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Abstract: The growing trend for electric vehicles (EVs) and fast-charging stations (FCSs) will cause
the overloading of grids due to the high current injection from FCSs’ converters. The insensitive
nature of the state of charge (SOC) of EV batteries during FCS operation often results in grid instability
problems, such as voltage and frequency deviation at the point of common coupling (PCC). Therefore,
many researchers have focused on two-stage converter control (TSCC) and single-stage converter
(SSC) control for FCS stability enhancement, and suggested that SSC architectures are superior in
performance, unlike the TSCC methods. However, only a few research works have focused on
SSC techniques, despite the techniques’ ability to provide inertia and damping support through
the virtual synchronous machine (VSM) strategy due to power decoupling and dynamic response
problems. TSCC methods deploy current or voltage control for controlling EVs’ SOC battery charging
through proportional-integral (PI), proportional-resonant (PR), deadbeat or proportional-integral-
derivative (PID) controllers, but these are relegated by high current harmonics, frequency fluctuation
and switching losses due to transient switching. This paper reviewed the linkage between the
latest research contributions, issues associated with TSCC and SSC techniques, and the performance
evaluation of the techniques, and subsequently identified the research gaps and proposed SSC control
with SOC consideration for further research studies.

Keywords: electric vehicle; fast charging station; grid stability; virtual synchronous machine; battery
state of charge

1. Introduction

The effects of global warming and abrupt climate change have been the primary
concerns of environmental experts when combustion engines are being used [1,2]. The
majority of studies have focused on the benefits of avoiding the further use of internal
combustion engines, and now the trend of vehicle design is switching to electric vehicles
(Evs) in order to reduce carbon emissions, safeguard against climate change and reduce
global warming [3]. The transportation sector is the main source of contributions to recent
worries about pollution and rising fuel consumption [4]. The use of Evs has been heavily
encouraged over the past ten years, as suggested in [5]. Consequently, Evs’ growing
popularity in the market has encouraged the development of other varieties of Evs, such
as battery electric vehicles (BEVs) [6], hybrid vehicles (HVs) [7], fuel cell electric vehicles
(FCEVs), and extended-range electric vehicles (ER-Evs) [8] for future exploration. Navigant
Research has forecast a robust trend for global yearly EV adoption, as shown in Figure 1. It
has identified a consistent increase in global EV integrations. In addition, the report in [9]
projected that over 26.8 million BEVs will be sold globally between 2021 and 2030 [10].

Energies 2023, 16, 3956. https://doi.org/10.3390/en16093956 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en16093956
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-0012-763X
https://orcid.org/0000-0002-5408-7653
https://orcid.org/0000-0002-9562-3547
https://orcid.org/0000-0002-6721-2572
https://doi.org/10.3390/en16093956
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en16093956?type=check_update&version=1


Energies 2023, 16, 3956 2 of 29

However, this growing deployment of Evs will create a continuous rise in the charging
load demand in electric grid networks [5]. This future deployment of Evs has positioned
grid stability for EV fast-charging stations (FCSs) as the new focus for discussion [9,10]
and research.
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Therefore, in order to fulfill the demand for the considerable operation of Evs [10],
EV FCS infrastructure to replace gas stations is urgently needed, especially in areas where
long-distance trips are frequent or a common norm [10]. However, developing and imple-
menting infrastructure such as FCS requires taking into account various technical standards
and grid implications when Evs are connected to the grid for charging or discharging
mode [10,11]. Furthermore, the connection of Evs to the grid will cause a sudden change in
the characteristics of the power supply mode if not properly controlled or regulated [12].
The irregular changes brought about by EV batteries and the charging condition of the FCS
will have a major effect on grid voltage and frequency at the point of common coupling
(PCC) [13].

Moreover, the report in [12] showed that high reluctance power is often drawn from the
grid during the fast-charging operation. Hence, EV penetration could possibly overstress
the electric grid system when more loads are connected [12,14]. To solve these problems,
the authors in [14] reported the use of the frequency and voltage regulation strategy as the
major requirement for minimizing the upshoot in grid voltage due to the peak demand
at the PCC, caused by high current harmonics emission by the FCSs [15]. The EV battery
connection to the grid through an FCS is shown in Figure 2, where an AC-to-DC converter
transforms the supplied AC input into a DC output, while a DC-to-DC converter ensures
the transfer of power between the DC link and the EV battery to maintain the state of
charge (SOC) [16]. This FCS possesses the capacity to provide 80% charge on the EV battery
within a few minutes, with those rated 50 kW to above 350 kW [17] giving the best charging
time and performance.

The FCSs are divided into three categories [18,19]. The first is level-one chargers,
which have the capacity to offer between 50 Vdc and 500 Vdc with a maximum charging
current of 125 A [19]. Level-two chargers are characterized by 410 Vdc with up to 300 A
charging current [19,20]. Level-three chargers can accommodate over 800 Vdc with a
corresponding charging current of 370 A, as shown in Figure 3 [20]. Recently, the authors
in [20,21] reported an improvement in the rectification stage of the FCS by using the Swiss
rectifier and the Vienna rectifier, respectively. These two approaches showed the reduction
in harmonics in the line current (6.60%) when applied to a single-stage converter-based
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FCS. However, the drawbacks, as reported in [21], are the severely restricted reactive power
generation and phase displacement angle between current and voltage waveforms. These
drawbacks prevent the rectifier from functioning at the unity power factor, as observed
by [22].
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Consequently, apart from the transportation system network, this transition will have
a direct impact on power grid supply stability at the PCC [19,22]. Thus, FCSs should be
considered in the context of power grid stability. Grid stability is attained when the system
responds to any transient change in frequency, current or voltage disturbances within the
margin of the allowable standard operation of ±5% from the rated value [19]. On the other
hand, the FCS control strategy often deploys controllers such as the proportional-integral
(PI) converter [19,23] to ensure that the battery’s charging current is maintained at the rated
value [22,23]. When this is achieved, the battery’s voltage is permitted to rise over the
rated value [23]. Additionally, the inner-loop current control’s function is to control direct
and quadrature grid currents (Id, Iq) to guarantee a ripple-free charging current, which
enables active power and reactive power to be controlled [21–23]. In addition, the DC-link
voltage is controlled by the outer voltage loop, which creates the reference current for the
inner-loop current [24].

Most traditional controllers control converter switching by generating a control signal
from the difference between the actual value and the target value [25]. This difference is
expected to be zero or as small as possible to aid the efficiency of the EV battery charging
process [24,25]. The output voltage is regulated by the current feedback loop in the FCS
control loop in such a way that it responds to any variations or changes in the load profile
of the FCS at the PCC [24]. Furthermore, the modulation aspect of the FCS achieves
power delivery by generating a sequence of increasing or decreasing pulse widths [25].
As is known, there are various types of pulse-width modulation (PWM), such as phase
displacement control (PDC) and space vector pulse-width modulation (SVPWM) [8,15].
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These strategies offer the elimination of circuitry complexity issues and adaptability to
voltage spikes and electromagnetic noise [26].

The authors in [27] demonstrated the possibility of faster charging speeds and times for
higher-rated FCS of above 50 kW. However, when multiple FCSs with high power ratings
are connected to the grid, attaining regulated frequency and voltage quality at the PCC will
become difficult, as mentioned in [14,27]. This is because the load profile of the FCS will
cause harmonics to line currents, as well as phase imbalances [28], and will change the line
impedance with instantaneous applied voltage [22,28]. Therefore, when a higher-rated FCS
is connected to the grid network for longer, the grid will start to see this FCS as a nonlinear
source that absorbs power, which can jeopardize the stability and interrupt the efficiency of
the entire network [29]. Figure 4 shows frequency fluctuation as a result of an increasing
number of EV batteries in the FCS. Frequency fluctuation happens at the PCC because grid
frequency deviates from its rated value due to the increased power exchange between the
various EV batteries and the charging station, which also results in corresponding voltage
sags at the PCC, as shown in Figure 5 [30]. Voltage sags occur when multiple Evs are
applied at the FCS due to the EV load variation, causing a voltage reduction of 10% or more
from its nominal value, which lasts between 0.5 cycles to one minute [31].
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For a rectifier converter, any increase in the FCS load to the grid will cause a significant
frequency disturbance to the power grid [30,31]. Therefore, this will require a higher initial
grid stability reinforcement to ensure that the frequency setpoint is maintained. This is
needed in order to avoid FCS power balancing requirement failure, harmonic disturbance,
and grid instability [32]. The various options for minimizing the impact of grid instability
require a critical investigation of existing grid stability strategies, as presented in this paper.

Several grid stability improvement techniques were proposed in [25–33]. These could
be considered as either a two-stage converter control (TSCC) or single-stage converter (SSC)
control, as shown in Figure 6 [33]. SSC control techniques provide more accuracy in grid
stability improvement via the provision of inertial support through virtual synchronous
machine (VSM) control of the rectifier converter. This approach enables the PI controller
to be used for direct power control or a voltage control strategy [33,34]. Moreover, it
also reduces the instantaneous errors within a specified hysteresis band for direct power
control [33]. The voltage control strategy, as observed in [25], helps to regulate voltage with
a wideband disturbance rejection capacity at the reference values of the converter’s input
voltage at the rectification stage. However, the drawback, as reported in [34], is that this
strategy is sensitive to grid voltage and frequency fluctuations at the PCC as the number of
FCS loads increases.
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TSCC techniques consist of two stages, and the first stage comprises the rectifier
converter, which is the closest converter connected to the grid at the PCC. Grid stability is
achieved by using current control at the rectification stage through traditional controllers,
such as the proportional-resonant (PR), proportional-integral-derivative (PID) and deadbeat
(DB) controllers, as classified in Figure 7. These controllers are utilized to allow precise
current tracking to minimize the transient time and protect from overcurrent [35].

At the DC-DC converter stage, the transfer of power between the DC link and the
EV battery is achieved for TSCC. Normally, this converter uses a voltage controller to
regulate and generate an output DC voltage, which acts as a reference input to the voltage
controller [25]. TSCC techniques are less effective, as reported in the literature [25,35].
This is because of the tendency for a reduced dynamic response towards the stability
limit [36]. Additionally, a higher number of converter stages increases switching and
power losses, which result in a more complex control architecture [37]. Examples of TSCC
techniques include partial power control (PPC), mode-based control (MBC) and filter-based
control (FBC). On the other hand, an example of SSC control is alternating-current-based
control (ACBC) [8]. Before going deep into the discussion on the leading grid stability
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techniques and the causes of instabilities in the FCS control loop, it is pertinent to describe
the structuring of this paper.
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The various sections of this paper are outlined as follows: a concise discussion on
two-stage converter control (TSCC) techniques for grid stability improvement is presented
in Section 2, single-stage control (SSC) techniques for grid stability improvement are
presented in Section 3, issues with TSCC techniques for rectifier control for stability are
presented in Section 4, issues with SSC control techniques for rectifier control for stability
are presented in Section 5, a concept of a virtual-synchronous-motor-based state-of-charge
feedback control is presented in Section 6, future studies and development are discussed in
Section 7, and the conclusion is presented in Section 8.

2. TSCC Grid Stability Improvement Techniques

As is known, the nearest converter to the grid at the PCC is the rectifier converter.
This converter can be required for power delivery, voltage mitigation improvement, or
frequency stability depending on the applied control strategy. The second converter is
referred to as the DC-DC converter, which helps in amplifying and adjusting the DC voltage
requirement of the EV FCS and the provision for galvanic isolation where necessary [38].
The TSCC strategy, as observed in the literature, is implemented at the rectifier stage
of the FCS [39,40]. The TSCC strategy is characterized by different control techniques
depending on the supply source at the rectification stage [40]. It utilizes either the current
control, direct power control or voltage-oriented control approach [41]. For a three-phase
source, it achieves direct-quadrature-zero (dq0) from the abc signal through the alpha-beta-
zero (αβ0) Clarke transformation in a fixed reference frame, and through the αβ0-to-dq0
transformation in a rotating reference frame [41]. In a single-phase converter, dq0 can be
directly converted into the αβ frame without any matrix transformation [42]. In this case,
an imaginary variable is obtained by shifting the original voltage and current signal by 90◦,
where the original and imaginary signals now represent load current in αβ coordinates [43].

Notably, dq0 is referred to as the tensor that rotates the reference frame of a three-
element vector [43]. On the other hand, αβ0 is the simplification of a three-phase system
into a mathematical transformation for analysis purposes [42]. However, in mitigating
grid instability, such as with switching transient, current harmonics and power losses,
most control strategies, as mentioned in [32,40], have been acknowledged to have grid
frequency fluctuation and voltage sag issues caused by an increased number of EV loads
at the PCC [44]. Appreciable efforts for controlling the fundamental positive component
of currents have been dedicated in [22,23]. To eliminate grid instability, some control
improvement strategies are often deployed at the rectification stage in TSCC techniques.
Therefore, the various control techniques applied for improving grid stability in rectifier
converter control in TSCC will be discussed in the following subsections.
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2.1. Partial Power Control (PPC) Technique

This technique is implemented in the rectification stage for voltage gain improvement
and high efficiency [45], as shown in Figure 8a. The instantaneous power and voltage
components are matched for a stable DC-link voltage and to synchronize grid current
and voltage for the same phase and frequency alignment at the PCC [46]. Grid current
(iabc) is deployed for current control implementation in the rotating direct-quadrature (dq)
reference frame [46]. The DC-to-DC converter control is implemented using an isolated
or non-isolated converter in this strategy, where the phase shift between the voltages,
duty ratio (D) of the voltages, and the frequency of operation can be controlled using
either a PI or DB controller for transient DC current reduction, as shown in Figure 8b [47].
The inner-loop current’s reference value (In) is generated by the first PI controller and is
compared with the reference current (I*) in the inner-loop control, and this is fed to the
second PI controller to generate the switching pulse to stabilize the DC output voltage [36].
The technique only processes a fraction of the total power requirement percentage of the
EV load [45–47].
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The implementation of partial power control using the PI controller in [36] and the
DB controller in [23] for isolated converters showed a high surge current, which caused
a slow response and poor efficiency in terms of reactive power control issues and complex
control architecture. In contrast, the non-isolated power converter approach with the DB
controller was adjudged to improve the overall voltage and frequency regulation at the PCC
due to the absence of the isolation barrier, as well as improving the overall efficiency [47].
However, the problems of slow controller response and sensitivity to EV load changes, as
expressed in [36,48], are major limitations of PI and DB controllers for PPC.

2.2. Mode-Based Control (MBC) Technique

This strategy is achieved in the rectification stage by using voltage-oriented control
to apply a discontinuous control signal to maintain the dynamics of FCS control when
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variations happen to the EV load [49]. In order to keep the input power factor at unity,
the inner loop uses MBC to regulate the direct and quadrature components of the line
current in the rectification stage [50]. At the same time, the PI controller is used with
the MCB strategy to regulate the DC-link voltage at the reference value in the DC-to-
DC converter stage, as shown in Figure 9. This approach incorporates the input voltage
feedback signal [49,50]. This feedback signal is used to provide a reasonable level of
control effect whenever there are sudden changes in FCS operation [51]. It disallows the
transient component of oscillation by preventing the slow response caused by changes
in the load pattern at the PCC [52]. The MBC strategy is characterized by its ability to
lower the transient characteristics and increase the system’s stability under nonlinear load
circumstances [49,50]. However, the MCB strategy has been reported in [50,52] to show
negative incremental impedance at a constant EV load, and this will compromise the FCS
and grid stability at the PCC. In a related development, the observation in Figure 9 shows
that I*

d and I*
q are the controller’s reference current values for the direct (d) and quadrature

(q) components, respectively, with respect to the reference direct current (V*
dc) values. In

view of this drawback in MBC, filter-based control is often seen as a viable alternative and
this will be discussed in Section 2.3.
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2.3. Filter-Based Control (FCB) Technique

This control strategy is executed in the rectification stage via either hysteresis or
voltage-oriented control, depending on the type of filter [35,53]. This concept was applied
in [54] for a three-phase supply to improve the system’s resistance to harmonic grid voltage
and unbalanced loads in the rectification stage. However, this strategy is sometimes unable
to respond to practically opposite circumstances during voltage tracking [55]. To overcome
this challenge, as shown in Figure 10a, the double second-order generalized integrator-
frequency locked loop (DSOGI-FLL) algorithm was used to calculate the grid voltage based
on the measurement of grid voltages (VGabc) [56]. Similarly, in the DC-to-DC stage, this
control strategy managed the power exchange between the DC-link voltage and the EV
battery by comparing the output load current (IBat) and the reference load current (IBat*)
to give the switching control signal to the DC-to-DC converter, as shown in Figure 10b [53].
In the DC-to-DC stage, a filter may also be deployed to reduce the switching noise that
returns to the power source, as well as the high-frequency noise that comes from the
power supply [55]. The first positive sequence harmonics components of the grid voltage’s
amplitude (|V1|) and angles (θa, θb, θc) are computed to guarantee the transformation of
load currents for each converter phase individually [53–55].
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The current component in this case (iαx and iβx) were transformed using θa, θb and θc.
The components idx and idq are helpful to achieve the correct values of reference currents
in the coordinate system of synchronous rotation. Converter currents (iCa, iCb, iCc) are
measured by the current control loop [54], and the converter’s reference voltage values were
VcaRef, VcbRef, and VccRef, respectively. Theα current components of the phase (iαa, iαb, iαc)
helped to realize the converter’s reference currents (iCaRef, iCbRef, iCcRef) through the current
control loop [55]. To achieve this goal, this approach is based on modifications to the
direct-quadrature (dq) method for single-phase circuits. The conversion to synchronously
rotating dq coordinates for each phase separately, as in Expression (1), serves as the starting
point for reference current computations [56]:[

id
iq

]
=

[
sin(ω1t)− cos((ω1t)

cos(ω1t)sin(ω1t)

][
iα
iβ

]
(1)

where iα and iβ are generated directly from the current of each phase, and the current is
shifted by one-quarter of the fundamental time (T), as expressed in (2) [54–56]:[

iα
iβ

]
=

[
i(t)

i(t− T/4)

]
(2)

when the waveform cos(ω1t) is synchronized with the phase voltage, the dq current
components constitute average terms and variables in time, which can be expressed as in
Expression (3) [56]: [

id
iq

]
=

[−
ı d +

∼
ı d

−
ı q +

∼
ı q

]
(3)

where id and iq are dq current components in d and q, respectively, and the fundamental
harmonics of active power and reactive power in the specified phase are caused by the

average current component in the d-axis given at
−
ı d = im(1)cosϕ and

−
ı q = im(1)sinϕ,

where ϕ is phase-shift angle and im(1) is the first harmonic of maximum current [54]. To
satisfy the specified conditions, the higher harmonics of the id and iq current components
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that change with time must be filtered [57]. In the case of an active filter, the harmonic
component is subtracted from the distorted grid current from the filtered fundamental
component of current using the traditional hysteresis control approach [58]. The switching
frequency is limited within a specific band to achieve the best response to the distorted
grid current at the PCC [58]. However, there are some shortcomings of FBC, as reported
in [56–58], and some of the most recent state-of-the-art achievements in the TSCC strategy
are discussed in the next subsection.

2.4. Summary of the Most Recent State-of-the-Art Achievements in TSCC Strategy

Recent achievements in [59,60] showed the robustness of PPC’s ability to process a
portion of the individual battery’s charging power. This strategy ensures a dependent
relationship between the partial voltage (VP) processed and FCS output current by adjusting
the closed-loop dynamic regulation [61,62] to aid the injection of the required current during
FCS operation at the unitary power factor [63,64]. The recent contributions in [65,66] for
MBC showed its superiority over other conventional techniques in terms of its ability
to transform the source phases’ current or voltage directly, as opposed to the stationary
frame’s current or voltage pattern in FCS [67,68]. This strategy provides control robustness
and rejection of the matched voltage disturbance at the PCC during FCS operation, through
the voltage feedback loop [69,70]. In the FBC development, the reports in [57,71] presented
a new approach for harmonics reduction, circulating current reduction and reactive power
regulation. This strategy incorporates the DSOGI-FLL algorithm to ensure voltage stability
at the PCC during FCS operation [72,73]. Table 1 presents a comparison of the contributions
for and drawbacks of TSCC techniques for FCS from the literature. Despite the recent
reported contributions for the TSCC strategy in [23,59], SSC control techniques offer a more
robust strategy, and this will be discussed in Section 3.

Table 1. Comparison of the most recent trends in TSCC techniques FCS.

No. Ref. Strategy Algorithm
Complexity Contribution Drawbacks

1 [60,63] PPC Very high
Single-voltage feedback control

in the DC mode; high power
decoupling ability.

Major problems of harmonic
distortion losses, longer
charging time and slow

transient response.

2 [61,64] PPC High

Cascade control structure for
battery current, voltage

regulation and high output
voltage from low-input voltage

source in FCS control.

Efficiency reduces significantly
with higher ratings;

FCS above 50 KW and slow
dynamics response.

3 [65,66] MBC Simple Highly adaptable to parameter
variation in FCS operation.

Not suitable for multiple FCS
operation; switching and power

losses problem.

4 [67,68] MBC High
Reduces switching losses;
robustness against voltage

disturbance.

Frequency variation, power
exchange instability problem;
shows negative incremental

impedance at constant EV load.

5 [72,73] FBC Very High
Reduces circulating current and
harmonics; aids reactive power

and voltage regulation.

Frequency fluctuation and
instability problem at higher
FCS capacity above 50 KW.

3. SSC Grid Stability Improvement Techniques

This control strategy is deployed in the single stage converter of the FCS [23,44]. This
approach uses only a rectifier for the desired output voltage [57,74]. This strategy is used
where control simplicity and component count reduction are desired [59,74]. It traditionally
allows a mixture of either feedforward, feedback, direct power or current control strategy,
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which regulates the grid-side instantaneous current and voltage using a single rectifier [75].
The alternating-current-based control technique is discussed in the next subsection.

3.1. Alternating-Current-Based Control (ACBC) Technique

One of the examples of SSC control techniques is shown in Figure 11. This technique
consists of a rectifying converter [74] that is implemented to mimic the virtual synchronous
machine’s (VSM) behavior [76]. However, the report in [77] proposed an interleaved
switching strategy for rectifier control using the PI controller for current control to ensure
the reduction in the magnitude of the ripple current injection. This strategy achieved a
harmonic distortion reduction in grid-side currents and had a ripple-free DC-side current
without sacrificing the efficiency of the FCS [77,78]. Conversely, the report in [22] proposed
the DC-side voltage integration with time filtering of the instantaneous value of current
control for grid-side harmonic cancellation at the PCC. The report in [20] proposed an
independent single control variable of the grid sinusoidal current waveforms for injected
power and voltage regulation at the PCC. This was achieved by extracting the grid phase
angle using the dq transformation of input voltages and the output DC voltage tracking
control strategy [79].
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major drawback of a slow response was observed in [74,78] under increased EV loads, but 
this shortcoming was suggested to be due to the PI controller [74–76]. In the case of VSM, 
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to achieve a margin of stability in a weak grid scenario via the virtual shaft angle with 
frequency adaptation, and to update the filter coefficient of synchronous frequency for 
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Figure 11. Typical ACBC schematic control diagram [20–22]. Note: * is the generated signal from the
PI controller.

In a related development, the authors in [78] presented a different control approach
for DC-link voltage and ripple current cancellation for the rectifier DC output. This control
strategy was able to maintain the soft switching of both AC-side and DC-side switches
across the voltage grid cycle at the PCC for different load conditions [75,78]. However,
a major drawback of a slow response was observed in [74,78] under increased EV loads,
but this shortcoming was suggested to be due to the PI controller [74–76]. In the case of
VSM, as shown in Figure 12, where it is deployed to mimic a VSM’s performance, it offers
a controlled power factor and stabilized supply frequency irrespective of changes at the
PCC [80]. This control strategy ensures frequency and power control by using the virtual
amplitude compensator (VAC) [81]. This approach is often deployed with a PI controller
to achieve a margin of stability in a weak grid scenario via the virtual shaft angle with
frequency adaptation, and to update the filter coefficient of synchronous frequency for
frequency regulation at the PCC [82].



Energies 2023, 16, 3956 12 of 29Energies 2023, 16, x FOR PEER REVIEW 12 of 30 
 

 

 
Figure 12. Typical ACBC schematic diagram with VSM diagram [76,82]. Note: * is the reference 
value. 

The VSM control strategy can also be implemented through other approaches, such 
as the line impedance approach [83]. The line impedance approach helps to reshape the 
quadrature axis with positive resistance in the lower frequency band to ensure regulated 
frequency at the PCC [82,84]. However, it must be applied by feedforwarding both the 
direct and quadrature axes’ grid voltages with respect to the reference current [84]. Addi-
tionally, the tracking of zero steady-state errors and the damping of the torsion oscillation 
of the system must be achieved at a predetermined frequency [83,84]. In addition, the vir-
tual flux control (VFC) strategy was used in [85] for direct power control and input voltage 
source estimation for a three-phase-based FCS to regulate line current harmonics, the DC-
link voltage output, and the power factor through the control of the instantaneous active 
power and the reactive power at the input [85]. Additionally, the authors in [86] presented 
the virtual harmonic impedance (VHI) strategy to mitigate spikes in switching harmonics 
and voltage. This strategy implements a current controller in the rectification stage of the 
FCS to avoid power losses, while exhibiting the behavior of a real impedance, as shown 
in Figure 13 [87]. It creates an equal output impedance to resistance and inductance 
[88,89]. In this case, the virtual harmonic impedance, (Z (s)), is the sum of virtual har-
monic resistance and virtual inductance [89]: E(s) is the input and i (s) is the output 
current parameter, while P(s) is the transfer function and Z  is virtual harmonic imped-
ance [87]. Despite the power factor improvement, direct power, and frequency control in 
this SSC strategy, it presents some very serious issues related to power losses and fre-
quency fluctuation, as reported in [77,87], during multiple FCS operations at the PCC, and 
this call for further research. Some of the most recent achievements and contributions in 
SSC control techniques are summarized in the next subsection. 

Figure 12. Typical ACBC schematic diagram with VSM diagram [76,82]. Note: * is the reference value.

The VSM control strategy can also be implemented through other approaches, such
as the line impedance approach [83]. The line impedance approach helps to reshape the
quadrature axis with positive resistance in the lower frequency band to ensure regulated
frequency at the PCC [82,84]. However, it must be applied by feedforwarding both the direct
and quadrature axes’ grid voltages with respect to the reference current [84]. Additionally,
the tracking of zero steady-state errors and the damping of the torsion oscillation of the
system must be achieved at a predetermined frequency [83,84]. In addition, the virtual flux
control (VFC) strategy was used in [85] for direct power control and input voltage source
estimation for a three-phase-based FCS to regulate line current harmonics, the DC-link
voltage output, and the power factor through the control of the instantaneous active power
and the reactive power at the input [85]. Additionally, the authors in [86] presented the
virtual harmonic impedance (VHI) strategy to mitigate spikes in switching harmonics and
voltage. This strategy implements a current controller in the rectification stage of the FCS
to avoid power losses, while exhibiting the behavior of a real impedance, as shown in
Figure 13 [87]. It creates an equal output impedance to resistance and inductance [88,89]. In
this case, the virtual harmonic impedance, (ZV(s)), is the sum of virtual harmonic resistance
and virtual inductance [89]: E(s) is the input and io(s) is the output current parameter,
while P(s) is the transfer function and ZV is virtual harmonic impedance [87]. Despite the
power factor improvement, direct power, and frequency control in this SSC strategy, it
presents some very serious issues related to power losses and frequency fluctuation, as
reported in [77,87], during multiple FCS operations at the PCC, and this call for further
research. Some of the most recent achievements and contributions in SSC control techniques
are summarized in the next subsection.
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3.2. Summary of the Most Recent State-of-the-Art Achievements in SSC Strategy

The most recent approaches in the ACBC strategy were presented in [80,90]. This
strategy allows for virtual amplitude compensation (VAC) at the rectification stage of
the FSC [91,92]. In this case, the voltage amplitude was maintained within a standard
of allowable margin by the VSM controller to fast-track power control of the EV battery
charging process [93,94]. It ensured that reactive power flowed towards the grid in such
a way that the amplitude of the reference current vector was adaptable to the FCS’ power
rating regardless of the grid condition [80,95]. Similarly, [86,89] presented the concept of
virtually varying the effective line impedance at the harmonic frequency in such a way
that the influence of mismatched line impedance on nonlinear FCS load distribution
was reduced [96,97]. This strategy avoids losses, while mimicking the behavior of real
impedance [87,88]. Additionally, the latest approach in [98] proposed the implementation
of the flux compensation strategy at the rectification stage of the FCS through direct
power control [98,99]. This approach helps to regulate line current harmonics, power
factor and DC-link voltage by controlling instantaneous active power and reactive power
input [85,100]. This strategy also allows for the synchronization of the voltage of the FCS
rectifier with the voltage condition at the PCC [101].

A comparison of the various contributions for and drawbacks of SSC control tech-
niques from the literature is shown in Table 2. A detailed highlight of the issues with and
various limitations of TSCC techniques for rectifier control for FCS stability is discussed in
Section 4.

Table 2. Comparison of the most recent trends in SSC techniques for FCS.

No. Ref. VSM
Technique Strategy Contribution Drawbacks Control

Complexity

1 [90]

Synchronous
generator

(SG)-based
model

VAC-PI

Accurately simulates
electromagnetic

characteristics of SG and
requires no frequency

derivative
synchronization.

Possesses weak
resistance to interference
due to voltage open-loop

control and numerical
instability issues.

Very high

2 [80,91] Swing
equation-based VAC-PI

Provides frequency
adaptability to sudden
changes in load profile.

Excitation control issues;
prone to synchronous

resonance; weak stability
during multiple FCS

operations.

Simple

3 [86,89] Droop-based
technique VHI-PI

Adaptable to changes in
single FCS load and
enhances stability

of system.

Power sharing accuracy
depends on rectifier

output and line
impedance.

Simple

4 [88]
Frequency–

power
response-based

VHI-PI

Provides configurable
output impedance and

highly suitable for weak
grid operation.

Stability margins are
reduced with higher

values of virtual
resistance and it is hard
to regulate dynamics.

High
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Table 2. Cont.

No. Ref. VSM
Technique Strategy Contribution Drawbacks Control

Complexity

5 [98,99]
Frequency–

power
response-based

VFC-PI
Provides fast response

and frequency support in
single FCS load.

Drift and saturation
effect due to DC

offset in the
integrated signals

lag voltage by
90◦ phase shift.

Simple

6 Proposed Droop-based
SOC technique VSM-SOC

Adaptability to EV
battery SOC. Fast
transient response.
Active and reactive
power decoupling.

Frequency and voltage
regulation at PCC.

Adaptable to SOC charge
and discharge limit
condition. It allows

current
limiting capability.

NIL Simple

4. Issues with TSCC Techniques for Rectifier Control for FCS Stability

The issues with the TSCC strategy arise from the approaches of constant voltage
charging and constant current charging [39,102]. Constant voltage charging allows the
charger’s entire current to flow into the EV battery until the power supply meets the
pre-set voltage value [102]. In contrast, the constant current charging approach adjusts the
output voltage of the FCS with the EV battery to keep the current constant, to prevent an
overcurrent charging condition [24]. The major drawbacks of using the PI controller are
maximum deviation, a longer response time, and a longer oscillation period [39] whenever
the EV load increases at the FCS. The PR controller is often deployed at the rectification
stage of the FCS [103] in order to eliminate the steady-state error at the chosen resonant
frequency with the generated infinite gain [39]. This controller only allows the filtering of
low-order harmonics by choosing the right frequency at the rated value [104]. The only
exception is when the PR controller is applied in the DC-to-AC stage in the bidirectional
converter for the vehicle-to-grid (V2G) application of the FCS, because of its ability to
handle the power factor angle and grid current control.

Despite this advantage of the PR controller’s ability to effectively reduce the current
ripple at twice the line frequency [105], the reports in [105,106] showed that the stability
of the PR controller depends on the resonant coefficient, the cut-off frequency and the
proportional coefficient. Therefore, the various issues associated with TSCC techniques,
such as the PPC technique, are discussed in the next subsections.

4.1. Issues with PPC Technique

A major defect reported for the PPC technique is the unbalanced series of power flow
and voltage level control between the source and the EV load [107]. The static voltage gain
has a direct impact on the PPC’s processed power ratio, as explained in [107]. Therefore, the
PPC strategy may not be suitable when there is a significant step-up or step-down between
the source voltage and the FCS [23]. In addition, the application of isolated converters for
the PPC approach is constrained by reactive power control issues [46]. On the other hand,
in the non-isolated PPC structure, the converter power injected fundamentally decreased as
the voltage gain approached unitary, due to the absence of the isolation barrier, as discussed
in [108]. There were reported issues of high switching losses, noise, durability issues and
a decrease in efficiency as the load increased at the PCC, possibly due to the absence of
galvanic isolation between the source and the FCS, which is a major requirement for the
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FCS application [36]. This is because it is difficult for the PPC to eliminate the effects of
common-mode voltage differences created by ground loops [46]. This ground loop problem
causes unwanted current to flow between the rectification stage and the DC-to-DC stage
during FCS power exchange [108].

Additionally, the DB controller has been reported to exhibit an oscillating output when
used for the PPC approach [108,109]. The issue of steady-state offset due to its strong
sensitivity to model parameters and measurement noise is a major limitation, as stated
in [109]. Therefore, issues of maximum deviation, narrow bandwidth and longer response
times required to unwind the error signal in most conventional controllers are limitations
worthy of mention, as observed in [108,110].

PPC parameter performances are presented in Table 3. The investigations conducted
in [23,45,46,59,62,111] indicated converter-side control as the major strategy for the PPC
architecture, as shown in Table 3. The authors in [23,45] deployed the DB controller, while
the authors in [46,59,62] used the PI controller. The authors in [23,45,62] concentrated their
efforts on voltage and current control, unlike the authors in [46,59,111], whose interest was
only in current control. There were no estimated values of power factor (PF) or current
total harmonic distortion (CTHD) in [46] to justify the 66.6% efficiency obtained, as shown
in Table 3. In addition, there were no reported CTHD values for the works carried out
in [23,46,111], but the CTHD values for [45,59,62] were obtained as 4.62%, 8.32%, and
7.527%, respectively.

Table 3. Parameter performances of PPC deployed by previous researchers for improving grid
stability in EV FCS.

No. Refs. FCSR
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The PF values obtained in [23,111] were 0.94 and 0.93, respectively. Additionally, the
authors in [23,45,59,62,111] achieved power factors of 4.94%, 0.91%, 0.97%, 0.89%, and 0.93%,
respectively, with efficiency values of 95.5%, 99.62%, 98.77%, and 99.5% achieved in [23,59,62,111],
respectively. Despite claims of high efficiency by the authors in [23,59,62,111], their CTHD
values were quite above the recommended standard in IEEE Std. 519, except in [45], where
the PPC model improved (IM). The reported grid impact in [23,59,62] agreed that the PPC
models were unstable under multiple EV loads. The PPC strategy basically allowed for the
improvement of FCS efficiency, as observed in the values obtained in [23,59,62], especially
under a single EV load. However, PPC may not be suitable if there is a significant variation
in the voltage at the PCC or in a weak grid scenario during multiple FCS operations [46].

4.2. Issues with the MBC Technique

The MBC technique is characterized by grid voltage sag issues [112], especially in the
multiple-EV FCS scenario, as presented in [112]. Furthermore, it is prone to excessive input
current at considerably higher duty cycles [113] due to the converter’s circuit configuration.
The report in [114] suggested that primary switches’ high voltage spikes, occasioned by
leakage inductance in the transformer, caused voltage and frequency fluctuations at the
PCC. Similarly, there is a tendency for complications of mismatched line impedance with
higher-capacity EV loads, as reported in [50]. This is because of the unwanted current in
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the FCS network in the PI controller, which focuses on the zero-sequence circulating current
control architecture [115]. The PID controller was used in [116,117] for improving the
harmonic effect and power factor in the rectification stage of FCS control. The closed-loop
control strategy in the DC-to-DC converter stage for the feedback signal helps to make
adjustments in the output voltage for a fast-charging response. The report in [117] observed
some drawbacks of the PID controller, which were a narrow range of stability, a long
settling time at the steady state and the amplification of high-frequency noise.

The parameter performances of MBC are shown in Table 4. The investigation con-
ducted in [20] used the PID controller for inner-loop control and outer-loop control, while
the authors in [52,112,114] used the PI controller for inner-loop control and the authors
in [50] used the PR controller for inner-loop control and outer-loop control, as given in
Table 4. The authors in [20,50,52,112,114] achieved PF values of 0.987, 0.990, 1.0,0.88, and
0.924, respectively, with CTHD values achieved in [20,50,52,114] as 4.8%, 3.7%, 3.4%, and
50.67%, respectively. There was no available CTHD value in [112] nor efficiency values
in [52,112], but the efficiency values in [20,50,114] were 94.5%, 95.3%, and 94.3%, respec-
tively. In [114], the CTHD value was above the recommended standard in IEEE Std. 519. It
is imperative to note, considering the authors in [50,114], that regardless of their impres-
sive CTHD values, these strategies were acknowledged to be unstable under multiple EV
loads by their respective authors. Furthermore, the report in [52] showed an improved
controller performance with a unitary power factor, but this performance requires further
investigation due to the lack of information regarding the efficiency value. MBC offers the
FCS controller the strategy of mitigating external disruptions and unforeseen grid voltage
adjustments by providing a leading power factor, as observed in [50,52]. However, the PF
and CTHD values obtained in [112,114] showed that MBC was unable to withstand the
complication of unmatched impedance in a higher-capacity FCS due to the challenges of
complex control circuitry in MBC, as reported in [112,114].

Table 4. Parameter performances of MBC deployed by previous researchers for improving grid
stability in EV FCS.

No. Refs. FCSR

Energies 2023, 16, x FOR PEER REVIEW 15 of 30 
 

 

decreased as the voltage gain approached unitary, due to the absence of the isolation bar-
rier, as discussed in [108]. There were reported issues of high switching losses, noise, du-
rability issues and a decrease in efficiency as the load increased at the PCC, possibly due 
to the absence of galvanic isolation between the source and the FCS, which is a major 
requirement for the FCS application [36]. This is because it is difficult for the PPC to elim-
inate the effects of common-mode voltage differences created by ground loops [46]. This 
ground loop problem causes unwanted current to flow between the rectification stage and 
the DC-to-DC stage during FCS power exchange [108]. 

Additionally, the DB controller has been reported to exhibit an oscillating output 
when used for the PPC approach [108,109]. The issue of steady-state offset due to its strong 
sensitivity to model parameters and measurement noise is a major limitation, as stated in 
[109]. Therefore, issues of maximum deviation, narrow bandwidth and longer response 
times required to unwind the error signal in most conventional controllers are limitations 
worthy of mention, as observed in [108,110]. 

PPC parameter performances are presented in Table 3. The investigations conducted in 
[23,45,46,59,62,111] indicated converter-side control as the major strategy for the PPC ar-
chitecture, as shown in Table 3. The authors in [23,45] deployed the DB controller, while 
the authors in [46,59,62] used the PI controller. The authors in [23,45,62] concentrated their 
efforts on voltage and current control, unlike the authors in [46,59,111], whose interest 
was only in current control. There were no estimated values of power factor (PF) or current 
total harmonic distortion (CTHD) in [46] to justify the 66.6% efficiency obtained, as shown 
in Table 3. In addition, there were no reported CTHD values for the works carried out in 
[23,46,111], but the CTHD values for [45,59,62] were obtained as 4.62%, 8.32%, and 7.527%, 
respectively.  

The PF values obtained in [23,111] were 0.94 and 0.93, respectively. Additionally, the 
authors in [23,45,59,62,111] achieved power factors of 4.94%, 0.91%, 0.97%, 0.89%, and 
0.93%, respectively, with efficiency values of 95.5%, 99.62%, 98.77%, and 99.5% achieved 
in [23,59,62,111], respectively. Despite claims of high efficiency by the authors in 
[23,59,62,111], their CTHD values were quite above the recommended standard in IEEE 
Std. 519, except in [45], where the PPC model improved (IM). The reported grid impact in 
[23,59,62] agreed that the PPC models were unstable under multiple EV loads. The PPC 
strategy basically allowed for the improvement of FCS efficiency, as observed in the values 
obtained in [23,59,62], especially under a single EV load. However, PPC may not be suit-
able if there is a significant variation in the voltage at the PCC or in a weak grid scenario 
during multiple FCS operations [46].  

 
Ղ 

Table 3. Parameter performances of PPC deployed by previous researchers for improving grid sta-
bility in EV FCS.  

No. Refs. FCSR  CC VC PC SC CTHD SF PF GI MT 
1 [23] 3 Φ 170 kW 95.5%  DB DB I,V CS --- 50 kHz 0.94  --- PSFM 
2 [45] 3 Φ 60 kW --- DB DB I,V  CS 4.62%  20 kHz  0.91  IM PSFM 
3 [46] 3 Φ 150 kW  66.6% PI PI I CS --- 20 kHz  --- --- PSM 
4  [59]  3 Φ 90 kW  99.62%  PI --- I CS 8.32%  10 kHz  0.97  UUML PWM 
5  [62] 3 Φ 70 kW 98.77%  PI PI I,V  CS  7.527%  10 kHz  0.89  UUML PWM 
6  [111] 3 Φ 130 kW 99.5%  PI --- I CS --- 100 kHz  0.93  UUML PWM 

Notes: FCSR: Fast-charging station rating, ղ: efficiency, CC: Current control, VC: Voltage control, 
PC: Parameter control, SC: Stability control, CS: Converter side, CTHD: Current total harmonic dis-
tortion, SF: Switching frequency, PF: Power factor GI: Grid impact, MT: Modulation technique, PI: 
Proportional-integral, PSM: Phase-shift modulation, PWM: Pulse-width modulation, PSFM: Phase 
shift and frequency modulation, DB: Deadbeat, I: Current, V: Voltage, ----: Data not available, 
UUML: Unstable under multiple EV load, IM: Improved, (η) = ef iciency =  ×  × . 

  

SC PC IC OC GC CTHD PF SF MT GI

1 [20] 3 Φ
50 kW 94.5% CS I, V PID PID 10 A 4.80% 0.987 75 kHz PWM —

2 [50] 3 Φ
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trol, OC: Outer control, GC: Grid current, CTHD: Current total harmonic distortion, PF: Power factor, SF: Switching
frequency, MT: Modulation technique, GI: Grid impact, GS: Grid side, CS: Converter side, FFC: Feed forward
compensator, I: Current, V: Voltage, PI: proportional-integral, PR: Proportional-resonance, PID: Proportional
integral derivative, PWM: Pulse-width modulation, —: Data Not available, IM: Improved, UUML: Unstable under
multiple EV load, FDDC: Fast dynamic direct current, (η) = efficiency = Vc×Ic

Vs×IS
.

4.3. Issues with FBC Technique

For the FBC approach to TSCC, this strategy was constrained at a lower-frequency
switching range [118]. There was a reported issue of synchronism between the converter
units due to the triplen harmonics created in the units as a result of variations in the grid
voltage, as shown in some of the values obtained for CTHD in [119]. The strategy may fail
to provide the regulation of voltage and frequency to the EV load at the PCC because of
the complexity of the controller’s structure [118]. Additionally, the report in [118] showed
that the effectiveness of active damping, the repetitive controller, and multiple resonant
controllers is not guaranteed as a viable option for filter-based control during multiple
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fast-charging operations [52]. Admittedly, the challenge of finding the exact input signal,
which must be applied to the system to achieve a steady-state output within the smallest
number of time steps, is a limitation of this strategy, especially when deployed with the PI
controller [19]. Moreover, the application of the DB controller for the FBC strategy in [120]
achieved voltage balancing in the rectification stage, obtaining zero current error at the
sampling instant when tracking the signal of the desired phase currents by generating the
corresponding switching signals for the rectifier [120]. Therefore, the effect of the time delay
must be considered in the DC-to-DC converter of the FCS in the current-mode closed-loop
switching strategy to give a high control-output signal at a finite settling time [109].

The FBC’s overall parameter performances are tabulated in Table 5. The table showed
that the PI controller was deployed in [95,121] for current control and voltage control,
and the DB controller was used in [19] for current control and voltage control. The PID
controller was deployed in [119] for current control, voltage control, and power control,
and the PR controller was used in [122] for current control and voltage control. The authors
in [19,95,119,121,122] were able to achieve PF values of 0.7, 1.0, 0.828, 1.0, and 0.9, with
corresponding values of CTHD of 4.68%, 2.34%, 24.82%, 14.6%, and 4.8%, respectively. It
is important to note that the authors in [95,121] achieved unitary PF values, which could
be attributed to the grid support offered by the double close loop control in [95] and the
energy support system (ESS) in [121]. The CTHD and PF values in [119] were quite outside
the recommended values of IEEE Std. 519 of ≤5% for CTHD and ≥0.9 of power factor.

Table 5. Parameter performances of FBC deployed by previous researchers for improving grid
stability in EV FCS.

No. Refs. FCSR FT CC VC PC

Energies 2023, 16, x FOR PEER REVIEW 15 of 30 
 

 

decreased as the voltage gain approached unitary, due to the absence of the isolation bar-
rier, as discussed in [108]. There were reported issues of high switching losses, noise, du-
rability issues and a decrease in efficiency as the load increased at the PCC, possibly due 
to the absence of galvanic isolation between the source and the FCS, which is a major 
requirement for the FCS application [36]. This is because it is difficult for the PPC to elim-
inate the effects of common-mode voltage differences created by ground loops [46]. This 
ground loop problem causes unwanted current to flow between the rectification stage and 
the DC-to-DC stage during FCS power exchange [108]. 

Additionally, the DB controller has been reported to exhibit an oscillating output 
when used for the PPC approach [108,109]. The issue of steady-state offset due to its strong 
sensitivity to model parameters and measurement noise is a major limitation, as stated in 
[109]. Therefore, issues of maximum deviation, narrow bandwidth and longer response 
times required to unwind the error signal in most conventional controllers are limitations 
worthy of mention, as observed in [108,110]. 

PPC parameter performances are presented in Table 3. The investigations conducted in 
[23,45,46,59,62,111] indicated converter-side control as the major strategy for the PPC ar-
chitecture, as shown in Table 3. The authors in [23,45] deployed the DB controller, while 
the authors in [46,59,62] used the PI controller. The authors in [23,45,62] concentrated their 
efforts on voltage and current control, unlike the authors in [46,59,111], whose interest 
was only in current control. There were no estimated values of power factor (PF) or current 
total harmonic distortion (CTHD) in [46] to justify the 66.6% efficiency obtained, as shown 
in Table 3. In addition, there were no reported CTHD values for the works carried out in 
[23,46,111], but the CTHD values for [45,59,62] were obtained as 4.62%, 8.32%, and 7.527%, 
respectively.  

The PF values obtained in [23,111] were 0.94 and 0.93, respectively. Additionally, the 
authors in [23,45,59,62,111] achieved power factors of 4.94%, 0.91%, 0.97%, 0.89%, and 
0.93%, respectively, with efficiency values of 95.5%, 99.62%, 98.77%, and 99.5% achieved 
in [23,59,62,111], respectively. Despite claims of high efficiency by the authors in 
[23,59,62,111], their CTHD values were quite above the recommended standard in IEEE 
Std. 519, except in [45], where the PPC model improved (IM). The reported grid impact in 
[23,59,62] agreed that the PPC models were unstable under multiple EV loads. The PPC 
strategy basically allowed for the improvement of FCS efficiency, as observed in the values 
obtained in [23,59,62], especially under a single EV load. However, PPC may not be suit-
able if there is a significant variation in the voltage at the PCC or in a weak grid scenario 
during multiple FCS operations [46].  

 
Ղ 

Table 3. Parameter performances of PPC deployed by previous researchers for improving grid sta-
bility in EV FCS.  

No. Refs. FCSR  CC VC PC SC CTHD SF PF GI MT 
1 [23] 3 Φ 170 kW 95.5%  DB DB I,V CS --- 50 kHz 0.94  --- PSFM 
2 [45] 3 Φ 60 kW --- DB DB I,V  CS 4.62%  20 kHz  0.91  IM PSFM 
3 [46] 3 Φ 150 kW  66.6% PI PI I CS --- 20 kHz  --- --- PSM 
4  [59]  3 Φ 90 kW  99.62%  PI --- I CS 8.32%  10 kHz  0.97  UUML PWM 
5  [62] 3 Φ 70 kW 98.77%  PI PI I,V  CS  7.527%  10 kHz  0.89  UUML PWM 
6  [111] 3 Φ 130 kW 99.5%  PI --- I CS --- 100 kHz  0.93  UUML PWM 

Notes: FCSR: Fast-charging station rating, ղ: efficiency, CC: Current control, VC: Voltage control, 
PC: Parameter control, SC: Stability control, CS: Converter side, CTHD: Current total harmonic dis-
tortion, SF: Switching frequency, PF: Power factor GI: Grid impact, MT: Modulation technique, PI: 
Proportional-integral, PSM: Phase-shift modulation, PWM: Pulse-width modulation, PSFM: Phase 
shift and frequency modulation, DB: Deadbeat, I: Current, V: Voltage, ----: Data not available, 
UUML: Unstable under multiple EV load, IM: Improved, (η) = ef iciency =  ×  × . 

  

GS PF CTHD MT GC SF GI

1 [19] 3 Φ
50 kW RL DB DB — 98.4% REB 0.7 4.68% NM 36.5 A 50 kHz UUML

2 [95] 3 Φ
100 kW L PI — PI 83.0% * DCLC 1.0 2.34% SPWM — 10 kHz IM

3 [119] 3 Φ
105 kW ABPF PID PID PID 95% — 0.828 24.82% PWM 37.6 A 50 kHz UUML

4 [121] 3 Φ
50 kW RL PI PI — — ESS 1.0 14.6% SVM 14.8 A — UUML

5 [122] 3 Φ
50 kW RLC PR PR — — REB 0.9 4.8% PWM 16.7 A 50 kHz IM

Notes: FCSR: Fast-charging station rating, FT: Filter type, CC: Current control, VC: Voltage control, PC: Power con-
trol, η: Efficiency, GS: grid support, PF: Power factor, CTHD: Current total harmonic distortion, MT: Modulation
technique, GC: Grid current, SF: switching frequency, GI: Grid impact, RL: Resistor-inductor, L: Inductor, *: esti-
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ABPF: Active bandpass filter, SVM: Space vector modulation, PI: proportional-integral, PID: Proportional-integral-
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reference frame technique, REB: Renewable-energy-based, —: Data not available, ESS: Energy support system,
UUML: Unstable under multiple EV loads, IM: Improved, (η) = efficiency = Vc×Ic

Vs×IS
.

The grid impact examined by the authors in [19,119,121] proved their models’ non-
stability under multiple EV loads. The improvement observed in [121] was achieved
through the compensation of DC-link voltage variation caused by changes in the grid
voltage variation at the PCC in the rectification stage. However, during numerous FCS
operations, the FBC’s complex structural design hinders the controller’s ability to react to
lower-frequency switching, and this presents challenges for the controller to respond to
any sudden changes in grid voltage at the PCC [95].

5. Issues with SSC Control Techniques for Rectifier Control for FCS Stability

SSC control techniques are characterized by issues of frequency fluctuation, voltage
sag, and inner control loop disturbances [77]. There are reports of high grid current
and switching losses whenever the system’s switching frequency is increased [77]. The
challenge of slow current feedback emanating from the decrease in output voltage as EV
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load increases at the PCC is demonstrated in [22]. The SSC control’s application with VSM
techniques has shown the limitation of the SSC control acting as a voltage source under a
nonlinear EV load with active-power balancing issues [74,86]. The various issues with the
ACBC technique of SSC control are discussed in the subsequent subsection.

5.1. Issues with the ACBC Technique

The performance of the VHI strategy often results in harmonic-resistance tracking
issues [123], stability margin issues and grid voltage deterioration at the PCC upon any
slight changes in grid frequency resulting from additional EV loads, as reported in [124].
The application of the VHI approach in the ACBC strategy often drives the quadrature-axis
impedance within the lower-frequency band to cause a decrease in grid current. This
often results from any increase in the grid voltage due to sudden load profile changes for
phase-lock loop (PLL) synchronization [22,83]. The limitation reported in the virtual flux
compensation (VFC) approach for any sudden increase in the FCS load at the PCC was the
corresponding voltage drop at the grid side [82,86]. Additionally, the VHI approach had a
major drawback of susceptibility to frequency disturbance under the weak grid condition,
and it often required extra frequency derivatives with significant control burden [74,82].
This made the VHI act as a voltage source under nonlinear EV load, thereby complicating
and degrading the active power component of the FCS in the stability margin and possibly
causing grid voltage sags [86]. ACBC’s ability to improve grid stability during multiple FCS
operations at the PCC may lead to power and frequency oscillation issues with excessive
under- and over-voltage at the PCC under weak grid conditions [82].

The performance comparison of the ACBC techniques is presented in Table 6. The
observation of Table 6 shows that the authors in [80,83,94,125] used the PI controller for
inner loop current control. The control techniques in [80,85] concentrated on current and
frequency as the control parameters, while [83,125] controlled the model using current
and voltage as the control parameters, whereas the report in [94] laid more emphasis on
frequency as the control parameter. The authors in [80,83,85,94] achieved the unitary value
of PF, while [125] achieved 0.9999 for PF. CTHD values of 5.0%, 2.9%, 12.3%, and 1.394%
were obtained in [80,85,94,125], respectively, as shown in Table 6. The CTHD value in [83]
was not reported. The authors in [80,83,85,94,125] obtained efficiency values of 85.5%,
90.1%, 87.3%, 74.9%, and 95.7%, respectively. It is imperative to note that the grid impact
in [80] showed that the model was only stable for a single EV load (SFSL), whereas the
reports in [85,94] speculated that grid impact improved despite achieving CTHD values
above the recommended value of ≤5% for IEEE Std. 519 [94].

Table 6. Parameter performances of ACBC deployed by previous researchers for improving grid
stability in EV FCS.

No. Refs. FCSR GST η PC IC OC GI CTHD GC PF MT SF

1 [80] 1 Φ 300 kW DCC 85.5% * I, F PI PI SFSL 5.0% 36 A 1.0 ZSI I10 KHz

2 [83] 1 Φ 60 kW VHI 90.1% * I, V PI PI — — 5 A 1.0 PWM 10 kHz

3 [85] 3 Φ 100 kW VFC 87.3% * I, F — — IM 2.9% 29 A 1.0 PWM 10 kHz

4 [94] 3 Φ 100 kW VHI 74.9% * F PI PI IM 12.3% 513 A 1.0 PWM —

5 [125] 3 Φ 100 kW FFC 95.7% I, V PI PI UUML 1.394% — 0.9999 PSM 50 kHz

Notes: FCSR: Fast charging station rating, GST: Grid stability technique, η: Efficiency, PC: Parameter control, IC:
Inner control, OC: Outer control, GI: Grid impact, CTHD: Current total harmonic distortion, GC: Grid current, PF:
Power factor, MT: Modulation technique, SF: Switching frequency, I: Current, V: Voltage, F: Frequency, —: Data
not available, UUML: Unstable under multiple, EV load, IM: Improved, PSM: Phase-shift modulation, VHI:
Virtual harmonic impedance, ZSI: Zero-sequence-injection, SFSL: Stable for single EV load, PWM: Pulse-width
modulation, DCC: Direct current control, FFC: Feedforward compensation, PI: Proportional-integral, VFC: Virtual
flux compensation, *: estimated value (η) = efficiency = Vc×Ic

Vs×IS
.
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5.2. Performance Evaluation of TSCC and SSC Control Techniques

Even though satisfactory performance has been reported for single-stage converter
(SSC) control techniques regarding grid instability reduction [14], this control strategy has
shown a major drawback of slow current feedback when slight changes in grid frequency oc-
cur [126]. It shows poor disturbance-rejection ability and slow responses to abrupt changes
to grid voltage variation when additional FCS loads are added, as reported in [123,126].
In addition, there are reported cases of dead-times and modulation delays, which result
in high grid currents during fast-charging operations [126]. There was no international
rule-based order for grid stability convention for estimating the exact minimum or the
least requirement for a particular improvement technique in the generality of the research
literature under examination. Moreover, the general representation given by the reviewed
literature commentary is of grid stability being improved, enhanced or stable for a single
EV load and, in some cases, unstable under multiple EV loads. Going forward, in view of
the power factor and CTHD as the standard parameters, authors have concluded that the
SSC control technique with frequency control and VHI control using the PI controller is
adjudged to achieve the maximum grid stability value in the control loop architecture, as
observed in the literature.

Regrettably, this conclusion is hasty and fails to address the PI controller’s major
inadequacies, as shown in Table 6. The relatively high performances recorded in [80–83]
were constrained and degraded by PI defects, which were not limited to higher maximum
deviation. The problems of longer response time and associated frequency oscillation at the
PCC during multiple FCS operations are also worthy of mention, as observed in [25,115,122].
The authors’ inability in [80,83] to estimate the efficiency achieved in the FCS scenario,
as well as grid impact and CTHD, requires further research on the suitability of these
techniques in FCS operation.

Therefore, in consideration of the comparison established in Tables 1–6 for TSCC and
SSC control strategies, it is imperative to summarize the various research gaps observed in
the literature that motivated the authors to pursue these studies, as follows:

• Transient switching issues and slow controller dynamic responses during multiple
FCS operations;

• Power exchange instability and frequency fluctuation issues during multiple FCS
operations at the PCC;

• Negative incremental impedance at constant EV loads and harmonic distortion losses
at a higher FCS capacity of above 50 kW at the PCC.

Consequently, the integration of the energy storage system structure in the EV fast-
charging operation represents a dynamic alternative in grid stability purification for achiev-
ing a nominal stability of grid frequency [127]. However, the massive cost implication
and the intermittent nature of the energy storage system’s state of charge require fur-
ther research, as stated in [128]. Despite the redundant power elimination capacity and
the accompanying lower switching frequency demonstrated in [46,62], the EV FCS still
largely culminated in a multiplicative integer in the fundamental frequency of the supplied
power [128]. Contrarily, the performances reported in [23,59,94,119,121] were a reflection
of the disturbance experienced in the singular EV fast-charging scenario, as indicated in the
obtained efficiency and improved power factor values. The dynamism in the EV charging
schematization warrants the vigilant monitoring of the grid frequency component and
total harmonic distortion values for conformity with the IEEE standard [59,89]. The FCS
voltage requirement, power capacity and power factor values during the EV fast-charging
operation are necessary parameters for estimating the efficiency of the FCS. Furthermore,
the need for grid stability improvement examination under the most stringent conditions
calls for double attention [94,119]. Figure 14 presents the relationship between voltage
requirement, efficiency and power capacity that can be achieved for the FCS. It clearly
shows that voltage requirement plays a significant role in increasing the efficiency and
output power of the FCS.
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More importantly, the power factor and CTHD values obtained from the considered
literature for TSCC techniques present some CTHD values quite above the minimum
recommended value, with the corresponding power factor as the recommended standard.
Consequently, there are options for improving these values towards the minimum accept-
able power factor and CTHD values. Relatedly, the values of power factor and CTHD
push the system towards its stability limit [89,119]. This is because of the background
harmonics introduced along the feedforward path whenever the grid voltage is distorted
as a result of multiple-EV fast charging [22], and when coupled with the steady-state error
in the stationary frame, this will have a significant negative impact on the grid when the
controller fails to perform and, in some cases, when increasing the proportional gain is
recommended. This proves TSCC to be unsuitable for multiple EV fast-charging opera-
tions [22,89]. However, some of the most commonly discussed issues in the literature for
grid stability improvement for FCS [89,94–128], as presented in Figure 15, identified the
direction for future FCS controller strategies for grid stability improvement.
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Interestingly, overcoming the various controller challenges under increasing FCS
load at the PCC requires a new idea regarding the VSM with EV battery state-of-charge
integration control, and this is discussed in the next section.

6. Concept of Virtual Synchronous Machine-Based State of Charge Feedback Control

The VSM is a new concept for improving FCS-based technology that can be imple-
mented at the rectification stage of the FCS in order to imitate the functionality of the
conventional synchronous machine [81,129]. Active power and reactive power control,
rapid frequency fluctuation, and VSM’s other functional restrictions have all been studied
by various scholars in the literature [76,82], although the VSM is far more adaptable and
simpler to use than the synchronous machine. In comparison with other conventional
controllers, the VSM controller offers a lot more versatility and a swift response because
its settings may be changed in real time [95]. However, due to the high degree of FCS
penetration in the grid, the rotational inertia of the power grid is decreased [76]. Therefore,
to compensate for frequency fluctuation, as well as for active power and reactive power
balancing, a control strategy is proposed for the future, as shown in Figure 16. Achieving
this VSM control strategy in the FCS requires some modifications and consideration of
the EV battery’s state of charge (SOC) with some VSM equations. The VSM’s mechani-
cal rotating part (

..
θ) and the electromotive force (e) due to rotor movement are given by

Expressions (4) and (5), respectively [76,82]:

..
θ =

1
J
(T e − Tm −Dp

.
θ) (4)

e = Mfif
.
θ〈iabcsin θabc〉 −Mf

dif
dt
〈cos θabc〉 (5)

such that J represents the rotating part’s moment of inertia, Tm represents mechanical
torque, and Te represents electromagnetic torque, which is dependent on rotor current
I and virtual rotor angle θ, where

.
θ is virtual angular speed. Therefore, Te is given in

Expression (6) by [76]:
Te = Mfif〈iabcsin θabc〉 (6)

where Mfif, is field excitation, which is dependent on the generated signal from the grid
voltage parameter. Hence, this strategy also takes into consideration active power (P) and
reactive power (Q) equations, as shown in Expressions (7) and (8), respectively:

P =
.
θMfif〈iabcsin θabc〉 (7)

Q = −
.
θMfif〈iabccos θabc〉 (8)

Recent advancements in SOC estimation have created the leverage for sophisticated
battery management systems for maximized power conversion operations [130]. This is
because the SOC allows the right amount of charge (Y) for the EV battery, preventing
overcharging and discharging (X) of the EV battery [131]. The EV battery capacity (CnT),
current (I) and Coulombic efficiency (ηz) of the EV at the reference SOC value (Zto) at
normal temperature (T) will influence FCS performance [131]. The effect of SOC on the
grid will generate a huge charging power over a longer period of time, and this will cause
a rise in voltage deviation, frequency swings, line loss and peak demand [132]. More
importantly, the improper control of the SOC or a higher initial SOC value will prolong the
charging process [132,133]. It is important to note, in this regard, that an EV battery’s SOC
is vulnerable to the effects of self-discharge, aging and charge and discharge current, which
might impede the balancing of power and voltage of the FCS [131].
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Therefore, the EV FCS controller also depends on the linkage of the interface between
the power converters and the grid system [40,134]. Hence, prolonged the overcharging and
discharging of the EV battery may compromise the SOC of the battery with corresponding
voltage sags and frequency fluctuations at the PCC [135]. The generalized state of charge
(SOCt) with respect to temperature is given in Expression (9) [131–134], and the SOC under
charge and discharge conditions are given in Expression (10) [132,133].

SOCt = Zto +
∫ t

to

ηzi
CnTdt

(9)

SOC =


0
X
Y

∼ X
∼ Y
∼ 1

=


0 ≤ SOC ≤ X
X ≤ SOC ≤ Y
Y < SOC ≤ 1

(10)

where Zto is the reference SOC value at full charge with respect to normal temperature,
CnT is the maximum battery capacity, ηz is Coulombic efficiency, I is battery current and
t is temperature. As is known, X is the discharging battery limit condition and Y is the
charging battery limit condition in the operating state.

The proposed strategy can be adapted to the virtual inertia of the VSM controller in
accordance with the EV battery’s SOC condition by using the current SOC value to decide
the current functioning state of the EV battery to prevent overcharging or overdischarging.
It can provide an adaptation to the system inertia for any transient change in grid frequency,
voltage, and power injection caused by any additional EV loads at the PCC, and help to
minimize the impact of the FCS on the grid. In addition, the torque generated from the
motor can respond to changes in power flowing from the AC source, and with a constant
load the strategy will give a high power factor at the AC source, while also being able to
control the DC voltage [82].

In addressing the identified research gaps in this paper, the authors proposed the
following contributions as regards the proposed strategy, as follows:

1. A droop-based technique with the SOC feedback strategy for adaptable EV battery
charge and discharge limit conditions;

2. An adaptation to the system inertia for the active power and reactive power de-
coupling strategy for any transient changes in grid frequency, voltage, and power
regulation at the PCC for a higher-rated FCS capacity of above 50 kW at the PCC;



Energies 2023, 16, 3956 23 of 29

3. Adaptability to the strategy of the SOC instantaneous functioning state of the EV
battery to aid in the controller’s fast, dynamic and transient response under multiple
FCS operations.

7. Future Studies and Development

In addition to the proposed strategy’s advantages, VSM-based techniques will play
a more superior ancillary control support role in FCS controller design in the near future.
Additionally, the future development of FCS controller algorithms will be channeled
beyond sustaining and preserving frequency, voltage and power exchange consistency
at critical moments during FCS operation. Therefore, the effects of grid instability and
decreased power quality during EV fast-charging operations are precursors to the failure of
centralized control and to standardized VSM-based interface and model implementation.
More importantly, the authors of this paper proposed the following worthy future research
directions in FCS controller design:

• An artificial-intelligence-based VSM controller with harmonic impedance compensa-
tion for inertial and load profile adaptability to the EV FCS charging condition;

• A neural-network-based VSM controller with the amplitude compensation strategy for
inertia improvement and for the management of the EV battery discharge condition.

8. Conclusions

Grid stability improvement techniques in FCS are an emerging control concept for
eliminating the impact of the insensitivity of the state of charge (SOC) of EV batteries
in FCS due to voltage and frequency deviations at the point of common coupling (PCC)
during multiple FCS operations. Consequently, via the proposed control approach, the
FCS controller can provide ancillary support services, guaranteeing grid voltage, frequency,
and power stability at the PCC under multiple FCS operations. In this paper, various
grid stability solutions available in the literature have been analyzed, compared, and
categorized as TSCC or SSC control to show their various types, methods, contributions,
issues, performance evaluation, and drawbacks. Therefore, to highlight the strategies’
main peculiarities, Tables 1–6 have been actuated in terms of the latest contribution and
the efficiency, power factor, and total harmonic distortion (CTHD) values against the
recommended IEEE Std. 519. TSCC techniques are the earliest methods deployed, either
as PPC, MBC, or FBC for the current or voltage control strategy for controlling the EV
battery’s SOC during charging using proportional-integral (PI), proportional-resonant (PR),
deadbeat, or proportional-integral-derivative (PID) controllers, but their performances are
limited due to major drawbacks associated with the TSCC strategy, which include a slow
transient response, high current harmonics, frequency fluctuation, a longer charging time,
and switching losses due to transient switching, to mention a few.

However, there are currently few research studies on SSC control techniques, despite
their superiority in performance and their ability to provide a simple structure, as well
as auxiliary support and inertia support through the virtual synchronous machine (VSM)
strategy. The techniques have some drawbacks, of power decoupling and dynamic response
problems. In due consideration of the reports reviewed in Sections 2 and 3, as well
as Tables 3–6, it is obvious that the smallest value of current total harmonic distortion
(CTHD) and the closest power factor value to unitary were attained when there was
auxiliary support, such as with the VSM, integrated into the FCS controller for grid stability
improvement, unlike when grid stability repercussion was disregarded. Additionally, when
developing a controller for the FCS, the impact of the state of charge with respect to the
instantaneous active power exchange of the EV battery must be carefully taken into account.
Consequently, the authors of this paper proposed and gave an independent hypothesis as a
direction for further research by blending the method of the SSC control technique with the
state-of-charge feedback control strategy to provide frequency adaptation and support to
respond to any disturbances in active power as the battery reaches its SOC voltage limit.
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Therefore, the authors of this paper suggest the SSC control technique of the VSM with the
state-of-charge feedback consideration to give readers a direction for further research.
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