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ABSTRACT 

String matching algorithms are an important piece in the network intrusion detection systems. In these systems, the 
chain coincidence algorithms occupy more than half the CPU process time. The GPU technology has showed in the past 
years to have a superior performance on these types of applications than the CPU. In this article we perform a review of 
the state of the art of the different string matching algorithms used in network intrusion detection systems; and also 
some research done about CPU and GPU on this area. 
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1. Introduction 

Jack Dongarra [1,2], explains that GPU computing is the 
use of graphics processing unit together with a CPU to 
accelerate general-purpose scientific and engineering ap- 
plications. 

String matching algorithms allow string or pattern 
searching in a given text. These algorithms are used in 
many applications such as: word processors and in utili-
ties like grep in UNIX [3] based operating systems. 

The network based network intrusion detection sys-
tems also apply these algorithms, since most of the pro- 
cessing is found in pattern search. 

Studies reveal that this process takes about 75% of the 
total CPU time in modern intrusion detection systems. 
For this reason the graphic processors, known as GPU, 
are studied to develop general purpose applications with 
the GPU [4]. The main reason is that the GPU are spe-
cialized in computationally intensive operations and highly 
parallel operations, required for graphic rendering, there-
fore are more adequate for data processing than for cache 
data storage and flow control. In this article we will be 
discussing different string matching algorithms and their 
application in intrusion detection systems in CPU as well 
as in GPU. The article is organized as follows: in Section 
II we described different string matching algorithms. In 
Section III we present a state of the art of the different 
studies in the network intrusion detection systems (NIDS) 
using string matching algorithms. 

Section IV presents the state of the art of the studies 
done in the GPU field using string matching algorithms. 

In Section V the conclusions are presented. 

2. String Matching Algorithms Used in  
Intrusion Detection Systems 

The objective of the String Matching Algorithms is to 
locate and identify all the sub-strings, given a set of pat-
terns in a specific text. To make the reading easier lets 
clarify the following terms when we refer to a string 
matching algorithm [3]: 
 A string is a finite sequence of symbols. 

 1 2  ,  kK Where , ,y y y  is a finite set of strings 
usually called keywords. 

 And x is a random string that we can call text string. 
These algorithms can be classified in unique or multi-

ple pattern algorithms. This means that if we have k pat-
terns to search, the algorithm is repeated k times. Knuth- 
Morris-Pratt [5] and Boyer-Moore [6] are some of the 
most used unique pattern search algorithms. Multiple 
pattern search algorithms look simultaneously for a set of 
patterns in a text. This is achieved by applying pre- 
processing techniques to the set of patterns to get an 
automaton. The automaton is a state machine that’s rep-
resented as a table, or a tree or a combination of both. 
Each text character will be searched once. Some of the 
multiple pattern search algorithms are: Aho-Corasick [7], 
Wu-Manber [8] and Commentz-Walter [9]. Next we will 
describe some of these algorithms. 

2.1. Brute-Force Algorithm 

The Brute-Force Algorithm [3] consists in comparing  
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two strings of characters. This algorithm compares from 
left to right each word the user writes with each letter of 
the name of the file found inside of the route the user 
specifies. The process that this algorithm performs is the 
following [3]: 
 Takes the character with which the pattern starts. 
 Starts to compare it with each of the text characters, 

until the first match is found. 
 It stops in said position and from there it starts to veri- 

fy if the pattern matches with the rest of the text. 
If the pattern matches, it stops the comparison and 

then the next file in the route is reviewed. If otherwise, 
the pattern is not equivalent it will compare again the 
initial position with the rest of the text characters until a 
match is found again. 

The outer loop is executed at most n + m – 1 times, 
and the inner loop m times, for each iteration of the outer 
loop. Therefore, the running time of this algorithm is in 

 in the worst case. Algorithm 1 shows the Brute- 
Force algorithm. 

 nmO

Naive-String-Matcher (T,P) 
 n = T.length 
 m= P.length 
 for s = 0 to n – m 
  if P[1..m] == T[s + 1..s + m] 

  print “Pattern occurs with shift” s 

Algorithm 1. Brute force. 

2.2. Knuth-Morris-Pratt Algorithm 

Knuth-Morris-Pratt [5] developed KMP, an algorithm 
that has the primary objective to search for the existence 
of a pattern inside a text string. In the algorithm it is used 
the information based on the previous data capture mis-
takes, taking in advantage the information that the search 
word has on it itself (a table of values is calculated about 
it), to determine where the next finding could be, without 
the need of analyzing more than once the character string 
where it’s been searched. 

The KMP locates the start position of a character string 
inside another. The first step is to locate a string, imme-
diately a table of values is calculated (known as fault or 
error table). Next the strings are compared with each 
other and are used to make hops when an error is located. 

For example, in a pre-calculated table, both strings 
start the comparison using an advance pointer for the 
string that is been searched (pattern), if an error occurs 
instead of returning to the position next to the first match, 
it hops the pattern and it places it aligning the character 
where the error occurred and then it continues verifying 
the matches. This process is executed until the pattern 
matches completely with the text. The Knuth-Morris-Pratt 
algorithm reaches an execution time of , which 
is optimal in the worst case scenario, where each text 
character and pattern has to be examined at least once. 

Algorithm 2 shows the Knuth-Morris-Pratt algorithm. 

KMP-Matcher(T,P) 
     n = T.lenght 
     m = P. lenght 
     p = Compute-Prefix-Function(P) 
     q = 0 
     for i = 1 to n 
          while q > 0 and P[q + 1] <> T[i] 
               q = p[q] 
               if P[q + 1] == T[i] 
 q = q + 1 
 if q == m 
      print “Pattern occurs with shift”  i - m 
      q = p[q] 
             return p 

Algorithm 2. Knuth-morris-pratt. 

2.3. Boyer-Moore Algorithm 

The Boyer-Moore algorithm [6] is considered the most 
efficient string processing algorithm on usual applica-
tions. A simplified version or the complete algorithm are 
frequently implemented on text editors for the search and 
replace commands. 

This algorithm consists on aligning the pattern in a text 
window and comparing from right to left the characters 
in the window with the ones in the pattern. If there is a 
mismatch a secure displacement, is calculated, which 
allows the displacement of the window to in front of the 
text without the risk of omitting a match. If the start of 
the window is reached and there are no mismatches, then 
a match is reported and the window is displaced. 

The Booyer-Moore algorithm as presented in the origi-
nal paper has worst case running time of  only 
if the pattern does not appear in the text. When the pat-
tern does occur in the text the running time of the origi-
nal algorithm is 

  n mO 

 nmO  in the worst case. In the best 
case the complexity of this algorithm is in  n mO . In 
Algorithm 3 we present the Boyer-Moore Algorithm. 

Boyer-Moore-Matcher(T,P,E) 
     n = T.length 
     m = P.length 
     l = Compute-Last-Ocurrence-Function(P, m, E) 
     y = Compute-Good-Suffix-Function(P, m) 
     s = 0 
     while s <= n – m 
          do j = m 
  while j > 0 and P[j] = T[s + j] 
      do j = j – 1 
           if j = 0 
  print “Pattern occurs at shift” s 
  s = s + y[0] 
          else    n mO 
  s = s + max(y[j],j - l[T[s+j]]) 

Algorithm 3. Boyer-moore. 
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2.4. Aho-Corasick Algorithm 

The Aho-Corasick [7], algorithm it’s a search algorithm 
created by Alfred V. Aho and Margaret J. Corasick. Is a 
dictionary search algorithm that locates the elements of a 
finite set of strings (dictionary) within an input text. The 
complexity of the algorithm is linear to the length of the 
patterns, plus the length of the searched text, plus the 
number of matches that the output provides. It should be 
noted that due to the fact that all the matches are located, 
there can be a quadratic number of coincidences if each 
sub-string matches.  

The algorithm builds a finite state machine that resem-
bles to a tree with additional links between the different 
intern nodes. These internal links allow fast transitions 
between the matching patterns without the need to take 
steps back. When the dictionary pattern it’s known be-
forehand the building of the automaton can be done once 
it’s off-line and the compiled automaton stored for future 
use.  

In this situation, its execution time is linear in the input 
length plus the number of matching inputs. In this way, 
we can conclude that the Aho-Corasick algorithm is 

 and the pre-processing of the string is linear with 
the size of the pattern . Algorithm 4 shows the 
Aho-Corasick algorithm. 

 nO

 mO

begin 
     state = 0 
     for i = 1 to n  
          begin 
          while g(state, a1) = fail do state = f(state) 
          state = g(state, a1) 
          if output(state) <> empty  
               begin 
      print i 
      print output(state) 
               end 
         end 
end 

Algorithm 4. Aho-corasick. 

2.5. Karp-Robin Algorithm 

The Karp-Rabin algorithm [10] searches for a pattern in a 
text by hashing. So we preprocess p by computing its 
hash code, then compare that hash code to the hash code 
of each substring in t if we find a match in the hash codes, 
we go ahead and check to make sure the strings actually 
match ( in case of collisions). The best case and average 
case time for this algorithm is in  n m

 nmO

 km mO 

O  (m time to 
compute hash (p) and n iterations through the loop). 
However, the worse case time is in , which occurs 
when we have the maximum numbers of collisions. 
Karp-Rabin is inferior for single pattern searching to 
many other options because of its slow worst case be-

havior. However, it is excellent for multiple pattern 
searches. If we wish to find one of some large number, 
say k, fixed length patterns in a text, we can make a small 
modification that uses a hash table or other set to check if 
the hash of a given substring of t belongs to the set of 
hashes of the patterns we are looking for. In this way, we 
can find one k patterns in  time (km for hashing 
the patterns, n for searching). In Algorithm 5 we present 
the Karp-Robin algorithm. 

KarpRabin(T, P) 
     n = T.length 
     m = P.length 
     hpatt = hash(P) 
     htxt = hash(T[0..m–1]) 
     for i = 0 to n  
          if(htxt == hpatt) 
               if(t[i..i + m – 1] == P 
               return i 
               htxt = hash(T[i + 1..i + m]) 
          print “not found” 
          return -1 

Algorithm 5. Karp-robin algorithm. 

After describing each one of the algorithms in Table 1, 
the execution times of each algorithm are shown. The 
string matching processing time is defined for the worst 
case and best case respectively. 

In the worst case scenario, the Aho-Corasick algorithm 
with a  nO  runtime has the best execution time among 
the analyzed algorithms. Although for simple string 
matching cases, it does not performs very well, but when 
there are multiple patterns or pattern matching is done at 
regular expression level, it is one of the best options. 

3. String Matching Algorithm Applied to 
Intrusion Detection Systems 

String processing is a highly intensive computational 
process; studies demonstrate that the total processing 
time in a CPU reaches 75% in modern intrusion detection 
systems. For this reason, is necessary to count on string  

 
Table 1. Comparison between the execution times. String 
matching algorithms. Where m is the length of the string, n 
the length of the text that is been searched, z is the amount 
of string matches and  the used alphabet. 

String matching 
Algorithm Pre-processing 

CaseWorst BestCase 

Brute force No preprocessing O (nm) O (n) 

KMP O (m) O (nm) O (n) 

Boyer moore O (m + ) O (nm) O (n/m) 

Aho corasick O (m) O (n + z) O (n) 

Karp rabin O (m) O (nm) O (n + m) 
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matching algorithms capable of processing high amounts 
of information. 

Most of the network intrusion detection systems use 
finite automata and regular expressions for string match-
ing. Both Fisk and Vagese [11] optimized the Boyer- 
Moore-Horspool algorithm for it to process a set of rules 
(strings) simultaneously.  

An innovative proposal is offered in the Set-Wise 
Boyer-Moore-Horspool which demonstrated to be faster 
than the Aho-corasick algorithm and the Boyer-Moore 
algorithm for pattern sets smaller than 100. At the same 
time, about this work, Coit, Stainford and MacAlemey 
[12] implemented a new version of Gunsfield in the 
Commentz-Wlater algorithm using suffix trees for the 
heuristics of good suffix. The algorithm was improved in 
the performance of Snort [13] combining the keyword 
tree of the Aho-Corasick algorithm with the hop charac-
teristic of the Boyer-Moore algorithm. 

In brief, they only measured the performance of a sin-
gle set-wise algorithm, while Fisk and Vaghese [11] 
measured multiple algorithms and obtained better mea- 
surements without sacrificing the semantic of the rules 
used by Snort. Tuck [14] optimized the Aho-Corasick 
algorithm applying bitmap nodes and path compression. 

4. State of the Art of Applications Based on 
String Matching in GPU 

The continuous growth of traffic and signature databases 
make the performance of these systems increasingly 
more defying and important, is for this reason that the 
researchers are developing technologies that involve the 
Graphic Processing Units more every time. The main 
reason resides in that the GPU specializes in calculation 
of highly intensive and parallel operations, and therefore, 
are designed in such a way that more transistors are 
dedicated to data processing instead of cache data storage 
and flow control [4]. The following works [15-22], are 
based in GPU high performance computing. 

One of the first works in the GPU field was PixelSnort 
[15], a version of the intrusion detection system Snort 
which processed the string matches with a NVIDIA GPU. 
The GPU programming was complicated, because this 
video card doesn’t support general purpose programming 
models for GPU. The system coded the Snort rules and 
packages to textures and did string searches using the 
Knuth-Morris-Pratt algorithm. However, PixelSnort did 
not get satisfactory results in normal load conditions. In 
addition, it doesn’t have any multiple pattern matching 
algorithms adapted to GPU. This represents a serious 
limitation because the multiple pattern matching algo-
rithms are Snort’s by default. 

For Marziale [16] the GPU shaping tool performance 
was evaluated. The system was implemented in a G80 

architecture [23] and the results showed that the GPU 
usage increased substantially in the performance of the 
digital forensic software analysis, which is based in bi-
nary string search. Both Nottingham and Irwin [17] de-
signed gPF: a package classification program based in 
GPU. In Smith [18] a programmed signature matching 
system in a GPU G80 [23] based in SIMD (Simple In-
struction Multiple Data) was implemented. This system 
outperforms a Pentium 4 until 9X and a 32 thread system 
based in Niagara until 2.3X demonstrating that the GPU 
are promising candidates for signature matching. In their 
work they evaluated two signatures matching mechanism 
based in finite automata, these are: 
 Deterministic Finite Automaton (DFA [19]: it recog-

nizes the exact type of regular expression. 
 Extended Finite Automaton (XFA) [20,24], it reduces 

the DFA memory requirements. 
On the other hand, Vasiliadis and Ioannidis developed 

GrAVit [21], an antivirus engine, using the architecture 
of an NVIDIA GPU. They designed, implemented and 
evaluated pattern matching algorithms, integrated their 
GPU implementation in the ClamAV [25], antivirus, a 
very popular open source antivirus. GrAVity reached an 
end to end performance in the 20 Gbits order, a 100 
times the performance of ClamAV using only CPU. 

In [4] an intrusion detection system was designed based 
in Snort, which potentiates the computational power of 
the video cards (GPU). Its prototype, called Gnort, reached 
maximum processing rates of traffic of 2.3 Gbits using 
synthetic tracks, while using an Ethernet interface; it 
surpassed Snort by a factor of two. Its results demon-
strate that modern video cards can be used effectively to 
accelerate the intrusion detection systems, as well as 
other systems that involve string matching operations. 
Seaman and Alexander [22] presented ways to build a 
special type of regular expressions used by ClamAV in a 
GPU. Phar and Fernando [26] show a review of some 
high performance applications adapted to GPU. 

This state of the art allowed us to identify string 
matching algorithms with better performance that the 
ones described previously. Also, it was demonstrated that 
exists a very wide research field on GPU, specifically in 
pattern analysis in intrusion detection systems. These 
researches have given evidence that the usage of GPU 
give better performance than the CPU. 

5. Conclusion 

In this article, we present a state of the art of different 
algorithms used for pattern matching in network intru-
sion detection systems. We compare the execution time 
of these algorithms. Also, we discuss different studies 
that presented proposals to improve the algorithms based 
in string matching. Finally, we present a state of the art 
on some studies on pattern search and package signing 
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using GPU technology. We can state that in the next 
years the high performance application development us-
ing GPU will increase, displacing CPU eventually. 
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