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Abstract

Metamodels aim to approximate characteristics of functions or systems from the knowledge extracted on only a finite number 

of samples. In recent years kriging has emerged as a widely applied metamodeling technique for resource-intensive com-

putational experiments. However its prediction quality is highly dependent on the size and distribution of the given training 

points. Hence, in order to build proficient kriging models with as few samples as possible adaptive sampling strategies have 

gained considerable attention. These techniques aim to find pertinent points in an iterative manner based on information 

extracted from the current metamodel. A review of adaptive schemes for kriging proposed in the literature is presented in this 

article. The objective is to provide the reader with an overview of the main principles of adaptive techniques, and insight-

ful details to pertinently employ available tools depending on the application at hand. In this context commonly applied 

strategies are compared with regards to their characteristics and approximation capabilities. In light of these experiments, 

it is found that the success of a scheme depends on the features of a specific problem and the goal of the analysis. In order 

to facilitate the entry into adaptive sampling a guide is provided. All experiments described herein are replicable using a 

provided open source toolbox.

1 Introduction

Computational models play a more and more significant 

role for many applications in engineering, including com-

putationally demanding studies such as optimization [87], 

sensitivity analysis [46], classification [31], reliability anal-

ysis [24] or fatigue [6]. Metamodels or surrogate models 

have appeared appealing to reduce intensive computational 

costs [27, 83, 113]. Common techniques such as support 

vector machines [35], kriging or Gaussian processes [89] 

and neural networks [99] have been extensively reviewed 

[2, 66, 84].

A general metamodel process is schematized in Fig. 1. 

Samples are distributed in a user-defined parametric space. 

The relevant black-box function is thereafter evaluated at 

each sample point and results are exploited to fit the surro-

gate model over the whole parametric domain. Hence, the 

accuracy of the resulting metamodel is highly dependent on 

the samples. Moreover, because evaluating the black-box 

function may be computationally demanding for engineering 

applications, a further goal in the process is to reduce the 

number of samples as much as possible, while generating a 

proficient surrogate model.

Within this context, since the groundbreaking work of 

Sacks et al. [91], a large variety of adaptive sampling tech-

niques have been proposed for kriging [13, 30, 37, 47, 54, 

55, 71]. Kriging, originally developed by Krige [57] for use 

in geostatistics, has been expanded to computer experiments 

with both deterministic [91] and random [106] nature. Its 

interpolative and stochastic properties make it very attrac-

tive, and so it is referred to as the most intensively investi-

gated metamodel in Jiang et al. [43].

To circumvent the limitation of one-shot sampling, 

sequential sampling techniques have been proposed since 
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the 1950s [14, 90], including two families, space-filling 

and adaptive design, as illustrated in Fig. 2. Space-filling 

techniques aim to spread the samples evenly in an iterative 

manner, whereas using adaptive sampling techniques, new 

samples are designed based on information extracted during 

previous iterations in order to place them in locations of high 

interest. These approaches have received increasing attention 

in recent years, from the 1990s for neural networks [15, 36] 

and later for support vector machines [56, 85].

Existing reviews have offered an overview of existing 

adaptive sampling strategies, focusing either on space-filling 

techniques [48, 51, 88], or on adaptive design [72]. However, 

there is a lack of exhaustive comparisons between alternative 

adaptive techniques suggested in the literature. Oftentimes 

presented techniques are just compared to a small selection 

of other adaptive algorithms, or even compared only to one-

shot or space-filling approaches. Furthermore comparisons 

are generally performed on a low number of reference func-

tions, which restricts the scope of the analysis and does not 

allow to draw general conclusions about algorithms.

The goal of the comparative review proposed here is to 

provide a sound analysis of the state-of-the-art for adaptive 

design in kriging metamodeling, such that users can find 

orientation within the dense literature to choose the most 

pertinent method for the problem of interest. The scope is 

restricted to single-fidelity and single-selection adaptive 

sampling techniques. Space-filling techniques are mainly 

excluded, and deterministic regression-based simulations 

are assessed for both global metamodeling and optimization. 

Characterizing features of existing methods are exposed, 

such that they can be categorized. Furthermore, a compara-

tive review is performed on a broad spectrum, including 

various reference functions and adaptive techniques based 

on different characteristics. For sound analysis and under-

standing, results can be replicated using a MATLAB [78] 

implementation of all investigated techniques as well as 

investigated benchmark tests, which is supplied on Github.

The review is organised as follows. In Sect. 2 an over-

view of ordinary kriging surrogate model is given. Then, in 

Sect. 3, goals and general features of adaptive schemes for 

ordinary kriging are introduced. Different exploitation strat-

egies are exposed in Sect. 4, then exploration approaches are 

presented in Sect. 5. Adaptive schemes are generally based 

on a combination of both perspectives. Schemes proposed 

in the literature are reviewed in Sect. 6. Finally, in Sect. 7, 

existing methods are compared on various benchmark prob-

lems, including both analytical functions and mechanical 

problems, and a short guidance for users is offered in Sect. 8 

with regards to choosing an adaptive technique for a given 

application.

2  Ordinary Kriging

Among kriging metamodeling, several families, such as sim-

ple kriging, ordinary kriging and universal kriging, may be 

distinguished depending on considered assumptions leading 

to different complexity levels (see [52]). Ordinary kriging 

is highlighted as the most commonly used technique, due to 

better accuracy compared to simple or universal kriging for 

Fig. 1  Metamodel scheme: samples lying in a parametric domain are evaluated from an expensive black box (experiment or simulator), then 
results are exploited to build a metamodel on the whole domain (inspired by Crombecq et al. [20])

(a) (b)

Fig. 2  Alternative sequential sampling design strategies (initial sam-
ples in black dots, sequentially added samples in red squares). (Color 
figure online)



2691State-of-the-Art and Comparative Review of Adaptive Sampling Methods for Kriging  

1 3

many reference problems (see [53]). Thus, the focus herein 

is restricted to ordinary kriging though all the mentioned 

adaptive techniques are also applicable for simple as well 

as for universal kriging.

Ordinary kriging is briefly summarized here, the reader 

can refer to Santner et al. [92] for proof and further details. 

Consider a black-box function M ∶ � → �  between an 

input x ∈ 𝕏 ⊂ ℝ
n and a univariate output y ∈ 𝕐 ⊂ ℝ . Fur-

thermore consider some existing samples � = {x
1,… , x

m} 

corresponding with a set of training data

Using ordinary kriging the exact mapping M between input 

and output data is approximated as the mean of a stochastic 

process Y defined as follows,

i.e. a combination of a global mean contribution denoted 

� and a localized variation contribution in terms of a sta-

tionary Gaussian process denoted Z(x) . The element ij of 

the covariance matrix Cov relative to this stochastic process 

yields

with cov the covariance operator, � the standard deviation 

of the stochastic process and Rij(�) the correlation between 

outputs corresponding with two samples xi and xj , defined 

as the component of the autocorrelation matrix R , also 

named correlation matrix. The correlation function R, which 

depends on unknown correlation parameters � , is usually 

chosen by the user. Correlation parameters are estimated as 

solution of an optimization problem [5], and the elements of 

the correlation matrix read Rij = R(xi
, x

j
,�).

Thus, the idea of kriging metamodeling is to obtain M̂ 

the most accurate approximation of M for any point x
0 

belonging to � as the mean of the realizations of the sto-

chastic process defined by Eq. (2) at that point i.e.

The best linear unbiased predictor for any unobserved value 

y
0 corresponding with x0

∈ � yields

with 1 the vector with m components equal to 1 and y the 

vector gathering the m observation outputs. The prior esti-

mation of the global mean denoted �̂  is obtained through a 

generalized least-square estimate as

(1)D = {
(

x
i
, yi

)

, i = 1, … , m}.

(2)Y(x) = � + Z(x),

(3)Covij = cov[Z(xi), Z(xj)] = �
2
Rij(�) ,

(4)M(x0) ≈ M̂(x0) = �
Ŷ(x0)

.

(5)�
Ŷ(x0)

= �̂ + rT

0
R−1

(y − 1�̂),

(6)�̂ = (1
TR−1

1)−1
1

TR−1y.

It can be seen that it depends on the choice of the autocorre-

lation structure. The vector r
0
 collects the crosscorrelations 

between x0 and every sample point as

Besides, information about the variance of the metamodel 

can be extracted for any point x0 as

with

and the prior estimation of the global variance which reads

Similarly to the prior estimation of the mean, prior estima-

tion of the global variance depends also on the correlation 

matrix.

3  Goals and General Features of Adaptive 
Schemes

In this paper the state-of-the-art for selecting the best design 

of experiments X = {x
i, i = 1, … , m} for kriging metamod-

eling is explored. The best design of experiments means the 

set of tests, which should be employed in order to be the 

most informative with respect to the quality of the emulator 

M̂ in substituting M over the entire input space � , or with 

respect to the accuracy of the surrogate estimation of any 

quantity of interest. By reducing the number of observations, 

computational or experimental cost and time effort, depend-

ing on the usage, could be reduced.

3.1  Reducing the Number of Observations

An efficient metamodel should be based on as few sam-

ple points m as possible. Indeed, a surrogate model is 

constructed to emulate and so to replace computation-

ally expensive simulation models. Therefore, the strategy 

appears interesting and viable only if the cost for building 

the surrogate model and exploiting it for the purpose of 

interest (e.g. optimization, reliability analysis, parametric 

investigation) is significantly smaller comparing with the 

cost of the same analysis based on the exact simulator M . 

On the contrary, if the number of experiments is relatively 

large, obtaining the metamodel M̂ may turn into an over-

whelming computational task, even possibly an insoluble 

(7)r0
i

= R(x0, x
i,�) for i = 1, … , m.

(8)�
2

Ŷ0(x
0)
= �̂

2

(

1 − r
T

0
R
−1

r0 + u
2

0

(

1
T
R
−1

1
)−1

)

,

(9)u0 = 1
T
R
−1

r0 − 1 ,

(10)�̂2
=

1

m

(

y − 1�̂
)T

R−1
(

y − 1�̂
)

.
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numerical problem, which would ruin the interest of the 

strategy [26].

The principle of adaptive schemes to define the best 

experiments for kriging metamodel is illustrated in Fig. 3. 

From an initial design of experiments, an exact simulator M 

is evaluated in designed points and so information is avail-

able and employed to build the metamodel. That metamodel 

is intrinsically uncertain in terms of epistemic uncertainty, 

i.e. uncertainty due to a lack of knowledge which can be 

reduced by gaining more information. Thus, the metamodel 

is analyzed to identify where further experiments should be 

performed to benefit the most from supplementary informa-

tion to reduce the lack of knowledge. Incorporating this new 

sample, a further experiment based on the exact simulator 

M is performed and an updated metamodel is built, which 

remains epistemically uncertain, and so the lack of knowl-

edge corresponding with the current metamodel can be fur-

ther assessed, and a new sample can be chosen. This loop is 

repeated until a stopping criterion is reached.

Because detailed knowledge of the mapping M is a pri-

ori unavailable, gauging the size of the experimental design 

required to reach a certain accuracy is generally a challenge. 

Sequential design and more particularly adaptive sampling 

techniques are appealing to build the design of experiments 

through an iterative procedure, which allows to observe the 

behaviour evolution.

Adaptive sampling approaches can be classified with 

respect to the number of sample points which are added per 

iteration [72]. Design based on single-selection procedures 

adds only one point per iteration. On the contrary, batch-

selection strategies refer to algorithms in which several 

sample points are added simultaneously at each iteration. 

This approach is generally preferred in case the surrogate 

model is constructed from parallelized estimations of sample 

outputs, for instance using several cores for numerical esti-

mation. However, the usage of auxiliary optimization proce-

dures for defining the new sample points is rather conducive 

to single selection, as used for most adaptive sampling strat-

egies proposed in the literature [72]. Hence, only single-

selection approaches will be thoroughly discussed here.

3.2  Steps of Adaptive Sampling Schemes

The general algorithm workflow of an adaptive sampling 

technique for global metamodeling is depicted in Fig. 4. 

Consider an initial design of experiments � = {x
1,… , x

m} 

associated with a data set as defined in Eq. (1). The crea-

tion of the surrogate model begins by fitting M̂ from this 

data. Then, supplementary sample points are included to 

the dataset D through successive iterations until reaching a 

convergence or stopping criterion.

3.2.1  Initial Design of Experiments

For starting the adaptive sampling procedure, an initial data 

set is required for building the first metamodel. Either one-

shot or sequential space-filling sampling procedures can be 

considered for that step. Latin Hypercube Design (LHD) is a 

very classical technique for defining the initial data set [52], 

because it is an efficient space-filling sampling technique, 

particularly for initial data sets including very few sample 

points [19].

Initial Sampling Algorithm

After building a hypercube denoted [0, m − 1]
n on the 

input parametric space � , n-dimensional LHD creates a set 

of m points of the form x
i ∈ [0, … , m − 1]

n ∀i ∈ [1, m] , 

such that

Epistemic Metamodel

Available Information Design of Experiments

Surrogate model Evaluation of the lack of knowledge

New experiment

Fig. 3  Principle of adaptive kriging surrogate process [30]

Fig. 4  General workflow for building a metamodel based on adaptive 
design of experiments
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which means distinction and space-filling distribution of 

sampling points are ensured separately for every dimension 

[38]. A space-filling character of the initial design appears 

particularly crucial when no a priori knowledge of the map-

ping behavior over the parametric domain is available, which 

suggests an equal scan of the entire input space � for build-

ing the initial metamodel. To enhance the space-filling char-

acter of LHD, it can be employed in combination with the 

maximin criterion, i.e. a constraint which maximizes the 

minimum distance between samples [108].

Besides, LHD appears interesting as a non-collapsing 

strategy [38]. A strategy is called collapsing when two or 

more points differ by only one or very few parametric dimen-

sions. Therefore, outputs may be identical for these points, 

in case their corresponding inputs differ only with respect 

to dimensions with very low influence on the response (see 

e.g. [40]). For kriging, collapsing points lead to numerical 

issues through ill-conditioned matrices. As LHD enforces 

concomitant difference between sample points in terms of all 

dimensions, see Eq. (11), non-collapsing property is intrinsi-

cally ensured through the process. Thus, even if one or more 

parametric dimensions have insignificant influence on the 

output, the LHD data set would still be usable for building 

kriging metamodels.

3.2.1.1 Size of the Initial Design of Experiments Decisions 

about the number of samples included in the initial design 

appear relatively arbitrary in the literature. However, glob-

ally, it can be sketched as a compromise between two per-

spectives. Small initial designs lead to starting metamodels 

associated with large lack of knowledge, which could mis-

lead the first steps of the adaptive procedure [34, 50]. On the 

contrary, large initial designs may cause high computational 

cost due to numerous evaluations of the black-box, which 

might be avoided using a smaller initial dataset and supple-

mentary points designed by adaptive sampling [18].

Thus, the size of initial dataset is generally chosen by the 

user in dependence on the application. Main features for 

decision are the dimension of the parametric space, space-

filling quality of the initial sampling algorithm, computa-

tional cost due to the evaluation of the black-box function 

and a priori knowledge about the complexity of the map-

ping M over the parametric domain. Despite the potential 

influence of the initial sample size on the efficiency of the 

metamodel construction, there is a lack of goal-oriented 

and formal guidance for information-based decision about 

this criterion in the literature. A few empirical formulas 

or rules of thumb have been proposed for specific applica-

tions. An investigation on the influence of the initial sample 

size with respect to the dimensionality of the problem has 

been proposed in Liu et al. [69]. The rule m = 10 n has been 

(11)∀(i, k) ∈ [1, m]2, ∀j ∈ [1, n], xi
j
≠ xk

j
if i ≠ k, suggested by Jones et al. [47] and investigated for Gauss-

ian processes by Loeppky et al. [74], which conclude that 

it appears as an interesting and reasonable rule of thumb. 

Besides, these authors also suggest some complementary 

options to improve the decision for cases in which the simple 

rule is a posteriori evaluated as insufficient.

3.2.2  Alternative Stopping Criteria

Whatever the adaptive sampling technique employed for 

creating surrogate model, a stopping criterion is required to 

decide when to stop the adaptive process. Four alternative 

criteria are generally considered:

• The adaptive scheme is stopped with respect to time con-

straints. Even if it can appear as a trivial approach, budg-

eted time, project deadline or real-time simulations are 

usual and crucial issues for most industrial applications.
• The adaptive scheme is stopped with respect to computa-

tional or experimental facilities constraints. A maximum 

number of mapping evaluations is imposed depending on 

what the available resources offer (see, for instance [65, 

76, 107]).
• The adaptive scheme is stopped with respect to an accu-

racy goal. This strategy generally requires to benefit 

from a reference solution with respect to which errors 

are estimated. Among available error measures as listed 

in Table 1, the choice is generally based on the applica-

tion of interest. The Normalized Mean Absolute Error 

(NMAE) or Normalized Root Mean-Squared Error 

(NRMSE) are global performance metrics [16], whereas 

the Normalized Mean Absolute Error At Minima 

( NMAE
m

in ) provides information about optimization 

capabilities at certain points of interest, e.g. local min-

ima. The three indicators NRMSE, NMAE and NMaxAE 

are usual error measures, which means zero value indi-

cates an exact estimation of the reference solution and the 

larger the error is, the more inaccurate the metamodel. 

On the contrary, the R2 score provides information about 

the fit accuracy, such that accurate metamodels are asso-

ciated with a value of 1, while a value of 0 indicates a 

bad-quality prediction. Furthermore we define a relative 

improvement metric, called Relative Error Improvement, 

which tracks the improvement of an error measure E with 

regards to an initial value E
0
.

• The adaptive scheme is stopped with respect to the rela-

tive correction between two successive iterations. If no 

significant improvement appears while adding a new 

experiment, it is judged as useless to pursue the enlarge-

ment of the experimental design. Various measures of 

the correction can be considered such as variation of the 

cross-validation error [27], jackknifing variance based on 
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cross-validation [54], or variation in terms of the absolute 

relative error [50].

The stopping criterion is generally chosen with respect to 

application case and study goal.

3.3  General Features of Adaptive Sampling 
Schemes

Sample points are designed through adaptive sampling strat-

egy by solving an optimization problem. Considering sin-

gle-selection schemes, only one sample point xm+1 is added 

per iteration, which is defined as the point maximizing the 

refinement criterion denoted RC as follows

The superscript ⋆ emphasizes the feasible solution of the 

optimization process.

3.3.1  Exploration and Exploitation

Generally, two strategies, namely local exploitation and 

global exploration, are offered for adaptive sampling 

algorithms.

Exploration aims at evenly scanning the whole input 

domain to gain a ‘general’ knowledge of the mapping. Thus, 

pure exploration strategy performs adaptive sampling while 

ignoring previously evaluated outcomes.

On the contrary, exploitation is based on the knowledge 

extracted from available observations. The goal is to place 

sampling points in subregions, which have been identified as 

demanding for accurate goal-oriented representation, i.e. sub-

regions associated with large prediction error, or of peculiar 

(12)x
m+1

= arg max
x
⋆∈�

RC
(

x
⋆
)

.

interest such as zones with significant non-linear response, 

optimum, or discontinuity. For instance, if the aim of the anal-

ysis is to evaluate the global maximum of the black-box func-

tion, it is essential that the metamodel is an accurate emulator 

of the function in the zone in which that optimum lies. There-

fore, samples should be added by preference nearby, even if 

this leads to rough estimation of the function in other areas. 

However, it can be highlighted that the true metamodel error 

is generally a priori unknown, the choice of most beneficial 

areas is then challenging.

Thus, considering the example illustrated in Fig. 5, the ini-

tial metamodel based on a data set of seven samples as repre-

sented in Fig. 5a could lead to the assumption, that the function 

features a linear general behavior except for one subdomain. 

Exploration and exploitation are contemplated through an 

adaptive process stopped after adding seven new observations. 

Considering a local exploitation adaptive scheme, see Fig. 5b, 

the identified non-local behavior is further investigated by add-

ing all supplementary samples near to the outstanding initial 

sample. The focus on the nonlinear area allows to obtain a pre-

cise description of that fluctuation, however the second local 

non-linearity of the true function is not detected. Furthermore, 

even though not apparent in this example, employing pure 

exploitation-based sampling strategy may also lead to high risk 

of sample clustering [44]. On the contrary considering global 

exploration, as shown in Fig. 5c, the six supplementary sam-

ples are designed to evenly explore the whole design space. 

This strategy allows to identify the other non-linear region, 

but does not provide a precise description of both non-linear 

local behaviors.

Some sampling methods proposed in the literature are 

based only on one characteristic, whereas more sophisticated 

techniques combine both perspectives.

Table 1  Various error 
measures proposed to evaluate 
metamodels ( nref  number of 
reference points, n

min
 number 

of minimum reference points, 
yi exact response and Ŷ i 
response estimated by the 
metamodel for reference point 
i, y vector containing outputs 
for all the reference points, y 
mean of the exact response over 
all reference points, E error 
measure value, E

0
 initial value 

of the metric)

Validation metric Notation Formula

Normalized mean absolute error NMAE 1

nref

∑nref

i=1
�yi − Ŷ i�

max (y) − min (y)

Normalized root mean-squared error NRMSE
�

1

nref

∑nref

i=1
(yi − Ŷ i)2

max (y) − min (y)

Normalized Mean Absolute error at minima NMAE
min

1

nmin

∑nmin

i=1
�yi

min
− Ŷ i

min
�

max (y) − min (y)

R
2 score R

2

1 −

∑nref

i=1
(yi − Ŷ i)2

∑nref

i=1
(yi − y)2

Relative error improvement - 1 − |
E

E
0

|
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3.3.2  Smart Strategies to Combine Exploration 

and Exploitation

Exploration and exploitation offer to all appearances oppos-

ing strategies to build adaptive dataset. However, instead of 

considering them as contradictory paths requiring a definitive 

choice between them and restricting the design ability to one 

scenario, it seems more appealing to append both of them in 

hybrid adaptive sampling approaches to benefit simultaneously 

from both features. Thus, advanced adaptive procedures are 

built by combining exploration and exploitation to yield the 

global refinement criterion as follows [72]

with w
local

 and wglobal the weights for the local exploitation 

and global exploration, respectively, such that the summa-

tion of both weights equals to 1. The combined strategy 

is specifically defined through both functions local(x) and 

global(x) . In general workflow, this combinatorial score 

(13)
RC(local(x), global(x))

= wlocal ⋅ local(x) + wglobal ⋅ global(x) ,

leads to estimate the supplementary sample point as the 

optimal solution of an objective function as follows

Three general balance strategies between exploration and 

exploitation have been proposed in the literature, as illus-

trated in Fig. 6 (see [72]).

3.3.2.1 Decreasing Strategy Using a decreasing strategy 

(see Fig.  6a) as proposed in Turner et  al. [103] and Kim 

et al. [50], the global weight wglobal equals 1 at the begin-

ning of the metamodel construction leading to pure explo-

ration of the parametric space during first adaptive steps, 

which look blindly for some regions of peculiar interest. 

Then, with iterations, the weight wglobal decreases whereas 

the weight w
local

 increases until the local weight equals to 

1 and the global weight vanishes at the end of the adap-

tive construction of the metamodel. Therefore, during last 

iterations of the adaptive algorithm, the sampling strategy is 

purely based on exploitation of specific regions of interest.

(14)x
m+1 = arg max

x
⋆∈�

RC
(

local(x⋆), global(x⋆)
)

.

(a) (c)(b)

Fig. 5  Local exploitation and global exploration: two alternative per-
spectives for adaptive sampling (true function grey dashed line, ini-
tial samples represented as blue dots, supplementary samples as red 

diamond and red triangle markers, for exploitation and exploration 
respectively), generated metamodel from sample points in blue line, 
inspired by Crombecq et al. [20]. (Color figure online)

(a) (c)(b)

Fig. 6  Adaptive strategies to balance local exploitation and global exploration
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Greedy Strategy

Greedy strategies are based on a switch between pure exploi-

tation-based and pure exploration-based adaptive steps along 

the iterations, as depicted in Fig. 6b. Initially an adaptive 

scheme with full exploration-character is used, here the adap-

tive metamodel is built by reducing the lack of knowledge 

equally on the entire parametric domain. Then, switching from 

an exploration-based to an exploitation-based strategy, the 

adaptive scheme aims at improving metamodel accuracy on 

some specific zones of interest. If these local improvements are 

considered sufficient, the scheme switches back to an explo-

ration-based sampling procedure, this enhances the discovery 

of new regions of particular interest. Thus, switching between 

both strategies, a metamodel is built by combining exploration 

and exploitation iteratively, see for example Sasena [93] and 

Sasena et al. [94].

3.3.2.2 Switch Strategy Switch strategies build upon dynamic 

switching between local and global weights, as illustrated 

in Fig.  6c. Weights are, for instance, estimated by exploit-

ing information based on previous iterations in terms of the 

differences between successive prediction errors in Liu et al. 

[71]. This procedure has been evaluated as more efficient than 

decreasing or greedy strategies in Singh et al. [97].

Adaptive sampling approaches suggested in the literature 

can generally be analyzed with respect to the nature of their 

exploration and exploitation components. Assuming an initial 

or current experimental design comprising m observations, 

which provides a metamodel M̂ , alternative exploitation and 

exploration approaches can be examined.

4  Techniques for Exploitation

Using exploitation, samples are placed in areas of specific 

interest. If the true function was known as assumed in Fig. 7a
1
 , 

it would be straightforward to evaluate the true error defined as

and represented in Fig. 7a
2
 , as well as the positions of high-

est interest for new observations. However, generally, the 

true function is unknown. The basic idea is then to substitute 

the exact error estimation by a sampling score, as suggested 

in Fig. 7b
2
, c and d

2
 , hopefully able to inform about areas 

with the highest true error. Exploitation-based strategies 

may be globally classified in three main families depending 

on the method employed to evaluate the score function. It 

might either be done by comparing the current metamodel 

with auxiliary metamodels built by modifying the existing 

metamodel at low cost, using cross-validation (see Fig. 7b
1
 

and b
2
 ) or query by committee (see Fig. 7d

1
 and d

2
 ), or in the 

(15)e(x) = M̂(x) − M(x)

analysis of the geometry of the response surface, for instance 

through its gradient information (see Fig. 7c).

4.1  Cross‑Validation‑Based Exploitation

Cross-validation-based adaptive sampling is a strategy 

based on the analysis of the metamodel accuracy with 

regard to unknown data [17, 79]. Different variants of 

cross-validation are proposed in the literature. Algorithms 

generally rest either on cross-validation error or on cross-

validation variance.

4.1.1  k‑Fold Cross‑Validation

Considering the k-fold cross-validation as employed in 

Fushiki [32], the dataset D is divided in k mutually exclu-

sive and collectively exhaustive subsets denoted D
i
 , i.e.

Then, k − 1 subsets are chosen as training subset to establish 

a metamodel, whereas the remaining subset is employed for 

validation and estimation of a performance score. The pro-

cess is repeated k times such that all the subsets are succes-

sively used for validation, and the cross-validation error is 

evaluated as the mean of the k results. However, this general 

tool is not commonly used for adaptive techniques, whereas 

the specific form called leave-one-out cross-validation has 

been frequently employed for exploitation purpose.

4.1.2  Leave‑One‑Out Cross‑Validation (LOOCV)

The Leave-One-Out Cross-Validation (LOOCV) is a 

special case of the general k-fold cross-validation, with 

k = m . Thus, for every i ∈ [1, m] , an auxiliary surrogate 

model M̂
−i

 is trained on m − 1 observations consisting of 

the reduced set D
−i = D ⧵

(

x
i
, yi

)

 . An example of family 

of such auxiliary metamodels is shown in Fig. 7b
1
 for a 

metamodel based on seven experiments. Then, the accu-

racy of the metamodel of interest M̂ is evaluated through 

the cross-validation error denoted e
LOOCV

 at point xi , as 

follows

As one auxiliary metamodel {M̂−i
}

i∈[1,m] is built to evalu-

ate local error for every available observation, correlation 

parameters � need to be reevaluated m times in the context 

of ordinary kriging, which may be a numerically demand-

ing task [49]. In order to mitigate computational costs, cor-

relation parameters can be fixed as constant (see [69]), and 

(16)

{

Di ∩ Dj = �, ∀(i, j) ∈ [1;k]2 if i ≠ j ,

∪k
i=1

Di = D ,

(17)eLOOCV(x
i) = |M̂(xi) − M̂−i

(xi)|, ∀i ∈ [1, m] .
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LOOCV error can then be efficiently approximated (see [71, 

100]) as

where H = 1(1
T
1)−1

1
T , d = y − 1�̂  and the indices (i,  : ), 

( : , i) and ii designate the i-th row, the i-th column and the 

i-th diagonal element of the matrix, respectively.

A low value of e
LOOCV

(xi) defined by Eq.  (17) or its 

approximation provided by Eq. (18) means that a lack of 

(18)e
app

LOOCV
(xi) =

R
−1

i,∶

(

d + 1 + H∶,i

di

1−Hii

)

(R
−1
)ii

,

observation x
i does not significantly perturb the meta-

model, i.e. interpolation around xi is robust and accurate, 

whereas a large value of the error e
LOOCV

(xi) or e
app

LOOCV
(xi) 

implies that available information around xi is deficient. 

Therefore, adaptive algorithms can be based on the idea of 

sampling preferentially in areas with large local LOOCV 

error. However, the LOOCV error can not strictly be 

seen as a measure of the accuracy of the surrogate model 

particularly for not sampled subdomains, but rather as a 

measure of the metamodel sensitivity to loss of informa-

tion [17]. Indeed, e
LOOCV

(xi) as defined by Eq.  (17) or 

Fig. 7  Alternative exploitation-based adaptive sampling (all errors and scores have been normalized and are given in terms of absolute values). 
(Color figure online)
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approximated by Eq. (18) only yields discrete information 

about prediction error for all {x
i}

i∈[1,m] , which are anyway 

already sampled positions. Therefore, it is guaranteed that 

true error vanishes at these points.

Two main approaches have been suggested to approxi-

mate LOOCV-based prediction error at any point x of the 

parametric space � from the discrete knowledge at sample 

points xi.

4.1.2.1 Continuous LOOCV Estimation Continuous 

approaches consist in approximating the error as a continu-

ous score function over the whole parametric domain as 

shown in Fig. 7b
2
 . For instance, an error at any point x can 

be approximated as the superposition of the relative errors 

between the current metamodel and the leave-one-out meta-

models considering successively the lack of each sample 

[45], as follows

The method has also been adopted by Kim et al. [50] and 

extended as a weighted version in Jiang et al. [42].

It has been highlighted that this LOOCV error generally 

overestimates the true error, which may be a problem for a 

precise tuning of the metamodel accuracy [70]. However, 

a reduction of this overestimation has been observed while 

increasing the number of data points [111]. A weighted ver-

sion has been proposed in Li et al. [65] based on the mean 

absolute difference. Similar continuous versions are found 

in Laurenceau and Sagaut [61], Liu et al. [71] and Garud 

et al. [33].

A different approach for continuous LOOCV estimation 

has been employed by Aute et al. [4] or Li et al. [65] based 

on fitting a kriging metamodel ê
LOOCV

 to the LOOCV error 

values.

Discontinuous LOOCV Estimation

Discontinuous strategies for estimating the cross-valida-

tion error rely on dividing the parametric space into dis-

crete cells. Then, each cell is assigned a variant of e
LOOCV

(xi) 

based on some proximity metrics, and the cell associated 

with highest error is branded as priority cell for further sam-

pling. As a side effect, the division of the parametric space 

into cells leads to implicit exploration contribution [72], as 

detailed later in Sect. 5.1. Besides, this approximation gener-

ates discontinuity of the error estimate at bounds between 

neighbor cells.

Among discontinuous LOOCV approximations, Xu et al. 

[116] have proposed a decomposition of the parametric 

space by Voronoi tessellation and a simple assignment of 

the e
LOOCV

(xi) value to the Voronoi cell associated with xi . 

(19)e
cont

LOOCV
(x) =

√

√

√

√

1

m

m
∑

i=1

(

M̂(x) − M̂−i
(x)

)2

.

Similar methods are used in Jiang et al. [43] and Jiang et al. 

[41].

A different approach has been suggested by Busby et al. 

[11] and later employed in Busby [10], in which cells are 

built through a gridding process. Then, each cell containing 

one or more sample points is associated with the highest 

e
LOOCV

(xi) among included points, whereas an arbitrarily 

high error is assigned to cells which do not contain any 

sample.

4.2  Geometry‑Based Exploitation

The fundamental postulate corresponding to geometry-based 

exploitation strategies is that the current metamodel may 

have a high prediction error near certain geometric fea-

tures such as high gradient or local optimum. Among them, 

distance-based and gradient-based geometric exploitation 

strategies are distinguished.

4.2.1  Distance‑Based Exploitation

The term ‘distance’ refers here to information distance, i.e. 

distance between outputs in the image of M̂ . Thus, Jones 

et al. [47] proposed an adaptive technique, which is com-

monly utilized for optimization, in which samples are pref-

erably added in subdomains associated with metamodel 

response very close to the global minimum observation. 

Variants have been developed in Sóbester et al. [98] and 

later in Xiao et al. [115].

Another distance-based exploitation strategy has been 

exposed in Lam [59], in which samples are added in regions 

where the metamodel response differs most significantly 

from the closest observation.

4.2.2  Gradient‑Based Exploitation

Gradient-based techniques are built around the premise that 

an accurate metamodel requires less observations in subdo-

mains corresponding with low gradient of the response sur-

face than in subdomains with large gradient (see [8, 105]). In 

the context of kriging metamodeling, the gradient informa-

tion is not directly available and so its numerical approxima-

tion represents the milestone of this approach.

Crombecq et al. [18] partition the input parametric space 

with Voronoi tessellation, and then approximate the gradient 

in each cell from some neighborhood information. Expan-

sions of this approach can be found in Crombecq et al. [21] 

and van der Herten et al. [109]. Local non-linearities are 

evaluated in Lovison and Rigoni [75] from an approximation 

of the Lipschitz constant using neighbor points also defined 

from a Delaunay triangulation, the idea has been reused in 

Liu et al. [68]. In Mo et al. [82], the gradient is approxi-

mated using central difference method and nonlinearities 
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are described by incorporating higher-order Taylor terms 

in the expansion.

As a side note, an extension to ordinary kriging including 

gradient information has been proposed in the literature and 

named gradient-enhanced kriging [73] or co-kriging [62]. A 

good overview of general gradient-enhanced metamodels 

which also includes gradient-enhanced kriging is given in 

Laurent et al. [63]. Adaptive sampling in the framework of 

gradient-enhanced kriging models has not yet been exten-

sively researched. Paul-Dubois-Taine and Nadarajah [86] 

present an adaptive method designed for sensitivity analysis 

with co-kriging.

4.3  Query‑by‑Committee‑Based Exploitation

When using Query by Committee (QBC) adaptive schemes, 

the new sample is selected from a set of randomly proposed 

candidate points, which are sorted using a committee of sur-

rogate models [29, 95]. The supplementary point is selected 

as the candidate for which the “difference” between evalu-

ations using alternative committee metamodels is the most 

significant. For instance, “difference” in terms of the meta-

model variance can be examined [58].

In details, first a large set of candidate points is randomly 

selected within the parametric space considering uniform 

distribution. A committee of metamodels, which can a priori 

contain any kind of surrogate approach, is designed based 

on available information. In the framework of kriging, con-

current committee surrogates could be kriging metamodels 

based on different autocorrelation functions such as various 

Matérn and power exponential autocorrelation functions. 

Let a committee C consist of n
C
 members i.e. C = {M̂

C

i
} 

with i = 1, … , n
C
 . Finally each candidate point is evaluated 

based on the fluctuation FQBC of the predictions provided by 

alternative surrogate models defined as

(20)FQBC(x) =
1

n
C

n
C

∑

i=1

(

M̂
C

i
(x) − M̂

C

(x)

)2

,

where M̂
C

(x) =
1

n
C

∑n
C

i=1
M̂

C

i
(x) is the average of the output 

estimation considering the different committee members. 

The candidate with highest fluctuation is selected as next 

sample point. The QBC-based algorithms appear very 

generic as they are intrinsically model-independent.

Examples of the QBC adaptive framework can be found 

in Kleijnen and Beers [54], Acar and Rais-Rohani [1], 

Mendes-Moreira et al. [81] and Eason and Cremaschi [28]. 

Although QBC appears rather proficient in reducing the 

approximation error of the metamodel along with the adap-

tive sampling steps [81], it has been highlighted that the 

committee members should exhibit some differences to be 

able to reduce the surrogate model error efficiently [80]. This 

might be problematic when utilizing a QBC approach based 

only one metamodel type.

Thus, three main exploitation-based families have been 

proposed to exploit knowledge from available observations 

to design the new experiment. In a complementary way, 

exploration sampling can be used to discover crucial behav-

ior which has not been discovered yet.

5  Techniques for Exploration

Sample points can be spread over the whole parametric 

domain employing exploration strategy in order to unveil 

regions with high prediction error due to local non-linearity 

for instance. This feature is particularly important if the cur-

rent design of experiments is very small. Another interest 

of exploration is preventing local clustering of points which 

leads to numerical instabilities in the kriging approach.

As illustrated in Fig. 8, there are conceptually two differ-

ent tools to create an exploration component with kriging, 

i.e. distance-based and variance-based exploration.

Fig. 8  Alternative techniques 
for exploration

(a) (b)
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5.1  Distance‑Based Exploration

From the distance information between existing sample 

points, distance-based exploration either generates a crite-

rion to sparsely sample regions or sets restrictions for new 

sample points. Continuous and discontinuous distance-

based exploration can be distinguished or can sometimes 

be brought together in the same adaptive sampling method.

5.1.1  Continuous Distance Criterion

Continuous distance criteria appear in different contexts in 

the literature. Lovison and Rigoni [75] for example define 

the exploration component as the euclidean distance to the 

nearest sample point cf. Fig. 8a. Normalized versions of 

this approach have been chosen by Eason and Cremaschi 

[28] and Mo et al. [82]. A crowding distance metric denoted 

CDM is defined by Garud et al. [33] as

to impose that preferred points have a large cumulative dis-

tance from existing samples. Here the notation ‖ ∙ ‖ denotes 

the L
2
 norm operator.

Other approaches employ relative distances in order 

to constrain the solution domain of the general optimiza-

tion problem of Eq. (12) by introducing a cluster threshold 

denoted S which should be exceeded, as follows

The challenge in this approach lies in the definition of the 

space-filling metric value S. Different techniques have been 

suggested. Li et al. [65] choose the cluster threshold to be 

(21)CDM(x) =

m�

i=1

‖x − x
i‖2

,

(22)
x

m+1
DC

= arg min
x
⋆∈�

RC
�
x
⋆
�

subject to min
x

i∈X
‖x

⋆
− x

i‖ ≥ S.

proportional to the average minimum distance of all sam-

ple points. A similar approach designed by Jiang et al. [42] 

defines the cluster threshold SJiang as detailed in Box 1.

A slightly different approach has been chosen in Aute 

et al. [4] where the maximum of the minimum distances is 

used instead of their average as described in Box 2.

A distance threshold is also utilized in Li et al. [64] and 

Garud et al. [33]. However, they do not specify a value and 

make it therefore dependent on the user experience.

5.1.2  Discontinuous Distance Criterion

Another option for distance criteria is dividing the 

input space � into a set L of n
�
 discontinuous cells as 

L = {�
i
}

i∈[1,n
�
] such that

Box 1  Cluster threshold SJiang defined as an average of minimum dis-
tances [42, 65]

Box 2  Cluster threshold SAute defined as a maximum of minimum dis-
tances [4]

Fig. 9  Voronoi tessellation (black solid line) and Delaunay triangula-
tion (red dashed line) of 10 sample points (blue dots) on a two-dimen-
sional parametric domain. (Color figure online)
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where the cell sizes depend on the sample point positions. 

In this context, a division can be performed through Voronoi 

tessellation, Delaunay triangulation or gridding.

In Voronoi tessellation, as first shown in Crombecq et al. 

[20] for adaptive sampling exploration purposes, the input 

parametric space is divided into set of m cells {Z1,… , Z
m
} 

around the existing m sample points [3]. Here, a point x 

belongs to the cell relative to xi if it is at least as close to xi 

as to any other sampled points 
{

x
j
}

j ∈ [1, m]

j ≠ i

 , see Fig. 9. The 

method has been used by various authors such as van der 

Herten et al. [109], Liu et al. [68] or Jiang et al. [41].

The computation of the Voronoi tessellation is known 

to be computationally demanding, particularly for high-

dimensional spaces. However the volume of each cell can be 

evaluated at low cost using Monte Carlo methods (see [18]).

Delaunay triangulation as employed by Lovison and 

Rigoni [75] or Jiang et al. [43] is an exploration tool which 

goes hand in hand with Voronoi tessellation. Indeed, as rep-

resented in Fig. 9, Delaunay triangles are commonly formed 

by connecting the central points of adjacent Voronoi cells 

[102].

A different approach was introduced by Busby et al. [11] 

and further in Busby [10] in which an adaptive gridding 

algorithm is proposed to divide any edge of the n × 2
n−1 

edges of the parametric space into uniformly split pairwise 

disjoint subintervals. Subinterval size is defined for each 

dimension i through corresponding correlation length �
i
.

5.2  Variance‑Based Exploration

Variance-based adaptive sampling relies on the idea that 

large errors on the metamodel approximation M̂ are prob-

ably localized in areas where the predicted variance is large. 

The variance being directly available as a byproduct of the 

kriging surrogate model, variance-based adaptive sampling 

appears very natural in the framework of kriging metamodel.

Thus, Jin et al. [45] propose to find a new sample point 

by solving

with �2

Ŷ

 the variance operator as defined in Eq. (8). Because 

the variance is based on distance information combined with 

the autocorrelation kernel, there is a clear link between dis-

tance and variance, as plotted in Fig. 8a and b respectively. 

The approach is commonly referred to as the maximum 

mean-squared error [91], as it is a peculiar representation of 

the entropy approach initially suggested by Shannon [96] 

(23)� =
⋃

i∈[1,n
�
]
�

i
,

(24)x
m+1
Var,Jin

= arg min
x
⋆∈�

(

max
x
⋆∈�

𝜎
2

�Y
(x⋆)

)

,

and then developed by Currin et al. [22] and further by Cur-

rin et al. [23] for cases in which only one point is designed 

per iteration. Other approaches include the integrated mean-

squared error which is based on a weighted averaged mean-

squared error estimation over the whole parametric space 

[91]. Then, the new sample point is defined as follows

where w denotes a user-defined probability density func-

tion. Variations of this exploration technique can be found 

in Jones et al. [47], Sóbester et al. [98], Lam [59], Xiao et al. 

[115] and Liu et al. [71].

From the alternative perspectives on exploitation and 

exploration offered in the literature, many advanced adap-

tive strategies can be built.

6  Commonly Applied Adaptive Sampling 
Techniques

The idea here is to review commonly used, state-of-the-art 

adaptive sampling techniques. An overview of the most 

common techniques, which are described here, is given in 

Table 2. For sake of clarity, they are classified with respect 

to:

• Exploration component,
• Exploitation component,
• Combination of exploration and exploitation in refine-

ment criterion,
• Optimization scheme.

(25)x
m+1
Var,Sacks

= arg min
x
⋆∈� ∫

�

𝜎
2

�Y
(x⋆)w(x⋆)dx

⋆ ,

Table 2  Classification of adaptive techniques depending on their 
exploration and exploitation components (methods with only one 
component written in black, with fixed balance in blue, with non-
fixed balance in red, with complex combination of exploitation and 
exploration in cyan, using continuous optimization schemes in bold-
face, using discrete optimization methods in italics). (Color figure 
online)
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In details, exploration is either based on variance or on dis-

tance and, if existing, exploitation is based on cross-valida-

tion, query by committee or geometry. The computational 

costs of adaptive schemes is mainly due to the optimization 

scheme, which is either continuous or discrete. Explora-

tion and exploitation may be combined in a fixed manner, a 

conventional non-fixed manner (i.e. decreasing strategy), or 

using a complex scheme.

6.1  Adaptive Methods Without Exploitation 
Contribution

In the literature many approaches based only on space-

filling properties have been proposed. Reviews dedicated 

to space-filling techniques have been reported in Kleijnen 

[51], Pronzato and Müller [88] or Joseph [48]. However, 

as this idea is not the core of adaptive schemes, only one 

method is considered here to be analyzed as a reference 

pure-exploration strategy in order to make comparisons 

with adaptive schemes involving an exploitation character.

6.1.1  Monte Carlo‑Intersite‑proj‑th (MIPT)

The Monte Carlo-intersite-proj-th (MIPT) method is based 

only on exploration [19]. Using MIPT, among a large set 

of possible candidates provided by Monte-Carlo sampling, 

the supplementary sampling point is chosen as the candi-

date point maximizing the distance to the sample points 

already included in the design of experiments. The dis-

tance metric considered for the optimization problem is 

the minimum distance between each candidate and the 

existing samples, i.e.

6.2  Adaptive Methods using Cross‑Validation Based 
Exploitation

Several techniques have been developed based on continuous 

or discontinuous cross-validation error.

6.2.1  Space‑Filling Cross‑Validation Tradeoff (SFCVT)

The Space-Filling Cross-Validation Tradeoff (SFCVT) 

approach combines a leave-one-out cross-validation for 

exploration and a distance criterion to ensure an explora-

tion character [4]. The authors define a normalized LOOCV 

error as

(26)x
m+1
MIPT

= arg max
x
⋆∈C

�
min

x
i∈X‖x

⋆
− x

i‖
�
.

In order to interpolate the error over the parametric space, 

a kriging metamodel for the error ênorm

LOOCV
 is built based on 

the dataset D = {(xi, e
norm

LOOCV
(xi))} . Then the supplementary 

sampling point is defined as the solution of the following 

constrained optimization problem

where the space-filling metric is estimated as detailed in 

Box 2. Thus, the distance condition ensures that the new 

point is created further than a certain euclidean distance to 

pre-existing points.

6.2.2  Accumulative Error (ACE)

In the ACcumulative Error (ACE) adaptive technique, 

a combination of cross-validation for exploitation and 

distance criterion for exploration is proposed [65]. First 

the authors use the common LOOCV error defined by 

Eq. (17). In order to make this error continuously avail-

able over the parametric space, a degree-of-influence func-

tion denoted DOI is introduced such that the error for any 

unobserved value x ∈ � is estimated from the knowledge 

of the error e
LOOCV

(xi) at the observation points, as

Here the degree of influence of any observation xi on x is 

assumed to have an exponential decrease as

where the factor � is used to adjust the decreasing rate of 

influence. A discussion on the influence of � on the adaptive 

sampling process and some advise on its value are given in 

Li et al. [65].

A new sample point is thus defined as solution of the 

constrained optimization

where the space-filling metric is estimated by the algorithm 

given in Box 1.

Cross-Validation Voronoi (CVVor)

The Cross-Validation Voronoi (CVVor) scheme is also 

based on the combination of a cross-validation exploitation 

(27)e
norm

LOOCV
(xi) = |

M(xi) − M̂−i
(xi)

M(xi)
|.

(28)
x

m+1
SFCVT

= arg max
x
⋆∈�

�e
norm

LOOCV
(x⋆),

subject to min
x

i∈X
‖x

⋆ − x
i‖ ≥ S

Aute
.

(29)e
DOI

LOOCV
(x) =

m
∑

i=1

eLOOCV(x
i)DOI(x, x

i).

(30)DOI(x, x
i) = exp

�
−�‖x − x

i‖
�

,

(31)

x
m+1
ACE

= arg max
x
⋆∈�

m�

i=1

eLOOCV(x
i)
�
exp(−𝛼‖x

i − x
⋆‖)

�
,

subject to min
x

i∈X
‖x

⋆ − x
i‖ ≥ SJiang,
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with a distance-based exploration [116]. Its algorithm is 

given in Box 3. From existing sample points, a Voronoi 

tessellation is employed to divide the whole input space 

into a set of Voronoi cells [3]. The cell with the largest 

cross-validation error is associated with the sensitive sam-

ple denoted xsens , and as the most sensitive cell, it is sam-

pled with random points leading to a set C
sens

 of candidate 

points. Among them, the point that is the furthest away 

from xsens is picked as the new sample, i.e.

Thus, CVVor reaches a compromise between proficient local 

exploitation and prevention from clustering of observation 

points.

6.2.3  Smart Sampling Algorithm (SSA)

Using the Smart Sampling Algorithm (SSA) proposed by 

Garud et al. [33], a new sample point is defined as the solu-

tion of a set of optimization problems based on a combina-

tion of cross-validation exploitation and distance-based 

exploration. As proposed by Zhang et al. [117], explora-

tion is performed by maximizing the crowding distance 

metric CDM given by Eq. (21). Indeed, a point x corre-

sponding with a large value of CDM(x) would be localized 

relatively far away from the m samples already incorpo-

rated in the dataset. In order to incorporate an explora-

tion component the authors compute CDM(xj), ∀j ∈ [1, m] . 

(32)x
m+1
CVVor

= arg max
x
⋆∈ C

sens

‖x
⋆
− x

sens‖.

Afterwards the resulting values are sorted in descending 

order using ordering index p = 1,…m.

By starting with p = 1 a new candidate sample is con-

templated as the point maximizing both the crowding met-

ric and the departure function as follows

Then, it is checked that the solution satisfies a non-clustering 

parameter � as a minimum distance to all existing samples. 

If the condition is fulfilled, the candidate point is accepted 

as new sample x
m+1

SSA
= x

cand

SSA
 , otherwise set p = p + 1 and 

the subsequent optimization problem defined by Eq. (33) 

is solved again until a candidate fulfills the non-clustering 

requirement. The SSA adaptive approach is summarized 

through its algorithm in Box 4.

6.2.4  Weighted Accumulative Error (WAE)

A sequential sampling strategy called Weighted Accumulative 

Error (WAE) has been proposed by Jiang et al. [42]. It employs 

cross-validation for exploitation and a distance criterion for 

(33)x
cand
SSA

= arg max
x
⋆∈�

(

(

eLOOCV(x
⋆)
)2

CDM(xp)

)

.

Box 3  Adaptive CVVor algorithm

Box 4  Adaptive SSA algorithm
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exploration. The method is based on a weighted version of the 

LOOCV root-mean-squared error defined as

with the weights given by

A new sample point is then found by solving the constrained 

optimization problem

where the space-filling metric is defined as described in 

Box 1. The technique is summarized in Box 5.

6.2.5  Adaptive Maximum Entropy (AME) Algorithm

The Adaptive Maximum Entropy (AME) scheme combines 

variance-based exploration and cross-validation exploitation 

[69]. Sample clustering is prevented by introducing some 

adjustment factors defined as

(34)ê
WAE

(x) =

√

√

√

√

m
∑

i=1

w
i

WAE
(x)

(

M̂(x) − M̂−i
(x)

)2

(35)wi
WAE

(x) =
exp(−‖x − x

i‖)
∑m

j=1
exp(−‖x − x

j‖)
.

(36)
x

m+1
WAE

= arg max
x
⋆∈��eWAE(x

⋆)

subject to min
x

i∈X
‖x

⋆ − x
i‖ ≥ SJiang,

(37)�
i
(x) =

(

eLOOCV(x)

e
max

)�

, where, for any unsampled point x ∈ � , e
LOOCV

(x) is approxi-

mated as equal to the LOOCV error at the closest sample 

point and e
max

 is the maximum LOOCV error, i.e.

The adjustment parameter � is estimated through a pattern 

� = {�1 = �(Θ = 1),… , �
N
} of length N designed by the 

authors in order to establish a tradeoff between explora-

tion and exploitation. The pattern index is denoted Θ and 

is updated to Θ = Θ + 1 each time a sample is added to the 

design of experiments. In case Θ becomes equal to N + 1 , 

the pattern is scanned again by setting Θ = 1.

Given the auxiliary notation

with an adjusted correlation function Radj(∙) the adjusted 

correlation matrix

can be defined. The new sample point maximizes the deter-

minant of the correlation matrix through the following opti-

mization problem

(38)e
max

= max
x

i∈X
e

LOOCV
(xi).

(39)r
⋆

0
= Radj(x

⋆ − x
i
,�, 𝜂i), i = 1,… , m,

(40)R
⋆
=

[

Radj r
⋆

0

r
⋆

0
1

]

Box 5  Adaptive WAE algorithm

Box 6  Adaptive AME algorithm
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The overall adaptive AME algorithm is summarized in 

Box 6.

6.2.6  Maximizing Expected Prediction Error (MEPE)

The Maximizing Expected Prediction Error (MEPE) adap-

tive scheme, which was proposed by Liu et al. [71], utilizes 

cross-validation exploitation and variance-based explora-

tion. Within a switch strategy, a balance factor � is employed 

to adaptively balance exploitative and exploratory contribu-

tions. The authors use the fast approximation of the LOOCV 

error at each sample point as proposed by Sundararajan and 

Keerthi [100] and established in Eq. (18). The main interest 

is that it exempts building the leave-one-out auxiliary meta-

models, as usually required, see Fig. 7. In order to make this 

value continuously available, it is assumed that the LOOCV 

error denoted ê
approx

LOOCV
 at an unobserved point x ∈ � is equal 

to the error at the closest sample. The continuous refinement 

criterion denoted by RC
EPE

 is then defined as

where the balance factor � is given by estimating the evolu-

tion of the lack of knowledge at sample point xm during the 

previous step as

(41)x
m+1
AME

= arg max
x⋆∈�

(

det
(

�𝜎
2
R
⋆
(x⋆)

))

.

(42)RCEPE(x) = � ê
approx2

LOOCV
(x) + (1 − �) �̂2

Ŷ
,

(43)� =

⎧
⎪⎨⎪⎩

0.5, if m0 = 0

0.99 min

�
0.5

e
2

LOOCV
(xm)

e
approx2

LOOCV
(xm)

, 1

�
else,

with m
0
 the number of samples added to the initial design by 

the adaptive scheme. The new sample point is consequently 

found by maximizing this quantity over the parametric space

The algorithm is presented in Box 7.

6.3  Adaptive Methods using Geometry‑Based 
Exploitation

Among geometry-based exploitation components, distance-

based and gradient-based methods are distinguished.

6.3.1  Distance‑Based Methods

Several methods exploit the distance between outputs within 

the parametric domain.

6.3.1.1 Expected Improvement (EI) The Expected 

Improvement (EI) uses geometry-based exploration and 

exploitation obtained by using the variance [47]. The goal 

of this adaptive scheme is mainly to predict accurately the 

global minimum value of the output over the whole para-

metric space. The authors define a refinement criterion 

denoted RC
EI

 which can be simplified to [7]

Here ymin represents the smallest observation output, and � 

and Φ denote the probability density function and the cumu-

lative distribution function of a standard Gaussian random 

variable, respectively. Thus, EI uses a fixed balance between 

exploration and exploitation contributions. A new sample 

point can be obtained through a maximization, as follows

Here, the scheme is introduced for accurate estimation of the 

minimum of the response surface, it can be highlighted that 

a variant for evaluating the global maximum of the output 

could be straightforwardly designed.

6.3.1.2 Expected Improvement for  Global Fit (EIGF) As 

indicated by its name, Expected Improvement for Global 

Fit (EIGF) proposed by Lam [59] is a variant of EI, with 

the aim of providing an accurate estimation over the 

whole parametric domain. The method combines exploi-

(44)x
m+1
MEPE

= arg max
x
⋆∈�

(

RCEPE(x
⋆)
)

.

(45)

RC
EI
(x) =

(

ymin − M̂(x)

)

Φ

(

ymin − M̂(x)

�
Ŷ
(x)

)

+ �
Ŷ
(x)�

(

ymin − M̂(x)

�
Ŷ
(x)

)

.

(46)x
m+1
EI

= arg max
x
⋆∈�

(

RCEI(x
⋆)
)

.

Box 7  Adaptive MEPE algorithm
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tation based on a geometric feature and a variance-based 

exploration component. The refinement criterion denoted 

RC
EIGF

 is defined as

where y(x⋆) is the observed value at the closest neighbor to 

the point of interest x . The first term gets larger when the dif-

ference between the surrogate estimation M̂(x) and the exact 

response at the nearest sample point increases. The second 

term, which offers the exploration sampling feature, is large 

in subdomains where the surrogate model has the largest 

intrinsic uncertainty. A new sample point is then obtained 

by solving

6.3.2  Gradient‑Based Methods

Exploiting the variation of outputs over the parametric 

domain can also be done through gradient estimation.

(47)RCEIGF(x) =

(

�M(x) − y(x⋆)

)2

+ 𝜎
2

�Y
(x),

(48)x
m+1
EIGF

= arg max
x
⋆∈�

(

RCEIGF(x
⋆)
)

.

6.3.2.1 Local Linear Approximation (LOLA) Local Linear 

Approximation (LOLA)-Voronoi is a discontinuous adap-

tive sampling technique proposed by Crombecq et al. [18] 

based on an exploitation feature with gradient estimation 

and exploration given by the volume of Voronoi tessellation 

cells.

In details, for the exploration part of the adaptive scheme, 

Voronoi tessellation is employed to evaluate the density of 

points included in the current design of experiments through 

cell volume information. To avoid cumbersome procedures 

[3], an approximation of the volume of each cell V is done 

using a Monte Carlo approach [18].

Exploitation is based on the linear approximation of the 

gradient of each cell utilizing neighborhood information 

obtained by the tessellation. This measure is denoted E.

From a set of candidate points C , n randomly distrib-

uted on the parametric domain, the LOLA sample point 

is found by solving a maximization problem involving a 

score combining the two previously introduced measures 

as

Lipschitz Sampling Lovison and Rigoni [75] propose an 

adaptive sampling technique, which is hereafter referred 

to as Lipschitz Sampling (LIP), using a distance criterion 

for exploration and an approximated local nonlinear char-

acter as an exploitation component. A set C of candidate 

points evenly spread in the parametric domain is built and a 

distance metric is defined and evaluated for each candidate 

point as the closest distance to a sample point, i.e.

Variation information is provided through the Lipschitz con-

stant as

with Xadj the set of points adjacent to xi and belonging to 

X  . Adjacent points are found by utilizing Delaunay trian-

gulation on existing samples (see e.g. [114]). From the val-

ues evaluated at sample points, the Lipschitz constant for 

the Voronoi cell associated with sample xi is given by the 

maximum value of the Lipschitz constant between xi and 

all adjacent samples of the tessellation. A new sample point 

is defined as the optimal candidate point that maximizes a 

refinement criterion defined as follows

(49)x
m+1
LOLA

= arg max
x
⋆∈ C

(

E(x⋆) + V(x⋆)
)

.

(50)D
min

(x) = min
x

i∈X

‖x − x
i‖, ∀x ∈ C.

(51)
L(xi) = sup

x
j ∈ Xadj

j ≠ i

�yi − yj�

‖x
i − x

j‖
, ∀x

i ∈ X

(52)x
m+1
Lipschitz

= arg max
x
⋆∈ C

(

L(x⋆)Dmin(x
⋆)
)

.

Box 8  Adaptive sampling with Lipschitz criterion algorithm
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with L(x⋆) the Lipschitz constant value of the Voronoi cell 

associated to candidate point x⋆ . The technique is summa-

rized in Box 8.

6.3.2.2 Taylor‑Expansion Based Adaptive Design 

(TEAD) The Taylor-Expansion based Adaptive Design 

(TEAD) technique was proposed by Mo et  al. [82] and 

combines gradient-based exploitation and distance-based 

exploration based on the metric previously defined by 

Eq.  (50). A Taylor-expansion based scheme is used to 

obtain a local nonlinearity information. The authors 

approximate second- and higher-order Taylor expansion 

values around point x as

Here M̂ is the current metamodel and t denotes the first-

order Taylor expansion of M̂ , which includes an estimation 

of the local gradient based on central difference approxima-

tion. A new sample point is then found by solving a discon-

tinuous optimization problem which consists of a weighted 

summation of exploration and exploitation components, as 

follows

(53)R(x) = |M̂(x) − t(x)|.

It can be noticed that the exploitation term is weighted using 

a weight function w
TEAD

(x) given by

where L
max

 is the maximum distance between two sample 

points in the input space. The technique is summarized in 

Box 9.

(54)

x
m+1
TEAD

= arg max
x
⋆∈ C

(

D
min

(x⋆)

max
x∈ CD

min
(x)

+wTEAD(x
⋆)

R(x⋆)

max
x∈ CR(x)

)

.

(55)wTEAD(x) = 1 −
D

min
(x)

L
max

,

Box 9  TEAD algorithm

Box 10  Adaptive MASA algorithm
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6.4  Adaptive Methods using 
Query‑by‑Committee‑Based Exploitation

Only one method based on query-by-committee is studied 

here because the essential process is similar in many tech-

niques of this kind.

6.4.1  Mixed Adaptive Sampling Algorithm (MASA)

Mixed Adaptive Sampling Algorithm (MASA) has been pro-

posed by Eason and Cremaschi [28] for neural networks. It 

combines a local exploitation contribution based on QBC 

fluctuation and a global exploration based on distance. The 

new sample point is found among a set of candidates points C 

randomly distributed over the parametric space by evaluating

where D
min

(x⋆) is the minimum distance between x⋆ and 

the set of samples as previously defined by Eq. (50). To 

normalize the score, the maximum over all the minimum 

distances Dmax

min
 corresponding with the different candidate 

points in C is evaluated. The term FQBC denotes the fluctua-

tion among committee member estimations as previously 

defined in Eq. (20), which is here normalized with respect 

to the maximum committee fluctuation evaluated over all 

candidate points. The MASA algorithm is summarized in 

Box 10.

7  Investigation of Main Adaptive Sampling 
Techniques in Ordinary Kriging

In order to expose a sound comparison between the presented 

sampling techniques various numerical tests of different com-

plexity are investigated.

7.1  Numerical Perspectives on the Test Campaign

To provide fair parallel between examples and sampling 

approaches, similar numerical conditions are ensured for all 

the studies.

7.1.1  Initial Data Set Design

Translational Propagation Latin Hypercube Design (TPLHD) 

is employed for defining initial data sets. This variant of LHD 

proposed by Viana et al. [112] gives a LHD obtained by the 

translational propagation algorithm with a one-point seed. 

The idea is to build almost optimal Latin hypercube designs 

approximating the solution of the optimization problem with-

out performing formal optimization. Thus, less computational 

(56)

x
m+1
MASA

= arg max
x
⋆∈ C

(

D
min

(x⋆)

D
max

min

+
FQBC(x

⋆)

max
x∈XFQBC(x)

)

,

effort is required and quick estimations are possible. It has 

been shown in Liao et al. [67] that the process provides a good 

approximation of the optimal solution in low dimensions, up 

to six-dimensional parametric space from their experience. On 

the contrary, for higher-dimensional cases, TPLHD estima-

tion of the sample positions diverges from the optimal design. 

As here mainly relatively low-dimensional cases are consid-

ered, employing TPLHD appears satisfying for building initial 

designs from which adaptive schemes are compared.

If not specified differently, the size of initial dataset is 

defined for all benchmark tests by the simple rule of thumb 

m = 10 n as exposed in Sect. 3.2.1.

7.1.2  Autocorrelation Structure of the Random Process

In this study the influence of autocorrelation functions is out 

of the scope. Therefore, to yield comparable results for all 

problems and methods, a Matérn 3/2 autocorrelation func-

tion [77] has been chosen, defined as

in which xi

k
 and x

j

k
 are the components in dimension k of 

the vectors xi and xj respectively, and �
k
 is the correlation 

parameter corresponding with dimension k ∈ [1;n] of the 

parametric domain.

Utilizing the maximum likelihood estimate, these cor-

relation parameters can be evaluated by solving an auxiliary 

optimization problem [27], as follows

where �
Matacuteern3∕2

 is the reduced likelihood given, for ordi-

nary kriging, by

with det denoting the determinant operator. The optimiza-

tion problem given by Eq. (58) is solved numerically by 

employing a hybridized particle swarm optimization similar 

to the strategy suggested by Toal et al. [101]. However in the 

software provided online, other alternatives possibly faster 

are also available, including an interior point-based method 

[12], simulated annealing [39], genetic algorithm-based 

optimization [25] as well as a multistart algorithm combined 

with the interior point technique see e.g. Ugray et al. [104].

(57)

RMatérn3∕2(x
i − x

j,�) =

n�

k=1

�
1 +

√
3�xi

k
− x

j

k
�

𝜃k

�

exp

�
−

√
3�xi

k
− x

j

k
�

𝜃k

�
,

(58)
�� = arg min

�
⋆∈ℝn

𝜓Matérn 3∕2(�
⋆) ,

(59)𝜓Matacuteern 3∕2(�) = �𝜎2(�)[det RMatérn 3∕2(�)]
1∕m,
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7.1.3  Method‑Specific Parameters

When method-specific parameters are involved, the values 

recommended in the original paper by the authors proposing 

the method have been employed, such as e.g. an adjustment 

parameter set of � = {0.0, 0.5, 1.0, 100} for AME. Similarly, 

the LOLA technique is sped up based on authors suggestions 

by restricting the radius defining the local neighborhood. 

Specifically an initial radius of r = 0.25 n has been chosen, 

and then it has been adaptively designed to ensure the num-

ber of points including in the neighborhood equals 10 n . For 

AME, as Matérn 3/2 autocorrelation function is herein uti-

lized for kriging metamodel the entries of the covariance 

matrix are also adjusted using the same type of autocor-

relation function. For the MASA approach, five committee 

members derived from different autocorrelation functions 

are considered, consisting of Matérn 3/2, Matérn 5/2, cubic 

spline, exponential and squared exponential autocorrelation 

functions. For SSA, a distance threshold of � = 0.01 has been 

arbitrarily chosen since the authors do not specify any ref-

erence value. All Monte-Carlo procedures are performed 

based on 5000 n candidate points.

7.1.4  Reference Solution and Performance Analysis

Relative errors are evaluated with respect to reference solu-

tions based on a set of 5000 ⋅ n observation points randomly 

placed in the parametric space using TPLHD.

One challenge to provide quantified comparison of adap-

tive techniques is the usage of optimization strategies based 

on populations of candidates to estimate hyperparameters 

and also for many methods to obtain the optimal new sample 

point. Using these Monte Carlo methods, numerical results 

vary for each realization of the process. In order to circum-

vent performance fluctuation and expose significant results, 

error values are given in terms of average performances over 

ten realizations for each adaptive sampling scheme.

As initial sampling positions are uniquely chosen with 

TPLHD, same initial design is considered for all the reali-

zations. Plots illustrating set of experiments provided by 

adaptive processes correspond to one realization randomly 

chosen among the ten performed realizations. The later a 

sample point has been added to the dataset the brighter the 

color of the dot representing it is. Furthermore sample posi-

tion highlighted in bright red indicate that the point is closer 

than 0.0005 in the normalized parametric space to an exist-

ing sample point, which could possibly result in numerical 

issues due to clustering behavior.

Alternative algorithms are investigated on a large variety 

of test cases.

7.2  Analysis of the Optimization Problems

All investigated adaptive sampling techniques rely on solv-

ing optimization problems in order to design a new sample 

point. The complexity of the cost function drives the choice 

of the solver and directly affects time and computational 

effort required to find the optimum. Thus, features of alter-

native objective functions are exposed here to lead to sound 

use of adaptive sampling methods.

Consider the one-dimensional problem setting as depicted 

in Fig. 10. The blue dotted line indicates the target function. 

The black dots symbolize the positions of the initial samples. 

It can be seen they are not evenly distributed due to the small 

size of initial data set. Furthermore, peculiar dataset includ-

ing two leftmost samples lying quite close to each other has 

been chosen to analyze how cost functions deal with this fea-

ture. The metamodel built from this initial dataset is repre-

sented by the red line. From that set, alternative optimisation 

problems to be solved for designing the 11-th observation 

point are studied through the shape of their corresponding 

cost function over the whole parametric domain. To sim-

plify the visualization, cost functions have been transformed 

and normalized into a score denoted RC which lies between 

0 and − 1, thus all corresponding optimization problems 

would be a minimization to look for the sample position 

corresponding to the global minimum, which equals − 1 if 

not submitted to any constraint.

7.2.1  Optimization Based on Continuous Cost Functions

Objective functions corresponding with adaptive schemes 

based on continuous optimizations can be observed on 

Fig.  11. AME, EI, EIGF, MEPE and SSA are schemes 

for which exploration and exploitation are combined in a 

unique refinement criterion, whereas ACE, SFCVT and 

WAE include the exploration character through a constraint 

in the optimization scheme. Constraints are represented by Fig. 10  Initial condition for building a metamodel for M̂
1D
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red-shaded areas. A dashed red line gives the optimal point 

for each case. It can be highlighted that its position depends 

significantly on the chosen scheme.

The optimization problem corresponding with ACE 

is illustrated in Fig. 11a. The unconstrained cost func-

tion shows spikes near to existing samples, whereas it is 

is roughly flat and close to zero further away from sam-

ple points. Indeed, the unconstrained global minimum is at 

the position of an existing sample point. However, a pre-

dominant part of the parametric space is rejected through 

the distance constraint of the scheme. Thus, this adaptive 

technique, at least for this test case, will simply lead to a 

randomly picked point as it can be seen through the opti-

mum point found. Therefore the features of the ACE opti-

mization problem requires a robust solver for optimization 

under constraint and a pertinent definition of the distance 

constraint.

The next investigated technique is AME as shown in 

Fig. 11b and c for different values of � . The authors spec-

ify that a � close to zero leads to a technique with a high 

exploration character whereas as a higher � value features a 

scheme with significant exploitation component. The objec-

tive function using � = 0 , as depicted in Fig. 11b, exhibits 

its maxima at the already sampled positions, which prevents 

clustering around the samples. However, the cost function 

being essentially flat further away from the samples, the new 

point is inherently picked at random by the optimization 

scheme. When the � value is increased to 50 the cost func-

tion has a drastically different shape as seen in Fig. 11c. The 

optimum is now found close to the already clustered points, 

(a) (c)(b)

(d) (f)(e)

(g) (i)(h)

Fig. 11  Normalized cost functions for adaptive methods based on continuous optimization schemes for the M̂
AdGr,1D

 surrogate model
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which does not appear attractive. Besides the objective 

function is basically flat for the main part of the paramet-

ric domain, worryingly also around existing samples which 

makes point clustering possible.

The EI cost function, given in Fig. 11d, vanishes at sam-

ple positions. However the function drops off rather fast 

quickly. Therefore the optimum is found very close to an 

existing sample point. Furthermore the optimum is not 

unique.

In Fig. 11e the optimization problem of EIGF is depicted. 

The cost function equals zero for existing sample points, but 

does not drop off as quickly as e.g. EI. It also shows several 

discontinuities with significant jumps. However, for the con-

sidered test case, the optimum is unique and the cost func-

tion is not very complex in comparison to other methods.

The shape of the objective function for MEPE is shown 

in Fig. 11f. The function is not zero at all sample points. 

Additionally discontinuous behavior can be observed, and 

the optimum is not unique. The smoothness of the function 

around sample point makes it easier to avoid clustering since 

the gradients are reliable.

Among continuous adaptive techniques, the uncon-

strained SFCVT cost function, as illustrated in Fig. 11g, 

is clearly the smoothest. Based on the same distance con-

straint as ACE, a large part of the parametric domain is alike 

rejected, and the choice of a reliable solver for constrained 

optimization is crucial. It can be noticed that the optimum 

position is similar to MEPE.

The shape of the objective function of SSA is presented 

in Fig. 11h. The function is maximal at the sample points. In 

contrast to the other techniques there is a clear global opti-

mum in the neighborhood of the two initially close sample 

points. However, the user-chosen distance constraint reject 

a limited part of the parametric domain, so this point would 

be overshadowed by a larger distance constraint. The authors 

did not specify any value. Therefore this method capabilities 

are clearly dependent on the user understanding of the influ-

ence of this distance criterion.

The last continuous optimization scheme called WAE is 

shown in Fig. 11i. Here again, the solution space is con-

strained. The unconstrained cost function has its maximum 

near the two close sample points, whereas its global mini-

mum is located exactly at the position of an existing sample 

point. Therefore the distance criterion needs to be accurately 

chosen to avoid clustering, and a solver able to reliably con-

strain the solution space is required.

7.2.2  Optimization Based on Discontinuous Cost Functions

Similarly cost functions for discontinuous optimization 

schemes based on ranking a large set of candidate points are 

given in Fig. 12. The objective function of CVVor is shown 

(a) (c)(b)

(d) (f)(e)

Fig. 12  Normalized cost functions for adaptive methods based on discontinuous optimization schemes for the M̂
AdGr,1D

 surrogate model
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in Fig. 12a. It can be noticed that the value of the objective 

function is constant around each sample point, which results 

from the definition of the LOOCV error of this technique.

The cost function of the Lipschitz technique is depicted 

in Fig. 12b. It vanishes at all sample point positions, which 

avoids clustering behavior, and exhibits a clear and unique 

global minimum facilitating the optimization process.

The LOLA cost function as shown in Fig. 12c is also con-

stant within the Voronoi cell surrounding each sample point, 

because it is based on an estimation of the largest gradient 

in each cell. In light of the true function plotted in Fig. 10, it 

can be observed that the minimum of the objective function 

does not fit with a parametric domain with true large gradi-

ents. Interestingly, on the opposite the cell associated with 

the largest value of the cost function around x = 0 is actually 

in the area with the largest gradients of the true function.

MIPT, as seen in Fig. 12d, is a technique purely based on 

distance exploration. Naturally the cost function is decreas-

ing linearly with the distance to the nearest sample. Starting 

from a set of several samples multiple global minima can be 

observed. The next sample point is randomly picked among 

them based on Monte-Carlo sampling.

The objective function of MASA can be seen in Fig. 12e. 

Since the technique is based on the highest local difference 

between a committee of kriging-based metamodels, the 

global minimum is located in the unsampled region around 

x = 0 of the parametric space. Furthermore the cost function 

is zero at the position of existing samples and interestingly 

the function value is decreasing nearly linearly with the dis-

tance to the nearest sample.

The last discontinuous-based technique is TEAD which 

is depicted in Fig. 12f. The objective function seems very 

similar to the MASA function. Analyzing the cost function 

with regard to the true solution given in Fig. 10, this tech-

nique, which is gradient-based, appears to estimate properly 

the value of the highest gradient in the area near to 0.

Even from this simple one-dimensional study it can be 

noticed the large discrepancy in the prediction for the best 

next sample point. MASA, TEAD, Lipschitz and AME with 

� = 0.0 orient towards a new sample point at x = 0 , SSA 

and AME using � = 50 around the position of the clustered 

initial samples at x ≈ 0.08 whereas MEPE, SFVCT, CVVor 

and LOLA provides the new point at x ≈ 0.45.

7.3  One‑Dimensional Problems

First, four one-dimensional applications are considered.

7.3.1  Single Hump Function M
SH,1D

In order to comprehend the exploitation component of the 

investigated techniques, the first problem considered is the 

single-Hump function defined on x ∈ [−1.5, 5] as

This function, which is plotted onto a normalized space as 

blue dotted lined in Fig. 13a, is characterized by predomi-

nantly linear behavior and a hump containing the global and 

a local minima at the upper bound of the parametric space.

7.3.1.1 Initial Dataset The positions of the six initial sam-

ple points are highlighted by black dots in Fig. 13a. Among 

them, five lie in the linear regime.

As pointed out before, the target function behaves linearly 

on the main part of the parametric domain. The initial meta-

model is able to capture well that behavior and to detect the 

hump as well. So, the best-case adaptive sampling technique 

should exploit that knowledge and sample in and around the 

hump to describe it accurately.

7.3.1.2 Analysis of  Different Sets with  25 Samples For 

every sampling technique, the positions of the samples 

when reaching a size of 25 samples in the dataset and the 

corresponding metamodel are displayed on a normalized 

space in Fig. 13.

Two main failures of the investigated techniques can be 

highlighted. First, some methods feature an exploitation 

not sufficiently significant to describe properly the local-

ized non-linearity, such as ACE (Fig. 13b), EIGF (Fig. 13f), 

LOLA (Fig. 13h), MIPT (Fig. 13j), SFVCT (Fig. 13l) and 

TEAD (Fig. 13n). The problem of ACE seems to be the defi-

nition of the distance constraint because the global minimum 

is not well captured even though the samples predominantly 

lie around the hump. MIPT being only based on explora-

tion, most of samples are located within the linear domain. 

Similarly, a large number of sample points can be found in 

the linear regime of the target function for EIGF, TEAD, 

SFVCT, thus the exploration component is too dominant. 

This similar behavior is particularly interesting as the three 

of them rely on different concepts for exploitation.

The second issue is that the exploitation component of 

some techniques focus on insignificant characteristics, at 

least with respect to the problem of interest. This problem 

appears for EI (Fig. 13e) and WAE (Fig. 13o) whose sam-

ples concentrate in an area near to the lower bound. For EI 

this can be explained by the fact that the technique aims to 

sample around the point associated with the lowest output, 

(60)

M
SH,1D

(x) = 3x −
0.05

(x − 4.75)2 + 0.04

−
0.07

(x − 4.45)2 + 0.005
− 6,
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(a) (c)(b)

(d) (f)(e)

(g) (i)(h)

(j) (l)

(o)

(k)

(m) (n)

Fig. 13  Sample positions after reaching 25 samples in the dataset and corresponding metamodels for the M
SH,1D

 problem (red point indicates a 
sample very close to a neighbor point)
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which initially is the value at x = 0 . However, as this point 

is not the true global minimum, EI is unable to capture the 

proper behavior of the function through this exploitation 

behavior. Nevertheless this behavior highly depends on the 

initial dataset. For instance, if the initial dataset included a 

point located in the hump trough, its output would have been 

smaller than all other sample outputs leading to a majority 

of EI sample points generated in the hump.

AME (Fig. 13c), MEPE (Fig. 13i) and SSA (Fig. 13m) 

capture the behavior of the target function rather well by bal-

ancing exploration and exploitation, even if they still include 

a lot of ineffective points in the linear part of the domain.

CVVor (Fig.  13d), Lipschitz (Fig.  13g) and MASA 

(Fig. 13k) sample the space ideally. A majority of points 

can be found at the hump whereas the linear domain is sel-

dom sampled.

7.3.1.3 Analysis of the Error Evolution While Sampling Var-

iant performances can also be analyzed through the error 

evolution during adaptive process as given by Fig. 14. The 

mean normalized RMSE values of the various techniques, 

as defined in Table 1, are shown in Fig. 14a and b. CVVor, 

Lipschitz, MASA and MEPE yield the best performances 

for this global criterion. At the opposite, the worst meta-

models are clearly obtained from EI, LOLA and WAE. The 

relative improvement in terms of NRMSE from the initial 

metamodel based on 6 samples and metamodels based on 9 

and 19 samples is displayed in Fig. 16a. It can be observed 

that while adding 4 samples the majority of the techniques 

present similar improvement performances, except for 

LOLA, MIPT and WAE which even worsen performances 

while increasing the data. When reaching a dataset of 19 

samples, a discrepancy of performances can be observed 

among alternative methods, where Lipschitz is clearly the 

best performing technique followed by MASA and MEPE.

In order to investigate the reliability of the adaptive 

schemes in terms of ease of optimization and reproducibility 

of results, the evolution of the variance of the NRMSE over 

the 10 realizations is depicted along the sampling process 

in Fig. 14c and d. It can be seen that CVVor, LOLA and 

(a) (b)

(c) (d)

Fig. 14  Evolution of a, b the mean and c, d the variance of the NRMSE estimate over the sampling process for the M̂
SH,1D

 metamodel using 
various adaptive schemes. (Color figure online)
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AME show the biggest variations with CVVor peaking at 

around 0.2%. However, for almost all methods the optimi-

zation scheme is able to yield negligible variations. This 

quantity will not be represented for further one-dimensional 

cases, as no difference appears between one-dimensional 

performed tests.

The evolution of the mean normalized error at the global 

minimum over the sampling process is shown in Fig. 15a 

and b. Unsurprisingly more significant difference among 

alternative approaches can be observed for this local error 

measure. CVVor, Lipschitz and MASA remain high per-

formers, whereas MEPE is not as good for local objective. 

The relative improvement in terms of NMAE
min

 from the 

initial set to datasets including 10 and 20 samples is depicted 

in Fig. 16b. The variation is here even more apparent. Only 

4 methods are able to improve performances by adding the 

first 3 samples. Considering 19 samples, four methods still 

performs worst than initial dataset whereas MASA, CVVor 

and Lipschitz show the best performance.

7.3.2  Two‑Hump Function MHump,1D

The second one-dimensional benchmark test is the two-

hump function defined by

over x ∈ [−0.5, 5] . This function is utilized to study the 

exploration component of the adaptive sampling techniques. 

(61)

MHump,1D(x) = 5x +
0.05

(x − 0.45)2 + 0.002

−
0.5

(x − 3.5)2 + 0.03
− 6

(a) (b)

Fig. 15  a, b Evolution of the mean NMAE
min

 estimate over the sampling process for the M̂
SH,1D

 metamodel using various adaptive schemes. 
(Color figure online)

(a) NRMSE (b) NMAEmin

Fig. 16  Performance evolution from the initial 6 samples-based metamodel to the 9 samples-based and 19 samples-based metamodels M̂
SH,1D

 . 
(Color figure online)
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(a) (c)(b)

(d) (f)(e)

(g) (i)(h)

(j) (l)

(o)

(k)

(m) (n)

Fig. 17  Sample positions after reaching 40 samples in the dataset and corresponding metamodels for the MHump,1D problem (red point indicates 
a sample very close to a neighbor point)
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The target function is plotted as blue dotted line over the 

normalized space in Fig. 17a. Similar to the previous bench-

mark this function is predominantly linear over the paramet-

ric domain, but here two non-linear peaks emerge.

7.3.2.1 Initial Dataset The initial dataset, which is repre-

sented in Fig. 17a, comprises solely three samples chosen 

specifically to lie exclusively in one of the peaks. There-

fore, the initial metamodel (see also Fig. 17a) only repre-

sents roughly the local behavior of this hump. Thus, an ideal 

adaptive technique should have here enough exploration to 

represent the linear part of the parametric domain well and 

also capture the second peak, which has not been sampled at 

all by the initial dataset.

7.3.2.2 Analysis of Different Sets with 40 Samples Alter-

native positions of samples when a dataset of 40 observa-

tions is reached, are displayed in Fig. 17b–o, as well as the 

corresponding surrogate models. Three sampling prob-

lems can arise. Some techniques, such as ACE (Fig. 17b) 

and WAE (Fig. 17o), do not possess enough exploration 

character to generate any sample outside the initially 

identified hump. A second problematic case is when the 

exploration component is pronounced enough to sample 

other parts of the parametric domain but not sufficient to 

find the second hump. The sampling behavior of LOLA 

(Fig. 17h) can be categorized in this group. The last issue 

is when the overall domain is sampled enough to reveal 

the second hump but then the exploitation behavior of the 

technique is not proficient enough to describe accurately 

both humps. This category consists of AME (Fig.  17c), 

MIPT (Fig.  17j) and SFVCT (Fig.  17l). Similarly, EI 

(Fig. 17e), and SSA (Fig. 17m) are not able to describe the 

whole behavior because they focus on other characteris-

tics. Finally, only CVVor (Fig. 17d), Lipschitz (Fig. 17g), 

MEPE (Fig. 17i), MASA (Fig. 17k) an TEAD (Fig. 17n) 

show a good sampling behavior for this test case.

7.3.2.3 Analysis of the Error Evolution While Sampling The 

mean NRMSE error over the 10 performed realizations for 

the adaptive techniques over the whole process is shown 

in Fig. 18a and b. Initially, the best performing method is 

AME, which however basically stagnates for the next 20 

sample points. As seen from the discussion about the sam-

ple point positions, the outliers are the bad performances of 

ACE as well WAE. It can be seen that Lipschitz, MASA, 

MEPE and EIGF yield the best adaptive process. The best 

technique is Lipschitz which reaches basically a perfect fit 

after around 30 samples.

7.3.3  Gramacy and Lee Function M
Gr,1D

The next one-dimensional problem is the Gramacy & Lee 

function defined for x ∈ [−1.5, 1.0] as

From the initial dataset and corresponding metamodel repre-

sented in Fig. 19a it can be observed that the response func-

tion feature large gradient variation, and peculiarly the larg-

est gradients do not lie in the area of the global minimum.

Alternative sample points obtained when the set of exper-

iments reaches 30 samples are exposed in Fig. 19.

With regard to global metamodeling, it can be seen that 

the exploration component of some adaptive technique is 

too pronounced for that benchmark test, which has a com-

plex behavior. This is particularly the case for EI (Fig. 19e) 

and WAE (Fig. 19o), and to a lesser extent also for ACE 

(Fig. 19b), AME (Fig. 19c), CVVor (Fig. 19d), Lipschitz 

(62)M
Gr,1D

(x) =
60 sin(6�x)

2 cos(x)
+ (x − 1)4.

(a) (b)

Fig. 18  a, b Evolution of the mean NRMSE estimate over the sampling process for the M̂Hump,1D using various adaptive schemes. (Color figure 
online)
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(a) (c)(b)

(d) (f)(e)

(g) (i)(h)

(j) (l)

(o)

(k)

(m) (n)

Fig. 19  Sample positions after reaching 30 samples in the dataset and corresponding metamodels for the M
Gr,1D

 problem (red point indicates a 
sample very close to a neighbor point)



2719State-of-the-Art and Comparative Review of Adaptive Sampling Methods for Kriging  

1 3

(Fig. 19g) and LOLA (Fig. 19h). However schemes based 

only on exploration such as MIPT (Fig. 19j) is not sufficient 

to capture the numerous fluctuations of the true function. 

Therefore for functions with an irregular pattern, multi-

ple local maxima and minima and large local gradients, 

adaptive techniques with high degree of exploration and a 

small but significant exploitation component should be pre-

ferred, such as EIGF (Fig. 19f), MEPE (Fig. 19i), MASA 

(Fig. 19k), SFCVT (Fig. 19l), SSA (Fig. 19m) and TEAD 

(Fig. 19n). This can also be observed from the global error 

measure NRMSE which is plotted over the sampling pro-

cess in Fig. 20 where also the relative improvement of this 

value is depicted. The local error at the global minimum is 

displayed in Fig. 21.

7.3.4  Adjusted Gramacy and Lee Function

An adjusted variant of the Gramacy & Lee function defined 

for x ∈ [−1.5, 6.0] as

with

is studied. This function as shown in Fig. 22a has more 

drastic fluctuations than the classical Gramacy & Lee func-

tion previously investigated and does not exhibit a regular 

pattern.

(63)M
AdGr,1D

(x) =

⎧
⎪
⎨
⎪
⎩

t1(x) if x ∈ ]0.5, 2.5]

t2(x) if x > 2.5

t3(x) else

t
1
(x) =

20 sin(6�x)

3x

+ 0.8(x − 1)4 − 100

t
2
(x) =

100 sin(5�x)

x

+ 0.5(x − 1)3 − 50

t
3
(x) =

50 sin(6�x)

cos(x)
+ (x − 1)4 − 30

(a) (c)(b)

Fig. 20  Global error measure for the M̂
Gram,1D

 metamodel, a, b Evo-
lution of the mean NRMSE estimate over the adaptive process, c rela-

tive improvement of the NRMSE estimates from the 10 samples-based 
initial metamodel to the 20 samples- and 50 samples-based metamod-
els. (Color figure online)

(a)

(b)

Fig. 21  Evolution of the error at reference global minimum over the 
sampling process for the M̂

Gram,1D
 metamodel. (Color figure online)
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(a) (c)(b)

(d) (f)(e)

(g) (i)(h)

(j) (l)

(o)

(k)

(m) (n)

Fig. 22  Sample positions after reaching 50 samples in the dataset and corresponding metamodels for the M
AdGr,1D

 problem (red point indicates a 
sample very close to a neighbor point)
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From the knowledge extracted from the initial metamodel 

illustrated in Fig. 22a based on 10 samples, alternative meta-

models based on 50 samples are shown in Fig. 22. Alike 

previous examples, a few methods exhibit an exploitation 

component, which is not pertinent to fit the response surface 

globally, e.g. EI (Fig. 22e) creates a majority of the points 

around the lowest sample output and Lipschitz (Fig. 22g) 

samples majorly nearby the largest gradient. Besides sam-

pling techniques with higher exploration contribution, such 

as EIGF (Fig. 22f), SSA (Fig. 22m), MEPE (Fig. 22i) or 

TEAD (Fig. 22n), perform overall better with regard to 

global metamodeling.

This can also be seen when studying the mean NRMSE 

value as given in Fig. 23. In contrast to previous examples, 

pure exploration behavior such as given by MIPT is insuf-

ficient to represent the target accurately. This can also be 

noticed through the evolution of the local error at the global 

minimum over the adaptive process, i.e. Fig. 24. Promising 

performances of the Lipschitz scheme and MEPE can be 

highlighted. Lipschitz performs well as the global minimum 

is close to the domain with largest gradient. It appears that 

the adaptive balance between exploration and exploitation 

offered by MEPE is crucial for accurate metamodel for such 

complex irregular functions.

7.3.5  Supplementary One‑Dimensional Benchmark Tests

Three supplementary one-dimensional test cases (Problems 

P1, P2 and P3) are exposed in “Appendix 1.1”. These three 

functions are rather simple. It can be noticed that most adap-

tive techniques have good behavior for these simple func-

tions with low gradient and low variation of the gradient, 

even strategies purely based on exploration such as MIPT 

can perform well, even better than some advanced strategies. 

It appears thus that the choice of the adaptive scheme is not 

of very high importance for such cases.

A distinction can thus be done with cases of more com-

plex functions such as previous examples where balance 

(a) (c)(b)

Fig. 23  Global error measure for the M̂
AdGr,1D

 metamodel, a, b Evolution of the mean NRMSE estimate, c relative improvement of the NRMSE 
estimates from the 10 samples-based initial metamodel to the 20 samples- and 50 samples-based metamodels. (Color figure online)

(a)

(b)

Fig. 24  Evolution of the error at reference global minimum over the 
sampling process for the M̂

AdGr,1D
 metamodel. (Color figure online)
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between exploitation and exploration is required to reduce 

number of required samples, and a large discrepancy of per-

formance occurs among the adaptive schemes.

7.4  Two‑Dimensional Tests

To highlight further the differences in performance of the 

adaptive techniques an in-depth analysis of two two-dimen-

sional benchmark tests as well as an engineering application 

are performed.

7.4.1  Michalewicz Function M
Mi,2D

The first two-dimensional problem is the Michalewicz func-

tion given by

where the parametric space is (x1, x2) ∈ [0.0,�]2 . The target 

surface of the function over the normalized space is dis-

placed in Fig. 25a. The function shows an irregular response 

behavior. The initial sample positions are depicted as black 

dots in Fig. 25b over the normalized absolute error of the 

initial metamodel. It can be seen that the initial surrogate 

model yields a large error in the upper right-hand corner of 

the parametric space as well as in the area around the steep 

valley of the response surface at y ≈ 0.9 . Proficient adaptive 

sampling techniques should sample in these areas. The posi-

tion of the global minimum of the function is symbolized 

by the grey dot.

(64)M
Mi,2D

(x) = −

3
∑

i=1

sin(x
i
) sin

20

(

ix
2

i

�

)

,

Fig. 25  M
Mi,2D

 function: a response surface, (b) initial sample positions (black dots) plotted over the normalized absolute error of the initial 
metamodel (the grey dot indicates the global minimum). (Color figure online)

Fig. 26  Global error measure for the M̂
Mi,2D

 metamodel: a, b evolution of the mean NRMSE estimate over the sampling process using various 
adaptive schemes. (Color figure online)



2723State-of-the-Art and Comparative Review of Adaptive Sampling Methods for Kriging  

1 3

Fig. 27  Sample point positions after reaching 45 samples in the dataset plotted over the normalized absolute error of the initial M̂
Mi,2D

 meta-
model. (Color figure online)
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From an initial dataset comprising 20 points, one realiza-

tion of dataset with 45 samples for each adaptive technique 

is plotted over the initial error map in Fig. 27. As in previous 

one-dimensional tests it can be seen that WAE (Fig. 27n) 

fails to sample the parametric space pertinently. Besides, 

pure distance-based exploration approach as MIPT (Fig. 27i) 

is not efficient for the given problem setting. Overall the 

characteristics of the adaptive techniques observed for one-

dimensional cases also appear for that problem. Thus, EI 

(Fig. 27d) predominantly clusters around the position of 

the minimum known value, which is undesirable for global 

metamodeling. SSA (Fig. 27l) generates a majority of sam-

ples close to the boundaries of the parametric space, which 

is observed in all investigated benchmark tests. It can be 

highlighted that all techniques design samples in regions 

where the error of the initial metamodel was already quite 

low. This is particularly noticeable for the Lipschitz tech-

nique (Fig. 27f) as well as LOLA (Fig. 27g).

The bad performances of Lipschitz and LOLA are also 

visible in Fig. 26, which depicts the evolution of the global 

NRMSE value over the sampling process. Except them most of 

the adaptive sampling techniques fall into similar error range. 

Since the initial error is predominantly high in areas with a low 

output, it can be noticed that EI yields comparably proficient 

results. Along with EI, MEPE (Fig. 27h), EIGF (Fig. 27e) and 

SSA (Fig. 27l) show the best approximation behavior with 

samples located in the areas with highest initial error.

7.4.2  Drop‑Wave Function M
DW ,2D

Next, a more complicated two-dimensional problem, the drop-

wave function, is investigated, which is given by

on the parametric domain (x1, x2) ∈ [−0.6, 0.9]2 . The 

response surface of the function over a normalized space 

is illustrated in Fig. 28a. It can be seen that the response 

surface is highly complex with high gradients and irregular 

shape.

7.4.2.1 Initial Dataset The initial sample positions as well 

as the normalized maximum absolute error of the initial 

metamodel are depicted in Fig.  28b. The position of the 

global minimum is indicated by a grey dot. It can be noticed 

that the initial error is larger and its map more complex than 

for previous case M
Mi,2D

 due to the complexity of the true 

function. To obtain an accurate metamodel, adaptive sam-

pling process should sample in each subdomain associated 

with large error. This task appears cumbersome as seven 

disconnected subdomains are to be targeted.

7.4.2.2 Analysis of Different Sets with 75 Samples Realiza-

tions of sample positions when reaching 75 samples in the 

dataset are plotted over the error map of the respective meta-

model in Fig. 29. For sake of comparison, the color scale 

is kept fixed for all schemes as the color scale of the initial 

error map (Fig. 28b).

WAE (Fig. 29n) and to a lesser degree SSA (Fig. 29l) 

show clustering behavior, due to the weak exploration com-

ponent of these methods. As noted in previous examples, 

SSA samples are mainly located near to the boundaries of 

the parametric space, therefore SSA is able to properly esti-

mate the function in the problematic area close to (0, 0). 

However the final error (Fig. 29l) in the central region of the 

parametric domain is still comparably high. ACE (Fig. 29a) 

(65)M
DW,2D

(x) = −

1 + cos(12

√

x
2

1
+ x

2

2
)

0.5(x2

1
+ x

2

2
) + 2

.

Fig. 28  M
DW,2D

 function: a response surface, b initial sample posi-
tions (black dots) plotted over the normalized absolute error of the 
initial metamodel (the grey dot indicates the global minimum). (Color 
figure online)
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Fig. 29  Sample point positions after reaching 75 samples in the dataset plotted over the absolute error of the final M̂
DW,2D

 metamodel 
(colorscale as given in Fig. 28b for the initial error surface, red point indicates a sample very close to a neighbor point). (Color figure online)
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and CVVor (Fig. 29c) fail to sample in the domain near to 

(0, 0).

It appears that for a target function with such a complex-

ity none of the exploitation components of the investigated 

techniques are beneficial to the final metamodel. Indeed, the 

pure exploration-based approach of MIPT (Fig. 29i) shows 

the most promising result.

7.4.2.3 Analysis of  the  Error Evolution While Sam‑

pling MIPT appears also as best-performer through the 

Fig. 30  Global error for the M
DW,2d

 problem: evolution of a, b the mean of the NRMSE value and c, d the variance of the NRMSE value over the 
adaptive process for various adaptive schemes for the M̂

DW,2d
 metamodel. (Color figure online)

Fig. 31  Two-dimensional engi-
neering application

(a) (b)
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evolution of the global NRMSE error while sampling, as 

exposed in Fig.  30a and b. However after 100 samples 

MEPE has a similar error as MIPT because of a fast error 

decrease after around 75 samples. In comparison to previ-

ous tests, more significant difference between method per-

formances is observable. With more than 80 samples the 

NRMSE value of WAE is noisy which indicates a clustering 

effect. As all optimizations are done using identical solv-

ers and solver-settings, this specific behavior suggests that 

WAE leads to a peculiarly complex optimization problem.

In order to study the complexity of the optimization pro-

cess, the variances of the NRMSE value over the 10 realiza-

tions are compared Fig. 30c and d. The spread of NRMSE 

value substantiates the presented results because low vari-

ances indicate that the optimised solution is accurately 

found, whereas high variances highlight that the optimiza-

tion solver is not adequate for a given problem. It can be seen 

that the variance of all investigated methods is significantly 

smaller (factor 1/100) in order of magnitude comparing with 

mean error values. Noisy RMSE value of WAE corresponds 

to an increase in variance which hints towards inaccurate 

solution of optimization problem for both hyperparameter 

identification and sample design.

7.4.3  Supplementary Two‑Dimensional Benchmark 

Functions

Adaptive sampling behavior for eight supplementary two-

dimensional benchmark tests with a large variety of features 

are available in “Appendix 1.2”. Surprisingly MIPT does not 

yield significantly worse results than other schemes on aver-

age. Techniques with high degree of exploration provide best 

results with regard to global metamodeling. This includes 

AME, EIGF, MASA, MEPE, MIPT, SFCVT and TEAD. 

Other methods show weaker performances in at least one of 

the studied cases.

7.4.4  Engineering Application

Finally, performances of the adaptive techniques are 

tested for an engineering application. Consider the two-

dimensional contact problem as sketched in Fig. 31a. 

An elastically deformable block with Young modulus 

E = 10 MPa and Poisson ratio � = 0.3 is pushed over 

an infinitely extended rigid and flat surface. On the 

top of the body a displacement boundary u = 0.3 mm 

is applied and parameterized by an application angle � . 

The behavior of the contact between the block and the 

rigid surface is modelled using Coulomb model with 

friction coefficient denoted � . The mechanical prob-

lem is solved with the finite element method, where the 

non-linear contact problem is approximated through 

the penalty method. The parametric space is defined by 

the friction coefficient � ∈ [0.35, 0.5] and the displace-

ment angle � ∈ [0.7, 2.4] . The quantity of interest is the 

maximum von Mises stress value among all considered 

Gauss points during the whole duration of the simula-

tion. The resulting response surface over the normalized 

parameter space is shown in Fig. 31b. It can be seen that 

the surface is highly nonlinear but symmetric, so with 

only one line of turning points. This response surface 

might appear as rather complex in comparison to many 

quasi-static engineering applications, for which common 

quantities of interest oftentimes yield linear or slightly 

nonlinear response surface. For these cases, as shown 

before, exploration-based technique are generally profi-

cient enough for accurate adaptive metamodeling.

Relative improvement of the NRMSE value between 

initial metamodel based on 10 samples and metamodels 

based on 15 and 35 samples is shown in Fig. 32. It can be 

seen that, even for this highly non-linear response surface, 

pure exploration strategy as proposed by MIPT is satis-

factory. Nevertheless, techniques, which combine a high 

degree of exploration and some exploitation component, 

perform slightly better, such as AME, MASA, MEPE, SSA 

and TEAD.

7.5  Higher‑Dimensional Tests

The question arises to test the ability of adaptive schemes 

to tackle higher-dimensional problems in order to deter-

mine if the established performance characteristics can 

straightforwardly be extended for higher dimensions. 

Indeed, due to the curse of dimensionality, training a Fig. 32  Two-dimensional engineering application. Relative improve-
ment of the NRMSE value between the 5 samples-based initial meta-
model and the 15 samples- and 35 samples-based metamodels. (Color 
figure online)
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kriging surrogate model in high dimensions can become 

more complex or even unmanageable [110]. Different strat-

egies have been proposed to deal with metamodels for very 

high-dimensional parameter space see e.g. Bouhlel et al. 

[9] or Lataniotis et al. [60]. However this specific problem 

is out of the scope of this review, so here the dimension of 

benchmark tests is restricted to a maximum of six dimen-

sions. Six benchmark functions have been tested. Among 

them, three are three-dimensional, two are four-dimen-

sional and one is six-dimensional. Results are detailed in 

“Appendix 1.3”.

Overall the adaptive techniques behave rather similarly 

in higher dimensions as in low-dimensional cases. Main, 

difference to be highlights is the computational. Indeed, 

computational effort required for example by methods 

based on the LOOCV error such as CVVor or SFCVT is 

considerably higher, almost prohibitive, when dimensions 

increase.

8  A Guide to Adaptive Sampling for Kriging 
Metamodeling

To sum-up this exhaustive analysis, a guide is offered in 

Table 3 to offer an efficient orientation for the choice of 

adaptive techniques such that goal-oriented and informa-

tion-based decisions can be made pertinently. Three main 

families of criteria are suggested to analyze the adaptive 

sampling performance, namely the goal of the study, the 

known characteristics of the function of interest and the 

properties of the design of experiments. Finally methods 

are also compared by some miscellaneous criteria. Naturally 

the + and − symbols indicate positive and negative results 

in a subcategory. A doubled sign ( ++ or −− ) symbolizes 

especially promising or unfavorable behavior.

8.1  Regarding the Goal of the Study

Two major goals of study are contemplated, global meta-

modeling and optimization.

Table 3  Performances of alternative methods (DOE: design of experiments, ⋆ depends on the number of committee members). (Color figure 
online)
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For global metamodeling the studies have shown that 

adaptive sampling techniques with higher exploration com-

ponent yield more proficient metamodels, so MASA, MEPE 

and MIPT are recommended. WAE and EI lead to unpredict-

able and unfavorable performances for this application.

For optimization, MEPE and EI outperform other strate-

gies. However EI is strongly dependent on the size of the 

initial sample. Performances are good for a large enough 

dataset, based on evenly spread samples. MIPT is not rec-

ommended for optimization, because it does not include 

any exploitation feature. WAE is also not dependable in this 

regard and a bad choice overall. The rest of the methods 

perform more or less similarly with regards to optimization.

8.2  Regarding a Priori Known Characteristics 
of the Response Surface

Detailed characteristics are a priori unknown before build-

ing a metamodel. However, general behavior is oftentimes 

known based on previously obtained expert knowledge and 

experience. Particularly, in most cases, it can be established 

or properly guessed if the target function exhibits regular 

and irregular pattern behavior. With the exception of EI and 

WAE, it must be acknowledged that most adaptive sampling 

methods perform well for regular pattern without crucial 

difference in terms of performances. In case of irregular pat-

terns, adaptive methods with emphasis on exploration show 

superior approximation prowess. Therefore, MEPE and the 

pure exploration-based technique MIPT are more recom-

mended. On the contrary, ACE should also be avoided due 

to clustering risk.

8.3  Regarding Properties of the Initial Design 
of Experiments

Crucial properties of the design of experiments are the size 

of the initial dataset, the parametric dimension of the prob-

lem and the risk of running into clustering issues.

Small initial design of experiments are a challenge for 

adaptive schemes. Higher emphasise on exploration provides 

better robustness regarding small initial design of experi-

ments. So, MASA, MEPE, MIPT and SFCVT are favored 

in that scenario. On the other hand EI and ACE fail to cope 

well with small initial designs of experiments.

Adaptive techniques with low complexity are favorable to 

tackle high-dimensional parametric space, a crucial limiting 

factor being computational time and resources to design the 

new sample. Indeed, high-dimensional parametric dimensions 

usually require a large dataset-size and therefore more adap-

tive sampling steps. Hence, schemes based on leave-one-out 

cross-validation errors for exploitation require building m new 

metamodels in order to define the m + 1-st sample. So, using 

LOOCV, the needed computational resources dramatically 

increase with parametric dimension. Hence, methods such as 

ACE, CVVor, SSA and WAE cannot be recommended in that 

case. Similarly query-by-committee methods such as MASA 

should be avoided as they are also based upon building vari-

ous metamodels in order to compare the differences. Finally, 

LOLA also shows some problems in high dimension because 

the gradient estimation approach used gets increasingly com-

plex and resource-heavy in high dimensions. Similar perfor-

mance results as provided by these more complex approaches 

can be obtained in high dimension by less demanding meth-

ods such as MEPE, EIGF or even MIPT.

Risk of clustering is a major point in methods without 

strong exploratory feature such as EI and WAE. Further-

more, some adaptive techniques such as ACE, AME and 

SSA search for the next sample point by optimizing a highly 

complex cost function, which leads to clustering issues when 

it is not solved accurately.

8.4  Regarding Supplementary and Miscellaneous 
Criteria

It may be of high interest to employ methods which are ver-

satile for different surrogate modelling approaches, such as 

kriging, neural network, support vector machines. Versatility 

leads to reduction of developing time if the target is included 

in a more general framework and goal. Among the investi-

gated adaptive schemes, AME, EI, EIGF and MEPE, which 

are specifically based on kriging characteristics can not 

straightforwardly be included in other frameworks. All other 

schemes can be extended to other surrogate frameworks.

In low dimensions, computational costs are not of signifi-

cant interests, as they are mainly negligible. However, the 

computational costs become notable for high-dimensional 

problems that require a larger number of adaptive samples. 

Therefore this criteria correlates perfectly with the previ-

ously discussed utilisation of the schemes for high dimen-

sions, where cross-validation-based techniques such as WAE 

and ACE can be seen as unfavorable. The computational 

complexity of MASA highly depends on the number of cho-

sen committee members. Due to the large number of neigh-

borhood cases for higher dimensions LOLA is also judged 

as a resource-heavy scheme. EI and EIGF appear especially 

positive in this regard, because they just require the solution 

of a simple optimization problem built from the sum of a 

geometric feature and the local kriging variance.

The next evaluated criterion is the coding complexity of 

the respective techniques, i.e. how much development time 

is needed from the user. This feature is highly depending on 

the user’s previous experiences and skills. However, to pic-

ture a general scheme for a naive user, SFCVT is considered 

as the hardest from a programming perspective, because it 

approximates the LOOCV error by generating further krig-

ing models and uses a constrained optimization problem. 
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Besides, methods based on the tessellation of the input space 

into Voronoi cells such as CVVor and LOLA require also 

higher effort. On the contrary, EI, EIGF and MIPT are sim-

ply to implement when a kriging routine is already available.

Lastly the complexities of the optimization problems 

given by the cost functions that need to be minimized in order 

to obtain the new sample points are compared. This feature is 

oftentimes not mentioned or commented on in the literature. 

However, it appears as an important feature since a simple 

cost function helps to obtain reproducible and less volatile 

results and furthermore makes the utilization of simple and 

fast optimization tools possible. In this context, ACE, AME 

and WAE which are associated with highly complex cost 

functions usually require the usage of very precise optimi-

zation tools in order to avoid clustering problems. CVVor, 

EI, MEPE appear as problematic techniques because they 

do not have a maximum cost function value around existing 

sample points or sharp drop offs around these points. Finally, 

SFCVT, SSA, WAE require additional computational costs 

because the investigated solution space is constrained.

8.5  Overview

It can be highlighted that no perfect one-size-fits-all scheme 

can be extracted from the series of benchmark test and a 

compromise appears as the best practice. Over all the exam-

ined criteria, MEPE yields the most complete performance 

regarding all investigated test cases. This method is espe-

cially advised when no prior knowledge about function char-

acteristics is available. In the authors opinion it is also the 

best candidate for a reference scheme to compare and ana-

lyze future innovative schemes with. In addition, EIGF and 

the purely exploration-based technique MIPT yield reliable 

results and require less development and user-knowledge.

9  Open Issues

From this comparative review it can be concluded that with 

regard to global metamodeling pure exploration-based 

approaches such as MIPT yield on average comparable 

results to other dedicated adaptive techniques. This is not 

only the case for specific target function characteristics such 

as sharp humbs or valley-shaped functions for which MIPT 

sampling converges slower.

The adaptive techniques proposed in the literature regu-

larly try to obtain a one-fits-all approach for adaptive sam-

pling, i.e. that a specific adaptive technique is supposed to 

work for all dimensions and function complexities. In this 

review it has been observed that some adaptive techniques 

perform better given some specific initial setting (a larger 

initial design of experiments) or for a specific response sur-

face shape, e.g. a valley. For instance, large exploitation com-

ponent is beneficial or detrimental depending on function 

characteristics. Therefore user knowledge about the unknown 

function is crucial when choosing the right adaptive tool. 

Hence, based on the shape and characteristic of the target 

function different adaptive solutions need to be proposed.

The results of this paper show that MEPE which employs 

a switching strategy between exploration and exploitation 

proves to be a promising approach that is able to cope with 

different function complexities and requirements. Efforts to 

investigate adaptive strategies that balance local exploita-

tion and global exploration accordingly need to be increased. 

Additionally while proposing new adaptive techniques 

researchers need to look for the complexity of the presented 

optimization problem because this complexity is a limiting 

factor with regards to computational costs and resources 

required to utilize the respective technique and furthermore 

enhances reproducibility. Finally for easier accountability and 

in order to facilitate and speed up the development of new and 

better adaptive techniques we encourage researchers to make a 

running example of their algorithms publicly available.

10  Conclusion

This work offered a comprehensive overview of the state-of-

the-art techniques for adaptive sampling for the kriging method. 

This specific metamodeling technique has proven to yield pro-

ficient regression results and is specifically useful for a low 

number of data samples. It has seen use in a wide range of engi-

neering applications. For high-cost simulations or otherwise 

hard to obtain sampling procedures adaptive sampling tech-

niques have been established and widely applied. In this work 

we tried to categorize existing methods found in the literature 

based on their main characteristics, specifically distinguishing 

between techniques used for exploration and exploitation of 

the parametric space. The applied exploration components can 

be divided into distance-based and variance-based techniques. 

The techniques to achieve exploitation behavior can be subdi-

vided into cross-validation-based, geometry-based and query-

by-committee-based methods. For each of the given subclasses 

multiple references have been collected.

In a next step 14 different techniques adaptive sampling 

techniques have been thoroughly reviewed in order to pro-

pose a clear overview of the current state-of-the-art. Due 

to a lack of thorough comparisons as well as distinctions 
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between the methods found in the literature a comparative 

review of these 14 methods has been conducted. Here the 

methods have been studied on 27 different benchmark tests 

of various dimensions and complexities in order to highlight 

the respective strengths and weaknesses. In order to provide 

transparency the MATLAB code which has been used to 

obtain the presented results has been made publicly avail-

able. It includes all analysed adaptive techniques as well as 

investigated benchmark tests.

It has been found that on average adaptive techniques with 

a large degree of exploration are preferable for cases where 

the characteristics of the target function are unknown. Fur-

thermore pure exploration-based techniques offer a cheap but 

acceptable option and seem to yield better performances than 

a majority of the investigated adaptive techniques. A user-

guide has been developed in order to assist the interested user 

in the choice of an adaptive technique for a given problem 

setting. It can be used to rule out adaptive techniques for 

given problem settings. Open questions with regard to adap-

tive sampling techniques for the kriging method have been 

discussed and existing problems have been highlighted.
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Appendix

Appendix 1.1: Simple One‑Dimensional Benchmark 
Tests

Because many function of interest might have a rather sim-

ple behavior. Three supplementary tests are explored in this 

appendix to analyze the adaptive sampling methods for this 

scenario. Details about the three tests are given in Table 4. It 

can be noticed that �� is a rather simple but common convex 

function exhibiting one global minimum. �� and �� also 

have one global minimum, �� is a smooth function of class 

C
∞ whereas �� is a C0 function.

Results corresponding to Problem �� are shown in 

Fig. 33. In Fig. 33a it can be seen that with four initial sam-

ples the metamodel is able to roughly capture the global 

behavior and furthermore the global minimum rather 

accurately. The improvements of the global error measure 

NRMSE from the initial dataset to sets including seven or ten 

samples are given in Fig. 33b. It can be noticed that most 

methods have the same performances for both seven and ten 

samples-based metamodels. EI does not perform well with 

respect to the global criterion, as this sampling method is 

not designed for a global purpose but for accurately estimat-

ing the global minimum. WAE is also not able to provide 

a good metamodel for that case. MIPT does not perform 

well with 7 samples, but offers good performances after ten 

samples. These results are confirmed by the evolution of 

the error value during the sampling process as shown in 

Fig. 33c and d.

Results for Problem �� are given in Fig. 34. Five initial 

samples as displayed in Fig. 34a allow to capture a part of 

the parametric domain well, but the global minimum is not 

fitted accurately. The evolution of the NRMSE error during 

the sampling process plotted in Fig. 34c and d shows that 

most methods perform very well, similarly to Problem �� . 

However, WAE is also not able to approximate the target 

function well, whereas EI performs rather better as the main 

challenge is sampling near to the global minimum. The same 

https://github.com/FuhgJan/StateOfTheArtAdaptiveSampling
https://github.com/FuhgJan/StateOfTheArtAdaptiveSampling
http://creativecommons.org/licenses/by/4.0/
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analysis can be extracted from the error improvement given 

in Fig. 34b.

Results corresponding to Problem �� are summed up in 

Fig. 35. From initial an metamodel, which is rather poorly 

fitted (see Fig. 35a), improvements of the performance 

are detailed in Fig. 35b. From 5 initial samples to 10 sam-

ples, several adaptive techniques such as AME, EI, MEPE 

or WAE fail to majorly improve the predictions. However 

with 20 samples in the dataset, most methods perform well, 

CVVor, Lipschitz and WAE being the only ones not able 

to reach 80% improvement. It can be observed through the 

error evolution given in Fig. 35c and d, that Lipschitz bad 

performances are corrected once 21 samples are reached 

and the method is even a high performer after 25 samples 

in the dataset. Looking at the other convergence behaviors 

indicate that after 25 samples most methods perform well, 

but the error evolution depends significantly on the consid-

ered approach.

Table 4  Simple one-dimensional functions (P1 to P3). (Color figure online)



2733State-of-the-Art and Comparative Review of Adaptive Sampling Methods for Kriging  

1 3

Appendix 1.2: Supplementary Two‑Dimensional 
Benchmark Tests

Some supplementary two-dimensional benchmark tests 

referred to as Problems P4 to P11 are defined in Table 5. 

The complexity of the function varies, in order to explore a 

large scope of behaviors. Most of benchmark functions are 

C
∞ , except for Problems P8 and P10 which are of class C0 . 

Some functions highlight rather smooth behavior with low 

values of gradient and small variations of the gradients such 

as Problems P4 to P8, whereas Problems P9 to P11 have 

more fluctuations with a large number of turning points.

Results corresponding to Problem P4 are given in Fig. 36. 

Most methods show similar performances, except for EI 

and WAE which clearly fail to provide global fitting. EIGF, 

CVVor, Lipschitz, MASA, SFCVT, MEPE, SSA, MIPT and 

TEAD have similar convergence behavior. They outperform 

ACE, LOLA and CVVor.

Problem P5, displayed in Fig. 37 leads to similar difficul-

ties for EI, WAE and in a restricted manner for ACE also. 

(a) (b)

(c) (d)

Fig. 33  Problem P1: a plot of M
Pe,1D

 , 4 initial samples and cor-
responding metamodel over normalized parameter space, b relative 
improvement of the NRMSE value from the 4 samples-based initial 

metamodel to the 6 samples- and 9 samples-based metamodels, c, d 
evolution of the NRMSE value over the sampling process. (Color fig-
ure online)
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Other methods perform well. It can be noticed that Lipschitz, 

EIGF and MIPT show error fluctuation when the number 

of samples are less than 10 due to the restricted size of the 

dataset. Afterwards the convergence behavior is smooth.

For Problem P6 (Fig. 38), not only ACE, EI and WAE 

fail, but also Lipschitz. Besides, CVVor and LOLA have a 

slow converge rate. AME, EIGF, MASA, SFCVT, MEPE, 

SSA, MIPT and TEAD yield similarly promising results.

Only ACE and WAE fail to provide good metamodels for 

Problem P7 illustrated in Fig. 39. WAE diverges with the 

worst prediction results after finding 60 samples from an 

initial dataset with 10 samples. Other methods are able to 

provide proficient target approximations after 60 samples. 

However, SFCVT and SSA convergence poorly.

ACE, CVVor and and WAE have bad performances 

for Problem P8 (Fig. 40), with the WAE error index even 

increasing with the number of samples. AME, EI, EIGF, 

MASA, SFCVT, MEPE, SSA, MIPT and TEAD outperform 

LOLA and Lipschitz.

The Problem P9 with more fluctuations of the response 

surface leads to similarly unfavorable performances for EI, 

WAE and in a restricted manner also for ACE as shown in 

Fig. 41. Except AME, which shows error fluctuations, and 

furthermore CVVor, the remaining methods show similar 

approximation behavior.

Most methods are able to reduce the error with an increas-

ing number of samples for Problem P10 (Fig. 42). Only 

WAE leads to a stagnating error. However, this problem 

(a) (b)

(c) (d)

Fig. 34  Problem P2: a plot of M
DC,1D

 , 5 initial samples and corre-
sponding metamodel over normalized parameter space, b relative 
improvement of the NRMSE value from the 5 samples-based initial 

metamodel to the 7 samples- and 20 samples-based metamodels, c, 
d Evolution of the NRMSE value over the sampling process. (Color 
figure online)
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induces fluctuations of the error for most methods. Only 

MEPE, MIPT and TEAD are able to converge smoothly, 

even if the convergence rate is low.

Finally, Problem P11 (Fig. 43) is a challenge for all 

methods. EI, SSA and WAE are not able to significantly 

decrease the error while enlarging the number of samples. 

Other methods lead to a regular but slow decrease of the 

error, except for AME, which decreases the error with many 

fluctuations.

Appendix 1.3: Higher‑Dimensional Benchmark Tests

Benchmark problems with dimension larger than two are 

summarized in Table 6. The goal of this study is to confirm 

that the results obtained for the lower-dimensional cases also 

hold for higher-dimensional problems.

Therefore the first considered function is the test case 

��� which has a simple, symmetric bowl-shaped form in all 

dimensions. This benchmark problem is studied for three, 

four and five dimensions to see if the performances of the 

respective adaptive techniques change with a dimensional 

increase. The global error results are depicted in Figs. 44, 45 

and 46 . It can be noticed that, similarly to the lower dimen-

sional cases, most of the adaptive techniques show equal 

prediction prowess based on this global error measure for 

simple problems in higher dimensions. Equivalently to the 

lower dimensional benchmarks the negative outliers are 

ACE, EI and WAE.

(a) (b)

(c) (d)

Fig. 35  Problem P3: a plot of MExploit,1D , 5 initial samples and cor-
responding metamodel over normalized parameter space, b relative 
improvements of the NRMSE value from the 5 samples-based initial 

metamodel to the 10 samples- and 20 samples-based metamodels, 
c, d evolution of the NRMSE value over the sampling process using 
various adaptive schemes. (Color figure online)
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Table 5  Supplementary two-dimensional benchmark tests (P4 to P11). (Color figure online)
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The same phenomenon can also be seen in the valley-

shaped four-dimensional problem ��� as seen in Fig. 47. 

For more complex shapes of the target function the differ-

ent adaptive techniques show a wider divergence from each 

other. This is similar to the lower-dimensional cases and 

can for example be seen by looking at the results for the 

global error measure obtained for problems ��� , ��� and 

��� . Results corresponding with Problem ��� are shown in 

Fig. 48. After around 90 samples five of the adaptive tech-

niques (AME, MIPT, SFVCT, SSA, TEAD) show a good 

performance rating with an improvement to the initial error 

of around 80%. However MEPE and surprisingly MASA 

outperform the rest of the methods.

The error convergences for the test case ��� are illus-

trated in Fig. 49. It can be observed that similar to the small-

dimensional cases most adaptive techniques perform in a 

Table 5  (continued)
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similar range. However for high-dimensional cases MIPT 

does not seem to perform as well as exploitation-based adap-

tive techniques. WAE shows by far the worst performance 

again. Therefore, the usage of this method in that scenario 

is not recommended and it is not employed for the six-

dimensional Problem ��� as given in Fig. 50. Here MEPE 

shows again the best performance behavior. Besides, it can 

also be observed by wide variance and jitter of the error 

Fig. 36  Global error measure for the M̂
Booth,2D

 metamodel (P4 Prob-
lem), a, b evolution of the mean NRMSE estimate over the adaptive 

process, c relative improvement of the NRMSE estimates from the 10 
samples-based initial metamodel to the 12 samples- and 20 samples-
based metamodels. (Color figure online)

Fig. 37  Global error measure for the M̂
Boha,2D

 metamodel (P5 Prob-
lem), a, b Evolution of the mean NRMSE estimate over the adaptive 

process, c relative improvement of the NRMSE estimates from the 10 
samples-based initial metamodel to the 12 samples- and 20 samples-
based metamodels. (Color figure online)

Fig. 38  Global error measure for the M̂
Br,2D

 metamodel (P6 Prob-
lem), a, b evolution of the mean NRMSE estimate over the adaptive 

process, c relative improvement of the NRMSE estimates from the 10 
samples-based initial metamodel to the 15 samples- and 25 samples-
based metamodels. (Color figure online)
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Fig. 39  Global error measure for the M̂
Fr,2D

 metamodel (P7 Prob-
lem), a, b evolution of the mean NRMSE estimate over the adaptive 

process, c relative improvement of the NRMSE estimates from the 10 
samples-based initial metamodel to the 20 samples- and 40 samples-
based metamodels. (Color figure online)

(a) (c)(b)

Fig. 40  Global error measure for the M̂
Ro,2D

 metamodel (P8 Prob-
lem), a, b evolution of the mean NRMSE estimate over the adaptive 

process, c relative improvement of the NRMSE estimates from the 10 
samples-based initial metamodel to the 30 samples- and 50 samples-
based metamodels. (Color figure online)

Fig. 41  Global error measure for the M̂
SH,2D

 metamodel (P9 Prob-
lem), a, b evolution of the mean NRMSE estimate over the adaptive 

process, c relative improvement of the NRMSE estimates from the 10 
samples-based initial metamodel to the 20 samples- and 30 samples-
based metamodels. (Color figure online)
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Fig. 42  Global error measure for the M̂
Ra,2D

 metamodel (P10 Prob-
lem), a, b evolution of the mean NRMSE estimate over the adaptive 

process, c relative improvement of the NRMSE estimates from the 10 
samples-based initial metamodel to the 40 samples- and 80 samples-
based metamodels. (Color figure online)

Fig. 43  Global error measure for the M̂
Gr,2D

 metamodel (P11 Prob-
lem), a, b evolution of the mean NRMSE estimate over the adaptive 

process, c relative improvement of the NRMSE estimates from the 10 
samples-based initial metamodel to the 40 samples- and 70 samples-
based metamodels. (Color figure online)

Table 6  Higher-dimensional benchmark tests. (Color figure online)
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Table 6  (continued)
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Table 6  (continued)

(a) (c)(b)

Fig. 44  Global error measure for the M̂Sp,3D metamodel (P12—d = 3 
Problem), a, b evolution of the mean NRMSE estimate over the adap-

tive process, c relative improvement of the NRMSE estimates from 
the 10 samples-based initial metamodel to the 20 samples- and 40 
samples-based metamodels. (Color figure online)

(a) (c)(b)

Fig. 45  Global error measure for the M̂Sp,4D metamodel (P12—d = 4 
Problem), a, b evolution of the mean NRMSE estimate over the adap-

tive process, c relative improvement of the NRMSE estimates from 
the 10 samples-based initial metamodel to the 30 samples- and 50 
samples-based metamodels. (Color figure online)
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(a) (c)(b)

Fig. 46  Global error measure for the M̂Sp,5D metamodel (P12 d = 5 
Problem), a, b evolution of the mean NRMSE estimate over the adap-

tive process, c relative improvement of the NRMSE estimates from 
the 10 samples-based initial metamodel to the 30 samples- and 50 
samples-based metamodels. (Color figure online)

(a) (c)(b)

Fig. 47  Global error measure for the M̂
DP,4D

 metamodel (P13 Prob-
lem), a, b evolution of the mean NRMSE estimate over the adaptive 

process, c relative improvement of the NRMSE estimates from the 10 
samples-based initial metamodel to the 30 samples- and 50 samples-
based metamodels. (Color figure online)

(a) (c)(b)

Fig. 48  Global error measure for the M̂
Ish,3D

 metamodel (P14 Prob-
lem), a, b evolution of the mean NRMSE estimate over the adaptive 

process, c relative improvement of the NRMSE estimates from the 10 
samples-based initial metamodel to the 50 samples- and 90 samples-
based metamodels
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convergence behavior of ACE, AME, EI, LOLA and SSA 

that the utilized optimization technique has issues with find-

ing the global optimum of hyperparameters and the adaptive 

sampling problem.
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