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Abstract

In the European Union, the building sector is one of the largest consumer of energy with about 40% of the final energy con-

sumption. Reducing consumption is, at the same time, a sociological, technological and scientific matter. New methods have to be

devised in order to support building professionals in their effort to optimize designs and to enhance energy performances. Indeed,

the research field related to building modelling and energy performances prediction is very productive, involving various scientific

domains. Among them, one can distinguish physics-related fields, focusing on the resolution of equations simulating building

thermal behaviour and mathematics-related ones, consisting in the implementation of prediction model thanks to machine learning

techniques. This paper proposes a detailed review of these works. First, the approaches based on physical (”white box”) models

are reviewed according three-category classification. Then, we present the main machine learning (”black box”) tools used for

prediction of energy consumption, heating/cooling demand, indoor temperature. Eventually, a third approach called hybrid (”grey

box”) method is introduced, which uses both physical and statistical techniques. The paper covers a wide range of research works,

giving the base principles of each technique and numerous illustrative examples.

Keywords: building modelling; energy consumption; energy performance; building thermal models; machine learning; building

prediction model

1. Introduction

The building sector in the European Union is considered as

the largest consumer of energy with using up to 40% of the

final energy consumption [46]. More specifically, residential

uses represent about 60% of total energy consumption of the

building sector [108, 15]. To evaluate the energy performance

of both residential and tertiary buildings, many parameters are

required: thermal characteristics of the building, ventilation,

passive solar system, indoor/outdoor climatic conditions and

energy end-uses [108]. Considering these influencing factors,

the average energy consumption in European Union raises

to about 200 kWh/m2/year, distributed as shown in Fig (1)

[15, 50].

Thereby, it seems obvious to make significant efforts in

terms of energy savings in building sector. For instance, the

European Union established specific actions by introducing the

EPBD (Energy Performance of Building Directive) dedicated

to the building environmental issue [46]. This directive

suggests to each EU states to target their own objectives. As a

consequence, different projects of passive building emerged in

Germany with PassivHaus, in Switzerland with Minergie and

in France with Effinergie [109, 17].

∗Corresponding author, tel: +33 1 69 08 30 52, e-mail: aure-

lie.foucquier@gmail.com

(a) Residential sector (b) Tertiary sector

Figure 1: Scheme of the energy uses distribution in buildings in residential and

tertiary sector in 2001 [15, 50]

From a practical and scientific point of view, various solu-

tions have been proposed both to increase the energy efficiency

and to reduce greenhouse effects:

• An awareness campaign with the occupants on the envi-

ronmental issue is necessary to reduce end-use energy con-

sumption [16]. Simple actions could decrease significantly

the energy consumption as changing the space heating be-

haviour, unplugging the computer or mobile charger and

unused devices, configuring the computer to hibernate af-

ter a given time of inactivity, avoiding waste of hot water

and many other actions [27].

• A second solution consists in the design of new dwellings

or the refurbishment of existing dwellings with bringing

energy-efficient improvements in agreement with the reg-

ulations given above. For instance, one way is to favour

the exterior insulation and to replace simple glazing win-
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dows by double or triple glazing depending on the expo-

sure of the room. However, the choice of energy-efficiency

improvements is not obvious and the risk is to produce op-

posite effects.

• A third solution is to optimize the use of energetic sys-

tems as heating or cooling load. Indeed, new technologies

give the possibility to improve significantly the energy ef-

ficiency. The integration of renewable energies in these

systems is also quite efficient. For instance, Badescu and

Sicre [14, 13] evaluated the performance of the solar en-

ergy on a passive house in Germany and showed the pos-

sibility to reduce the heating demand to 5-6 kWh/m2/year.

• In addition to the two last proposals, a fourth solution is

to use control and monitoring systems allowing controlled

blackouts during specific moment of the day. Many au-

thors have already showed the efficiency of such systems

on the energy performance of the building [18, 105, 107].

For example, very recently, Aswani et al. [7] have pub-

lished a work dealing with a model-predictive control of

the HVAC systems able to control the indoor temperature

of a room of a computer laboratory in the University of

Berkeley. Previously, Mossolly et al. [96] proposed a

study comparing several control strategies in order to in-

crease the energy performance in an academic building in

Beirut, Lebanon. By determining the optimal control strat-

egy, they recorded energy savings up to 30% during the

summer. Moreover, these examples showed the ability to

treat very large scale systems.

The design of building integrating all these efficiency

measurements are usually ”tested” and validated via software

taking into account these specific aspects. The aim is to predict

the improvements that could be made considering different

designed management. So, scientists and engineers frequently

resort to various and numerous simulation techniques. Depend-

ing on the use cases, several approaches are available: some of

them based on the thermal knowledges and physical equations

of the building and others based on the data collected inside the

building.

We propose to give an overview of these existing methods.

In Section 2, we will introduce the physical techniques called

”white box” approaches used to model the thermal behaviour

of a building. This kind of approach is used for several appli-

cations at different scales. For example, the white box scheme

allows to evaluate the indoor temperature in a building for dif-

ferent time (year, month, day or hour) and spatial (the entire

building, a room, a cell of a room) scales. Then, in Section 3,

we will present the statistical or machine learning formulations

called ”black box” approaches mainly used in the aim to deduce

a prediction model from a relevant data basis (for example, to

forecast energy consumption or heating/cooling load in a given

building). Finally, in Section 4, we will introduce solutions to

couple the white and black box techniques to implement hybrid

approaches also called ”grey box” approaches.

2. Physical models: Building thermal behaviour modelling

Physical models are used to model the thermal behaviour in

different varieties of buildings with their own specific needs:

dwelling, office, hospital, school, firms... Some of them include

models of space heating [85, 12], natural ventilation [84, 120],

air conditioning system [130], passive solar [60], photovoltaic

panel [34, 32], hygrothermal effects [101, 110], financial issue

[45], occupants behaviour [9, 10, 11], climate environment

[55], etc. The physical techniques are based on the solving of

equations describing the physical behaviour of the heat transfer.

These equations can be written via the energy conservation

law as Eq (1).

Φint + Φsource = Φout + Φstock (1)

Φint is the heat flux entering the system, Φsource the heat flux of

an eventual heat source, Φout the heat flux leaving the system

and Φstock the heat flux stored. The principal in and out-coming

fluxes taking place in the heat transfer are the conduction

through walls, the convection (both sensible and latent heat),

the radiation and the ventilation.

To solve such physical problems, a large number of numeri-

cal software is available. Many authors proposed benchmarks

to compare these software [128, 90, 37, 134, 22]. For this

reason, we will not develop here a software comparison.

Theoretically, each building software is able to include each

of mechanisms given above. They give the choice to users to

select the mechanisms and the associated equations occurring

in the system. But, Woloszyn [134] and Crawley [37] showed

that many software are badly adapted to take into account the

consequences of the humidity and that, generally, the effects of

the latent heat are neglected.

Three main thermal building models are currently used:

the multizone, zonal and CFD (Computing Fluid Dynamic)

methods. We cannot say that one of these physical formulations

is particularly better than another. Each of them has its own

application and that is why the choice of the physical method

depends essentially on the problem. In the following, we will

detail and give some examples for each of these methods.

Each sections are built in the same way with a first part de-

scribing the principle of the approach, a second part with the

advantages and the application field, a third part with the limi-

tations of the method and a last part with some examples.

2.1. The CFD approach

2.1.1. Principle of the CFD approach

The most complete approach in the thermal building simula-

tion is the CFD (Computational Fluid Dynamics) method. This

is a microscopic approach of the thermal transfer modelling al-

lowing to detail the flow field. It is based on the decomposition
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of each building zone in a large number of control volumes with

an uniform or not global mesh. Thus, the CFD technique is rec-

ognized as a three dimensional approach.

Software using the CFD model are essentially based on the

resolution of the Navier-Stokes equation. A huge number of

CFD software are available such as FLUENT [4], COMSOL

Multiphysics [1], MIT-CFD, PHOENICS-CFD [28]... Their ap-

plication fields are very large and not always specific to building

simulation. Indeed, they can be apply to every systems consid-

ering detailed flow description.

2.1.2. Advantages and application field of the CFD

The CFD method is mainly employed for its ability to pro-

duce a detailed description of the different flows inside build-

ings (airflow, pollutant flow,...). Consequently, the CFD is very

well-adapted to the study of the particle transport as pollutant

particles. Moreover, as we mentioned before, the volume is

divided into several discrete control volumes with a uniform

or non-uniform mesh. Thus, it allows to study very complex

geometries of the building by minimizing locally the mesh of

some specific parts.

2.1.3. Limitations of the CFD method

The main disadvantage of the CFD approach resides in its

huge computation time [121], due to the fact that a complete

detailed 3D-description of the building with a very fine mesh

is absolutely required. Consequently, the smaller the mesh, the

larger the computation time. However, given that the air veloc-

ity in at least 75% of the building is less than 0,5 m/s, it is not al-

ways necessary to apply the CFD technique in the entire build-

ing but just to specific constituents of the building as HVAC

(Heating, Ventilation and Air Conditioning) equipment or ap-

pliances. Thus, it allows to reduce considerably the computa-

tion time. For this reason, the CFD is frequently coupled with

less time-consuming thermal building simulation techniques as

those that will be introduced in the following subsections or

else statistical techniques as those that will be presented in the

second part of this article. For example, Tan et al. [121] com-

pared the full CFD simulation and the coupling between the

CFD and another building simulation method for modelling

the natural ventilation across large openings or atrium. They

showed that the full CFD simulation would take more than ten

hours, whereas the coupled method needs less than one hour.

In the same way, Qin et al. [113] coupled a machine learning

technique with a method coupling the CFD and a building en-

ergy model to predict the thermal dynamic behaviour in a large

volume room as an atrium.

Moreover, the CFD method is quite limited by the complex-

ity of the model implementation. Indeed, it is quite difficult

to use it without previous knowledges on fluid dynamics and

software. Furthermore, the CFD is also largely limited when it

comes to model of the turbulence.

2.1.4. Examples

Zhai et al. [142] coupled a building simulation software

called EnergyPlus [44] and the CFD software MIT-CFD to pre-

dict the cooling or heating demand both in an office and in an

auto racing complex. The authors used EnergyPlus to deter-

mine the cooling or heating demand and MIT-CFD to find the

airflow and temperature distribution in the zone volume. At

each time step, EnergyPlus passed the informations to the CFD

program that used them as boundary conditions. Then, the CFD

program deduced the distribution of the air temperature in the

thermal boundary layer and the convective heat transfer coeffi-

cients into the office. Finally, these outputs are injected in En-

ergyPlus as inputs to improve the accuracy of the heating load

prediction.

Other authors chose the same strategy. For example, Wang

and Wong [129] used a building simulation software ESP-r [35]

and FLUENT (a flow software using the finite volume method)

[4] to simulate the natural ventilation in residential buildings.

The ESP-r simulation contained the geometrical information,

the construction thermal properties and the airflow network for

the whole building. The place studied is a double zone building.

To reduce the computation time, the authors chose to apply the

CFD simulation only in one zone and to pilot the system by

imposing pressure as opening boundary conditions. The ESP-

r simulation results provided boundary conditions to the CFD

simulation.

Moreover, Srebric et al. [119] coupled a multizone tool

called a ventilation simulating software CONTAM [42] with

a CFD tool called PHOENICS-CFD [28] to evaluate the

contaminant distribution in a building. First, they determined

the airflow rates and the contaminant transport between zones.

Then, they applied the CFD simulation only in the contaminant

sources to deduce the airflow profile and the concentration

distributions. These results are injected as fluxes in a new

CONTAM simulation excluding the CFD domains. Finally,

they evaluated the contaminant distribution. The authors

showed that the coupled method is efficient in the zones very

near the contaminant sources. However, in the other zones, the

multizone approach remains the more appropriate method.

Finally, the CFD is particularly adapted to describe flow

fields in buildings. However, the large computation time makes

difficult the generalization to all building applications. Indeed,

in some cases, it is not necessary to give a very fine description

and a way to overcome the difficulties enforced by the CFD is

to model the building behaviour in a simpler manner by giv-

ing a less detailed description of the interested zone [5]. The

first degree of CFD’s simplification is the zonal technique. It

is a way to obtain this simpler modelling while maintaining the

complexity in a 2D map.

2.2. The zonal approach

2.2.1. Principle of the zonal approach

The zonal method is the first degree of simplification of the

CFD technique. It has been introduced by Bouia and Dalicieux
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[20] and Wurtz [136] at the beginning of 1990’s. This approach

is a fast way to detail the indoor environment and to estimate a

zone thermal comfort. Practically, it consists in dividing each

building zone into several cells. One cell corresponds to a small

part of a room. Thus, the zonal method can be assumed to a two

dimensional approach. Fig (2) represents a scheme in case of

zonal methods.

Figure 2: Schematic representation of a problem solved with the zonal method

(Courtesy of Maxime Trocmé) [125]

2.2.2. Advantages and application field of the zonal approach

The zonal formulation can treat a large volume space and the

coupling between the system and its environment. The physical

equations are solved for each cell of the zonal system. Conse-

quently, it allows to determine the local variables in a 2D-map.

Thus, it is possible to evaluate the spatial distribution of differ-

ent fields like temperature, pressure, concentration or air veloc-

ity remaining at a quite reasonable computation time. Wurtz et

al. [137] showed that the zonal simulation is a suitable method

for an accurate estimation of the temperature field in a room

and of the indoor thermal comfort. Moreover, it allows also the

visualization of building system airflows.

Several zonal building modelling software are available.

One of them frequently employed to describe and to visualize

indoor airflows is the so-called SimSPARK software [94].

Equations are solved by the object-oriented environment called

SPARK [78]. Moreover, some researchers implemented their

own zonal software as Haghighat with POMA [56].

2.2.3. Limitations of the zonal approach

As we mentioned above, the zonal approach is a minimiza-

tion of the complexity of the CFD method. Thereby, it is obvi-

ous that some studies normally well implemented via the CFD

are not anymore feasible via the zonal method [61, 138, 95].

Notably, some limitations reside in the following aspects:

• this technique requires previous knowledges on the flow

profiles.

• it is not able to provide accurate results on the detailed

description of the flow field.

• the study of the pollutant transport remains limited.

2.2.4. Examples

Inard et al. [62] predicted the distribution of the air tempera-

ture inside a room with the zonal method. Especially, they pro-

posed an original technique to model the mass air flow between

two zones.

Musy et al. [97] studied the indoor thermal comfort in a room

through the zonal software SPARK [78]. Particularly, the aim

was to determine the vertical profile of temperature and the pol-

lutant concentration repartition inside the room.

Tittelein et al. [124] focused their works on the passive house

and the methods to reduce the energy consumption of a build-

ing located in the region of Chambery, France. They compared

the effects of a counter-flow ventilation and a single-flow venti-

lation on the energy efficiency.

Haghighat et al. [56] implemented a software using the zonal

approach called POMA (Pressurized zOnal Model with Air-

diffuser). This software allows to predict the airflow pattern

and the temperature distribution in a room which is naturally or

mechanically ventilated.

Jiru and Haghighat [64] computed the airflow and the tem-

perature distribution in a ventilated double skin facade, using

the zonal method. Specifically, they compared the time evo-

lution of the temperature in three positions inside the facade.

Parametric studies have been accomplished in order to test the

influence of the cavity height, the flow rate and the presence of

venetian blinds on the inlet-outlet temperature difference.

Brun et al. [23] proposed both experimental and numerical

studies for modelling heat transfers in a naturally ventilated roof

cavity in timber-frame buildings in Grenoble, France. They

used as numerical software the zonal software SPARK [78] to

estimate the resulted heat gain considering the naturally venti-

lated cavity use.

Stephan et al. [120] were interested in inverse methods for

improving the performance of the natural ventilation in a room.

By coupling SimSPARK [94] with an optimization software

called GenOpt [92], they deduced the optimal size of the open-

ings needed to maximize the performance of the natural venti-

lation.

Abadie et al. [5] implemented an in-house zonal model in

order to improve airflow modelling of forced convection in

building zones. Especially, they were interested in developing

an accurate model of the jet mass flow. This model was

validated on a one-zone building.

The zonal technique showed his efficiency in the description

of flow profiles in building. However, such a detailed behaviour

description is once again not always required and although it

has been hugely enhanced with the zonal approach, the compu-

tation time can again be reduced by decreasing the complexity

of the model. Thus, one more degree of simplification is pro-

posed considering no more a multi-dimensional description of

the building behaviour but a simple mono-dimensional visual-

ization of the phenomenon occurring in the system.
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2.3. The multizone or nodal approach

2.3.1. Principle of the nodal approach

This last approach, which is probably the simplest one is

called the multizone technique (also called nodal method). It

considers the following assumption : each building zone is an

homogeneous volume characterised by uniform state variables.

Thus, one zone is approximated to a node that is described by

a unique temperature, pressure, concentration... Generally, a

node represents a room, a wall or else the exterior of the build-

ing but it can be more specific like loads (internal occupancy or

equipment gains, heating/cooling system). The thermal trans-

fer equations are solved for each node of the system. In this

term, the nodal method can be considered as a one-dimensional

approach. Fig (3) is a scheme of the nodal modelling.

Figure 3: Schematic representation of a problem solved with the multizone

method (Courtesy of Maxime Trocmé)[125]

TrnSys [70], EnergyPlus [44], IDA-ICE [3], ESP-r [35],

Clim2000 [19, 135], BSim [111, 112] and BUILDOPT-VIE

[25] are softwares using the nodal approach employed for

building simulations.

In the literature, we can find two main methods used with the

nodal approach: a first one consisting in solving transfer func-

tions and a second one based on the finite difference method.

Most software are designed from the first technique described

by the transfer functions. The finite difference method is partic-

ularly employed for nodal approaches based on electrical analo-

gies of walls introduced by Rumaniovski [114]. It is very use-

ful since it simplifies drastically the physical problem through

a linearization of the equations and thus, reduces the computa-

tion time. The principle of the electrical analogy is to associate

a thermal resistance R and a thermal capacity C to a wall. The

analogy gives the following equivalence with the Ohm’s law:

U1 − U2 = RI ⇔ θ1 − θ2 =
e

λ.S
ΦL (2)

The temperature θ is equivalent to voltage U, the heat flux ΦL

to current I and the thermal resistance e/λ.S to electrical resis-

tance R. Several articles using this analogy have been published

[89, 48, 53, 38, 140, 40, 24, 57].

2.3.2. Advantages and application field of the nodal approach

The huge advantage of this technique resides in its ability to

describe the behaviour of a multiple zone building on a large

time scale with a small computation time. It is a particularly

well-adapted tool for the estimation of the energy consumption

and the time evolution of the space-averaged temperature into

a room. Moreover, it can be used to predict the building air

exchange rates and the airflow distribution between different

rooms of a building. Some other applications as the ventilation

efficiency or the pollutant transport for entire buildings can also

be studied by this formulation [8, 31].

Concerning the electrical analogy, the main additional advan-

tage is the simplicity to implement the transfer equations [24].

2.3.3. Limitations of the nodal approach

Due to the simplification enclosed in the multizone approach,

it has obviously some limitations to investigate some specific

cases [95, 5], better supported by the very complete CFD

method.

• The study of the thermal comfort and the air quality inside

a zone is quite difficult.

• The impact of loads on their close environment is not ad-

dressed (for example, a radiator with a plume).

• Despite the fact that it is a well-adapted method to study

a multiple zone building, it is quite difficult to apply the

nodal form to a room with a large volume.

• Although it is a good way to visualize the distribution of

pollutant between some building zones, it does not allow

to consider the local effects of a heat or pollutant source.

We propose in the following to give some examples of these

methods and explain why the author chooses one method over

another.

2.3.4. Examples

Kalogirou [66] used a multizone software TrnSys (Transient

Simulation Program) [70] to determine the energy consump-

tion in a building in Nicosia, Cyprus. More specifically, the

aim was to see how the energy demand behaves with a hy-

brid photovoltaic-thermal solar system (coupling of a normal

PV panel and a heat exchanger) rather than a standard photo-

voltaic panel.

Ibanez et al. [59] used the TrnSys software to study the ef-

ficiency of the phase change materials (PCM) in Lleida, Spain.

To perform that, they considered a uniform indoor temperature

in the room and determined its time evolution. By using the

TrnSys software, they evaluated the influence of the PCM on

different part of the envelope of the room (wall, ceiling and

floor).

Zhai et al. [143] studied the effects of the ventilation in sum-

mer on simulated data of indoor temperature with the multi-

zone software EnergyPlus [44]. To achieve that, they com-

pared experimental and simulated measures of indoor temper-

ature in three distinct building offices: a single-story building
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with an automatically controlled air ventilation in Belgium, a

three-story building with a manually controlled air ventilation

in Denmark and another three-story building with an automati-

cally controlled air ventilation in United Kingdom.

Cron et al. [38] used the electrical analogy to estimate the

performance of hybrid ventilation. The system was composed

of a fan assisted natural ventilation incorporating a control de-

mand strategy based on indoor air temperature and CO2 con-

centration.

More recently, Bueno et al. [24] have developed an in-house

resistance-capacitance model coupling the urban canopy with

a building energy system. After a validation phase, they stud-

ied the effect of the urbanization on the energy consumption.

And especially, they showed a 5% increase of cooling systems

in summer totally compensated by a 5% decrease of the heat-

ing during winter in residential buildings. Moreover, they were

interested in the influence of the indoor environment on the out-

door air temperatures.

Goyal and Barooah [54] used the electrical analogy to imple-

ment a lumped thermal simulation model. It is able to predict

the temperature and the humidity in multizone buildings from

outside temperature and humidity, heat gains from occupants

and solar radiation, supply air flow rates and supply air temper-

atures. Their objective was to decrease the order of this model

by testing several reduction methods. Such scientific fields are

really useful considering some applications such as HVAC con-

trol or monitoring.

Hazyuk et al. [57] developed an in-house multizone model

from the electrical analogy. They proposed a description of the

walls and the floor by two identical resistances and one capac-

ity. The thermal mass is characterized by a single capacity and

windows by single resistances. Having this kind of simplified

model allows to consider monitoring and control applications

in more reasonable perspectives.

2.4. Discussion on the physical models

The previous paragraphs described several physical methods

employed in the building modelling. We saw through the

principles of each techniques and the previous examples that

each physical method has its own application field. The

most complete and detailed approach is the CFD. It allows to

describe very finely each mechanism occurring in the building

system. Especially, it is particularly adapted for modelling the

convective phenomenon taking place in a large zone volume.

For instance, we saw through the examples of Zhai et al. [142],

Wang and Wong [129] or Srebric et al. [119] the real necessity

of using the CFD. Actually, in their study they treated very

large volumes (office and auto racing complex) where the

convective mechanisms are really complex. We mentioned

above that the nodal approach assumes that the convection

depends on the constant parameter h. So, it does not allow to

treat large zones with a high accuracy. Thus, in these specific

cases, the use of the CFD was necessary. However, it is difficult

to simulate all phenomenon by using the CFD because of the

huge computation time. This is the reason why it is usually

coupled with nodal software as EnergyPlus or TRNSYS. The

nodal approach is really well adapted to treat global resolution

as the determination of uniform field. Contrary to the CFD,

phenomenon are described less finely. The aim is to simplify

as far as possible the resolution system by linearizing the major

part of the equations (when it is physically possible). Thus,

the technical complexity is significantly reduced and both the

computation time. For instance, Kalogirou [66] chose the

nodal method because on the one hand, its studied system was

constituted of several interconnected zones and on the other

hand, he was interested in a specific macroscopic variable

(energy consumption) and not in the distribution field. In the

same way, Goyal and Barooah [54] and Hazyuk et al. [57]

showed the necessity of the multizone method via the electrical

analogy in control and monitoring perspectives. The zonal

method is an intermediate technique between nodal and CFD

approaches. It is less accurate than the CFD but retains more

informations compared to the nodal technique. As examples,

Musy et al. [97], Tittelein et al. [124] or Haghighat [56]

justified their choice of the zonal approach by the necessity to

reduce the computation time compared with a CFD and the

inability of the nodal method to provide detailed temperature

and flow distribution and, in the same way, to predict the

thermal comfort.

Moreover, all these techniques need some input parameters

as meteorological data, geometrical data, thermo-physical vari-

ables or else occupancy and equipment scenario... However,

these parameters are always expressed under a certain part

of uncertainties. Furthermore, in addition to these parameter

uncertainties, there are also the uncertainties induced by the

assumptions. Actually, several assumptions with consequences

on the model performance have to be made in order to reduce

the complexity of the thermal mechanisms occurring in

buildings. Thus, all these uncertainties lead to a real difficulty

to evaluate the accuracy degree of the models. Consequently,

it seems very hard to gather all heat building transfers in a

general overview without accumulating too much uncertainties

[86].

We propose to gather in Table (1) the specificity of each

method.

Generally, an important default of the physical formulation

is the fact that it suggests a detailed description of the physical

behaviour. So, it implies expensive knowledge on the physi-

cal system, especially on the mechanisms occurring inside and

outside the building geometry. Unfortunately, as we mentioned

above, it is far from being always the case. In contrast, the

statistical tools have the great faculty to product a model only

from measures. So we propose now to detail some statistical

techniques frequently used in the building simulation and en-

ergy performances for prediction.

3. Statistical methods using machine learning

The particularity of statistical models compared with phys-

ical methods is the fact that they do not require any physical
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Physical technique Specificity of each technique Application field Advantages Drawbacks

CFD method

One cell=a control volume

(3-D);

Local state variables

Contaminant distribution;

Indoor air quality;

HVAC systems

Detailed description of the fluid

flows occurring inside the

building;

Large volume zones

Huge computation time;

Complexity of the model

implementation

Zonal method

One cell=a division of a room

(2-D);

Local state variables

Indoor thermal comfort;

Artificial and natural ventilation

Spatial and time distribution of

local state variables

(temperature, concentration,

pressure, airflow) in a large

volume

Large computation time

Requirement of a detailed

description of the flow field

and flow profiles

Nodal method
One cell=a room (1-D);

Uniform state variables

Determination of the total

energy consumption/ the

average of the indoor

temperature/the cooling or

heating load;

Time evolution of the global

energy consumption/ the

space-averaged indoor

temperature

Multiple zone buildings;

Reasonable computation time;

Easier implementation

Difficulty to study large

volume systems

Unable to study local effects

as heat or pollutant source

Table 1: Summary of the specificity of each physical technique

information. No heat transfer equations, no thermal or geo-

metrical parameters are preliminary needed. Indeed, statistical

models are based on the implementation of a function deduced

only from samples of training data describing the behaviour of

a specific system. Thus, these methods are well adapted when

the physical features of the considered building are not known.

Several statistical tools are able to build prediction model us-

ing learning methods. The great power of these techniques is

the fact that they do not need to have much knowledge on the

building geometry or the detailed physical phenomena to de-

duce an accurate prediction model. In contrast, they are totally

based on measures and in such cases where it is difficult to col-

lect data, it can become a real issue. Some of these methods

have already been referenced by Zhao and Magoulès [144] .

We propose in the following part of this paper to describe

the statistical techniques mainly employed in the field of the

building energy forecasting: the linear multiple regression, the

artificial neural network, the genetic algorithm and the support

vector machine. These techniques belong to the branch of the

artificial intelligence.

Each sections are designed in the following manner: a first

part describes succinctly the principle of the method, a second

part shows the advantages and drawbacks of the method, a third

part presents the application field and a last part gives some

examples using the method.

3.1. Multiple linear regression or conditional demand analysis

(CDA)

The conditional demand analysis (CDA) is a linear multi-

variate regression technique applied to the building forecasting.

The linear regression was introduced by Galton in 1886.

In 1980, Parti and Parti were the first to propose a new

method using the linear regression for the prediction of energy

consumption in buildings : the conditional demand analysis

[106]. The idea was to deduce the energy demand from the

sum of several end-use consumption added to a noise term. In

this way, they could infer the monthly and yearly residential

end-use consumption from household invoices in San Diego.

3.1.1. Principle of the CDA

The principle of the linear multivariate regression is to

predict Y as a linear combination of the input variables

(X1, X2, ..., Xp) plus an error term ǫi.

yi = α0 + α1.xi1 + α2.xi2 + ... + αp.xip + ǫi , i ∈ [1, n] (3)

n is the number of sample data, p the number of variables and

α0 a bias. For example, if the predicted output is the internal

temperature, there can be as inputs the external temperature,

the humidity, the solar radiation and the lighting equipment.

3.1.2. Advantages and limitations of the CDA

The CDA technique can be used both for prediction or fore-

casting and for data mining. This method has a main advantage

which is the simplicity of use by beginners since no parameter

has to be tuned. Indeed, no specific expertise of the method is

required to manage such type of prediction method.

However, the multiple linear regression presents a major lim-

itation due to its inability to treat non linear problems. It leads

to a lack of flexibility in forecasting but also a real difficulty to

manage the multicollinearity inside the prediction results (that

is the correlation between several variables). A possible solu-

tion to overcome these difficulties is to use a preliminary feature

selection formulation.

7



3.1.3. Application field in CDA

In the building sector, the multivariable regression is often

used for forecasting energy consumption or comparing the

evolution of energy demand between two different periods.

However, it is also employed for the prediction indoor air

conditions, the control of HVAC equipment, reliability aspects

and systems management [75, 49]. The constraint is mostly

present on data. Indeed, a large amount of data is required for

a proper prediction and moreover the non collinearity between

variables is necessary [11].

In the following, we will present some examples using the

CDA for a building application.

3.1.4. Examples

Lafrance and Perron [73] studied the evolution of the res-

idential electricity demand at the regional level of Quebec in

Canada. More specifically, they used the CDA as a signal pro-

cessing tool and compared three years of data: 1979, 1984 and

1989.

Tiedermann [123] analysed the annual end-use consumption

and the energy savings in the region of British Columbia in

Canada. They studied also the energy consumption month by

month and found two sudden increases: the first peak corre-

sponds to November, December, January and February and is

probably due to the use of the electric space heating and heating

water. The second peak concerns the months of June, July and

August and is related to the use of the air conditioning (central

or portable).

Aydinalp-Koksal and Ugursal [11] used the CDA to model

the residential end-use energy consumption in Canada at the

national level. They kept their interest on several end-uses : ap-

pliances, lighting, space cooling, space heating and domestic

hot water. Different energy sources have been studied: electric-

ity, natural gas and oil. Each end-uses for each kind of energy

were described by a linear regression.

More recently, Aranda et al. [6] has implemented a multiple

linear regression model which allows to predict the energy con-

sumption in the banking sector in Spain and to suggest energy

saving strategies to increase the energy efficiency. The authors

chose a model able to combine the simplicity of the evaluation

method and the accuracy in the result without needing a huge

amount of input data.

For other applications, Givoni and Vecchia [52] proposed

to use multivariate linear regression to describe the daily in-

door average, minimal and maximal temperatures from outdoor

measurements in occupied houses in Descalvado, Brazil. They

found that all these temperatures can be predicted only from

outdoor average, minimal and maximal temperatures. How-

ever, they showed that it is possible to improve the prediction

of the indoor maximal temperature by adding the contribution

of the solar radiation. Likewise, they improved the prediction

of the minimal temperature by incorporating the dependence of

the daily diurnal swings.

Few years later, Krüger and Givoni [71] showed that it is

possible to reproduce from linear regression equations the

indoor temperature behaviour in occupied low-cost houses in

Curitiba, Brazil. More specifically, they linked linearly the

average, minimal and maximal indoor temperatures to the

average, minimal and maximal outdoor temperatures.

Nevertheless, due to the non flexibility of the method, it is

very difficult to apply the linear regression techniques for the

data analysis. The following method is able to predict both lin-

ear and non linear problem. It is called genetic algorithm.

3.2. Genetic algorithm (GA)

The genetic algorithm (GA) is a stochastic optimization

technique deduced from an analogy with the evolution theory

of Darwin. This artificial intelligence method has been intro-

duced in 1975 by Holland [58] but its use as an optimization

tool for the building simulation started in the 1990’s.

3.2.1. Principle of the GA

The principle of the genetic algorithm is based on the faculty

of a given species to adapt itself to a natural environment and

to survive extreme conditions. The genetic information is given

by the gene sequences contained in the chromosome of an indi-

vidual. In the GA process, all input variables are contained into

one chromosome. This information can be coded in different

way : binary, character string and tree. We will describe now

the different step of the GA.

(1) Production of the original population.

(2) Evaluation of each chromosome based on the fitness value.

(3) Selection, crossover and mutation. The selection is re-

sponsible for selecting (at least) two chromosomes. After

the selection step, the crossover phase can intervene, deal-

ing with the exchange of a part of the information between

the parents chromosomes. Then, the mutation operation

can occur, consisting in in the substitution of a part of a

chromosome by another.

(4) Insertion of the new chromosomes in the population. At

the end of the above processes (selection, crossover and

mutation), some new chromosomes are added to the old

population for creating the new one.

(5) Process reiteration. Once we have reach this step, the pro-

cess restarts with the second step on the new population

until the user specified generation number is completed.

Fig (4) shows a scheme of the general operations in the genetic

algorithm.

In the building simulation, GA is used to find a prediction

model. The goal is to find a simple equation able to fit the

problem. The form of the equation imposed by the user can

have the following forms:
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Figure 4: Scheme of the general operation in the genetic algorithm

• linear Y = w1.X1 + ... + wn.Xn

• quadratic Y = w1.X1+...+wn.Xn+wl.X1.X2+...+wm.X1.Xn+

wp.X2.X3 + wk.Xn.Xn−1 + wq.X
2
1 + ... + wr.X

2
n + ws

• exponential Y = w1 + w2.X
w3

1
+ w4.X

w5

2
+ ... + wl.X

wl+1
n

Y is the output (for example the energy demand), Xi are the in-

put variables (for example the outdoor temperature, the humid-

ity, the solar radiation and the exposure) and wi are the weight-

ing of each input variables. The GA is used to optimize the

weighting wi of each variables.

3.2.2. Advantages and limitations of the GA

An important advantage of genetic algorithm is the fact it

deals with a powerful optimization method able to resolve ev-

ery problems provided the convexity of the describing function

[26]. Another essential advantage of the genetic algorithm is its

ability to give several final solutions to a complex problem with

a large number of input parameters. It allows the user to choose

with his own judgement the most probable one. Obviously, this

is also a drawback by the fact that the user can never be sure

to have chosen the best solution, especially as the GA will not

necessary generate the optimal solution. Another disadvantage

of the GA is the large computation time. Some authors try to

reduce this computation time by coupling the genetic algorithm

with other statistical methods. Especially, Magnier and Haghi-

gat [88] associated an artificial neural network to a genetic algo-

rithm for estimating energy consumption and thermal comfort

in a building. Another difficulty of the GA is the adjustment

of the algorithm. Indeed, no rules are able to determine the

number of individuals in the population, the number of genera-

tion or crossover and mutation probability. So, the only way to

adjust the model is to test different combination. Another im-

portant limitation of the GAs is their capacity to generate local

optimum leading to study the system locally instead of globally.

Finally, the performance of the GA is really limited when the

individuals present a similar evaluation value. In this case, the

genetic algorithm can no longer evolve. Moreover, in this spe-

cific case, an important drawback is the fact that it is absolutely

essential to postulate the form of the describing function.

3.2.3. Application field of the GA

In the building simulation, the genetic algorithm is mainly

used for the determination of simple prediction models of the

energy consumption and for the optimization of the equip-

ment/load demand. The data basis can be both simulated or

real and can contain instantaneous samples on several time

scale (hourly, monthly or yearly) or samples averaged in time

and/or space. As the CDA, a large amount of data is required.

We propose now to give some examples of works using the

genetic algorithm.

3.2.4. Examples

Ooka and Komamura [100] were interested in the energy-

efficiency in building during a day. With two genetic algo-

rithms, they provided the optimized combination of equipment

capacity and optimized operational planning for cooling system

during a period of 24 h with an electric turbo refrigerator and

a heat pump and water heating system with two distinct heat

pumps for hot water. For the equipment capacity, the authors

used an algorithm with a population size of 10 individuals (2

sub-populations with a size of 5 individuals), a number of gen-

eration of 30, a crossover probability of 1, a mutation probabil-

ity of 0.01 and a migration probability of 0.5. For the operation

planning, the GA presented a population size of 24 individu-

als (3 sub-populations with a size of 8 individuals), a number

of generation of 750, a crossover probability of 1, a mutation

probability of 0.01 and a migration probability of 0.5. This

work was applied to an hospital of Tokyo in Japan on a period

of 24 hours.

Sadeghi et al. [115] used the GAs to implement optimized

prediction models of the annual electricity consumption per in-

habitant in residential sector in Iran. Three forms of simple

equations are tested: linear, quadratic and exponential. Their

variables are the annual gross domestic product, the annual real

price of electricity and the annual real price of natural gas. The

population size is 60 individuals, the number generation raises

to 400, the probability crossover is equal to 0.5 and the proba-

bility mutation 0.02. The fitness was evaluated by the reverse

of the sum squared error. Thus, the criterion was to maximize

the fitness value. The selection process was the roulette-wheel

method.

In the same manner, previous works of Ozturk et al. [102]

studied the annual electricity consumption estimation in Turkey

evaluated in the industrial sector and in the total electricity

demand. The authors implemented two prediction models

of the annual electricity consumption for both industrial and

total turkish demand, allowing to predict the annual electrical

demand from 2002 to 2025.

Nevertheless, it remains the problem due to the postulate of

the kind of function. The following technique overcomes that

by running as a black-box system. It is called the artificial neu-

ral network. Moreover, Datta et al. [39] compared the linear

regression with the artificial neural network. They showed that
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this non linear technique performs quite better than the linear

one. In the next part, we propose to introduce this technique

and to give some examples from the literature.

3.3. Artificial neural network (ANN)

The artificial neural network (ANN) is a non-linear statistical

technique principally used for the prediction. This artificial

intelligence method was inspired by the central nervous system

with their neurons, dendrites, axons and synapses. It has been

introduced in its mathematical form by McCulloch and Pitts

in 1943. They published with Lettvin and Maturana the first

works on the neural network in 1959 [80].

3.3.1. Principle of the ANN

The basic mono-layer ANN containing just two layers (input

and output neurons) is described as the following steps:

(1) Choice of the inputs xi considering the output(s). An ini-

tialisation step associates each input to a weight wi ran-

domly chosen. The inputs are the neurons of the first layer.

(2) Application of the activation function f on the aggregation

function. Most of the time, the aggregation function is a

linear combination as:

I = f















n
∑

i=0

wi.xi















(4)

n is the number of input neurons and the product for i = 0

is the bias. The activation function is responsible for con-

verting the weighted input into an output activation. It re-

turns a number between 0 and 1, allowing to maintain the

convergence (for example, sigmoid, Heaviside step or hy-

perbolic function). Fig (5) shows a scheme of one neuron

layer.

Figure 5: Scheme of one neuron layer with the application of the activation

function

(3) Error calculation and application of the learning algorithm.

The output is produced from the other steps. The global

error corresponds to the sum of the training error calcu-

lated considering each data of the learning basis. To min-

imize the global error, a learning algorithm depending on

a learning value is used to adjust the weight of each input

neurons. The process is reiterated from step 2 to step 3

until reaching the error criterion.

3.3.2. Advantages and limitations of the ANN

An advantage of the ANN is that it does not need to de-

tect the potential collinearity. Moreover, given their training

faculty, another advantage of the ANN is its ability to deduce

from data the relationship between different variables without

any assumptions or any postulate of a model. Furthermore, it

overcomes the discretization problem and is able to manage the

data unreliability. Finally, the ANN suggests a large variability

of the predicted variable form (yes/no, binary 0 or 1, continuous

value...) and an efficient simulation time [67].

However, the ANNs are significantly limited by the fact that

this implies to have a relevant data basis. Indeed, it is really im-

portant to train an ANN with an exhaustive learning basis with

representative and complete samples (for example, samples in

different seasons or in different moments of the day or during

week-end/holidays... and samples with each the same amount

of informations). Another disadvantage of the ANN is its large

number of undetermined parameters (with no rules to determine

them).

3.3.3. Application field of the ANN

In the building simulation, the artificial neural network are

usually used for the prediction of the energy consumption or

the forecasting of energy use as the cooling or heating demand

without knowing the geometry or the thermal properties of

the building. Different kind of data basis can be considered

depending on the time scale as the hour, the month or the

year and the nature of the data (real or simulated and instan-

taneous or time/space-averaged data). One main condition is

absolutely essential for applying the artificial neural network

technique : the completeness of the learning data. Kalogirou

has published many works on the building applications using

the ANN [68, 67, 65, 66]. Particularly, in 2000, he presented a

bibliographic review summing up the applications of the ANN

in the field of energy-engineering systems [65].

To illustrate that, we propose now to give some examples

using the ANN for building applications.

3.3.4. Examples

Kalogirou and Bojic [67] published a paper dealing with the

prediction of the energy consumption of a passive solar holiday

home in Cyprus during a day in summer and in winter. The

inputs are the season, characteristics of the insulation, the ma-

sonry thickness, characteristics of the heat transfer coefficient

and time of the day. The output is the energy consumption in

kWh with a time-step of 10 minutes. The authors used a recur-

rent neural network containing four layers with 23 neurons on

the hidden layers.

Aydinalp et al. studied the canadian annual electricity con-

sumption in residential sector of appliances, lighting and cool-

ing in a first paper (ALC) [9], and of space heating (SH) and

domestic hot water (DHW) in a second paper [10]. In the first
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one, many inputs were used as appliances, weather, lighting,

total heated area, socio-economic factors, etc... These informa-

tions were propagated along a feed-forward network contain-

ing one input layer with 55 neurons, three hidden layers each of

them including 9 neurons, and one output layer with one neuron

representing the average of the annual electricity consumption

due to the ALC.

Neto and Fiorelli [99] compared both an ANN model and a

building software EnergyPlus for the forecasting of the energy

demand in an administration building in Sao Paulo, Brazil. Two

ANN model were tested: the first is a feed-forward neural net-

work containing three layers : one input layer with 5 neurons

(external temperature, humidity, two solar radiation parameters

and day-type), one hidden layer with 21 neurons and one out-

put layer with 1 neuron (daily total consumption). The second

is a simpler ANN with only the external and internal tempera-

ture as inputs. The results for both simple ANN and complex

ANN appeared to be very near, indicating that the humidity and

the solar radiation were certainly less significant than the ex-

ternal temperature for the forecasting of energy demand in this

specific building study.

Recently, Kwok and Lee [72] studied the influence of the

occupancy on the cooling load in Hong-Kong, China. They

compared three different neural networks called probabilistic

entropy-based neural network (PENN) to predict the total build-

ing cooling load : a first ANN containing 6 neurons on the ex-

ternal layer each of them characterizing a weather parameter, a

second ANN with one more neuron (so 7 external neurons in

total) for the hourly total occupancy area and a third ANN with

another one more neuron (so 8 external neurons in total) cor-

responding to the occupancy rate (modification induced by the

human presence). They found the best fitting between real data

and the prediction for the last model (with 8 external neurons).

It shows the huge influence of the occupancy on the building

cooling load.

Moreover, Escriva-Escriva et al. [47] predicted the energy

consumption based on building end-uses in University of Va-

lencia,, Spain. They used an ANN with multi-layer perceptron

architecture consisting on three layers. The input layer con-

tains four neurons (maximum temperature, minimum tempera-

ture, average temperature on just one day period and the average

temperature on the day before), the hidden layer contains 3 neu-

rons and the output layer consists in one neuron characterizing

the energy consumption.

Recently, Leung et al. [81] used the artificial neural network

to predict the cooling load in a university building in Hong-

Kong. They took care of the occupancy by introducing a power

demand. Thus, the inputs parameters are climatic data, hour

and day type and pretreated air unit operation schedule. The

output is the electrical power demand of the building cooling

system. They used a feed-forward network with three layers.

They found promising results when the cooling load is higher

than the occupancy power demand.

However, the ANN is hugely limited by its lack of inter-

pretability and the fact that it requires a large amount of learning

data and mainly a relevant and completeness data basis (that is

no missing data in the data basis and same amount of informa-

tion for each variables). The following technique overcomes

these difficulties given that it supports heterogeneous data basis

and introduces a describing function. This method is called the

support vector machine.

3.4. Support vector machine (SVM)

The support vector machine (SVM) has been introduced in

1995 by Vapnik and Cortes [36]. This artificial intelligence

technique is usually used to solve classification and regression

problems. We will focus our interest only on regression.

3.4.1. Principle of the SVM for regression

The principle of the SVM for regression is to find the opti-

mal generalization of the model, in order to promote sparsity.

Let us consider a given training data [(x1, y1), ..., (xn, yn)], xi be-

ing in the input space and yi in the output space. In a non lin-

ear problem, the basic idea is to overcome the non-linearity by

transforming the non linear relation between x and y in a linear

map. The way to do that is to send the non linear problem in a

high dimensional space called the feature space. As all regres-

sion techniques, the aim is to determine the function f (x) that

fits best the behaviour of the problem. The particularity of the

SVM is the fact that it authorizes an error or an uncertainty ǫ

around the regression function. The function f has the follow-

ing form:

f (x) =< ω,Φ(x) > +b (5)

Φ represents a variable in the high dimensional feature space

and <, > a scalar product. ω and b are estimated by the follow-

ing optimization problem called the primal objective function.

It corresponds to a minimization of the norm

min
ω,b,ξi,ξ

∗
i

1

2
|| ω ||2 +C

n
∑

i=1

(

ξi + ξ
∗
i

)

(6)

subject to























yi− < ω,Φ(xi) > −b ≤ ǫ + ξi

< ω,Φ(xi) > +b − yi ≤ ǫ + ξ
∗
i

ξi, ξ
∗
i ≥ 0

C is a regularization parameter (a trade-off between the flat-

ness of f and the maximal tolerated deviation larger than ǫ)

imposed by users, ξi and ξ∗i are two slack variables allowing

a flexibility of the constraints. Moreover, by introducing a

kernel function defined as a dot product in the feature space

k(x, x′) =< Φ(x),Φ(x′) >, it allows to substitute a complex non

linear map to a linear problem without having to evaluate Φ(x).

3.4.2. Advantages and limitations of the SVM

The main difficulty in the SVM is to select the best kernel

function corresponding to a dot product in the feature space

and the parameters of this kernel function. Some examples of
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kernel function mainly used in regression by SVM are given

below:

• the linear kernel k(xi, x) = xi.x

• the polynomial kernel k(xi, x) = (xi.x + c)d

• the radial basis function (RBF) kernel k(xi, x) = e
||xi−x||2

2σ2

In addition to the kernel function parameters, two others con-

stants have to be adjusted by users: the regularization constant

C and the deviation ǫ.

The main advantage of the SVM is the fact that the optimiza-

tion problem is based on the structural risk minimization prin-

ciple (SRM). It deals with the minimization of an upper bound

of the generalization error consisting of the sum of the train-

ing error. This principle is usually confronted to the empiri-

cal risk minimization (ERM) which only minimizes the train-

ing error. Another advantage is the fewer free parameters of

optimization. Indeed, using the SVM technique required the

adjustment of the regularization constant C and the margin ǫ.

In contrast, the ANN method requires to know the topology of

the inter-connections between neurons, the aggregation func-

tion, the number of hidden layers, the number of neurons on

each hidden layers, the activation function, the learning algo-

rithm (with the error calculation) and the learning value. In the

same way, to implement a GA, we need to adjust the popula-

tion size, the number of generation, the crossover probability

and the mutation probability.

3.4.3. Application field of the SVM for regression

In building field, the SVM is mainly used for the forecasting

of energy consumption or temperature. The system can be

trained from different kind of data with various time scale

(year, month, hour) and various nature (instantaneous or

space/time averaged). There is usually no restriction on the

data basis except the fact that vector data are required. And

a huge advantage is the fact that it supports a heterogeneous

data basis that a data basis where all variables do not have the

same amount of information or where we can find missing data.

We will now focus our interest on the use of SVM in building

prediction. We propose in the following part to introduce some

examples.

3.4.4. Examples

The use of support vector machine in the forecasting of en-

ergy consumption in buildings is quite recent. In 2005, Dong et

al. [43] were the first to use SVM for the prediction of the build-

ing energy consumption. The aim was to predict the monthly

energy consumption in four offices in Singapour. The input

variables are the mean outdoor dry-bulb temperature, the rela-

tive humidity and the global solar radiation. The kernel function

used is the radial basis function kernel.

Lai et al. [74] employed the SVM as a data mining tool for

the prediction of the electrical consumption in residential sec-

tor in the region of Tohoku, Japan. Authors took as input pa-

rameters climate data as outdoor and indoor temperatures and

humidities. They used the KXEN software [2] which consists

in the implementation of the SVM method.

Li et al. [83, 82] used the SVM in regression for the predic-

tion of hourly cooling demand in Guangzhou, China. The aim

was to predict the cooling demand hour by hour during sum-

mer in an office building. The input parameters are the outdoor

dry-bulb temperature, the relative humidity and the global solar

radiation. The SVM used as the kernel function a radial basis

function.

Kavaklioglu [69] used the support vector regression method

to predict the electricity consumption in Turkey until 2026. The

kernel function is the radial basis function. The input variables

are socio-economic parameters as population, Gross National

Product, imports and exports.

Paniagua-Tineo et al. [103] employed support vector regres-

sion method to model and predict the daily air outdoor tem-

perature in several European countries. The model depends on

many prediction variables as the maximum and minimum tem-

perature, the precipitation, the relative humidity, the air pres-

sure, the global radiation, the specific synoptic situation of the

day and the so called monthly cycle. The kernel function is a

Gaussian function.

Che et al. [29] proposed to develop an adaptive fuzzy rule

based prediction system combining the SVM in regression and

a fuzzy inference method with the aim to forecast the electrical

load in New South Wales. The authors used the radial basis

function as kernel function.

Chen et al. [30] estimated the monthly mean daily solar ra-

diation in Chongqing, China via the support vector machine

method. More particularly, the aim was to improve the state

of data collected in the station. The authors chose to test three

different kernel function: linear, polynomial and radial basis

function. Also, they proposed to experiment seven combina-

tions of input variables only based on the maximum tempera-

ture and the minimum temperature. Finally, they implemented

21 different SVM system.

3.5. Discussion on the statistical tools

Contrary to the physical techniques which are each associ-

ated with a specific application, we realize that no statistical

tool has a better use for a problem than another. However, it

is possible to classify them by complexity. Indeed, the linear

multiple regression is probably the easier statistical method.

It is able to give good prediction and does not need a real

expertise to be implemented. But it is hugely limited by the

fact that it assumes a linear description of phenomenon. The

genetic algorithm is a bit less limited because it is able to

treat both linear and non linear problems. But it suggests that

the function describing the system behaviour is well-known.

However, it is rarely the case. The artificial neural network

overcomes this problem given that it does not need to give spe-

cific description. Nevertheless, it runs as a black-box system
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which makes the interpretability very difficult. Moreover, an

important drawback of the ANN is the fact that it requires a

large amount and a completeness of learning data. In contrast,

the support vector machine has the huge advantage to do not

need an exhaustive data basis. And due to the known kernel

function, the problem remains interpretable. However, contrary

to the artificial neural network, it requires to assume the form

of the kernel function. Finally, we see that each of these

statistical techniques has his own advantages and drawbacks

and the choice of the method depends mainly on the user and

on what he expects at the end of the study. So, the technique

can be chosen according to the targeted outcome. We propose

to sum up the specificity of each statistical technique in Table

(2).

4. Hybrid models

The previous parts of this article showed the capacity of both

detailed physical and statistical method in the building simula-

tion. But they showed also the limitations of each techniques.

Especially, the white box methods assume that all building char-

acteristics, both thermal and geometric one, are well-known.

This is usually the case for building design but it is more dif-

ficult to collect so many informations on existing buildings.

However, to establish monitoring strategies, they are absolutely

required. Moreover, these approaches suggest that we are able

to describe all physical mechanisms with a high accuracy. Nev-

ertheless, although most of the thermal phenomenon are well-

known, some of them are based on assumptions and remain dif-

ficult to model accurately as the natural ventilation often de-

scribed by empirical equations. The black box methods are

mainly limited by the fact that they absolutely required data

and mostly in large amount. Moreover, it is usually difficult

to interpret results obtained by statistical approaches in physi-

cal term. Otherwise, data mining techniques are specific to a

building. Thus, the treatment of another building leads to a new

modelling. In contrast, due to the general heat transfer equa-

tions, white box methods are usually applied generally.

It is possible to overcome the limitations of each techniques

by coupling them. Indeed, the advantages of a method remove

the drawbacks of the other one. For example, by retaining a

part of physical meaning, one keeps always the interpretability

of the problem. Moreover, building characteristics can be deter-

mine by optimization techniques as genetic algorithms. Thus,

all physical and geometrical input parameters are not any more

required. These hybrid methods combining physics and statis-

tics are called ”grey box” methods.

4.1. Principle of the hybrid approach

Generally speaking, the principle of the hybrid method are

based on the coupling of statistical methods and physical mod-

els. In this way, several strategies are available.

A first strategy consists in using machine learning as physi-

cal parameters estimator. We will see in the following examples

that most of the time, scientists couple a nodal model with ge-

netic algorithms.

A second strategy is to use statistics in order to implement a

learning model describing the building behaviour. This learn-

ing model is designed from a learning basis built from a physi-

cal approach. In the following, we will present some examples

employing this technique.

A third strategy consists in using statistical method in fields

where physical models are not effective and accurate enough.

For example, end-uses are known to be really difficult to take

into account in physical models. In contrast, statistical tech-

niques allow to well-consider these end-uses. So, a solution

would be to associate both physical and statistical methods in

order to implement the complete system. Another application

would be to determine the heat behaviour in a multiple zones

building where the thermal properties of some rooms would

be unknown. Thus, some zones could be physically studied

while others would need to be described statistically via mea-

surements collected in these zones. This strategy is currently

not referenced in the building simulation literature. However, it

has already been proven in other fields as the prediction of the

battery behaviour [116].

4.2. Advantages and limitations of the hybrid methods

The main advantage of the hybrid method is that it allows to

consider only a limited number of data. Furthermore, the in-

put parameters do not need to be fixed at the initial time of the

simulation. Only bounds on physical parameters are required.

Thus, a rough description of the building geometry and ther-

mal parameters is sufficient. Also, the hybrid methods allow to

retain a physical interpretation.

However, some drawbacks proper to each technique remain

in hybrid method as the free parameters for statistical tool or the

computation time needing for both physical or statistical codes.

A last drawback that is also an advantage is the fact that

the grey box method couples two distinct scientific domains.

Although it brings some difficulties for users to understand, it

should be of a great scientific interest.

4.3. Application field of the hybrid method

This approach has been introduced at the beginning of the

1990’s for a specific application which was the automatic con-

trol system. For example, Teeter and Chow [122] combined

an artificial neural network with a single-zone thermal model

to improve the efficiency of the HVAC control by performing

the HVAC parameters identification. Other more recent exam-

ples are the works of Paris et al. [105, 104] who combined the

fuzzy logic, a PID controller and a dynamic model describing

the thermal behaviour of the building for implementing several

heating control schemes. Furthermore, Nassif et al. [98] ap-

plied an optimization process to HVAC system for monitoring

issues. It consisted in identifying the zone air temperatures, the

supply air temperature, the supply duct static pressure, the zone

supply air temperature or reheat required, the minimum outdoor

ventilation flow rate, and the chilled water supply temperature.

In the same applications, we can also point out the work of Cal-

das and Norford [26] on the control of HVAC systems.

As we mentioned above, another application of the hybrid

model is the parameters identification. In this approach, the aim
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Statistical tool
Specificity of each

technique
Application field Advantages Drawbacks

Conditional Demand

Analysis : Regression

technique

Starting hypothesis: linear

relation between variables

and the output

Forecasting of the energy

consumption;

Evolution of the energy

demand

Regression function

describing the system

A large amount of training

data / Non-collinearity

between data

Genetic Algorithm :

Optimization technique

Starting hypothesis:

equation form imposed by

the user. Final result is not

necessary the best solution

Prediction of the energy

consumption;

Optimization of the

equipment or load demand

Function describing the

system;

Powerful optimization

algorithm

A large amount of training

data;

Difficulties to adjust

algorithm parameters

Large computation time

Artificial Neural Network

: Regression technique

No starting hypothesis but

huge ”black box” which

prevents from physical

interpretations

Prediction of the energy

consumption and energy

uses

A huge training faculty

A large amount of

exhaustive and

representative data;

No physical interpretation

Support Vector Machine :

Regression technique

Starting hypothesis:

kernel function imposed

by the user

Forecasting of the energy

consumption or

temperature

A reasonable amount of

training data with mainly

vector data;

Minimization problem

based on the SRM

Determination of the

kernel function

Difficulty to adjust

parameters C and ǫ

Table 2: Summary of the specificity of each statistical technique

is to compute the set of input values corresponding to a given set

of outputs. For instance, the objective may be to calculate the

optimal thermal properties of the walls (conductivity, capacity,

etc) given a target consumption/comfort level. The technique

is to combine physical models - used to simulate the thermal

behaviour of the building - and statistical technique to retrieve

the set of optimal inputs corresponding to the desired outputs.

Concerning the amount of data required, it is quite reason-

able by the fact that it includes a part of physical interpretation

inside the program.

In the literature related to the subject, some papers focus on

the coupling between nodal techniques for the thermal and ge-

ometrical representation and genetic algorithms for the param-

eters identification. We propose to detail some examples using

the hybrid method in this specific way.

4.4. Examples

Lauret et al. [77] implemented a model resolving the state

equations in a building with a very simple geometry in the Is-

land of the Reunion in order to follow the evolution of the in-

door dry air temperature. To do that, they combined a physi-

cal resolution by the finite difference method via the multizone

software CODYRUN [21] with a genetic algorithm. The study

is based on experimental data. The authors have shown in pre-

vious studies that the physical model alone was not allowed to

return a good agreement with the real data [89, 93]. In this

study, they used the genetic algorithm to isolate the defective

node measurement by forcing the value of some temperatures

in specific place of the building. The aim is to optimize the

value of the indoor dry air temperature.

Znouda et al. [145] studied energy consumption in a Mediter-

ranean building in Tunisia. More specifically, they found the

solutions to improve both the energy efficiency and the eco-

nomic point of view by optimizing architectural parameters. To

perform that, they coupled a simplified tool for building ther-

mal evaluation specific to the Mediterranean countries called

CHEOPS [51] to a genetic algorithm for the architectural pa-

rameters identification. They studied the energetic and eco-

nomic problem independently. The authors studied a solution

adapted both in summer and in winter. They showed that it is

difficult to solve this kind of multi-objective issue composed of

two independent problems (energetic and economic) because

the optimal solutions are different considering either saving en-

ergy or saving money.

Wang and Xu [132, 131] studied the building thermal transfer

in summer in Hong-Kong. The building consists of three differ-

ent buildings one of them containing offices, another a shopping

center and the last one a restaurant. The study was based on data

collected during a survey conducted in order to deduce the pro-

file of occupancy and use of the lighting and equipment. They

used the electrical analogy to predict the heating/cooling load

by substituting the building envelope (the roof and the external

wall) by two different 3R2C systems and by introducing an in-

ternal mass by a 2R2C system. The internal mass corresponds

to all others heat storage materials as furnitures, carpet, parti-

tions, equipment,... Combining the equations resolution with

the genetic algorithm for the parameter identification, the au-

thors optimized the values of the resistances and capacitances

of the internal mass.

Tuhus-Dubrow and Krarti [126] implemented an hybrid

model by combining the nodal software DOE-2 [133] with ge-

netic algorithms in order to determine the most efficient build-

ing shape considering different parameter sets and output’s cri-

terion. Among rectangle, U-shape, H-shape, T-shape, L-shape,

cross-shape and trapezoidal buildings, the rectangle and trape-

zoidal one were the most efficient shapes both in term of en-
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ergy consumption and life-cycle cost. Nevertheless, variations

between all studied shapes were quite small allowing to give a

large flexibility to architects.

Siddarth et al. [118] have coupled genetic algorithm and

DOE-2 [133] in order to establish a data basis allowing them

to implement regression functions describing the annual energy

consumption. Indeed, they used genetic algorithm to gener-

ate several set of parameters. Each set of parameters has been

tested in DOE-2 [133] which returned the annual energy con-

sumption. Part of these set of parameters are then selected

under an annual energy consumption criterion and injected in-

side a data basis, which will be used for the implementation of

a regression function. Under this annual energy consumption

model , they are, thus, allowed to suggest energy saving strate-

gies.

Sahu et al. [117] proposed a strategy consisting to couple

electrical analogy model with a genetic algorithm for improving

design building parameters to reduce plant load. More specif-

ically, they identified the orientation, the shape, the roof and

walls materials and window properties. They validated their

results by comparing the model response with the commercial

software TrnSys [70].

Yang et al. [141] tested several evolutionary algorithms to

identify building parameters for energy savings. More specif-

ically, they coupled the software HAMbase [41] with these al-

gorithms to optimize external and internal wall properties as

the thermal resistances and capacities, and also long-wave and

short-wave radiation coefficients as the emissivity or the ab-

sorptivity. Their objective was to minimize the fitness value

defined as the mean absolute error.

4.5. Discussion on the hybrid methods

Through the previous examples, it appears that the hybrid

method is mainly used for optimization applications. Contrary

to statistical or physical approaches that we described above,

the aim is not any more just to predict the thermal behaviour

of a specific building but mainly to return different strategies

able to improve energy efficiency. That is why, it is particularly

adapted for the monitoring issues. Indeed, the hybrid technique

selects the advantages of both physical and statistical methods

and uses them to implement efficient models for monitoring and

control applications. Thus, it allows to keep a part of physical

interpretation while not requiring a really accurate description

of all phenomena occurring in the heat building transfer.

The hybrid method is also a remarkable scientific challenge

by the fact that it implies several scientific domains as physics

and statistics. Indeed, it promotes the collaboration between

these two disciplines. Thus, in the future, thanks to both

statistician and physician experts and especially their ability

to work together, the grey method could be extended to other

new combinations models than the nodal approach coupled

with genetic algorithms. Actually, it is quite limited by the

computation time that can in certain cases becomes huge (in

some cases, several days are needed for one parameters iden-

tification phase). For this reason, lots of improvements in the

hybrid method must still be done. Other combination methods

could probably be more efficient in term of computation time.

Following this idea, some works has been published.

The technique proposed in those articles were introduced in

the 1990’s by Lam et al. [76, 75]. They proposed a new strategy

consisting in generating a data basis from a thermal dynamic

simulation software. Those data are then used as input param-

eters in a regression tool. Several techniques can be used as

regression techniques as multivariate regression, artificial neu-

ral network, support vector machine... The advantage is that

it is possible to predict outputs from the regression equations

without needing to resort to the simulation building software.

Thus, this technique allows to reduce significantly the compu-

tation time.

In this specific case, Lam et al. [75] used the nodal soft-

ware DOE-2 [133] as data basis generator and implemented a

prediction model from multivariate linear and non linear regres-

sion equations able to find the annual energy consumption func-

tion of 12 selected variables in air-conditioned office building in

Hong-Kong.

Likewise, Freire et al. [49] proposed a strategy consisting in

generating a data basis from their in-house model called Pow-

erDomus [91]. Those data are used as input parameters in a re-

gression tool. The advantage is that it is then possible to predict

outputs without needing to resort to simulation building soft-

ware. This technique allows to reduce significantly the com-

putation time. Particularly, they were interested in predicting

the indoor temperature and the relative indoor humidity from

the outdoor temperature, the relative outdoor humidity, the to-

tal solar radiation, the heating load and the HVAC power.

In the same way, Xu et al. [139] established a model coupling

the nodal software EnergyPlus [44] with an artificial neural net-

work for predicting the energy consumption. More specifically,

they generated a data basis from the thermal model that they put

as input parameters of the ANN. After training it, the ANN was

able to deduce the prediction of the energy consumption.

More recently, Lee et al. [79] proposed to couple a regres-

sion analysis with a thermal simulation model to describe the

influence of the size, thermal properties and orientation of win-

dows in buildings considering 5 different climate zones in Asia.

Their main goal was to deduced optimized parameter windows

able to reduce the cooling or/and heating load.

Considering these promising perspectives, our team took re-

cently part in this new scientific field by developing our own

hybrid model. We propose to couple a simplified in-house ther-

mal model based on the electrical analogy with a multivariate

regression applied to several spatial subsets of an initial data

basis designed from the thermal model. This method has al-

ready be tested for several applications [87, 63, 127]. Prelim-

inary results are really promising concerning the feasibility of

the method in building applications.

Most of these works present results validated on specific

cases. An interesting outcome would be to find some generic

regression equations. The main issue is that it probably requires

a large amount of parameters. Larger the parameters quantity,

larger the data basis and larger the resort to computation

software and by this way the computation time. Thus, it is a

really interesting issue since it is a great scientific challenge
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that could have a remarkable impact.

We propose to sum up in the Table (3) the properties of the

hybrid techniques compared with those of physical and statisti-

cal tools.

5. Conclusion

In this paper, we have proposed a review of the main tech-

niques and tools enabling building energy performances predic-

tion. These techniques have been introduced along three cate-

gories, each of them associated to specific scientific paradigms

and fields: First of all, approaches relying on physical models

(”white box” methods) have been introduced. These may be

divided into three sub-categories, which mainly correspond to

a gradual rise of the level of details of building models: the

multizone technique which considers the space as a homoge-

neous volume where all states variables are uniform, the zonal

method which divides each room in several cells and the CFD

method which describes each zones in several control volumes.

Then, we have focused on methods based on machine learning

(or ”black box” methods), which rely on statistical treatments

of building energy and comfort data. Four methods have been

reviewed : conditional demand analysis, artificial neural net-

works, genetic algorithms and support vector machine. The last

category of methods considered is the one of hybrid approaches

which rely on both physical models in order to simulate build-

ing thermal behaviour and machine learning techniques in order

to optimize input parameters. Finally, a critical synthesis has

been performed in order to highlight for each method the most

appropriate applications. The first kind of methods - those re-

lying on physical models - are mostly applicable to contexts in

which building design data are available, and especially in the

scope of the design of a new building. Actually, those meth-

ods rely on quite detailed descriptions of buildings, notably en-

tailing geometry, material properties, and energy systems fea-

tures. While this information can be considered to be easily

extractable from design data in the case of a new building, this

is less than obvious for existing buildings (e.g. in the scope of

a refurbishment). This is true for the most basic of these meth-

ods - the nodal one - but all the more true when we consider

more advanced ones (zonal, CFD). When it comes to comparing

those methods between them, the conclusion is quite straight-

forward: obviously, it is better to use more detailed models

(CFD) for the sake of reliability and precision of simulation

result, but models are more tedious to build and computation

times are higher. Zonal methods can be considered as good

trade-offs, but still, most simulation tools used today in ”real-

life” projects are based on nodal approaches. Nevertheless, a

possible trend is a gradual shift to CFD methods with comput-

ers becoming more powerful. The second category of methods,

which are based on machine learning techniques, are extremely

useful in opposite situations, i.e. those in which one owns real

energy and comfort data from the building but has little or no

information about the design. But the reliability of these tech-

niques is highly dependent on the quality and amount of avail-

able data, as were the physical approaches dependent on the

complexity of the underlying model. It is however quite diffi-

cult to perform a qualitative and comparative assessment of the

various techniques devised in this field, since - again - their per-

formances will depend on the training data used as input. Com-

pared to physical approaches, machine learning ones require

less information about the building and may appear as easier

to deploy. However, physical approaches are more handy in

scopes where interpretation of physical phenomena is desired.

At last, hybrid approaches appear as a very promising field for

the near future [33]. They can be considered as a nice trade-off

between physical and machine-learning based methods, and re-

lax their drawbacks by combining them. Hybrid methods may

be appreciated in situations were a building physical model is

available, but is incomplete or does not offer enough details,

and therefore has to be adapted and / or completed. When

dealing with existing buildings, where it is usually difficult to

rebuild detailed physical model, such approaches could be of

great help.
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