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Abstract: Shot peening is a surface-strengthening process that is widely used in various industries,
such as aerospace, automotive, and biomedical engineering. The process involves the impact of
small, spherical media, called shots, onto the surface of a material, resulting in residual compressive
stress and improved surface properties. This review aims to provide an overview of the state of the
art and perspectives on surface strengthening by shot peening. The review covers various aspects
of shot peening, including process parameters, shot materials, and quality control techniques. The
advantages and limitations of shot peening in comparison to other surface-strengthening techniques
are also discussed. The findings of this review indicate that shot peening is a versatile and effective
surface-strengthening technique with numerous applications, and further research is needed to fully
realize its potential. In conclusion, this review provides insights into the current status and future
perspectives on surface strengthening by shot peening, and it is expected to be useful for researchers,
engineers, and practitioners in the field of material science and engineering.

Keywords: shot peening technology; surface-strengthening process; shot peening coverage;
surface-strengthening mechanisms

1. Introduction

The machinery industry has seen rapid development in recent years, leading to
increased demands for improved performance in mechanical parts in various industries
such as defense, transportation, power energy, and engineering machinery [1–5]. Fatigue
failure and wear failure, which account for 80% of all mechanical part failures, usually
originate from the surface [6–10]. Thus, surface-strengthening technologies are required to
improve the quality of mechanical parts and enhance their resistance to fatigue and wear,
resulting in a longer service life [11–15].

Surface strengthening is a technique aimed at altering the surface integrity of com-
ponents by subjecting them to external force or heat treatment, without the addition of
external materials. This method is widely used to enhance the properties of components,
such as fatigue, wear, and stress corrosion resistance. In general, the surface strengthening
is always associated with the surface phase transformation, which can be induced by the
surface deformation caused by the mechanical impacting on target surface, such as shot
peening technology [16,17], and by the surface quenching due to the heat effect [18]. The
shot peening process involves the acceleration of projectiles which are then directed at the
surface of the workpiece, creating a layer of residual compressive stress, thereby increas-
ing the service life of the component [19]. Figure 1 illustrates the shot peening process.
Shot peening is simpler, more cost effective, and is not limited by the shape or size of the
workpiece compared to surface rolling or surface quenching. The strengthening speed is
quick, and the results are significant. It is therefore not surprising that shot peening has
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gained widespread use in industries such as aerospace and automotive, due to its ability to
increase the resistance of components to fatigue failure and wear failure.
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Figure 1. Schematic representation of the shot peening process [20].

As a popular choice for wear-resistant materials in various industries, steel has been
used to create various mechanical components. ZGMn13 high manganese steel, for instance,
has exceptional wear resistance and is widely utilized in industries such as automobile, rail-
way, electric power, and mining due to its high performance and low production costs [21].
However, its wear resistance is only evident under conditions of high stress and strong
impact. Additionally, its low yield strength makes it susceptible to plastic deformation
during use, leading to increased wear. Research has shown that grain refinement, achieved
through multiple modification and aging treatment, can enhance ZGMn13 high manganese
steel’s performance [22]. Alternatively, the addition of elements such as Cr and Mo through
alloying and heat treatment can improve its hardness and wear resistance. However, these
above-mentioned surface-strengthening technologies are either chemical or thermal based
method that need to accurately control the concentration of the added elemental alloying
or the heat treatment temperature. Shot peening technology is a promising technique for
surface strengthening, and it is based on the mechanical impacting on the target surface
and hence inducing the grain refinement, which is easy to operate and low at cost. Thus,
it is necessary to conduct a review on the state of the art and perspectives of surface
strengthening through shot peening.

Previous review work on the shot peening technology has been conducted by many
researchers. The creation of nanocrystallized layer by the shot peening of metal alloys
has been reviewed by Bagheri et al. [23], and the available microstructural characteristics
of nanocrystal thin layers obtained with different processes were presented. Moreover,
Bagherifard [24] also conducted a review on enhancing the structural performance of
lightweight metals by shot peening, and emergent applications and the existing challenges
were highlighted in this work, which could guide the future research directions in this field.
Świetlicki et al. [25] presented a short review on the effects of shot peening and cavitation
peening on properties of surface layer of metallic materials, and it suggested that there
was a need to investigate the effects of peening, especially cavitation peening and hybrid
peening, on the anti-wear and corrosion performance of additively manufactured metallic
materials. Although these review works have been contributed to the development of the
shot peening technology, some of the underlying mechanisms of surface strengthening and
its relation with respect to the shot peening process, such as the shot peening coverage, still
need to be properly discussed and concluded.

Therefore, in this review paper, the classification of the shot peening technology and
their applications will be firstly discussed, and the related numerical study on this process
will be analyzed to emphasize its significance. Then, the surface-strengthening mechanisms
by the shot peening process and the effect of processing parameters, such as the shot
peening coverage, on the shot peening performance will be comprehensively explored, and
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finally, the perspectives of the shot peening technology for the surface strengthen will be
concluded to facilitate the future work.

2. Development and Classification of the Shot Peening Technology

The roots of shot peening technology can be traced back to the late 19th century
sandblasting technology. Tighman’s invention of vacuum pressurization technology in 1870,
which used air pressure to propel abrasive particles, marked the beginning of sandblasting
technology. In 1908, the advent of chilled steel shots led to the development of shot peening
as a metal surface-strengthening process. In 1929, Zimmerli et al. used shot peening on
spring steel and observed significant improvement in its performance. By the 1930s, shot
peening was applied in automobile manufacturing and expanded to the aviation industry
in the 1960s to prevent fatigue failure of aircraft parts. In the 1980s, the application of shot
peening continued to increase and it has since been widely used for surface strengthening
of various parts [26]. With advancements in technology, research on shot peening and
its underlying mechanism has deepened, leading to improvements in the precision and
automation of shot peening equipment and driving its rapid development.

Currently, various research studies have been conducted to examine the effects of
shot peening on friction and wear resistance, fatigue resistance, and surface properties of
treated materials [27–29]. With advancements in technology, in addition to conventional
shot peening, various emerging shot peening methods have been proposed, including laser
shock peening, micro-particle shot peening, ultrasonic shot peening, and high pressure
water jet shot peening [26]. These techniques will be analyzed in further detail.

2.1. Laser Shock Peening

Laser shock peening (LSP) is a technology that impacts the workpiece using a laser
beam rather than a projectile flow. The target surface absorbs laser energy, creating a high-
temperature, high-pressure plasma. The plasma expands and generates a high-pressure
shock wave transmitted to the surface layer. If the shock wave’s maximum pressure
is greater than the workpiece’s dynamic yield strength, residual compressive stress is
produced on the workpiece surface, thus improving its fatigue performance. Figure 2
illustrates the laser shock peening process [30]. Compared to conventional shot peening,
laser shock peening generates a residual compressive stress layer that can reach over 1 mm,
2–5 times deeper than traditional shot peening. This residual stress can reduce the average
stress, decrease fatigue crack propagation speed, and is considered advantageous due to its
strong strengthening effect, good control, and broad application range. However, the high
cost of laser shock peening equipment limits its use [31,32].
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2.2. Micro-Particle Shot Peening

Micro-particle shot peening (MSP) is a new process that involves impacting the work-
piece surface with high-speed steel shot or ceramic powder in the size range of 0.04–0.2 mm.
This process is faster than conventional shot peening and results in unique surface modifi-
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cation abilities [33]. The smaller size of the micro-particles and faster shot peening speed
facilitates unique surface modification abilities. This results in an improved hardness of
the workpiece surface and reduced surface damage, but a shallower residual compressive
stress layer compared to traditional shot peening. Micro-particle shot peening allows the
workpiece surface to be impacted by numerous micro-particles in a short period of time,
resulting in plastic deformation and refinement of the structure, improved surface hard-
ness, and reduced surface damage [34]. However, the depth of residual compressive stress
generated on the workpiece surface is shallow, limiting its applications to some extent [35].

2.3. High Pressure Water Jet Shot Peening

The principle of high pressure water jet shot peening (WJSP) is the use of a high
pressure water jet to produce plastic deformation on the workpiece’s surface, resulting in a
residual compressive stress layer that improves the workpiece’s fatigue performance [36].
This process has advantages over conventional shot peening including reduced stress
concentration, minimal increase in machined surface roughness, and easier processing of
narrow and small parts. It is also more efficient and environmentally friendly, with good
development prospects [37].

2.4. Ultrasonic Shot Peening

Ultrasonic shot peening (USP) uses high-power ultrasound, delivered by a transducer
and horn, to drive metal or ceramic projectiles to impact the workpiece for shot peening [38].
The principle is shown in Figure 3 [39]. This process results in a deeper strengthening layer
and larger residual compressive stress on the workpiece surface compared to traditional
shot peening, leading to a better strengthening effect. Its small equipment size and relatively
low cost make it useful in industries such as automotive manufacturing and aerospace [40].
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The characteristics and new advances of the different surface-strengthening methods
as mentioned above, including LSP, MSP, WJSP, and USP, have been compared as shown in
Table 1. Furthermore, the improvement in hardness and residual stress by using LSP, MSP,
WJSP, and USP compared with non-peened target materials has been properly summarized
as shown in Table 2.

In conclusion, these alternative shot peening strengthening methods have unique
benefits compared to conventional shot peening but require further investigation and
refinement in their processes before they can be widely adopted. Traditional shot peening,
while widely utilized, has a more established process and technology. Further exploration
into the mechanics behind traditional shot peening is needed.
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Table 1. Comparison of different surface-strengthening methods [26].

Surface-Strengthening
Methods Characteristics New Advances

LSP

Deeper surface-strengthening layer; more stable energy;
lower roughness; better thermal stability. However,
point-by-point strengthening; expensive equipment;
more complex operations.

LSP plus MSP; LSP coupling low
temperature; LSP coupling
high temperature.

MSP

Larger surface-strengthening layer; higher maturity,
stronger applicability and most widely application;
simpler operation; lower cost and higher efficiency.
However, significantly increased roughness.

MSP plus vibration finishing; pre-tensile
stress MSP; secondary MSP; in situ warm
MSP; wet MSP.

WJSP Better surface roughness; easier processing of narrow
and small parts. Cavitation peening by WJSP.

USP
Shallower bombardment indentations; more
environmentally friendly; lower cost and higher
efficiency. Limited by part shape and sealed chamber.

Ultrasonic hammering method.

Table 2. Improvement of hardness and residual stress by using LSP, MSP, WJSP, and USP comparing
with non-peened target materials.

Materials
Vickers Hardness Residual Stress, MPa

Reference
Non-Peened LSP MSP WJSP USP Non-Peened LSP MSP WJSP USP

Titanium alloy
Ti6Al4V 344 338 386 367 −220 −450 −348 −648 [41]

Aluminum alloy
A2017 130 280 180 160 20 −211 −248 −297 [42]

Aluminum alloy
A5005 55 75 [43]

Nickel alloy 200 116 154 [44]

Carbon steel
AISI1045 −40 −200 [45]

3. Numerical Investigation of the Shot Peening Process

The mechanism of shot peening enhancement of workpieces is highly complex, and
the selection and combination of shot peening process parameters will directly impact the
shot peening effect on the workpieces. Currently, it is difficult to explain the relationship
between the various process parameters and the shot peening effect in the shot peening
enhancement process through an accurate mathematical model, and can only be studied
through a large number of shot peening experiments. However, shot peening experiments
are not only time consuming, but also the experience of the experimenter can affect the shot
peening effect. In addition, the cost of residual stress detection of the workpiece after shot
peening enhancement is relatively high, and these issues will all impact the development of
the shot peening enhancement process. Thus, numerical simulation seems to be a powerful
tool to address these issues and has been extensively used in the engineering to explore the
associated underlying mechanisms [46–53].

Finite Element Method (FEM) is an important technique in computational mechanics;
it is a numerical technique that seeks to approximate the solution of partial differential
equations by dividing complex problems into smaller elements that can be solved mutu-
ally [54]. The method can be used to establish a numerical model that matches the actual
shot peening situation, to simulate the dynamic process accurately, to analyze the residual
compressive stress field and surface roughness of the target material, and to explore the
shot peening enhancement mechanism [8,17]. Through numerical simulation, time and
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cost can be saved, and the best combination of shot peening process parameters can be
quickly determined, providing guidance for further shot peening experiments. Currently,
there are a large number of numerical simulation studies on shot peening enhancement,
both domestically and abroad [55–57].

When establishing a shot peening numerical model, the distribution of the position of
the shot above the target material is a problem that must be taken into consideration. In
previous shot peening numerical models, three common distributions of shot position are
shown in Figure 4. The single shot model has low computational demands and can save
computation time, and it can be used to analyze the effects of various shot peening process
parameters and combinations on the shot peening effect. Meguid et al. [58] established a
single shot model to study the changes in residual stress size and stress layer depth in the
target material under different shot speeds, sizes, and shapes. Kim et al. [59] studied the
formation of residual stress in the target material after shot peening by establishing a single
shot model. Hong et al. [60] established a numerical model of a single shot impact on the
target material during the shot peening process, and they analyzed the changes in residual
compression stress in the target material under different shot speeds and impact angles.
Liu [61] analyzed the effects of shot diameter, shot speed, and shot angle on residual stress
in the workpiece under a single shot model. Wang [62] used LS-DYNA to establish a single
shot model and design an orthogonal experiment to analyze the residual compression stress
field in the target material under different combinations of shot peening process parameters,
ultimately obtaining the optimal combination of shot peening process parameters.
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(c) random shot.

The actual shot peening process involves multiple shot impacts on the target surface,
and the single shot model cannot reflect the influence between shots, nor can it study the
changes in residual stress field of the target material under different shot coverage. There-
fore, Majzoobi et al. [63] established a numerical model with multiple shots distributed in
an axisymmetrical manner to study the trend of residual stress changes under different shot
velocity and coverage. Li et al. [64] established an enhanced model with 11 shots tightly
arranged, representing 100% shot coverage, to analyze the significant changes in residual
stress field of the target material under 100% shot coverage through numerical simulation.
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Zhang et al. [65] used the finite element method to establish a regular distributed multiple
shot peening model and analyzed the influence of shot velocity, continuous impact, and
secondary impact on residual compressive stress field of the target. However, these numer-
ical models have predetermined positions of shots impacting the target, while in actual
shot peening processes, shots randomly impact the target, so these numerical models still
have certain shortcomings and cannot truly simulate the dynamic process of shot peening.
Therefore, Miao et al. [66] combined the MATLAB program with ANSYS preprocessor
to establish a numerical model with multiple randomly distributed shots. Li et al. [67]
used python programming language to develop the finite element software ABAQUS and
established a numerical model with randomly located shots, studying the relationship
between shot peening process parameters and residual stress of the shot-peened workpiece.
Wang et al. [68] based on the ABAQUS secondary development, established a numerical
model with multiple shots that have random distribution and shot number determined by
shot coverage, and analyzed the trend of surface roughness and residual stress changes of
TC4 titanium alloy under different shot peening conditions. Sheng et al. [69] developed a
subroutine for randomly generating the coordinates of shot peening using the Python pro-
gramming language. By using this program, a numerical model for random shot peening
was established, and the effects of different shot peening process parameters on the surface
roughness of the workpiece and the energy conversion during shot impact were studied.

To summarize, the single-particle model has low computational requirements and can
save computation time. It can be used to analyze the effects of different shot peening process
parameters and combinations on the shot peening effect; for instance, the single-particle
shot peening numerical model can be used to analyze the effects of particle diameter,
particle velocity, and impact angle on the residual compressive stress field of the target
material in order to determine the optimal process parameter combination. The random
particle model can truly reflect the initial state of particle position in the actual shot peening
process, and compared to the regular arrangement particle model, it can improve the
accuracy of the shot peening numerical simulation results.

4. Fundamental of the Traditional Shot Peening Technology
4.1. Shot Peening Process Parameters

In practical applications, the main parameters affecting the final shot peening effect
on a workpiece are the size and material of the shot, impact angle, shot blasting pressure,
distance between the nozzle and the workpiece, and coverage rate of shot peening. Among
these parameters, the impact angle, shot blasting pressure, and distance between the nozzle
and the workpiece can be controlled by the shot peening intensity. Hence, the critical
parameters that need to be strictly controlled are the size and material of the shot, shot
peening intensity, and coverage rate of shot peening [70].

In order to avoid unnecessary scratches on the workpiece surface and stress concentra-
tion during shot peening, the shot shape is generally spherical or cylindrical with smooth
surface and no sharp edges. Currently, commonly used shot types in shot peening include
cast steel shot, wire-cut shot, ceramic shot, and glass shot, and the use of different types of
shots has a significant impact on the final processing effect of the workpiece. The scope of
application of different shot types is given in Table 3.

The shot peening intensity represents the ability of a shot peening beam flow to intro-
duce residual compressive stress into the workpiece surface. Under constant other process
parameters, as the shot peening intensity increases, the thickness of the residual compres-
sive stress layer will also increase. Shot peening intensity can be determined through the
results of shot peening on standard Almen specimens [71,72]. There are three types of
standard Almen specimens: N specimens, A specimens, and C specimens. All three speci-
mens have the same length and width, but they differ in thickness, representing different
strength levels. N specimens are suitable for low shot peening intensity applications, with
an arc height value less than 0.15 mm. A specimens are suitable for medium shot peening
intensity applications, with an arc height value between 0.15 and 0.6 mm. C specimens
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are suitable for high shot peening intensity applications, with an arc height value greater
than 0.6 mm. By gradually increasing the time of shot peening on a set of standard Almen
specimens, and then using an Almen testing instrument to test the arc height values of
each specimen, a saturation curve is generated, as shown in Figure 5 [73]. The saturation
degree in Figure 5 is a point on the saturation curve that satisfies a specific condition. The
specific condition refers to the existence of another point on the saturation curve, where the
shot peening time used is twice the saturation degree shot peening time, but the arc height
value is only increased by 10% compared to the saturation degree arc height value. The
shot peening intensity can be expressed by the arc height value on the saturation degree of
the specimen.

Table 3. The scope of application of different shot types [61].

Shot Types Scope of Application

Steel shot Low hardness, typically in the range of 40 to 50 HRC, with good ductility of cast steel shots, high recovery rate,
and suitable for moderate strength shot peening.

Wire-cut shot High hardness, typically ranging from 55 to 62 HRC, good toughness, prone to breakage, and low recovery
rate, suitable for high-intensity shot peening applications.

Ceramic shot

High hardness, generally ranging from 57 to 63 HRC, with the outstanding feature of high density and high
hardness. Initially used for reinforcement of aircraft components. Due to the high strength of ceramic beads,
with long lifespan and low cost, it has now been extended to the surface strengthening of colored metals such

as titanium alloys and aluminum alloys.

Glass shot
Low hardness, suitable for materials such as titanium, aluminum, magnesium, and others that cannot be

contaminated by ferrous materials. It can also be used as a secondary treatment after steel shot peening to
eliminate ferrous contamination and reduce the roughness of the components.
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The shot peening coverage refers to the percentage of the area of the pits on the
workpiece after shot peening under a certain shot peening time, in relation to the area of
the shot peening region of the workpiece. In actual shot peening strengthening processes, it
is very difficult to accurately measure the shot peening coverage of the workpiece as 100%.
Therefore, it is generally considered that when the shot peening coverage of the workpiece
reaches 98%, full coverage, or 100% coverage, has been achieved. The shot peening time at
which the shot peening coverage is 100% is designated as T. The shot peening time required
for a 200% coverage would then be 2T, and so on.

4.2. Shot Peening Strengthening Mechanisms

Shot peening is a commonly used surface-strengthening technique that belongs to
a cold working process. The enhancement effect is apparent. Shot peening is carried
out by shooting balls at a certain speed and angle onto the workpiece surface at room
temperature. The continuous impacts of the balls on the workpiece surface cause repeated
plastic deformation, leading to the generation of a residual stress layer with a certain depth



Coatings 2023, 13, 859 9 of 16

on the workpiece surface. This improves the fatigue resistance of the workpiece and extends
its service life, while also generating a hardening layer with a certain thickness, increasing
the surface hardness of the workpiece [74]. After shot peening, the parts have higher
surface hardness, which can enhance their ability to resist plastic deformation, and the
residual stress on the surface layer can resist a portion of the tensile stress when the parts
are pulled, thus enhancing the ability of the parts to resist fatigue and wear failure, and
extending their service life [19]. For most metal materials, the residual stress distribution
along the layer depth after shot peening is shown in Figure 6. As can be seen from Figure 6,
after shot peening, the surface layer exhibits residual stress due to its resistance to plastic
deformation, with the surface being compressive stress. As the depth from the surface
increases, the compressive stress first increases, the maximum residual compressive stress
occurs at the sub-surface of the workpiece, and then the compressive stress gradually
decreases and transforms into tensile stress [17].
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Furthermore, as shown in Figure 7, during shot peening, the continuous impact on
the surface of the workpiece results in severe plastic deformation. Due to the compressive
effect, elastic deformation regions within the workpiece form regions of permanent plastic
deformation. Within the plastic deformation region, the microstructure of the workpiece
changes and undergoes refinement of sub-grains and grain boundaries, accompanied by
an increase in the density of dislocations as shown in Figure 7b [75].
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of workpiece after ball impacting [75].

The mechanisms of shot peening can be divided into two types: stress-strengthening
mechanism and microstructural-strengthening mechanism.



Coatings 2023, 13, 859 10 of 16

For the stress-strengthening mechanism, the surface of a component is a weak point
and prone to fatigue cracking. After being subjected to shot peening, the residual com-
pressive stress on the component surface can inhibit the formation of surface cracks and
promote the transfer of fatigue cracks from the surface to the sub-surface layer [76]. Ad-
ditionally, the residual compressive stress can increase the required external cyclic stress
to produce fatigue cracks, thus enhancing the fatigue strength of the component. The
impact of residual compressive stress is more pronounced on components with existing
microcracks. In this case, when the component is subjected to tensile stress, the residual
compressive stress on the surface can counteract some of the tensile stress, reducing the
maximum cyclic stress applied to the component, improving the critical stress intensity
factor for the initiation of microcracks, and reducing the rate of fatigue crack propagation,
thus enhancing the fatigue strength of the component [77]. Furthermore, residual compres-
sive stress can effectively suppress crystal sliding near the direction of maximum shear
stress, improving the performance of the component.

For the microstructural-strengthening mechanism, shot peening is a process that uses
a stream of projectiles to continuously and repeatedly impact the surface of a component.
This causes severe plastic deformation in the surface layer, leading to an optimization of
the microstructure and refinement of the grain structure, while also increasing the density
of dislocations and microstrains, as shown in Figure 8, where the dislocation density of its
surface material would increase rapidly, and therefore, abundant dislocation substructures
were formed [78]. In some cases, such as austenitic steels, shot peening can also induce
a martensitic transformation, resulting in transformation strengthening. This change in
microstructure makes it difficult for the crystals in the deformed layer to slip, preventing
sliding between the deformed layer and the internal interface. These effects can delay the
time it takes for fatigue cracks to form on the surface of the component, thus improving its
fatigue life and wear resistance [79]. Further, Figure 9 shows the EBSD characterizations
of the ultrasonic shot peeing on dual-phase high entropy alloy with the peening duration
of the 0 s, 60 s, 240 s, and 720 s, respectively, where the ultrasonic shot peeing treatment
induces severe plastic deformation zone near the peening surface, significantly refining the
grains and phases and hence strengthening the target surface [80].

In conclusion, the ability of shot peening to enhance the resistance of mechanical parts
against fatigue and wear failure is mainly due to its ability to prevent the initiation and
delay the propagation of cracks on the surface of the parts. It is generally believed that
structural strengthening can prevent the initiation of cracks on the surface of mechanical
parts, while stress strengthening can delay the further development of cracks. For materials
with lower hardness and strength, structural strengthening plays a major role in enhancing
the resistance of mechanical parts against fatigue and wear failure, while for materials with
higher hardness and strength, stress strengthening plays a major role.
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4.3. Shot Peening Coverage

The significance of shot peening coverage in the shot peening strengthening process
of workpieces is self-evident, and it will directly affect the final shot peening strengthening
effect of the workpieces [81]. It is well known that insufficient shot peening coverage leads
to insufficient coverage of residual compressive stress field on the surface of the workpieces,
causing premature fatigue failure due to the inability to resist residual tensile stress during
processing and use. However, shot peening coverage that is too high will also lead to
premature fatigue failure due to excessive residual tensile stress and microcracks caused
by excessive stress concentration and plastic deformation. Li et al. [82] conducted a study
to analyze the fatigue characteristics of 300 M steel under different shot peening coverage
levels and found that higher shot peening coverage does not necessarily mean better fatigue
characteristics. Therefore, it is critical to find a reasonable shot peening coverage level in
shot peening strengthening of workpieces, and one should not blindly pursue high shot
peening coverage when selecting shot peening strengthening process parameters.

In the process of shot peening, the number of shot particles impacting the surface
of the workpiece has a linear relationship with the peening time, with a longer peening
time resulting in a larger number of shot particles impacting the surface [83]. However,
shot particles randomly impact the surface of the workpiece, meaning that not every shot
particle impacts a new location on the surface. Some may impact the same location as the
previous particle, and a single location on the surface of the workpiece may be repeatedly
impacted multiple times during the shot peening process. As a result, the relationship
between the shot peening coverage and the corresponding peening time is not linear.

Figure 10 presents the experimental results of the relationship between the shot peen-
ing coverage rate and the time factor [84]. The time factor for one shot peening is 2, and
the time factor for two shot peenings is double that of one shot peening, i.e., 4, and so on.
From Figure 10, it can be seen that in the initial period, the growth rate of shot peening
coverage rate is significant; however, as time goes on, the growth rate becomes slower, and
the shot peening coverage rate reaches nearly 100% without much growth. From the data
in the figure, the shot peening time required to increase the coverage rate from 80% to 100%
is approximately double that required to increase the coverage rate from 0% to 80%, and
the shot peening time required to increase the coverage rate from 90% to 100% is about
1.2 times that required to increase the coverage rate from 0% to 90%, and the shot peening
time required to increase the coverage rate from 98% to 100% accounts for 30% of the total
time required to increase the coverage rate from 0% to 100%. Hence, considering the shot
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peening coverage rate of 98% as full coverage in practical processing can greatly reduce the
shot peening time and improve production efficiency.
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5. Perspectives of the Shot Peening Technology

The shot peening technology for surface strengthening has shown promising potential
for a wide range of applications, and its development and utilization is expected to continue
in the future. Below are a few key perspectives for the future of shot peening technology:

(1) New Materials: As new materials are developed and introduced into various indus-
tries, shot peening technology will need to adapt to meet the challenges of processing
these materials. The use of new materials such as composites, ceramics, and metal
matrix composites will require new shot peening strategies that can produce the
desired surface characteristics and compressive stress profiles.

(2) Advanced Manufacturing Processes: The rise of advanced manufacturing processes
such as additive manufacturing, laser cladding, and hybrid manufacturing will re-
quire new shot peening techniques to ensure the surface integrity of the manufactured
components. Shot peening will need to be integrated into these advanced manufac-
turing processes to optimize their performance and enhance their properties.

(3) Digitalization: The digitalization of manufacturing processes is an ongoing trend that
is likely to continue in the future. Shot peening technology can be integrated with
digitalization to create a more efficient and data-driven process. The use of sensors,
artificial intelligence, and machine learning algorithms can be employed to optimize
shot peening parameters and improve the quality of the finished product.

In conclusion, the future of shot peening technology is promising, with ongoing
research and development leading to improved processes and new applications. These
advancements will help to ensure the continued growth and success of shot peening in the
years to come.

6. Conclusions

This review provides a comprehensive overview of the current state of the art in shot
peening and its associated technologies. It first discusses development and classification
of the shot peening technology, including laser shock peening, micro-particle shot peen-
ing, high-pressure water jet shot peening and ultrasonic shot peening, and it is found
that the traditional shot peening technology is relatively mature and is extensively used
nowadays. Then, it provides an overview of numerical investigation of the shot peening
process, and it is a powerful method to explore the single particle and random particles
shot peening process. Additionally, it highlights the fundamental of the traditional shot
peening technology, including the shot peening strengthening process, the shot peening
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strengthening mechanisms and the shot peening coverage. Finally, this review provides a
perspective on the future of shot peening, including the potential for further optimization
of peening processes, the development of new peening technologies, and the integration
of peening into more comprehensive surface engineering strategies. It also discusses the
challenges facing the field of shot peening and suggests directions for future research.
Overall, this review provides a comprehensive overview of the current state of the art and
future perspectives on surface strengthening by shot peening, and it highlights its potential
as a key technology for improving the mechanical properties of materials.
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