed until end of the experiment (or input data).
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IV. EXPERIMENTAL RESULTS & DISCUSSION 

To validate the proposed method, a battery test bench has 

been setup as shown in Fig. 9. The setup is used to perform a 

satellite mission scenario of a low earth orbit (LEO) profile. 

Fig. 10 shows the orbit profile used in the experiment with an 

orbital period of 97 minutes.  

As shown in Fig. 9, a DC power supply (Agilent E3631A) is 

used to simulate the output solar power and a DC Electronic 

Load (Prodigit 3311F-03) is used to simulate the loadings of 

satellite subsystems.  A data acquisition system (NI PXI-1036) 

is used to record the battery terminal voltage, terminal current 

and temperature for reference SOC calculation. The reference 

SOC is obtained using the calibrated ampere hour counting via 

the high precision current sensors from the power supply and 

the DC electronic load with the sensor accuracy of 0.2% and 

0.1% respectively. A LabVIEW program has been written to 

control all the hardware equipment. A thermal chamber (SE-

300) is used to maintain the battery temperature at 25˚C to 

emulate the battery heater in maintaining the satellite battery 

temperature. A microcontroller (100MHz C8051F120) is used 

to process the acquired data as well as the real-time 

experimental SOC for comparison. In addition, a portable fuel 

gauge (MAX17058) with an expected accuracy of 3~5% is used 

for further benchmarking.  

 
Fig. 9. Experimental setup 

 
Fig. 10. LEO satellite solar power and load profiles 

A.  SOC estimation with unknown initial state 

First, the performance of SOC estimation using the proposed 

Sqrt-UKFST with unknown initial SOC is performed. The true 

SOC is set as 100% and the two initial estimated SOC are 0% 

and 50%. Fig. 11 shows that the estimated SOC converges to 

the true SOC within 250s when the initial estimated SOC error 

is assumed to be 50%. With the initial SOC error sets to 100%, 

the proposed method is able to converge to the true SOC after 

300s. To further validate the convergence performance of the 

proposed method, Fig. 12 summarizes the SOC estimation 

errors after 300s of different initial estimated SOC for four 

different reference SOC. The four reference SOC are 30%, 

50%, 75% and 100%. From Fig. 12, the Sqrt-UKFST is able to 

converge to the reference SOC across the entire operation range 

with the maximum estimation error of 2.4%. The results show 

that the initial estimation error does not impact the convergence 

of the SOC estimation using the proposed Sqrt-UKFST.  

 
Fig. 11. SOC estimation with unknown initial state 

 
Fig. 12. SOC estimation error under unknown initial SOC  

B.  SOC estimation with known initial state 

The initial state of SOC is known whenever the battery is fully 

charged. Fig. 13 shows the experimental results of battery 

current with 16 satellite orbits using the load profile in Fig. 10. 

In this experiment, the battery is fully charged before the test is 

commenced.  
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Fig. 13. Battery current profile under orbital test experiment 

Fig. 14 shows the corresponding SOC estimation using 

various approaches. From the results, it is observed that the 

SOC based on the Coulomb counting method drifted away from 

the reference SOC due to the accumulated errors. Moreover, it 

is noticed that both EKF and Sqrt-UKFST perform better than 

the fuel gauge.  

 
Fig. 14. SOC estimation comparison 

To evaluate the performance of different SOC estimation 

methods, the absolute mean, maximum and root mean square 

(RMSE) errors of the SOC are calculated as follows: 

 

1

2

1

1
ˆ     

1
ˆ     

ˆ

n

k k

k

n

k k

k

k k

Mean
n

RMSE
n

Maximum Max

 

 

 





 

 

 



   (11) 

The percentage SOC estimation error is plotted in Fig. 15. 

From the results, it is observed that the Coulomb counting error 

increases linearly due to the accumulated errors. For the fuel 

gauge circuit, its SOC estimation relies solely on the voltage 

readings. Since the battery voltage increases when it is being 

charged and vice versa, the fuel gauge circuit experiences 

higher fluctuations in SOC estimation than EKF and Sqrt-

UKFST whenever a charge/discharge current is applied. Both 

EKF and Sqrt-UKFST have similar SOC estimation error. 

Table IV summarizes the results. It shows that the Sqrt-

UKFST has the lowest RMSE of 1.42%, absolute mean error of 

1.19% and maximum error of 4.96%. For the EKF, its errors are 

about 40% higher than Sqrt-UKFST. Furthermore, the fuel 

gauge estimation error is at least 100% higher than the Sqrt-

UKFST. It is noted that the Coulomb counting mean error is 

almost ten times higher than the Sqrt-UKFST. 

 
Fig. 15. SOC estimation error comparison 

Table IV. Performance comparison 

  
Sqrt-

UKFST 
EKF 

Fuel 
Gauge 

Coulomb 
Counting 

RMSE 

Absolute 

Value 
1.42% 1.95% 3.85% 15.48% 

% 

increase 
w.r.t 

Sqrt 

UKFST 

- 37.32% 171.13% 990% 

Mean 
Error 

Absolute 

value 
1.09% 1.54% 3.09% 13.73% 

% 

increase 
w.r.t 

Sqrt-
UKFST 

- 41..28% 183% 1153% 

Maximum 
Error 

Absolute 
value 

4.96% 7.15% 11.47% 25.38% 

% 
increase 

w.r.t 

Sqrt-
UKFST 

- 44.15% 131.30% 411.69% 

C.  Computational requirements 

Table V compares the number of multiplication required in 

each operation for the spherical unscented transform, regular 

unscented transform and EKF. In the table, “n” denotes the 

number of states and “L” is the number of measurements. From 

the table, it is observed that the spherical unscented transform 

requires less multiplication than the regular unscented 

transform as a result of using fewer sigma points. For the SOC 

estimation (n=3 and L=1), the total number of multiplication is 

81 for the spherical unscented transform and 107 for the 

unscented transform. Thus there is a 32% saving in 

multiplication using the proposed approach. 
Table V. Multiplication required for each operation 

 Multiplication Required 

Operation 
Spherical 
Unscented 

Transform 

Unscented 

Transform 
EKF 

Pxx   (n+2)n2 (2n+1)n2   - 
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Pxy  (n+2)(nL)  (2n+1)(nL) - 

Pyy  (n+2)L2 (2n+1)L2 - 

PHT(HPHT+R)
  

- - L3+2nL2+2n2L 

K(y-ŷ)  L3+nL2+nL L3+nL2+nL nL+Ln2 

P-KPyyK Ln2 Ln2 n2L+n3 

Total 

Multiplication 

Required 
(n=3,L=1) 

81 107 73 

 

D.  Robustness of SOC estimation with battery’s parameters 

variation 

The accuracy of SOC estimation is affected by the battery 

model accuracy. The battery parameters may vary depending 

on the battery’s state of health [36]. As the battery usage 

increases, its parameters such as R0 would change. The 

variation could be as high as 60% of initial parameters [37]. To 

study the robustness of the proposed approach and EKF with 

respect to parameters variation, different battery parameter sets 

are used. Table VI presents different sets of parameters in terms 

of 25%, 50%, 75%, 125%, 150%, 175% and 200% of the actual 

battery parameters. For groups 1 to 3, the true battery 

parameters are higher than the estimated parameters, and 

groups 4 to 7 provide the case that the true parameters are lower 

than the estimated parameters. 
Table VI. Different parameters sets used in sensitivity analysis 

  
R0 

(mΩ) 

RD 

(mΩ) 

RK 

(mΩ) 

CD 

(F) 

CK 

(F) 

True 

Parameters 

(p) 

54.28 10.58 40.16 330 1020 

Group 1 

(0.25p) 
13.57 2.65 10.04 82.5 255 

Group 2 

(0.5p) 
27.14 5.29 20.08 165 510 

Group 3 

(0.75p) 
40.71 7.94 30.12 247.5 765 

Group 4 

(1.25p) 
67.85 13.23 50.2 412.5 1275 

Group 5 

(1.5p) 
81.42 15.87 60.24 495 1530 

Group 6 

(1.75p) 
94.99 18.52 70.28 577.5 1785 

Group 7 

(2p) 
108.56 21.06 80.32 660 2040 

The parameters in each group are used by Sqrt-UKFST and 

EKF to estimate the SOC. Fig. 16 and 17 show the RMSE and 

absolute maximum error. Both figures show that Sqrt-UKFST 

has lower error than EKF. Fig. 16 shows that the highest RMSE 

error for EKF and Sqrt-UKFST are 7.6% and 4.3% 

respectively. The absolute maximum error for EKF can be as 

high as 29% while Sqrt-UKFST remains below 8%. In 

summary, the Sqrt-UKFST is more robust to parameter 

variation than EKF. 

 
Fig. 16. RMSE comparison with different parameters set between EKF and 

Sqrt-UKFST 

 
Fig. 17. Absolute maximum SOC error comparison with different parameters 

set between EKF and Sqrt-UKFST 

V. CONCLUSION 

Using the double polarization lithium ion battery model, a 

new state-of-charge (SOC) estimation method using square root 

spherical unscented Kalman filter (Sqrt-UKFST) is presented. 

The proposed method takes advantage of Jacobian-free 

linearization approach with unscented Kalman filter. The 

spherical transform with hyper unit sphere requires fewer sigma 

points than the standard UKF and provides a better 

controllability of the sigma point distribution. In addition, the 

square root characteristic of the proposed approach improves 

the numerical properties in state covariance. The experimental 

results of the proposed approach have been compared with 

EKF, Coulomb counting and fuel gauge. The RMSE results 

have shown that EKF, Coulomb counting and fuel gauge are 

approximately 37%, 900% and 171% higher than the proposed 

method respectively. In addition, the parameter variation study 

shows that the proposed Sqrt-UKFST is more robust than EKF. 

Furthermore, computational analysis shows that regular UKF 

requires 32% more multiplication than Sqrt-UKFST. 
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