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Summary
Objective: The field of clinical informatics has expanded sub-
stantially in the six decades since its inception. Early research 
focused on simple demonstrations that health information 
technology (HIT) such as electronic health records (EHRs), 
computerized provider order entry (CPOE), and clinical decision 
support (CDS) systems were feasible and potentially beneficial 
in clinical practice. 
Methods: In this review, we present recent evidence on clinical 
informatics in the United States covering three themes: 1) clinical 
informatics systems and interventions for providers, including 
EHRs, CPOE, CDS, and health information exchange; 2) consumer 
health informatics systems, including personal health records 
and web-based and mobile HIT; and 3) methods and governance 
for clinical informatics, including EHR usability; data mining, 
text mining, natural language processing, privacy, and security. 
Results: Substantial progress has been made in demonstrating 
that various clinical informatics methodologies and applications 
improve the structure, process, and outcomes of various facets of 
the healthcare system. 
Conclusion: Over the coming years, much more will be expected 
from the field. As we move past the “early adopters” in Rogers’ 
diffusion of innovations’ curve through the “early majority” 
and into the “late majority,” there will be a crucial need for 
new research methodologies and clinical applications that have 
been rigorously demonstrated to work (i.e., to improve health 
outcomes) in multiple settings with different types of patients 
and clinicians.
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Introduction
The field of clinical informatics has expand-
ed substantially in the six decades since its 
inception. When clinical informatics was 
first introduced, simple demonstrations that 
various information technology-enabled pro-
cesses such as clinical documentation, order 
entry, medical diagnosis, or therapy planning 
were possible were sufficient to gain atten-
tion, funding, and even limited clinical use. 
As these techniques and technologies have 
become more widely available, the need for 
high-quality evaluations to provide scientific 
evidence has increased. With the recent em-
phasis on comparative effectiveness research 
[1], the need to develop new methods for and 
conduct rigorous evaluations of all aspects 
of health information technology (HIT) [2] 
will continue to grow. 

In this paper, we present a survey of the 
evidence for various clinical informatics 
approaches. We divided the evidence into 
three primary themes: 1) clinical informatics 
systems and interventions for providers, 2) 
consumer health informatics systems, and 3) 
methods and governance for clinical infor-
matics. The first theme, clinical informatics 
systems and interventions, includes two main 
topics: a) electronic health records (EHRs), 
computerized provider order entry (CPOE), 
and clinical decision support (CDS); and 
b) health information exchange (HIE). The 
second theme, consumer health informatics 
systems includes two main topics: a) personal 
health records (PHRs); and b) web-based and 
mobile HIT. The third theme, methods and 

governance for clinical informatics, includes 
three main topics: a) EHR usability; b) data 
mining, text mining, and natural language 
processing (NLP); and c) privacy and secu-
rity. For each topic, we present an overview 
of clinical informatics approaches, a review 
of recent literature, and an assessment of the 
evidence in the United States to date.

Evidence for Clinical 
Informatics Systems and 
Interventions for Providers
Electronic Health Records, 
Computerized Provider Order Entry, 
and Clinical Decision Support
Over the past decade, clinicians and health-
care organizations have focused on imple-
mentation of HIT such as EHRs and CPOE 
with embedded CDS to improve quality of 
care and reduce costs [3]. This new focus has 
resulted from landmark studies [4], Institute 
of Medicine reports [5, 6], the American 
Recovery and Reinvestment Act (ARRA) 
stimulus with its Health Information Tech-
nology for Economic and Clinical Health 
(HITECH) Act [7], and the Meaningful Use 
Regulation, led by the Centers for Medicare 
and Medicaid Services and the Department 
of Health and Human Services [8, 9].

During this time, numerous publications 
have described the effect of EHRs, CPOE, and 
CDS on patients, processes, and cost outcomes 
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[10, 11]. Despite initially anticipated success 
of HIT at improving patient outcomes, investi-
gators have had difficulty in demonstrating sig-
nificant, positive findings [11]. Further, much 
of the literature reporting positive findings 
has evaluated locally developed HIT systems 
in large, academic medical centers [10, 12]. 
However, evidence about improved process 
outcomes has been consistently positive; one 
systematic review by Bright et al. reported in-
creased random-effects combined odds ratios 
for adherence to recommendations for pre-
ventive services (OR=1.42), ordering clinical 
studies (OR=1.72), and prescribing appropriate 
treatments (OR=1.575) [11]. On the other hand, 
reports of cost-effectiveness of HIT have been 
mixed [11]. Recent manuscripts report overall 
improved efficiency, although initial investment 
costs of HIT implementations are high [13, 
14]. Also affecting costs is the Meaningful Use 
regulation, which includes incentive payments 
for those attesting to “Meaningful Use” of an 
EHR prior to 2015 and penalties beginning 
afterward for those who have not attested [8].

One unintended consequence of the in-
creased adoption of HIT is the substantial 
amount of clinical data, including medica-
tions, laboratory test results, problems, al-
lergies, notes, visits, and health maintenance 
items that exist within these systems and that 
must be reviewed by clinicians at each visit. 
Researchers have found that presenting such 
large amounts of data to clinicians trying 
to retrieve information about patients’ care 
can be overwhelming, leading to frustration, 
inefficiency, and often errors. However, 
automated clinical summarization and medi-
cation reconciliation may soon be capable of 
addressing such problems that result during 
practice and care transition [15-17]. 

Overall, evidence for EHRs, CPOE, and 
CDS is positive, and little has changed in 
the literature over the past several years [10, 
11, 13, 18]. Additional evidence from more 
rigorous studies in diverse settings covering 
additional workflow processes are necessary to 
fully describe the benefits or drawbacks from 
implementation of such HIT and to ensure that 
these systems improve patient care [19, 20].

Health Information Exchange (HIE)
HIE is the process of sharing patient infor-
mation between two or more organizations, 
and it has been an important topic in the last 

few years, with considerable attention in the 
technical, policy and research domains [21]. 
In the United States, the Office of the Na-
tional Coordinator for Health Information 
Technology (ONC) began providing sub-
stantial financial incentives to HIEs [22, 23]. 
ONC certification requirements mandate that 
all certified EHRs be able to send and receive 
HL7-standard continuity of care documents 
(CCDs) [8], and the ONC has also sponsored 
work on the Nationwide Health Information 
Network (NHIN) Direct suite of standards 
for sharing health information [24].

Recently, several studies looked at the 
effects of HIE on quality and cost outcomes. 
Hebel et al. found a 49% reduction in labora-
tory test ordering after Partners HealthCare 
introduced an internal HIE connecting its 
member hospitals [25]. Likewise, Bailey 
et al. studied the effect of HIE on neuroim-
aging in headache patients treated in emer-
gency departments and found a significant 
reduction in unnecessary neuroimaging 
(OR = 0.38) and increased adherence to 
evidence-based guidelines (OR = 1.33) but 
no significant reduction in overall costs [26]. 
The same team, studying HIE more broadly, 
found a significant cost savings associated 
with HIE adoption, driven largely by a re-
duction in hospital admissions in emergency 
departments after HIE was introduced [27]. 
On the other hand, a study by Jones et al. 
found no association between HIE use and 
hospital readmission rates [28]. Surveys 
have found that physicians generally express 
positive attitudes toward the idea of HIE [29, 
30], but in practice they often find that data 
they need are not available [29].

Despite these positive attitudes and re-
sults, HIE adoption in the United States has 
been fraught with challenges in financial 
sustainability [31, 32], and, as grant funds are 
expended, several HIEs have shut down due 
to lack of funds. Alternative business models 
have been proposed, including a “health re-
cord bank” approach where providers submit 
clinical data to a patient-controlled repository 
[33], though the long-term business model 
for this type of HIE is also still uncertain. 
Internationally, Jha et al. studied HIE strategy 
and adoption in Australia, Canada, Germany, 
the Netherlands, New Zealand, the United 
Kingdom and the US and found that most 
countries had a national HIE strategy and 
some pilot programs in place, but that wide-
spread adoption of HIE, even in the highest 
performing countries, was still quite low [34]. 

Given the apparent value of and sat-
isfaction with HIE, coupled with more 
widespread adoption of interoperable health 
information technology, we believe HIE 
adoption will increase over the next several 
years. That said, considerable work needs to 
be done to identify and develop sustainable 
business models for HIE, and more work 
needs to be done to ensure that technical 
standards are in place to permit the exchange 
of coded, interoperable health data.

Evidence for Consumer 
Health Informatics Systems
Personal Health Records (PHRs)
PHRs are applications that are available for 
patients or caregivers to view and maintain 
a record of health status and clinical data 
items, such as medications and allergies, and 
to communicate with providers [35]. A key 
dimension of PHRs involves control of the 
clinical data and can range from stand-alone 
applications, under sole control of a patient, to 
tethered applications, under the control of the 
healthcare organization that provide patients 
with a limited view of their providers’ EHR. 
Several of the early providers of stand-alone 
PHRs have recently withdrawn their offerings 
from the market, most notably Google Health 
[36]. Therefore, for this review, we will focus 
on tethered PHRs that provide patients with 
several key features, notably the ability to 
send and receive secure messages with their 
healthcare providers and the ability to review 
recent laboratory test results [37].

Secure messaging has been shown to 
improve several health outcomes, including 
glucose control in diabetics [38], adherence 
to anti-depressive medications [39], and 
pharmacists’ management of hypertension 
[40]. It has also been shown to improve pa-
tient satisfaction [41], but its effect on patient 
resource utilization has been mixed. Specifi-
cally, Palen et al. found significant increases 
in both in-person and telephone-based clini-
cal services among younger (< 50 years old) 
and older (> 50 years old) patients, as well as 
those with chronic conditions [42].

The evidence for the impact of giving 
patients direct access to their laboratory test 
results is still open for debate [43]. While 
several studies have demonstrated that pa-



IMIA Yearbook of Medical Informatics 2013

15

State of the Art in Clinical Informatics: Evidence and Examples

tients will use these systems, there are no 
studies available that investigate changes in 
patient health outcomes. 

In summary, even though PHRs and pa-
tient portals have garnered much attention 
over the past 10 years, there is little high-qual-
ity evidence of their effect on improving cost, 
quality, or access to health care [44].

Web-Based and Mobile Health 
Information Technology
The Internet continues to be an important 
platform to empower people and to reach 
consumers with behavior change applications 
to address major public health challenges such 
as obesity, mental health and substance abuse. 
This burgeoning area is now complemented 
by research and development of smart-
phone-based mobile apps for consumers, 
which enable self-tracking and motivational 
support. Early validation studies are emerging 
that show mobile phones can be used as sen-
sory tools (e.g., to measure physical activity 
[45] or depression [46]), or as a food diary 
tool [47]. When combined with behavior 
change approaches and what has been called 
“active assistance technologies” [48], these 
tools represent a powerful and effective way 
to increase population health, for example in 
the field of physical activity [49, 50]. How-
ever, many existing applications available 
today have been described as not grounded 
in evidence [50, 51] or as not having a strong 
theoretical foundation [52, 53]. A recent 
systematic review on the theoretical basis of 
behavior change applications concluded “that 
the effectiveness of Internet-based interven-
tions is associated with more extensive use 
of theory (in particular the theory of planned 
behavior), inclusion of more behavior change 
techniques, and use of additional methods 
of interacting with participants (especially 
text messages).” [53]. Non-usage and drop-
out attrition of participants [54] remains a 
substantial problem for randomized trials 
in the area, and there is now an increasing 
evidence-base on which factors predict and 
increase usage and adherence to web-based 
and mobile applications [55-59]. 

The number of high-quality randomized 
trials in this area has increased sharply, and 
appraisal and consolidation of the emerging 
evidence is required. A recently published 

extension of the CONSORT statement, 
CONSORT-EHEALTH [60] aims to improve 
the reporting of trials evaluating Web-based 
or mobile applications, as systematic reviews 
conducted in this area frequently decry re-
porting deficiencies such as not describing 
the intervention or its theoretical foundations 
in enough detail, or not measuring or report-
ing exposure to the intervention. 

Evidence for Methods and 
Governance in Clinical 
Informatics
Health Information Technology 
Usability
As new HIT systems are developed, it is im-
portant to assess human factors components, 
including system usability. Compromised 
system usability for EHRs partially explains 
lower EHR adoption rates in specialty areas 
such as pediatric care [61]. Recommenda-
tions to increase EHR adoption rates include 
enhancing functionality for specialty care 
areas [62, 63], improving interoperability 
with other HIT [64], enhancing the ability to 
conduct research and quality improvement, 
reducing interference with workflow patterns 
[65], improving the organization of displayed 
information, streamlining login procedures 
[66], and decreasing documentation time 
[67]. EHRs were found in a systematic review 
by Poissant et al. to have mixed impacts on 
documentation time for nurses and increase 
work time for physicians, particularly when 
centrally located desktop workstations are 
used [68]. Documentation time would likely 
be decreased by streamlining data entry with 
simplified user interfaces and optimized de-
fault settings, improving the design of alerts 
and reminders, including avoiding hard stops 
[69] and increasing the positive predictive 
value of alerts [70].

Usability may also affect patient safety. 
One study by Han et al. found an unexpected 
increase in patient mortality following the in-
troduction of an EHR with usability problems 
in a pediatric hospital [71, 72]. On the other 
hand, a later study by Longhurst et al. found 
a reduction in patient mortality based in large 
part on improvements in usability [73]. An 

emerging consensus is that both the system 
design [74] (EHR as designed) and the work-
flow implementation (EHR as implemented) 
affect patient safety. In order to improve the 
system design, guidelines for evaluating [75] 
and documenting [76] summative usability 
testing results have been published by the US 
National Institute of Standards and Technolo-
gy. Likewise, the TURF (task, user, represen-
tation, and function) framework provides a 
set of objective measures for evaluating EHR 
usability as designed [77] and the SAFER 
(Safety Assurance Factors for Electronic 
Health Record Resilience) guides provide rec-
ommendations for proactive assessments of 
EHR usability focusing primarily on ensuring 
safety and effectiveness of EHRs as they are 
implemented [78]. For workflow implemen-
tation in pediatrics, recommendations were 
made to improve patient safety by reducing 
the risk of wrong patient errors, avoiding 
mode errors with weight-based dosing, and 
reducing delays for time-critical tasks for 
newborn patients [79]. 

For HIT systems designed for patients, 
additional usability issues have been 
found, particularly with interpreting 
medical terminology and graphed data 
[80], understanding drug-drug interac-
tion alerts, and navigating complex login 
procedures. Older adult patients can have 
additional usability issues, such as limited 
vision when reading small font and giving 
up rather than using features that rely on 
interface exploration to get started [81].

Clearly, the evidence of the need for 
improved EHR usability is overwhelming 
and such improvements represent a signif-
icant challenge for informatics researchers 
in the coming years.

Data Mining, Text Mining, and 
Natural Language Processing
The international adoption of EHR sys-
tems has led to an unprecedented amount 
of clinical data available electronically [3, 
82]. According to the US Centers for Dis-
ease Control and Prevention, more than 36 
million hospital admissions and 1.3 billion 
ambulatory care visits are documented per 
year in the USA [83]. While mining EHR 
databases to facilitate medical research 
and improve clinical care is not a new area 
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of research [84], it has received increased 
attention with the recent emphasis on 
widespread EHR adoption [85]. 

Data mining, also known as knowledge 
discovery in databases (KDD), is a process 
to find previously unknown patterns in 
databases. Iavindrasana et al. reviewed the 
state-of-the-art practices in clinical data 
mining, focusing on methodological issues 
such as data cleaning, processing, and evalu-
ation [86]. Early evidence demonstrated that 
data mining technologies can be applied to 
healthcare data to assess treatment effective-
ness [87] and to improve healthcare man-
agement [88]. More recently, studies have 
shown that EHR data can be used to identify 
comorbidities using a data-driven statistical 
methodology [89], detect pharmacovigilance 
signals [90,91], and build predictive models 
for disease risks [92,93], surgery outcomes 
(94), and hospital admissions [95,96]. 

Clinical text is a major component of 
EHR data and it often contains rich infor-
mation describing patients. Therefore text 
mining is inevitable when dealing with 
EHR data [96]. NLP technology, which can 
extract structured information from free 
text [97], has become an essential com-
ponent and a top-ranked topic in clinical 
informatics [98]. Researchers have been 
actively developing advanced clinical NLP 
methods, represented by works such as 
the i2b2 NLP Challenges [99]. Strong ev-
idence has shown the use of NLP in facil-
itating clinical and translational research 
based on EHR data. Murff et al. conducted 
a study among patients undergoing surgi-
cal procedures at VA medical centers and 
concluded that NLP analysis had higher 
sensitivity on identifying postoperative 
complications compared with discharge 
coding [100]. Another study by Elkin et al. 
also found that an NLP-based method that 
used the entire encounter note was more 
accurate than a model based only on the 
chief complaint field for a bio-surveillance 
system of influenza [101]. A number of 
studies have also used NLP for automat-
ically extracting fine-grained phenotype 
information from EHRs and have shown 
great successes in genomic [102] and 
pharmacogenomic [103] studies that are 
based on EHR-linked biobanks. In addi-
tion to supporting medical research, NLP 
has been used in clinical settings as well, 

such as to supplement structured data for 
clinical decision support systems [104]. 

Overall, the evidence is very positive 
for the use of data mining, text mining, and 
NLP in highly focused domains designed 
to facilitate clinical and translational re-
search, as well as patient care.

Privacy and Security
As HIT grows in scale and scope, it is also 
critical to ensure the trustworthiness of the 
system through robust privacy and securi-
ty principles. These principles should be 
integrated into every step of the lifecycle 
of health information, from initial data 
collection, to the use of such information in 
primary care, to the reuse and dissemination 
of patient data for secondary endeavors.

At the point of health information collec-
tion, it is necessary to enable formal speci-
fication and management of policies. These 
policies enable organizations to specify how 
they intend to process health information, 
as well as enable patients to indicate how 
they want their information to be utilized. 
Recent research has shown how to model 
the system as access zones [105], integrate 
personally-controlled health records with 
health organization-controlled EHRs [106, 
107], and control the flow of information to 
third-parties [108].

While such control structures can be for-
malized, there are many ways in which health 
information can be breached. For instance, 
health information may be insufficiently pro-
tected with weak encryption or passwords. 
Recent research demonstrated that in 14 
of 15 password-protected files containing 
data from Canadian clinical trials sent over 
email, the passwords could be cracked 
using commercial password recovery sys-
tems [109]. Health information may also 
be exposed due to poor security principles. 
According to statistics from the Office for 
Civil Rights at the U.S. Dept. of Health and 
Human Services (HHS), there have now been 
over 500 breaches at healthcare providers 
involving more than 500 patients [110]. 
While breaches are not limited to medical 
information, a recent econometric analysis 
of breaches across industry sectors showed 
that a compromise of medical data increases 
the likelihood of a settlement by 31% [111]. 

Ensuring that threats originating from 
beyond a healthcare organization are ap-
propriately addressed, insider threats still 
remain. The complexity and dynamic nature 
of primary care settings makes it difficult to 
define tight access controls while maintain-
ing clinicians’ access to the required data. 
As such, it has become important to develop 
and deploy auditing techniques to monitor 
access to, as well as utilization of, health 
information. It has been shown that machine 
learning frameworks can refine healthcare 
privacy officials’ knowledge of suspicious 
behavior into classifiers for auditing pur-
poses [112]. Additionally, unsupervised 
learning techniques have been suggested to 
explain accesses [113] and detect deviations 
from normal collaborative behavior [114]. 
Despite such advances, recent research 
suggests that certain open-source medical 
record systems have deficiencies which may 
hamper auditing efforts [115].

As health information is reused in sec-
ondary settings, it is recommended that such 
data be de-identified prior to dissemination. 
A software architecture for managing access 
to data at varying levels of de-identification 
has been put into practice by i2b2 [116]. 
Beyond their framework, there have been 
specific advances in various aspects of 
de-identification. Given that the majority of 
data generated in a healthcare setting is based 
in natural language, there continues to be a 
flurry of work in the development of new 
free text scrubbing technologies [117-119]. 
Moreover, there have been recent demonstra-
tions that these technologies can be scaled 
beyond traditional English-speaking coun-
tries [120]. These technologies are now being 
ingrained in open-source technologies [121, 
122]. Other open source de-identification 
technologies have been developed for a med-
ical image toolkit in DICOM format [123].

Residual personal data stored as free 
text can leak information that can lead to 
re-identification. Thus, free text, or natu-
ral language, is still not shared on a wide 
basis. Rather, health information is shared 
in field-structured form, where it can be 
subject to generalization, perturbation, and 
suppression strategies that enable quanti-
fiable confidentiality protections. Notably, 
such de-identif ication has enabled the 
dissemination of health data for machine 
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learning competitions [124] as well as clear 
demonstrations of how clinical data can be 
shared to support genotype association stud-
ies [125]. There remain concerns over health 
information and the potential for re-identifi-
cation [126, 127]. Evaluations suggest that 
these risks vary [128], but several reviews 
have shown that there is a lack of re-identi-
fication attacks of de-identified data [129]. 
Nonetheless, to further mitigate risk, there 
has been movement to erect systems that en-
able queries against systems that return only 
aggregated results in local and described 
healthcare environments [130, 131]. 

Summary
Over the last several years, considerable 
progress has been made in demonstrating 
that various clinical informatics methodolo-
gies and applications improve the structure, 
process, or outcome of various facets of the 
healthcare system. Over the coming years, 
much more will be expected from the field. 
As we move past the “early adopters” in 
Rogers’ diffusion of innovations’ curve [132] 
through the “early majority” and into the 
“late majority,” there will be a crucial need 
for methodologies and applications that have 
been rigorously demonstrated to work in mul-
tiple settings with different types of patients. 
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