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Abstract

Machine vision significantly improves the efficiency, quality, and reliability of defect detection. In visual inspection, excel-
lent optical illumination platforms and suitable image acquisition hardware are the prerequisites for obtaining high-quality 
images. Image processing and analysis are key technologies in obtaining defect information, while deep learning is signifi-
cantly impacting the field of image analysis. In this study, a brief history and the state of the art in optical illumination, image 
acquisition, image processing, and image analysis in the field of visual inspection are systematically discussed. The latest 
developments in industrial defect detection based on machine vision are introduced. In the further development of the field 
of visual inspection, the application of deep learning will play an increasingly important role. Thus, a detailed description of 
the application of deep learning in defect classification, localization and segmentation follows the discussion of traditional 
defect detection algorithms. Finally, future prospects for the development of visual inspection technology are explored.

Keywords Machine vision · Defect detection · Image processing · Deep learning

1 Introduction

Advanced industrial systems require increasingly improved 
product performance along with an increased need for qual-
ity control during production [1–3]. However, defects, such 
as scratches, spots, or holes on the surface of the product, 
adversely affect not only the aesthetics of the product and 
the comfort in using it but also its performance [4–7]. Defect 
detection is an effective method to reduce the adverse impact 
of product defects [8, 9].

Artificial visual inspection is a traditional method to per-
form quality control for industrial products [10]. Although 
in some cases, artificial visual inspection may be superior, 
it is inefficient and prone to fatigue. Artificial visual inspec-
tion is not feasible for some applications that have dangerous 
consequences in the event of a failure [11]. Because of its 
shortcomings, such as a low sampling rate, poor real-time 

performance, and low detection confidence, artificial visual 
inspection cannot meet the efficiency and quality require-
ments of modern industrial production lines [12]. Hence, 
more efficient and reliable visual inspection technologies 
need to be developed.

Machine vision is one of the key technologies used to 
perform intelligent manufacturing, and it has become an 
effective way to replace artificial visual inspection [13, 14]. 
Machine vision is a system that automatically receives and 
processes images of a real object through optical devices 
and noncontact sensors. Vision is one of the highest levels 
of human perception. Images play a very important role in 
human perception [15]. However, human perception is lim-
ited to the visible band of the electromagnetic spectrum. 
Machine vision inspection technology can cover the whole 
electromagnetic spectrum, ranging from gamma rays to 
radio waves [16]. Through powerful vision sensors, ingen-
iously designed optical transmission methods, and image 
processing algorithms, machine vision can accomplish 
many tasks that cannot be performed by artificial vision. 
With the development of computer equipment and artificial 
intelligence, machine vision, as a measurement and judge-
ment technology, has been used widely in industry. Machine 
vision detection technology can improve the detection effi-
ciency and degree of automation, enhance the real-time per-
formance and accuracy of detection, and reduce manpower 
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requirements, especially for some large-scale repetitive 
industrial production processes. As a non-contact and non-
destructive detection method, machine vision can be easily 
employed to perform information integration, automation, 
intelligence, and precise control. It has become the basic 
technology required in computer integrated manufacturing 
and intelligent manufacturing. Moreover, machine vision 
has a wider range of spectral responses and a greater ability 
to work for a long time in harsh environments. Thus, the 
application of machine vision in manufacturing processes 
can benefit a large number of industrial activities [17–19].

A typical industrial visual inspection system mainly 
consists of three modules—optical illumination, image 
acquisition, and image processing and defect detection [11, 
20]—as shown in Fig. 1. First, based on the product charac-
teristics and inspection requirements, an optical illumination 
platform is designed. Next, CCD cameras or other image 
acquisition hardware are used to convert the target objects 
placed in the light field into images and transmit them to a 
computer. As an information carrier, the images that can 
reflect the features of the objects constitute the core element 
of visual inspection; hence, their quality is very important. 
Excellent optical illumination platforms and suitable image 
acquisition hardware are the prerequisites for obtaining high-
quality images. Finally, based on some traditional image 
processing algorithms or deep learning algorithms, various 
operations are carried out on the images to extract features 
and to perform classification, localization, segmentation and 
other operations. Image processing is a key technology in 
machine vision. Through image processing and analysis, a 
computer can automatically understand, analyze, and judge 

image features, and then control the actuator of the auto-
matic production line for further operation [21].

In industry, the architecture can be used as a step guide-
line for designing a visual inspection system. For instance, 
investigating surface characteristics was the first step in 
designing a strongly reflective metal surface visual inspec-
tion system; hence, diffuse bright filed back light illumi-
nation was adopted. Light-sensitive components were then 
used for image acquisition. After image acquisition, wave-
let smoothing was used for image preprocessing, and Otsu 
threshold was employed to segment the image. Finally, sup-
port vector machine classifier was designed for defect clas-
sification [22].

The main evaluation indexes of a visual inspection system 
are accuracy, efficiency and robustness. The goals of the 
system are high precision, high efficiency and strong robust-
ness. In order to achieve these goals, it needs an excellent 
coordination of optical illumination, image acquisition, and 
image processing and defect detection.

This study is focused on the current state of develop-
ment of industrial defect detection utilizing machine vision. 
Visual inspection modules, including optical illumination, 
image acquisition, image processing and defect detection are 
discussed in detail. The light source and illumination sys-
tem design are discussed in Sect. 2. Section 3 describes the 
image sensors and image acquisition design for particular 
scenarios. Then, as the main portion of this study, Sect. 4 
focuses on defect detection tasks such as defect classifica-
tion, localization and segmentation, and it discusses repre-
sentative traditional image processing methods and intelli-
gent methods based on deep learning. Finally, insights into 

Fig. 1  Typical industrial visual inspection system architecture and main components
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future research in defect detection based on machine vision 
are presented in Sect. 5.

2  Optical Illumination

Visual inspection technology is based on an image, and 
encompasses image acquisition and image processing [23]. 
The key to the success of the visual inspection system lies 
in getting high quality images. In general, the image quality 
is mainly affected by two factors: optical illumination and 
image acquisition [24, 25]. The main function of an opti-
cal illumination platform is to overcome the interference of 
environmental lighting, ensure the stability of the image, and 
obtain an image with a high contrast. Thus, the main goal of 
the optical illumination platform is to make the important 
features of the objects visible and reduce undesired features 
of the objects.

The research on optical illumination has a long history. 
In the 1980s, the commercial white light source for machine 
vision was not available in the market and some light sources 
designed for workbenches could not be easily integrated 
into vision detection systems. With the transition of vision 
detection systems from laboratory to industry, the neces-
sity of optimizing optical illumination systems has gradu-
ally become a research area of focus, and the importance of 
optical illumination in visual systems has been understood 
at a preliminary level. In 1987, Mersch [26] systematically 
discussed the importance of optical illumination in visual 
systems. Based on the technical conditions at that time, he 
analyzed the application of polarization and color filters and 
pointed out the advantages of optical fiber lighting for the 
illumination of a small area. Furthermore, he discussed the 
fluorescent marking lighting method and frequency flash 
lighting technology. Later, Cowan [27] designed the posi-
tioning of a camera and a light source by using their models 
and surface reflectivity to meet the requirements of a vision 
system. Sieczka et al. [28] presented a detailed exposition 
and discussion on some important issues related to light 
sources, such as light source efficiency, light divergence, 
spectral content, light source size, and packaging. Combined 
with mathematical programming, Yi et al. [29] discussed the 
placement design of sensors and light sources. Kopparapu 
[30] proposed a design method, using multiple light sources 
to achieve uniform illumination, which regarded the solution 
of the optimal position of light source as a minimization 
problem, and used simulations to verify the effectiveness 
and applicability of the method.

Despite the rapid growth of computer digital image pro-
cessing and calculations, optical illumination still plays a 
significant role in visual inspection systems. For an on-line 
visual inspection system, compared to the long calcula-
tion period to process the image by advanced algorithms, 

a specially designed optical illumination for field lighting 
can achieve a higher detection accuracy. Furthermore, a 
specially designed optical illumination can also meet the 
real-time requirements of the production line visual inspec-
tion in a better way. Therefore, as an important part of the 
machine vision application, optical illumination deserves 
further discussion.

2.1  Light Source

Light is a typical energy source for image formation. Com-
mon light source devices include LED lamps of various 
shapes, high frequency fluorescent lamps, optical fiber halo-
gen lamps, etc. Currently, LED lamps have become avail-
able for every type of machine vision application [31, 32]. 
An LED light source can be customized in several array 
configurations to achieve the desired irradiance [33, 34]. 
In vision applications, the most popular light source is a 
circular ring array of LEDs [35]. The circular ring array of 
LEDs possesses high brightness and can be conveniently 
installed. It can effectively avoid the shadow phenomenon 
and highlight the features to be detected. It is often used for 
IC chip appearance and character detection [36], printed cir-
cuit board (PCB) substrate detection [37], microscope illu-
mination [38], etc. In structured lighting, the linear array of 
LEDs is widely used [35]. Furthermore, it has good heat dis-
sipation and flexibility of usage, and can be used for defect 
detection of some large structural parts, such as copper strip 
[39] and steel sheet [40].

Visible light is a common light source. Different wave-
lengths of light have distinct characteristics and applications. 
As its wavelength changes, visible light assumes different 
colors [41, 42]. White light source is a multi-wavelength 
compound light, which is widely used. High brightness 
white light source is suitable for color image shooting. The 
wavelength of blue light is between 430 and 480 nm, and is 
suitable for sheet metal, machining parts, and other products 
with a silver colored background, as well as metal printing 
on film. The wavelength of red light is typically between 600 
and 720 nm, which is relatively long and can pass through 
dark objects. It is used in applications, such as line detection 
and light transmission film thickness detection. A red light 
source can significantly improve the contrast of an image. 
The wavelength of a green light source is typically between 
510 and 530 nm and lies between the wavelengths of the red 
and blue lights. The green light source is mainly used for 
products with red or silver colored backgrounds.

Invisible light could be infrared light, ultraviolet light, 
or X-rays. The wavelength of infrared light is generally 
780–1400 nm. Infrared light has a strong propagation abil-
ity and is generally used in liquid crystal display (LCD) 
screen detection and video monitoring industries [43]. The 
wavelength of ultraviolet light is generally 190–400 nm. The 
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ultraviolet light has a short wavelength and strong penetra-
tion and is mainly used in certificate detection, ITO detec-
tion of touch screens, scratch detection of metal surfaces 
[44], etc. X-ray is a type of electromagnetic wave, whose 
wavelength range is from 0.01 to 10 nm. X-rays have a short 
wavelength and good perspective effect and are widely used 
in various perspective tests in industry [45]. These wave-
lengths of light are invisible to the human eye; however, 
they can be applied in machine vision. This is also another 
important advantage of machine vision over artificial vision.

To enhance the visibility of certain features, it is impor-
tant to consider the interaction between light and objects, 
including the propagation mode of light, when it reaches the 
surface of objects, and the relationship between the wave-
length of light and the color of objects [22]. The propaga-
tion of light is different in different materials. The defective 
part of an object would also affect the propagation of light. 
The common defects in surface inspection can be catego-
rized into two categories: (i) geometric defects, such as pits, 
scratches, cracks, burrs, bulges, scratches, and bumps; (ii) 
surface strength defects or density defects, such as oxidation, 
rust, and stains. The geometric defects change the surface 
reflection, and surface strength defects or density defects 
change the surface reflection, as well as absorption. In visual 
inspection, opaque objects are common. The opaque objects 
have the ability to reflect or absorb color light of different 
wavelengths. The absorbed color light cannot be seen and 
only the reflected color light can directly act on the image 
acquisition devices. Using a black-and-white camera, reli-
able and stable detection can be achieved by selecting a 
specific wavelength of light source and highlighting the 
grayscale difference between the part to be detected on the 
surface of the object and the other parts. Therefore, the con-
trast of the image can be enhanced by effectively selecting 
the wavelength of light or combining multiple wavelengths 
of light.

2.2  Fundamental Illumination Modes

With the development of optical illumination technology, 
various types of designs of illumination structure have 
emerged [46]. In the field of machine vision, based on dif-
ferent positional relationship among the light source, object, 
and camera, the illumination can be divided into forward and 
back illuminations. According to the performance character-
istics of light source, it can be divided into structured light 
and stroboscopic light.

2.2.1  Forward and Back Illuminations

In forward lighting, the light source and the camera are 
located on the same side of the object. Being the most widely 
used illumination method, forward lighting is suitable for 

detecting surface defects, scratches, and the important 
details of objects, especially the surface texture features. The 
angle between the light beam and the object surface affects 
the illumination effect. Depending on whether the light is 
directly reflected onto the camera, the forward lighting is 
divided into bright field forward lighting and dark field for-
ward lighting, as shown in Fig. 2a, b. For dark field forward 
lighting, reducing the incident angle of the light forms a 
low angle dark field forward lighting. Low angle dark field 
forward lighting can highlight the edge and height of the 
surface, enhance the topological structure of the image, and 
provide a strong performance on the surface concavity and 
convexity. Coaxial forward lighting is a special forward 
lighting mode. Coaxial light source refers to a high-intensity 
uniform light passing through the half mirror to form the 
light coaxial with the lens, as shown in Fig. 2c. Coaxial 
forward lighting provides more uniform illumination than 
traditional lighting mode, while avoiding the reflection of 
the object. Therefore, it improves the accuracy and reproduc-
ibility of machine vision. The coaxial forward lighting can 
be used to detect surface defects, cracks, scratches, etc. For 
a highly reflective object with a smooth surface, the light 
is first projected onto the rough cover to produce a non-
directional and soft light, and then projected on the surface 
of the detected object, which can avoid the strong reflection 
produced by the direct lighting mode, as shown in Fig. 2d. 
Scattering forward lighting of a dome structure is com-
monly used in solder joint detection, chip pin detection, etc. 
In back lighting, the light source is placed behind the object, 
as shown in Fig. 2e. A significant feature of back lighting is 
that it can highlight the shadow of opaque objects or observe 
the interior of transparent objects. Its advantage is that it can 
clearly outline the edge of the object to be measured. It is 
often used in object shape detection and dimension detec-
tion. Table 1 compares these typical illumination modes.

2.2.2  Structured Light Illumination

A structured light illumination causes the light to have a cer-
tain shape by specific means, so as to facilitate the detection 
of three-dimensional object information using two-dimen-
sional vision [47], as shown in Fig. 3. Here, firstly, the spe-
cific light information is projected on the object surface and 
the background. Then, a camera is used to collect the image 
containing the change in the information of the light signal 
caused by the structure of the object. Finally, the position 
and depth of the object are calculated by digital image pro-
cessing technology, and the whole 3D space is restored [48].

Structured light illumination technology is widely used 
in visual measurement and inspection. Based on laser struc-
tured light vision, Li et al. [50] developed an inspection sys-
tem for weld bead profile monitoring, measuring, and defect 
detection with scale calibration. Using triangulation with 
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line-scan cameras in a 2D plane, Lilienblum and Al-Ham-
adi [51] presented a novel technique for optical 3D surface 
reconstruction by using a combination of line-scan cameras 
and structured light. It can measure continuously, whereby 
a single surface scan is sufficient to calculate a high-quality 
3D reconstruction.

2.2.3  Stroboscopic Light Illumination

Stroboscopic light is a type of illumination technology 
applied in optical imaging. It can achieve the effect of 
freezing the motion of a moving object. An appropriate 
optical pulse can eliminate the motion blur in the images 

Fig. 2  Schematic diagram of typical illumination modes: a bright field forward lighting; b dark field forward lighting; c coaxial forward lighting; 
d scattering forward lighting of dome structure; e back lighting

Table 1  The performances of typical illumination modes

Illumination modes Performances

Bright field forward lighting It is good for high contrast, but reflective surfaces produce specular reflections

Dark field forward lighting It can obtain the diffuse light caused by the change of surface texture, and avoid the specular light

Coaxial forward lighting It can overcome the interference caused by surface reflection, and is mainly used to detect bumps, 
scratches, cracks and foreign matters on the smooth surface of objects

Scattering forward lighting of dome structure It can avoid the strong reflection produced by the direct lighting mode

Back lighting It can highlight the outline of opaque objects or observe the interior of transparent objects
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of fast-moving objects, which is very suitable for on-line 
high-speed detection of machine vision. By improving the 
brightness of the stroboscopic light, the exposure time can 
be reduced, and the whole vision detection system can run 
faster. In a stroboscopic illumination environment, the aper-
ture can be reduced to get a better image depth of the field. 
To solve the problem of fuzzy images when high-speed mov-
ing objects are photographed in a continuous light source, 
Chen et al. [52] designed a narrow-pulse and high-current 
strobe light, with a high-illumination LED as the light 
source. A field-programmable gate array (FPGA) chip gen-
erates a pulse signal to control the timing of the stroboscopic 
light source.

2.2.4  Auxiliary Optical Devices for Illumination

In practical applications, production lines and working envi-
ronments have different requirements on the brightness, 
working distance, and irradiation angle of light sources. 
They are sometimes limited to specific application environ-
ments, and it is very difficult to obtain a good visual image 
directly through the adjustment of light source type or irra-
diation angle. In this case, some special auxiliary optical 
devices are needed.

The common auxiliary optical devices include a filter, 
reflector, spectroscope, prism, polarizer, diffuser, optical 
fiber, screen, etc. In the image acquisition stage, some noise 
interferences can be eliminated and the signal-to-noise 
ratio (SNR) of the image can be improved by using a filter, 
and consequently, improve the efficiency of the system. A 

reflector can change the path and angle of the light, change 
the distance between the observation points, realize simulta-
neous or time-sharing observations of multiple targets, and 
provide more choice space for the installation of the light 
source. In a spectroscope, the ratio of the reflected light to 
the refracted light can be adjusted by changing the coating 
parameters. The coaxial illumination is a special case of a 
spectroscope. A prism can separate multi-colored compound 
light and get a single frequency light source. A polarizer can 
eliminate the reflection of light on non-metallic surfaces. A 
diffuser can make light more uniform and reduce unwanted 
reflections. An optical fiber can gather the light beam in an 
optical fiber tube for transmission, which makes the instal-
lation of the light source more flexible and convenient. The 
application of auxiliary optical devices can be of great help 
in industrial defect detection. For example, metal surface has 
a high reflection coefficient that makes it difficult to design a 
proper lighting system for defect enhancement. To suppress 
this light, Zhang et al. [22] designed a diffuse bright-field 
back light illumination and mounted a polarizing filter in 
front of the camera, and oriented it in such a way that the 
polarized light would be suppressed.

2.3  Illumination System Design

A light source can be designed in various shapes and struc-
tures, so that the light emitted has different characteristics. 
An effective way to achieve a specific lighting function is 
through an innovative design, which combines various fun-
damental illumination methods and some auxiliary optical 

Fig. 3  Schematic diagram of 
structured light illumination 
[49]. Copyright 2018, Elsevier
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devices. For some special occasions, there are special-pur-
pose illumination methods available, which include point 
light source illumination, shadow less illumination, par-
allel light optical unit illumination, microscope illumina-
tion, and customized illumination based on the customer 
requirements.

For a visual inspection project that aims to obtain high 
quality images, it is necessary to design a targeted optical 
illumination system. Firstly, according to the specific needs 
of the project, the key factors, such as the characteristics 
and motion state of the objects, surrounding environment 
and type of camera should be analyzed. Then, the differ-
ence between the target and the background is studied to 
find out the difference in the optical phenomenon between 
them. According to the characteristics of the materials and 
the interaction between the light source and the objects, a 
preliminary determination of the type and color of the light 
source should be conducted. Finally, experiments should be 
carried out and from the test results the illumination sys-
tem should be adjusted until it can meet the requirements 
of visual inspection. The following is the analysis of several 
application cases, respectively about highly reflective sur-
faces, heteromorphic structure, moving objects, and mini-
mally invasive surgery (MIS).

1. Highly reflective surfaces are widely used in automo-
bile, aviation, life science and aerospace industry. These 
application scenarios have high requirements for sur-
face quality. Optical double-pass retro-reflection sur-
face inspection technique is a typical optical detection 
technique realized by cleverly designing light reflection 
path, as shown in Fig. 4. It can inspect very small out-
of-plane surface distortions on a specularly reflective 
surface, such as indentations and protrusions [53]. The 
advantage of optical double-pass retro-reflection surface 
inspection technique is that large surface area can be 
observed in real time, so it can be used for online real-
time visual inspection.

2. For a belt condition monitoring system, due to the spe-
cial shape of belt, unique design requirements are put 
forward for the illumination system. Yang et al. [54] 
arranged high-brightness linear light sources in a vaulted 
shape. This lighting design can adapt to the structural 
characteristics of the upper belt and improve the detec-
tion efficiency.

3. To cater to the diverse reflection characteristics of the 
surface of tin steel strips and different speeds of a tin-
ning line, Peng and He [55] proposed an adaptive illu-
mination light source. This light source was integrated 
with a time delay integration charge-coupled device to 
capture the images of the moving objects and facilitate 
inspection of the surface quality of the tin steel strips.

4. The combination of structured light and white light can 
take advantage of their advantages to achieve the desired 
effect. Clancy et al. [56] proposed a MIS stroboscopic 
illumination system, in which structured light and white 
light are interleaved during a high-speed camera acqui-
sition. Besides playing its role in the corresponding 
cycles, the structured light is not perceived and white 
light can be used solely for navigation and visual assess-
ment during the shielding period of structured light.

Optical illumination plays an important role in visual 
inspection. To achieve an appropriate illumination effect 
for a specific scenario, an appropriate light source should 
be employed based on considering the characteristics of the 
light source and the interactions between the light and the 
objects. To realize an innovative design of the optical illumi-
nation system, an effective combination of some fundamen-
tal illumination models is the preferred approach, and addi-
tional auxiliary optical devices will also help significantly.

3  Image Acquisition

In an appropriate optical illumination environment, an object 
surface can be imaged on a camera sensor by an optical 
lens. The optical signal is then converted into an electrical 
signal, and into a digital signal that can be processed by a 
computer to complete the acquisition process of the product 
surface image.

Image acquisition technology focuses on the characteris-
tics of sensor devices and the field of view design. The typi-
cal photosensitive devices of industrial cameras are mainly 
based on charged coupled device (CCD) or complementary 
metal oxide semiconductor (CMOS) chips [57, 58]. The 
image acquisition technology of many conventional scenar-
ios has become relatively mature, which this study does not 
elaborate. However, for some special detection requirements, 
a reasonable fields of view design and an effective photo-
sensitive sensor selection can be very important. Several 

Fig. 4  Schematic diagram of double-pass retro-reflection illumination 
system [53]. Copyright 2007, Elsevier
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representative image acquisition schemes for some particular 
image acquisition scenarios will be discussed.

3.1  CCD and CMOS

CCD or CMOS image sensor technology is essential for 
image capturing. They convert optical signals into electri-
cal signals. However, these two types of chips adopt different 
methods and means in the transmission of this information 
and their respective designs are totally different.

The CCD, which is a photoelectric converter, originated 
in the early 1970s and developed to maturity in the 1990s 
[59, 60]. In 1974, White et al. [61] discussed the image 
array characteristics of a low illuminance area array CCD. 
In 1978, Dillon et al. [62] discussed a color imaging sys-
tem using a single CCD area array. In 1990, Beyer [63] dis-
cussed the calibration of CCD for machine vision and robot-
ics. In the CCD chip, the charge of the photosensitive pixel 
shifts and is converted into a signal. The CCD has a series 
of advantages, such as small distortion, small volume, low 
system noise, self-scanning, light weight, small power con-
sumption, long life, wide sensing spectrum range, and high 
reliability. It can be made into a highly integrated assembly. 
The CMOS image sensors have been around for almost as 
long as the CCD; however, it was not until the 1990s that 
commercial CMOS sensor chips were manufactured [60].

Currently, CCD sensors are widely used in machine 
vision [64–66]. CMOS image sensors are still in their early 
stages and yet to mature [67, 68]. The CMOS image sensors 
can get an image quality similar to that of CCD product and 
have made great breakthroughs in terms of power consump-
tion and integration.

3.2  Image Acquisition Schemes

This section discusses the state of the art in the image acqui-
sition system design from the aspects of multiple views, 
omnidirectional vision, micro-domain vision, multispectral.

3.2.1  Multiple Views

In visual inspection, for parts with complex structures, it is 
difficult to capture all the key information based on a single 
image. In this case, only a collection of multiple images can 
show the features to be inspected.

Sun et al. [69] designed a machine vision system to 
acquire three-view images of one electric contact (EC). 
For each view, the system incorporated different image 
pre-processing and feature extraction methods to enhance 
and detect the surface defects. Chiou and Li [70] proposed 
a multi-view system for the inspection of PU-packing. 
Their system consisted of three inspection stations. Sta-
tion 1 focuses on obtaining image information of the top 

and bottom surfaces of the package. Station 2 uses another 
camera to check the interior of the packing incorporated. 
Station 3 uses two line-scan cameras to simultaneously 
scan the inner and outer cylindrical surfaces. Through this 
method, each of the inspection stations would perform its 
assigned tasks, and multiple view images of the PU-pack-
ing could be effectively collected on an efficient work line. 
For detection in bearings, there are many parts that need 
to be inspected, such as the inner and outer rings. Shen 
et al. [71] designed a new image acquisition system for 
bearing cover inspection. To get the enhanced deformation 
information, three bearings were captured in one image. 
The left and right bearings were inspected for deformation 
defects, while the center bearing was inspected for other 
defects besides the deformations. This was an efficient and 
ingenious image acquisition system.

3.2.2  Omnidirectional Vision

Omnidirectional vision is mainly implemented by install-
ing a fisheye lens [72]. Pipes are used to transport gas, 
liquid, or fluid with solid particles. The detection of their 
security often involves a visual detection of the inner wall 
of the pipes. For perspective stereo cameras with limited 
viewing angle, it is necessary to build a ring of cameras. 
Hansen et al. [73] introduced a visual odometry-based sys-
tem, using calibrated fisheye imagery and sparse structured 
lighting to produce high-resolution 3D textured surface 
models of the inner pipe wall. The prototype robot with a 
fisheye lens and a fiberglass pipe network used for testing 
are shown in Fig. 5. Their research results showed that 
using a single fisheye camera, high-precision pipe map-
ping could be achieved. The advantage of this wide-angle 
fisheye lens system is that it can use a single camera to 
achieve the full pipe coverage, thus avoid the challenge 
of multiple camera calibration, and keep the overall size 
compact. This method is obviously of great significance 
to improving the efficiency of pipe inspection.

Contact lenses possess the characteristics of contact, 
lightness, and convenience. The quality of contact lenses 
has a major influence on the human eye. For contact lens 
detection, Chen et al. [74] presented an omnidirectional 
image of a fisheye lens for contact lens inspection sys-
tem and proved the feasibility of the same. The optical 
reflection of the object surface depends on the material 
and microstructure. In the detection of industrial parts, 
light reflection measurement is an important task. Kogu-
masaka et al. [75] developed a small reflection measure-
ment system using a fisheye camera, and demonstrated 
that the fisheye camera system was an effective means for 
high-precision surface finish inspection.
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3.2.3  Micro‑Domain Vision

Quality inspection within mass production of micro-parts 
is a big challenge [76, 77]. During a micro-manufacturing 
process, the occurrence of surface imperfections is a criti-
cal problem [78]. Nevertheless, some conventional detec-
tion platforms are often unable to detect micro-defects on 
micro-parts [79]. In this regard, some researchers have put 
forth, micro-domain vision detection technologies to acquire 
and analyze 2D textures and 3D shape information, which 
effectively solved this problem.

For metallic micro components, Weimer et al. [80] pro-
posed an image acquisition technology based on plenoptic 
cameras. The design of plenoptic cameras is relatively com-
pact and can easily realize integrated manufacturing. Effec-
tive 2D and 3D information can be obtained in one meas-
urement step by using plenoptic cameras to acquire images 
of micro-components. This method meets the requirements 
of quality detection in a micro-domain. To realize on-line 
surface detection, Scholz-Reiter et  al. [76] designed an 
image acquisition system for micro-part surface imperfec-
tions using confocal laser microscopy and realized automatic 
detection of defects. Li et al. [81] designed a quality inspec-
tion system by using micro-vision technology to get graphic 
information of the micro-accessory. In these methods, the 
micro-domain vision technology played a significant role in 
the task of acquiring high-resolution images.

3.2.4  Multispectral

In some industrial detection scenarios, it is necessary to 
select the multiple photosensitive imaging devices for an 
effective combination based on the wavelength character-
istics of the light, so as to fully represent the characteris-
tics of the objects to be detected in the collected images. A 

multispectral imaging system, can make up for the short-
comings of traditional CCD photosensitive imaging.

Machine vision has great potential for detecting loco-
motive and rolling stock condition. Multispectral imaging 
allows recording of physical and thermal conditions, and 
their correlations. Combining multispectral imaging with 
machine vision, Hart et al. [82] proposed a multispectral 
machine vision technology, in which some visible and infra-
red (thermal) cameras were placed below the track to cap-
ture images. This technology can monitor the physical and 
thermal state of railway equipment more effectively than the 
existing methods and technologies.

In addition to the above methods, there are high-dynamic 
range imaging [83, 84] and multi-vision imaging [85] sys-
tems, etc. In each specific visual detection project, we need 
to consider the characteristics and detection requirements 
of the objects to be tested, to select the appropriate image 
acquisition method.

4  Image Processing and Defect Detection

Images are the information carriers of machine vision. Image 
processing and analysis are the key technologies for auto-
matically obtaining an understanding of the images acquired 
by hardware in vision detection systems [86].

Image processing has a long history of development. In 
the 1920s, the first image was successfully transmitted using 
digital compression technology, from London to New York 
via submarine cables. This was the origin of digital image 
processing technology [87]. In the early days, simple defect 
detection could be achieved through primitive filtering meth-
ods. For example, in 1973, in an early attempt to apply visual 
inspection to industrial production, Ejiri et al. [88] described 
a method that employed two-dimensional nonlinear logi-
cal filtering to detect defects in complicated patterns such 

Fig. 5  Prototype robot and fiberglass pipe network used for testing [73]. Copyright 2015, SAGE Publications
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as PCBs. It could detect defects in complicated patterns in 
real time. Subsequently, Hara et al. [89] proposed an algo-
rithm for comparing the local features of the patterns to be 
inspected with those of a reference pattern, with intended 
applications to an automatic PCB inspection system.

Currently, with the development of computer technology 
and mathematical theory, image processing and analysis 
methods have become more abundant and advanced. Flex-
ible configurations in modern manufacturing systems can 
allow them to quickly switch from one product to another 
[90, 91]. For conventional machine learning, complex fea-
ture extractors need to be designed for particular cases so 
that the desired features can be retrieved. In addition, new 
products may present complex texture patterns or intensity 
changes, and surface defects can be of any size, direction, 
and shape. Therefore, manually designed features may lead 
to insufficient or unsatisfactory inspection performance in 
complex surface scenarios or dynamic processes. Compared 
with traditional machine learning, the main advantage of 
deep learning is that these rich features are not designed 
by human engineers but are learned automatically through 
convolutional neural networks from raw data [92]. Deep 
learning has been proven to be very adept at discovering 
complex structures in high-dimensional data [93]. There-
fore, for defect detection by machine vision systems based 
on image processing technology, deep learning can play an 
important role in inaugurating the era of intelligent detection 
with machine vision.

In industrial production, there are three kinds of repre-
sentative defect detection tasks based on machine vision: 
classification, localization and segmentation. Some primi-
tive image preprocessing methods can help the subsequent 
image analysis, and sometimes may deal with a few simple 
defect detection tasks. For most defect detection scenar-
ios, more image processing methods are needed to extract 
enough features for understanding defect information. For 
image feature learning, the main types of deep learning net-
work architecture include convolutional neural networks 
(CNNs) [94], deep belief networks (DBNs) [95], and stacked 
auto-encoders (SAEs) [96]. Furthermore, long short-term 
memory (LSTM) [97] plays an important role in images 
with time-sequenced characteristics. DBNs and SAEs can 
help multi-feature fusion detection achieve better effect and 
accuracy.

4.1  Image Preprocessing

The purpose of image preprocessing is to enable the machine 
to understand the image better and prepare for the next step 
of image analysis [98]. The principle of image preprocess-
ing is to eliminate irrelevant information and recover useful 
real information. Some factors may cause image noise, such 
as the field environment of machine vision, photoelectric 

conversion of the CCD image, transmission circuit, and elec-
tronic components. These noises reduce the image quality, 
which in turn, adversely affects the image analysis. There-
fore, denoising is the main objective of image preprocessing.

Image preprocessing generally comprises spatial domain 
methods and frequency domain methods [86]. The main 
preprocessing algorithms include grayscale transformation, 
histogram equalization, various filtering algorithms based 
on spatial and frequency domains [99, 100], etc. In addi-
tion, mathematical morphology can also be used for image 
denoising [101].

The basic method for conversion from spatial domain to 
frequency domain is the Fourier transform and the repre-
sentative tool for image processing in the frequency domain 
is the wavelet transform.

4.1.1  Fourier Transform

Fourier transform has helped the industry and academia 
prosper in an unprecedented manner [102]. Before the Fou-
rier transform, image processing was confined to spatial 
domain operations. The function of various spatial filtering 
algorithms is to convolute the image with various templates. 
For example, the direct grayscale transformation transforms 
each pixel of the image according to a certain function to get 
the enhanced image. In generally, a spatial filtering algo-
rithm is easy to operate and has high real-time performance; 
however, it is not suitable for complex image processing.

The Fourier transform can transform the image from 
the spatial domain to the frequency domain, and its inverse 
transform can transform the image from the frequency 
domain back to the spatial domain [103, 104]. For image 
processing, the two-dimensional discrete Fourier transform 
(DFT) is represented as:

and the inverse discrete Fourier transform (IDFT) is

where f (x, y) represents a digital image of size M × N, and 
then the frequency domain representation F (u, v) can be 
obtained by using DFT formula (1) [87]. In formulas (1) 
and (2), u (u = 0, 1, 2, …, M − 1) and v (v = 0, 1, 2, …, N − 1) 
represent the frequency domain variables; x (x = 0, 1, 2, 
…, M − 1) and y (y = 0, 1, 2, …, N − 1) represent the space 
domain variables. In addition, j is an imaginary number, 
equal to the square root of − 1.

Through the Fourier transform, the image can be 
converted to frequency domain for transformation and 

(1)F(u, v) =

M−1
∑

x=0

N−1
∑

y=0

f (x, y)e−j2�(ux∕M+vy∕N),

(2)f (x, y) =
1

MN

M−1
∑

u=0

N−1
∑

v=0

F(u, v)ej2�(ux∕M+vy∕N),
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operation. In the frequency domain, the data reflect the 
intensity of grayscale changes in the image. The frequency 
domain filtering modifies the Fourier transform of the image 
and then, calculates its inverse transform to get the processed 
result. For example, the moving average window filter and 
Wiener linear filter use a low-pass filter to denoise, based 
on the premise that noise energy is concentrated in high 
frequency, and the image spectrum is distributed in a limited 
range [87]. For noise removal, Bai and Feng [98] introduced 
a new class of fractional-order anisotropic diffusion equa-
tions by using the DFT. Their experiments showed that the 
proposed equations yielded good visual effects and better 
SNR on denoising the real images. However, the frequency 
domain transformation is complex, and the operation cost 
is high.

4.1.2  Wavelet Transform

In recent years, the wavelet transform has been demonstrated 
to be a powerful approach for noise reduction and became 
a prime field of image processing research [105, 106]. The 
wavelet transform provides the localization analysis of 
time or space frequency and gradually refines the signal by 
scaling and translation [107]. The wavelet transform can 
subdivide time at high frequency and frequency at low fre-
quency, thus automatically adapting to the requirements of 
the time–frequency signal analysis.

The wavelet transform plays an important role in image 
processing. Luisier et al. [108] introduced an inter-scale 
orthonormal wavelet thresholding algorithm. In this method, 
the denoising process was parameterized to the sum of the 
basic nonlinear processes with unknown weights, and the 
mean square error of the denoised image and the clean 
image was minimized. Jain and Tyagi [109] presented an 
edge preserving denoising technique based on wavelet trans-
forms. They decomposed the noisy image and improved 
the denoising performance by clustering. Yan et al. [110] 
presented a novel wavelet thresholding procedure to sup-
press the additive Gaussian noises in images. This method 
effectively overcame the discontinuity of the hard threshold 
function. For inspection of strongly reflective metal surface 
defects, Zhang et al. [22] removed the noise effectively from 
the image by setting certain coefficients to zero by wavelet 
smoothing. In addition, the wavelet transform has also been 
widely used in image fusion [111, 112], image coding [107, 
113], image compression [114], image encryption [115], and 
image enhancement [116, 117].

4.2  Classification

Defect classification is usually used to detect whether a 
certain defect exists in an image. The traditional way to 
solve the problem of computer vision is to classify the 

preprocessed images according to hand-crafted features. 
Most of the research has focused on the construction of 
hand-crafted features and classification algorithms, and 
some outstanding work has emerged.

Feature extraction extracts the information that describes 
the characteristics of the target from the image pixels and 
then maps the differences between the different targets to 
a lower-dimensional feature space to help compress the 
amount of data and improve the recognition efficiency. The 
common defect features used in visual inspection include 
greyscale features, shape and size features, and texture fea-
tures. The greyscale features are the most intuitive features 
of the image, such as greyscale statistical characteristics 
and greyscale difference statistical characteristics. Shape 
and size features are important information for identifying 
various defects. Common defects can be detected by shape 
information, such as lines, curves, ellipses and rectangles, 
and size information, such as area and perimeter. The texture 
is an important feature of an image. It does not use color or 
brightness to reflect the homogeneity of images. It represents 
important information about the arrangement of the surface 
structures and their relationships with their surroundings 
[118, 119].

According to the characteristics of the defects, there are 
many feature extraction methods that can be used for defect 
classification.

As simple and effective feature descriptors that are based 
on statistical characteristics, histograms are widely used in 
the field of computer vision. For example, Li et al. [120] pro-
posed a defect classification algorithm based on histogram 
features for automatically detecting defects in both nonpat-
terned and patterned fabrics. Common statistical features of 
histograms include the maximum, minimum, mean, median, 
range, entropy, variance, L1 norm, L2 norm, Bhattachar-
yya distance, and normalized correlation coefficient. The 
calculations are simple and are invariant in translation and 
rotation. However, these features reflect only the probability 
of the greyscale level of the image and not the spatial distri-
bution of the pixels [121, 122].

The grey-level cooccurrence matrix (GLCM) is a com-
mon method of describing a texture by studying the spatial 
correlation properties of the greyscale. It reflects the com-
prehensive information from the image grey levels regarding 
the direction, adjacent interval and change amplitude, which 
can be used to analyze the image primitives and arrangement 
structure [123–125]. The Gabor transform is a type of win-
dowed short-time Fourier transform. The window function is 
the Gaussian function. This transform simulates the biologi-
cal action of human eyes and can extract relevant features in 
different scales and directions in the frequency domain [126, 
127]. Raheja et al. [128] presented a new scheme for an 
automated fabric defect detection system using the GLCM 
and Gabor filter method. The experimental results showed 
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that, compared with the Gabor filter method, the GLCM has 
greater accuracy and computational efficiency in the same 
environment.

The local binary pattern (LBP) expresses the relationship 
between the local neighborhood point and the center point 
through binary bits [129]. It has strong robustness to changes 
in the image greyscale level caused by changes in illumina-
tion [127, 130, 131]. For fabric defect classification, Zhang 
et al. [132] proposed an algorithm that combines the LBP 
and GLCM. The LBP and GLCM are used to extract the 
local feature information and overall texture information of 
the defect images, respectively. However, the LBP algorithm 
constructs a histogram of the defect images based on spatial 
neighborhood pixel coding, which may result in losing the 
discrimination information of the defect images.

The scale-invariant feature transform (SIFT) is an image 
descriptor for image-based matching and recognition [133, 
134]. It can achieve reliable feature matching in different 
perspectives by extracting unique invariant features from 
images. The extracted features are invariant with respect 
to the image zoom, the rotation, 3D affine transformations 
within a certain range, noise superposition and illumination 
changes. Dunderdale et al. [135] used the SIFT descriptor 
combined with a random forest classifier to identify defec-
tive photovoltaic modules. The SIFT descriptor showed good 
performances and could be used to both detect and describe 
local feature points. However, SIFT has high requirements 
for image quality, which limits its application.

Histograms of oriented gradient (HOG) features are 
formed by computing statistical histograms of gradient 
directions in local regions of the image [136]. It can main-
tain good invariance to geometric and optical deformations 
of the image. Halfawy and Hengmeechai [137] presented 
an efficient pattern recognition algorithm that employed 
the HOG and support vector machine (SVM) to automate 
the detection and classification of pipe defects. Compared 
with the LBP, the HOG can more easily extract the edge 
information and consider the structural information of the 
image. However, the HOG algorithm may face the problems 
of having high dimensionality and neglecting the texture 
information.

Speeded up robust features (SURF) [138], binary robust 
independent elementary features (BRIEF) [139], and ori-
ented FAST and rotated BRIEF (ORB) [140] are also used in 
feature extraction. Furthermore, there are many variations of 
the classical method; for example, the LBP family includes 
the completed local binary pattern (CLBP) [141], ellipti-
cal local binary pattern (ELBP) [142], adjacent evaluation 
completed local binary pattern (AECLBP) [5], and robust 
local binary pattern (RLBP) [143]. Based on these classi-
cal algorithms, some novel feature-extraction algorithms 
have also been proposed in recent years; for instance, Zhao 
et al. [144] proposed a discriminant manifold regularized 

local descriptor (DMRLD) algorithm for steel surface defect 
classification. Compared with hand-crafted histograms, 
DMRLD achieves better robustness by using the structure 
of a manifold with a learning mechanism to represent the 
information contained in the image.

There are many kinds of feature extraction methods with 
their own advantages and disadvantages. For specific visual 
inspection items, we should consider whether the feature 
extraction method makes full use of the global information, 
whether its calculations are convenient, whether it can meet 
the real-time needs, etc. For many application requirements, 
using a combination of multiple feature extraction methods 
is also a good way to increase efficiency and accuracy.

To identify the defect categories of an image, it is neces-
sary that the selected features not only describe the image 
properly but also distinguish different categories of images. 
The primary mission of defect classification is to train the 
classifier according to the extracted feature set and then 
make it identify the type of each surface defect correctly 
based on supervised or unsupervised pattern recognition 
methods.

The support vector machine (SVM) [145] and K near-
est neighbor (KNN) [146] are representative classifiers in 
supervised pattern recognition.

SVMs are suitable for small and medium-sized data 
samples and for nonlinear, high-dimensional classification 
problems, and they have been widely used in the field of 
industrial vision detection. For example, Jia et al. [147] 
described a real-time machine vision system that uses an 
SVM to automatically learn complicated defect patterns. Li 
and Huang [148] proposed a binary defect pattern classifica-
tion method that combines a supervised SVM classifier with 
unsupervised self-organizing map clustering, in which the 
SVM is used to classify and identify manufacturing defects. 
The results showed that this method could achieve more 
than 90% classification accuracy, which was better than 
that of the back-propagation neural network. However, this 
study focused only on binary map classification. Valavanis 
and Kosmopoulos [149] proposed a method of multi-class 
defect detection and classification based on a multi-class 
SVM and a neural network classifier for weld radiographs. 
For real-time analysis of spectrum data, Huang et al. [150] 
established an improved SVM classification model based on 
a genetic algorithm to accurately estimate different types of 
porosity defects in an aluminium alloy welding process. Fur-
thermore, the SVM classifier has played a significant role in 
the inspection of surface defects in copper strips [151, 152], 
laser welding process monitoring and defect diagnosis [153], 
defect detection for wheel bearings [154], etc.

The KNN algorithm has been proven to be simpler and 
more stable than neural networks [155, 156]. To detect fabric 
defects, Yıldız et al. [157] preprocessed images with wave-
let, threshold, and pathological operations and then used the 
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GLCM method to extract features. Finally, defect images 
were classified based on a KNN algorithm with an aver-
age accuracy rate of 96%. Cetiner et al. [158] proposed a 
method of feature extraction based on the wavelet moment 
and defect image classification based on KNN, which can be 
used in automatic defect classification systems in the forest 
industry. Das and Jena [159] presented a method combining 
image texture feature extraction techniques. First, LBP and 
the grey level run length matrix (GLRLM) were combined 
to extract image features, and then KNN and an SVM were 
used for classification. The experimental results showed that 
the combination of LBP and GLRLM can improve the per-
formance of feature extraction, and the SVM has better clas-
sification performance than the nearest neighbor approach in 
texture feature classification. Therefore, Lei and Zuo [156] 
proposed a weighted K nearest neighbor (WKNN) algorithm 
based on the two-stage feature selection and weighting tech-
nique (TFSWT) to improve the performance of the KNN 
algorithm, and they successfully applied the WKNN method 
to identify gear cracks.

An unsupervised algorithm can also be used for defect 
classification. Based on K-means clustering, Mjahed et al. 
[160] presented an efficient algorithm for solving a multi-
objective fault signal diagnosis problem using a genetic 
algorithm. Hamdi et al. [161] introduced an unsupervised 
defect detection algorithm for patterned fabrics. An image 
filtered by non-extensive standard deviation was divided into 
a series of blocks, and then the squared difference between 
each block median and the mean of all block medians was 
input into K-means clustering to classify the blocks as 

defective or non-defective, with an overall detection suc-
cess rate that reached 95%.

Table 2 compares some traditional feature extraction and 
defect classification methods.

In recent years, artificial intelligence technology has 
greatly benefited industrial production. Neural networks are 
an important branch in the development of artificial intel-
ligence [162]. With the improvement of computing power 
and the advent of big data, deep learning, with the core idea 
that machines can automatically learn from data by increas-
ing the number of network layers, has developed rapidly and 
has significantly impacted the field of machine vision. Deep 
learning methods can automatically extract and combine the 
essential feature information of objects, and they are espe-
cially adept at image classification.

The CNN is the most popular architecture for image 
classification. In 1998, the emergence of LeNet opened the 
era of CNNs [94]. In 2012, the success of AlexNet [163] 
in the ImageNet competition promoted the application of 
deep learning in computer vision. After that, a series of 
CNN models appeared, such as Network-in-network [164], 
VGGNet [165], GoogLeNet [166–169], ResNet [170], and 
DenseNet [171]. There are three main types of neural lay-
ers that play different roles in a CNN: convolutional layers, 
pooling layers, and fully connected layers [172, 173]. The 
convolutional layers are designed to detect local combina-
tions of features from a previous layer, pooling layers are 
designed to merge semantically similar features into one, and 
fully connected layers ultimately convert the feature maps 
into a feature vector [174], as shown in Fig. 6.

Table 2  The performances of traditional feature extraction and defect classification methods

Methods Performances

Histograms The calculations are simple and are invariant in translation and rotation. However, these features reflect only the probability 
of the greyscale level of the image and not the spatial distribution of the pixels

GLCM It reflects the comprehensive information of image gray levels about direction, adjacent interval and change amplitude, 
which can be used to analyze image primitives and arrangement structure

Gabor transform It simulates the biological action of human eyes and can extract relevant features in different scales and directions in the 
frequency domain

LBP It has strong robustness to changes of image grayscale level caused by changes of illumination. It is often used to extract 
local texture features

SIFT It could be used to both detect and describe local feature points. However, it has high requirements for image quality, which 
limits its application

HOG It can more easily extract the edge information and consider the structural information of the image. However, it has poor 
real-time performance and is sensitive to noise

SURF Compared with SIFT, its computing speed is improved

BRIEF Great real-time performance, but rotation invariance needs to be improved

ORB It has fast speed and good anti rotation ability. However, the scale registration error is large and the registration rate is low

SVM It has fast speed, strong generalization ability, and the results are easy to explain. The disadvantage is that it is not suitable 
for multi classification, sensitive to missing data, and sensitive to the selection of parameters and kernel function

KNN It is simple, easy to understand and implement without training. But the computation is too large and the robustness is poor

K-means clustering It is simple in principle and easy to implement. However, the parameters need to be set manually. It is sensitive to noise and 
outliers
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The CNN was originally designed for image analysis; 
therefore, it is a good fit for automated defect classification 
in visual inspection [175–177]. According to the relevant 
literature in recent years, the application of deep learning in 
industrial defect classification involves many fields, such as 
industrial production and electronic components. For super-
vised steel defect classification, Masci et al. [178] presented 
a max-pooling CNN approach. Compared to SVM classi-
fiers, the CNN obtains much better results and can work 
properly with different types of defects. The surface quality 
affects not only the appearance of products but also their 
performance. Park et al. [14] proposed a generic approach 
based on a CNN for the automatic visual inspection of dirt, 
scratches, burrs, and wears on part surfaces. Their results 
showed that a pretrained CNN model works well on small 
datasets with improved accuracy for a surface quality visual 
inspection system. To detect casting defects by X-ray inspec-
tion, Lin et al. [179] proposed a robust detection method 
based on a visual attention mechanism and feature-mapping 
deep learning and established a CNN to extract defect fea-
tures from potentially defective regions and obtain a deep 
learning feature vector. Then, the similarity of suspicious 
defective regions could be calculated by using the feature 
vector. Their results showed that the method was effective 
in solving the problem of false and missing inspections. 
Nguyen et al. [180] proposed an inspection system based on 
a CNN to achieve defect classification in casting products. 
However, the CNN deep learning model can only perform 
well under the condition of having a large number of high-
quality datasets. Kim et al. [181] proposed an indicator that 
can distinguish between defects and the background area 
for the classification of defect types in thin-film-transistor 
liquid–crystal display panels. For the process of industrial 
production, automatic defect classification was performed 
based on a CNN.

As one of the representative algorithms of machine 
vision, the CNN has played an important role in defect 

classification. However, CNNs are becoming increasingly 
deep, and they require large-scale datasets and massive com-
puting power for training. In addition, collecting labelled 
datasets requires great human effort. Thus, as a further 
exploration, unsupervised learning by a CNN may be a 
meaningful research direction.

Transfer learning is a method of machine learning in 
which a pre-trained model is reused in another task. Trans-
fer learning can help solve the problem of a lack of labelled 
data. Imoto et al. [182] proposed a CNN-based transfer 
learning method for automatic defect classification. The 
results showed that this method is robust against a lack of 
labelled data and can achieve more than 80% accuracy with 
only a few dozen labelled data points.

4.3  Localization

Defect localization needs to accurately determine the loca-
tion of the defect in a given image and mark the defect cat-
egory. Generally, defect localization is performed by a series 
of object detection methods.

The traditional object detection strategies and algorithms 
include Viola-Jones [183], HOG + SVM, non-maximum 
suppression (NMS) [184], the deformable part model (DPM) 
[185], selective search [186, 187], and edge boxes [188]. 
Ding et al. [189] proposed a detection scheme based on a 
HOG and SVM. The HOG was used to encode each block-
based feature, and the SVM was used to classify the fabric 
defects. The experimental results showed that this method 
based on a HOG and SVM is relatively simple and easy to 
realize in online applications. Dou et al. [190] proposed a 
fast template matching-based algorithm (FTM) for railway 
bolt detection and a nearest-neighbor classifier to determine 
whether a bolt is in the correct position, which achieved a 
lower false positive rate than previous methods. The DPM 
is one of the most effective template-based approaches used 
in object detection. For railway fastener defect detection, He 

Fig. 6  Architecture of a CNN model [174]. Copyright 2018, Elsevier
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et al. [191] proposed a Gaussian mixture deformable part 
model (GMDPM) algorithm based on HOG features. Wei 
et al. [192] proposed an effective express box defect detec-
tion algorithm to identify the shape and size of defects, and 
this method achieved a 95.83% correct rate.

In recent years, after the successful application of CNN-
based image classification methods, object detection tech-
nology based on deep learning has also made significant 
progress. The object detection methods based on deep 
learning can be divided into two major categories. One 
generates regions and then classifies each region to obtain 
different object categories. The other regards object detec-
tion as a regression or classification problem and uses a uni-
fied framework to obtain the final categories and locations 
directly [193]. The region proposal-based methods mainly 
include regions with CNN features (R-CNN) [194], spatial 
pyramid pooling (SPP-net) [195], Fast R-CNN [196], Faster 
R-CNN [197], region-based fully convolutional networks 
(R-FCNs) [198], feature pyramid networks (FPNs) [199], 
and Mask R-CNN [200]. The regression- and classification-
based methods mainly include MultiBox [201], AttentionNet 
[202], G-CNN [203], You Only Look Once (YOLO) [204], 
the single-shot MultiBox detector (SSD) [205], YOLOv2 
[206], RetinaNet [207], YOLOv3 [208], and YOLOv4 [209]. 
In terms of performance, the region proposal-based methods 
are high in accuracy but low in speed; the regression- and 
classification-based methods are high in speed but low in 
accuracy.

Based on a cascaded mixed FPN, Wu et al. [210] pro-
posed a two-stage fabric defect detector. The end-to-end 
defect detection architecture is shown in Fig. 7. The feature 
extraction backbone model of matching parameters with fit-
ting degrees was proposed to solve the problems caused by 
a small defect feature space and background noise. Stacked 
feature pyramid networks were set up to integrate cross-scale 
defect patterns for feature fusion and enhancement in a neck 
module. Cascaded guided region proposal networks (RPNs) 
were proposed for refining the anchor centers and the shapes 
used for anchor generation. The experimental results showed 
that this method could improve the recognition performance 
of included and size-variant fabric defects.

Faster R-CNN is a state-of-the-art method for detecting 
objects with real-time object detection, which can generate 

regions of interest (ROIs) with an RPN instead of selective 
search [197, 211]. Lei et al. [211] adopted Faster R-CNN 
to implement the detection of defects in the polarizer 
and to perform the rapid detection and effective position-
ing of defects. To further improve the detection accuracy 
and efficiency, the number of layers of the network could 
be changed, and some of the network parameters should 
be adjusted to optimize the test model. Lei and Sui [212] 
proposed a Faster R-CNN method to perform intelligent 
fault detection for high voltage lines. To detect defects in 
an image, Faster R-CNN chooses a random region as the 
proposal region and then obtains the corresponding cate-
gory and location of a certain component after training. The 
experiments showed that the detection method based on the 
ResNet-101 network model could effectively locate insulator 
damage and bird nests on a high voltage line. Sun et al. [213] 
proposed an improved Faster R-CNN method for surface 
defect recognition in wheel hubs. The last maximum pool-
ing layer was replaced by an ROI pooling layer, as shown in 
Fig. 8. ROI pooling technology was used in order to employ 
a single feature map for all the proposals generated by the 
RPN in a single pass. It enabled object detection networks 
to use an input feature map with a flexible size and output 
a fixed-size feature map. The experimental results showed 
that the improved Faster R-CNN method has a higher detec-
tion accuracy. However, the detection speed of the Faster 
R-CNN method may not meet the real-time requirements of 
industrial applications.

YOLO is an object recognition and location algorithm 
based on a deep neural network that performs object 
detection by using fixed-grid regression [214]. Its pri-
mary characteristic is that it runs quickly and can be used 
in real-time systems. Based on the idea of regression, 
YOLO takes a whole image as the input of the network 
and directly regresses the object border and the category 
of the object in multiple positions of the image. Adib-
hatla et al. [215] adopted a YOLO/CNN model to detect 
PCB defects and achieved a defect detection accuracy of 
98.79%. However, the defect types that can be detected 
by the method are limited and need to be optimized. Lv 
et al. [216] proposed an active learning approach for steel 
surface defect inspection based on YOLOv2. This model 
achieves high efficiency but at the expense of precision. 

Fig. 7  End-to-end fabric defect 
detection architecture [210]
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Jing et al. [217] proposed an improved YOLOv3 model 
by using the K-means algorithm to cluster the marker 
data. The experimental results showed that the improved 
YOLOv3 model achieves better performance in fabric 
defect detection. However, the real-time performance 
needs to be improved. As a regression-based detection 
method, the YOLOv4 network has an excellent detec-
tion speed. However, the detection accuracy for small 
targets needs to be improved. To detect iron material 
cracks, Deng et al. [218] proposed a cascaded YOLOv4 
(C-YOLOv4) network. The experimental results showed 
that C-YOLOv4 has better robustness and crack detection 
accuracy.

SSD combines some strategies of YOLO and Faster 
R-CNN, and it uses multi-scale regional features for 
regression, which not only maintains the high speed of 
the YOLO method but also ensures a certain accuracy 
of performance. Zhai et al. [219] proposed a DF-SSD 
object detection method based on DenseNet and feature 
fusion. The feature extraction network DenseNet-S-32-1 
was designed to replace VGG-16 in SSD. To effectively 
integrate low-level visual features and high-level semantic 
features, they also designed a fusion mechanism for multi-
scale feature layers. The experimental results showed that 
the proposed DF-SSD method could achieve an advanced 
performance in the detection of small objects and objects 
with specific relationships.

4.4  Segmentation

Defect classification and localization can provide infor-
mation on the defect types and their relative positions in 
images. Furthermore, in intelligent vision detection, defect 
segmentation, especially pixel-level segmentation, can pro-
vide important references for evaluating the defect severity 
and performing condition assessment.

Image segmentation is a process that divides an image 
into several specific and unique regions and proposes objects 
of interest [220]. The purpose of image segmentation is to 
predict the category of each pixel in the image. To solve 
the problem of image segmentation for different features, 
researchers have proposed numerous segmentation methods. 
Table 3 lists some traditional image segmentation methods 
and their characteristics.

These methods are based on different image models, 
use different characteristics, and have a certain scope of 
application. Some researchers have also integrated genetic 
algorithms [233] and wavelet methods [234] into image 
segmentation and have achieved positive results. Among 
these methods, the clustering algorithm is widely used for 
defect segmentation. The clustering algorithm is an unsu-
pervised algorithm that does not require a training set. It 
is simple and fast. Image segmentation divides the image 
into several disjoint regions, which is a pixel clustering pro-
cess [235]. There are many clustering algorithms, such as 

Fig. 8  The structure of the improved Faster R-CNN [213]
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fuzzy c-means (FCM) [236], BIRCH [237], CURE [238], 
CLARANS [239], K-means [240], CLARA [241], CHA-
MELEON [242], K-medoids [242][242], DBSCAN [244], 
K-prototypes [245], and MAPK-means [246]. The choice of 
clustering algorithm depends on the purpose of clustering 
and the type of data. Xiong et al. [247] proposed a novel 3D 
laser profiling system for rail surface defect detection. In 
the process of rail surface defect detection and classifica-
tion, K-means clustering was used to merge the candidate 
defect points into candidate defect regions. Jian et al. [248] 
designed a surface defect detection system for mobile phone 
screen glass. In this system, improved fuzzy c-means (FCM) 
clustering was proposed to segment the surface defects more 
accurately. Melnyk and Tushnytskyy [249] proposed a PCB 
defect detection and classification system that implemented 
the K-means clustering algorithm. Li et al. [250] proposed 
a clustering algorithm that links the regions that are close 
to each other to detect cluster defects composed of many 
small point defects. The schematic diagram of the process 
of connecting domains A and B in the clustering method is 
shown in Fig. 9.

Deep learning has also brought great progress for image 
segmentation technology. The fully convolutional network 
(FCN) is a breakthrough semantic segmentation model that 
has higher accuracy than traditional approaches [251]. FCNs 
can efficiently learn to make dense predictions for per-pixel 
tasks, for example, semantic segmentation, as shown in 
Fig. 10.

FCN-based segmentation methods also play an important 
role in industrial applications. Yu et al. [253] presented a 
novel 2-stage FCN framework for surface defect segmenta-
tion. The 2-stage framework improves the generality and 
reusability of FCNs. Li et al. [254] adopted region-based 
fully convolutional networks (R-FCNs) to inspect insulator 
defects. The experimental results showed that the R-FCN 
algorithm has good robustness and environmental adaptabil-
ity. In crack inspection, conventional approaches are unable 
to identify and measure diverse types of cracks concurrently 
at the pixel level. Yang et al. [255] applied an FCN to study 
automatic pixel-level crack detection and measurement, and 
their results showed that the prediction had improved at the 
pixel level and that the training time was greatly reduced. 
However, the resolution of the feature maps generated by 

the FCN was low, and the prediction results were coarse 
owing to the large amount of spatial information loss during 
down-sampling. Qiu et al. [256] presented a 3-stage FCN 
for pixelwise surface defect segmentation. The FCN is a 
state-of-the-art algorithm for generic object segmentation. 
However, for small datasets, its performance cannot meet the 
requirements. The experimental results showed that the slic-
ing method could improve the efficiency of FCNs in small 
datasets in industrial environments.

The current common image segmentation algorithms, in 
addition to FCNs, include U-Net [257], SegNet [258], Mask 
R-CNN, and PSPNet [259]. These models have an encoder-
decoder architecture, where a CNN is used as an encoder to 
extract features, and a deconvolution network and skip con-
nections are used as decoders to map features to the output 
image. U-Net was originally proposed to segment the grey-
scale of biomedical images. SegNet achieves a good trade-
off between efficiency, the memory footprint and precision. 
The Mask R-CNN can be used for instance segmentation. 
PSPNet adopts a pyramid pooling module structure, which 
can extract smaller and more localized features, while the 
large-size layers can extract global information.

Furthermore, according to the specific visual inspection 
application scenario, additional defect segmentation meth-
ods have been continuously proposed. For example, Yu 
et al. [260] proposed an adaptive depth and receptive field 
selection network. In this method, an adaptive depth selec-
tion mechanism was designed to extract features of various 
depths, and an adaptive receptive field block was proposed to 
select the best acceptance domain. The experimental results 
for a casting defect segmentation dataset showed that the 
proposed method achieved better performance than the exist-
ing segmentation algorithms. Tabernik et al. [261] proposed 
a segmentation-based deep-learning architecture for surface 
defect detection. The network architecture was designed in 
two stages, as shown in Fig. 11. In the first stage, a seg-
mentation network was used to locate the surface defects 
accurately at the pixel level. After defect segmentation, each 
pixel was trained as an independent sample, which increased 
the effective number of training samples. Then, the second 
stage was a decision network for binary image classifica-
tion. The experimental results showed that this method could 
complete training on a small-scale defect sample dataset, 

Fig. 9  The process of connect-
ing domains A and B. Two 
separate domains A and B are 
shown in (a). The result of the 
Boolean union of domains A′ 
and B′ is shown in (b). The 
result of linking domains A and 
B is shown in (c) [250]. Copy-
right 2020, Elsevier
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Fig. 10  Fully convolutional 
network [252]

Fig. 11  Two-stage architecture with segmentation and decision networks [261]. Copyright 2020, Springer Nature



680 International Journal of Precision Engineering and Manufacturing-Green Technology (2022) 9:661–691

1 3

which needed only 25–30 training samples. This has great 
significance for some industrial application scenarios 
with limited training samples, and this method effectively 
improves the practicability of deep learning methods.

4.5  LSTM-Based Periodic Defect Recognition

As a deep learning architecture specifically designed for 
time-series forecasting, the RNN shares parameters among 
all time steps to learn the information that has been repeated 
in the past [262]. LSTM is one of the representative architec-
tures in RNNs [97]. In industrial visual inspection, LSTM is 
an effective method for defects with strong time-sequenced 
characteristics.

Hu et al. [262] proposed an LSTM recurrent neural net-
work (LSTM-RNN) model to classify common defects in an 
infrared thermography-based nondestructive testing task for 
honeycomb materials. Similarly, Wang et al. [263] adopted 
the LSTM-RNN method to determine the defect depth inside 
carbon fiber reinforced polymer structures, achieving better 
performance than a CNN.

A fusion algorithm of a CNN and LSTM is also a widely 
used defect detection method. For a molten pool online mon-
itoring task, Liu et al. [264] proposed a CNN-LSTM algo-
rithm combining the advantages of a CNN and LSTM. First, 
feature vectors were extracted from molten pool images 
through the CNN, and then LSTM was used for welding 
defect recognition. The experimental results showed that the 
accuracy of the CNN-LSTM algorithm could reach 94% in 

the defect detection task for the  CO2 welding molten pool 
described in the literature and that it had high efficiency (the 
time consumption of each image was 0.067 ms), which fully 
met the industrial requirement of real-time monitoring.

According to the features of periodic roll mark defects in 
plates, Liu et al. [265] proposed a defect detection method 
based on a hybrid CNN and LSTM. To improve the detec-
tion performance, an attention mechanism algorithm was 
also integrated into the detection method. The complete net-
work architecture is shown in Fig. 12. As the final output, 
O represents whether there is a periodic defect in the image 
sequence. The experimental results showed that the detec-
tion method had good performance in identifying periodic 
defects and that it had an 86.2% detection rate under the 
experimental conditions described in the literature. How-
ever, the integration of the attention mechanism increases 
the complexity of the algorithm and requires higher com-
puter performance.

4.6  Multi-Feature Fusion Detection Based on a DBN 
and SAE

The SAE is an unsupervised pre-training method that 
encodes the input data from a high-dimensional space into 
a low-dimensional space and then decodes the low-dimen-
sional space data into a high-dimensional space stack by 
stack [266, 267]. Seker and Yuksek [268] performed 
fabric defect detection based on the SAE method. After 
fine-tuning the hyper-parameters of the deep learning 

Fig. 12  Network architecture of CNN + LSTM + attention algorithm [265]



681International Journal of Precision Engineering and Manufacturing-Green Technology (2022) 9:661–691 

1 3

model, they achieved a detection rate of 96% on their own 
datasets. Yang and Jiang [267] proposed a unified deep 
neural network with multi-level features for weld defect 
classification. To detect weld defects from radiographic 
images, they investigated SAEs for pre-training and fine-
tuning strategies. As a kind of unsupervised pre-training 
algorithm, SAEs can improve the generalization perfor-
mance and reduce the possibility of overfitting, as shown 
in Fig. 13. The results show that a unified deep neural 
network can take full advantage of the multi-level features 
extracted from each hidden layer.

The DBN utilizes the restricted Boltzmann machine 
(RBM) as a learning module [269]. In a DBN, the top two 
layers form an undirected graph, and the remaining layers 
form a belief network with directed, top-down connections 
[173]. A graphic depiction of a DBN is shown in Fig. 14.

Chen et al. [270] constructed a DBN-based fault soft-
max classifier for bearing fault classification. A DBN can 
be used to automatically classify raw data into correspond-
ing classes. Furthermore, a new multi-sensor feature fusion 
method for bearing fault diagnosis based on a DBN and 
SAE was proposed [271]. In this study, the SAE extracted 
features from multiple sensors and merged them into one 
stream. Then, the features fused by the SAE were used 
to train a DBN for fault diagnosis and classification. The 
experimental results showed that this SAE-DBN method 
could effectively identify the machine running conditions.

With the advent of Manufacturing III [272], defect 
detection will develop from image-based detection to 
comprehensive detection combined with multiple sensors. 
Deep learning architectures such as DBNs and SAEs can 
help multi-feature fusion detection achieve better effect 
and accuracy, which is worthy of further research.

Fig. 13  Stacked auto-encoders 
for deep neural network pre-
training [267]. Copyright 2020, 
Springer Nature

Fig. 14  Graphic depiction of a DBN [173]
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5  Conclusions and Perspectives

Machine vision has significantly improved the scope, effi-
ciency, quality, and reliability of industrial inspection, 
which has ushered in a series of achievements that cannot 
be ignored in contemporary industry. However, there are 
further explorations to be carried out in the application of 
machine vision.

First, machine vision is a type of real-time in-line detec-
tion, which involves large amounts of data, redundant 
information, and a high-dimensional feature space. The 
image processing speed is one of the main bottlenecks 
influencing the real-time performance of vision systems. 
It is still difficult to achieve real-time in-line detection for 
objects with complex shape features.

The second issue is the anti-interference aspect of 
vision detection systems. Visual inspection should be 
capable of increasing the robustness of detection to reduce 
the dependence on the image acquisition environment.

The intelligence level of the vision detection system is 
another bottleneck; whereas a complex interference envi-
ronment can be identified manually at a glance, it is dif-
ficult for a machine to do the same, and it may even make 
an incorrect judgement.

Although machine vision technology may not be per-
fect, defect detection based on machine vision is still the 
main direction for future research and development in this 
area. Therefore, some important points need to be consid-
ered in future development.

5.1  Robust General Algorithm for Balancing 
Efficiency and Precision

Artificial intelligence, represented by deep learning, has 
become an important area in industry as a result of the 
rapid technological developments in recent years. Deep 
learning marks a significant milestone in visual inspec-
tion. Many algorithms can be employed to achieve high 
accuracy but cannot be used for real-time online detection. 
In contrast, some algorithms are very fast but cannot reach 
the ideal accuracy. In addition, some algorithms can work 
for the detection of products in experimental cases but may 
not suit practical production. Therefore, it is a meaningful 
research direction to study a robust algorithm that achieves 
both efficiency and accuracy.

Moreover, most of the deep learning algorithms are 
heavily dependent on large-scale sample datasets, which 
has become a major factor that limits the application of 
these methods in some areas. Transfer learning is most 
effective when the source network has been trained with 
data that is similar to the target network [273]. Weak 

supervised learning, including incomplete supervision, 
inexact supervision, inaccurate supervision, or even unsu-
pervised learning, will be an effective way to solve the 
problem of expensive data acquisition [274–276].

5.2  Fusion of Multiple Detection Technologies

Visual inspection is an image-based detection technology 
that is mainly aimed at the surface of objects. However, in 
many cases, industrial inspection concerns not only the sur-
face but also the performance of the whole object.

In the era of Industry 4.0, in order to make the machine 
more intelligent, comprehensive sensing detection technol-
ogy should be further studied [277]. Visual inspection can 
be combined with micro-thermal sensors [278], ultrasonic 
guided waves [279], eddy current detection [280], laser scan-
ning thermography [281], etc., to achieve a full range of 
inspection and evaluation of objects.

5.3  Real-Time Performance

Machine vision is mainly used in industrial production line, 
which requires real-time processing ability. The amount of 
data involved in visual inspection is very large. However, 
image processing requires time, thereby leading to a lag in 
the entire system. The main difficulty in developing real-
time detection is the speed of image processing.

Image processing and analysis algorithm should be fur-
ther optimized to improve the speed of visual inspection 
system, which is the key technology for further research 
in the future. Of course, excellent hardware facilities are 
also very important, such as high-performance computers. 
Predictably, with the development of 5G communication 
technology with low delay, using network to upload image 
data to some powerful cloud servers for processing is also 
a worth solution [282]. In addition, the next generation of 
computing technology, represented by quantum computing 
[283], is expected to contribute fast computing capabilities 
to the process of visual inspection.

5.4  Extreme Small-Scale Visual Inspection

Manufacturing III takes atomic and close-to-scale manu-
facturing (ACSM) as the core technology and has become 
the primary future development trend in manufacturing [79, 
272, 284]. To develop ACSM, defect detection will be a 
very important area. As an example, a neural network can 
look through a microscope on a sample surface and return 
information about the atomic structure and lattice defects 
in real time. On an atomic scale, the size of the datasets 
grows exponentially; therefore, the application of deep 
learning could be an effective approach to making great 
breakthroughs.
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