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Abstract 

The use of data science, artificial intelligence, and big data in the field of chemistry has grown 

in recent years to speed up the discovery of new materials, drugs, synthetic substances and automate 

compound identification. Machine learning and data science are commonly used in organic chemistry 

to predict biological and physical-chemical properties of molecules and are referred to as QSAR (for 

biological properties) and QSPR (for non-biological properties). In addition, data science and machine 

learning have advanced the optimization of molecular properties, synthetic pathways, and even 

design of novel compounds. These models can learn the underlying patterns of molecular structures 

and generate new compounds with desirable properties. Machine Learning use is increasing in 

chemistry and the field is rapidly adopting state-of-the-art ML algorithms and tools such as deep 

learning, tensors and transformers to solve and model chemical problems. The application of data 

science and machine learning, particularly deep learning, is playing a significant role in advancing 

research in organic chemistry 
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1. Introduction 

 

In recent years, the so-called data-driven approach, which involves data science, artificial 

intelligence, and big data has been changing the way science is done, since classic experiments, even 

in the hyphenated or high-throughput approach, can be time consuming, costly and dependant on the 

availability of equipment and reagents. Therefore, the use of tools and techniques related to Data 

Science, machine learning and rational designed have attracted attention of chemists, since it can save 

valuable resources and time. In this sense, approaches using data science have been grown in recent 

years with the aim of accelerating the discovery of new materials, drugs, synthetic substances and 

automated compound identification, among other tasks. 

The data-driven approach to chemical discovery has been gaining relevance and importance 

as public databases of chemical substances emerge, such as PubChem(1), ZINC(2), ChemBL(3) and 

PubChemQC(4). The availability of such databases allowed the development of several Machine 

Learning methodologies and models for the discovery of new advanced materials(5), the study and 

discovery of bioactive compounds(6,7) and the synthesis of new compounds(8,9).  Therefore, data 

science can accelerate scientific research, including research in organic chemistry, where it can be 

used to analyse and make predictions on chemical reactions, structures, physical-chemical, biological 

properties and big data analysis.  

Although information technology and data science are now widespread, chemists have been 

using computers and computer science to solve chemistry problems for decades. In the early 1960s, 

Chemical Abstract Service developed an algorithm to generate a unique machine descriptor for 

chemical structure(10). This algorithm has inspired other algorithms and standards such as 

SMILES(11), SYBYL(12) and InChI(13). Moreover, organic chemists have also developed expert systems 

for chemical structure elucidation(14) and organic synthesis planning(15). Therefore, chemists have 

been using computers and algorithms for a long time and it is natural their growing interest in machine 

learning and data science. Thus, this paper will briefly review the state of the art of data science and 

machine learning applications in chemistry and discuss a perspective on how it can change organic 

chemistry during the next years. 

 

 

 

2. A historical overview of Data Science and Machine Learning in Organic Chemistry 



Data Science (DS) and Machine Learning (ML) are being increasingly applied in the field of 

Organic Chemistry to streamline and automate various research and development tasks such as drug 

discovery, spectroscopy, synthesis and chemical data analysis based on chemical structure, as well as 

the structures of organic molecules based on their chemical properties.  

The prediction of biological and physical-chemical properties of molecules are the most 

common applications of machines learning and data science to chemistry, since they are useful to aid 

drug and material discoveries. When applied to the prediction of biological and physical-chemical 

properties, the use of ML and DS tools are often referred as QSAR when predicting biological 

properties and QSPR when predicting non-biological properties. QSAR and QSPR are so widespread in 

chemistry, that publications related to this theme often range from simple statistical regression and 

classification models(16) to sophisticated SVM(17), ANN(18) and ML ensembles(19). Although 

chemometric and statistical methods like Multiple Linear Regression (MLR), Principal Component 

Analysis (PCA) and Partial Least Squares (PLS), have been methods of choice for years for QSAR and 

QSPR studies, ML-based models are now preferred over these classical methods, as the diversity and 

availability of chemical data increases. pKa, for example, which has been modelled by MLR, PCA and 

PLS for years, now it has been successfully modelled by Mansouri et al.(20) using multiple ML 

approaches like an ensemble of SVM combined with k-nearest neighbours (kNN), extreme gradient 

boosting (XGB) and deep neural networks (DNN). The models were built using publicly available data, 

The source code and data are provided on GitHub and the performance of models compared 

favourably to the commercial products. Other examples of QSAR/QSPR modelling using ML include 

discovery of new materials(21,22), the prediction of ionic liquid properties(23), the modelling of 

drugs(24), quality control of fuels(25), the prediction and modelling of bioconcentration and toxicity 

of organic compounds(26). Hence, ML is a valuable tool for QSAR/QSPR, provides confident results 

and clearly outperforms chemometric methods.  

Another field in organic chemistry that benefits of DS and ML is the computer-assisted 

structure elucidation (CASE). Early CASE such as DENDRAL(14) were solely based on rules, without any 

AI implementation. Further systems such as CHEMICS(27) were built on top of sophisticated rules and 

larger databases, but still without any AI aid. On the middle 1990's systems such as SpecSov(28) and 

SISTEMAT(29), which combined database approach and ANN were released. For the next years, this 

approach has become the standard for CASE with some developments, such as the incorporation of 

genetic algorithms(30) and decision trees(31). Due to AI and ML algorithms, there was a great 

development of CASE in the last decade. One of the many challenges in CASE that has been benefited 

from ML is the prediction of chemical shifts in NMR, which is used to check the validity of a structural 

propose. Message Passing Neural Networks (MPNN) have been trained to predict and store 13C NMR 



shifts with high accuracy(32). Advanced ML algorithms such as SVM and XGBoost have been used to 

train ML models to predict the chemical classes of natural products(33). Models were trained based 

on the naproc13 database. This is one of most comprehensive natural products databases publicly 

available. The ML models predict the probability of a certain 13C NMR spectrum belong to a substance 

certain class with an average accuracy ranging from 0.85 to 0.98, depending on the class. Thus, ML 

models such as ANN, SVM and XGBoost tools can be valuable tools to aid the task of structure 

elucidation.  

The use of computer and information technology to drug and synthesis planning have also 

been of chemists' interest for decades and is now improved by ML and DS tools. Early synthesis 

planning systems such as SYNCHEM2(15) were based on chemical compound databases and decision 

rules, which limited the scope of system, since hundreds of reaction mechanisms do exist. Therefore, 

to overcome such limitations chemists have been applying DS and ML to retrosynthetic analysis, which 

is a task that requires experience and expertise. The availability of large reaction databases such as 

Reaxys has allowed the development of powerful ML models to predict reaction conditions such as 

temperature, catalysis, solvents and other conditions(34). As finding reaction conditions is not a 

straightforward task, DS and ML have become a valuable tool for organic chemists, since it can 

recommend reaction conditions when other methods such as quantum chemistry fails(9,35). Even 

computational methods of choice for predicting reaction and reaction conditions, such as quantum 

chemistry and ab initio methods, are now combined with machine learning methods to accelerate 

calculations.(9,36). Machine Learning and Data Science have been applied to design the synthesis of 

new Metallo-Organic Framework (MOF)(8), in this work, authors have used automated processes and 

natural language processing to extract the data available in databases and in the literature to create 

a dataset that was used to train ML models to predict the final conditions and synthesis protocols to 

new MOF structures. Another field where machine learning is helpful is the polymer chemistry. 

Bayesian models have successfully developed to aid the discovery of polymers with high thermal 

conductivity(37). The ML models were trained on a substantially limited amount of polymeric 

properties data and have predicted QSPR with respect to thermal conductivity and other polymeric 

properties.  Besides Bayesian models, genetic algorithms have been applied to train ML models to 

design new polymers(5). The genetic algorithm was trained to predict and design glass transition 

temperature as well as band gap of polymers.  The ML model was able to design 132 polymers with 

the desired properties and good accuracy. Thus, genetic algorithms can be generalised to predict and 

model other properties objectives, since corresponding reliable property prediction models can be 

provided. 

 



 

 

 

 

 

3. Outlook and Perspective of Data Science and Machine Learning in Organic Chemistry 

Data Science, machine learning and data-driven science have emerged as the 4th paradigm of 

science(38), Hence, DS and ML has gaining importance not only in chemistry, but also in correlated 

disciplines such as Materials Science(39), Biology(40,41) and Health Sciences(42–44). Despite the 

growing interest and research in ML tools for chemistry, data collection and storage is a critical step 

in ML model design and validation, since the size of dataset is of utmost importance in ML.  ML often 

requires large datasets for training and insufficient data may cause overfitting or underfitting 

problems, which leads to poor predictive models. Nevertheless, large chemical datasets are becoming 

widely available(1–3,45) and as Open-Science and FAIR(46) principles importance increases, the 

access to data for ML design will not be a threat.   

The main strength of ML is the ability to find patterns and relationships where even an 

experienced researcher may not find. However, lack of education on the subject and 

misunderstanding of the nature of ML may be a threat for the development of advanced and accurate 

ML models in chemistry. ML algorithms are often referred as black boxes. This is not true, since a good 

ML model requires detailed analysis and adjustment of hyperparameters, which requires knowledge 

of how the algorithms and their implementation work. Some chemists also consider ML algorithms as 

statistical learning or a kind of “advanced chemometrics”, ML is neither and this kind of 

misunderstanding leads to the inadequate application of ML in chemistry. To overcome such issues, 

initiatives on chemical education and ML have appeared(47). A final remarkable weakness of ML is 

that if the data have many errors, the ML model will not be trustable(48). Hence, the accuracy of ML 

models depends not only on the algorithm, but also on the quality of the dataset and on the ability of 

the data scientist to choose and tune the right model.  

Despite some criticism, ML use is increasing in chemistry and the field is rapidly adopting state-

of-the-art ML algorithms and tools such as deep learning(49), tensors(50,51) and transformers(52,53) 

to solve and model chemical problems like drug and polymer design, QSAR and QSPR studies on big 

data and huge datasets(54,55) and even to boost ab initio calculations(45,56). As ML application in 



chemistry are broad, opensource and free frameworks and tools to assist chemists in the development 

of ML models, such as OpenChem(57) and ML4Chem(58) have been designed. These frameworks 

encapsulate other frameworks such as pyTorch and sciKit-learn, making the task of training and testing 

ML models in Chemistry much easier. 

In conclusion, ML applications in organic chemistry is in constant evolution and is greatly 

acceleration research. Moreover, this interdisciplinary field is playing a central role in changing the 

way not only organic chemistry, but how chemistry is done. As cutting-edge ML tools and algorithms 

such as tensors, natural language processing and transformers become mature and trusted by 

chemists, ML will be a routine in chemistry laboratory like any other equipment. 
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