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Abstract

The term ray tracing is commonly associated with highly realistic images but certainly not with interactive gra-

phics. However, with the increasing hardware resources of today, interactive ray tracing is becoming a reality and

offers a number of benefits over the traditional rasterization pipeline.

The goal of this report is to provide a better understanding of the potential and challenges of interactive ray

tracing. We start with a review of the problems associated with rasterization based rendering and contrast this with

the advantages offered by ray tracing. Next we discuss different approaches towards interactive ray tracing using

techniques such as approximation, hybrid rendering, and direct optimization of the ray tracing algorithm itself.

After a brief review of interactive ray tracing on supercomputers we describe implementations on standard PCs

and clusters of networked PCs. This system improves ray tracing performance by more than an order of magnitude

and outperforms even high-end graphics hardware for complex scenes up to tens of millions of polygons. Finally,

we discuss recent research towards implementing ray tracing in hardware as an alternative to current graphics

chips.

This report ends with a discussion of the remaining challenges and and the future of ray tracing in interactive 3D

graphics.

1. Introduction

Today interactive rendering is almost exclusively the do-

main of rasterization-based algorithms that have been put

into highly integrated and optimized graphics chips. Their

performance increased dramatically over the last few years

and now even exceeds that of (what used to be) graphics su-

Figure 1: Interactive ray tracing: The office, conference and

Soda Hall models contain roughly 40k, 680k, and 8 million

triangles, respectively. Using a software ray tracing imple-

mentation running on a single PC (Dual Pentium-III, 800

MHz, 256MB) at a resolution of 5122 pixels, these scenes

render at roughly 3.6, 3.2, and 1.6 frames per second.

percomputers. At the same time this hardware can be provi-

ded at low cost such that most of today’s PCs already come

equipped with state-of-the-art 3D graphics devices.

Even though the performance increase of 3D graphics

hardware has been tremendous over the last few years, it

is still far from sufficient for many applications. In parti-

cular e-commerce applications would benefit from a signi-

ficant higher level of realism than is possible with current

graphics hardware. Computer games and virtual studio app-

lications have strong real time constraints and are too limited

in the complexity of their scene geometry. In many areas we

observe a trend towards the need to handle more and more

complex environments. It simply becomes too difficult and

time consuming to select and preprocess the relevant parts

out of a large geometric data base. Prime examples are large

architectural and engineering design projects such as entire

power plants, airplanes, or cars.

Current graphics hardware has seen a number of difficul-

ties in this respect because it exhibits essentially linear cost

in the number of polygons. In order to achieve interactive

rendering performance sophisticated preprocessing if requi-

red for reducing the number of rendered polygons per frame.
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This can be accomplished through techniques such as geo-

metric simplification, level-of-detail, occlusion culling, and

many others. It has also been difficult to efficiently scale the

graphics pipeline to parallel processing. The main issues ha-

ve been the communication requirements between parallel

units and the need to avoid redundant processing and data

storage, e.g. for textures 8.

Other weaknesses of the current graphics devices are re-

lated to realism. One one hand its feature set for shading

has been increased significantly with multi-texturing, pro-

grammable vertex processing, programmable fragment pro-

cessing, dependent texture lookups, and many more. On the

other hand it became increasingly difficult for applications to

actually take advantage of these features as they are hard to

program and even simple shading effects are difficult to ex-

press in terms of these extensions. We have seen the formati-

on of a whole new field in computer graphics research deal-

ing with how to best approximate known algorithms with the

features of the latest graphics hardware.

Interestingly enough there has been another rendering al-

gorithm in wide use for many years that solves some of the

problems mentioned above – ray tracing. Ray tracing is fa-

mous for its ability to generate high-quality images but is

also well-known for long rendering times due to its high

computational cost. This cost is due to the need to traverse

a scene with many rays, intersecting each with the geome-

tric objects, shading the visible surface samples, and finally

sending the resulting pixels to the screen. Due to the cost as-

sociated with ray tracing the technique is perceived almost

exclusively as an off-line technique for cases where image

quality matters more than rendering speed.

On the other hand ray tracing offers a number of benefits

over rasterization-based algorithms that would make it an

interesting alternative.

Flexibility Ray tracing allows us to trace individual or un-

structured groups of rays. This provides for efficient com-

putation of just the required information, e.g. for sampling

narrow glossy highlights, for filling holes in image-based

rendering, and for importance sampling of illumination 44.

Eventually this flexibility is required if we want to achieve

interactive global illumination simulations based on ray

tracing.

Occlusion Culling and Logarithmic Complexity Ray tra-

cing enables efficient rendering of complex scenes

through its built in occlusion culling as well as its logarith-

mic complexity in the number of scene primitives. Using

a simple search data structure it can quickly locate the

relevant geometry in a scene and stops its front to back

processing as soon as visibility has been determined. This

approach to process geometry on demand stands in strong

contrast to the “send all geometry and discard at the end”

approach taken by current triangle rasterization hardware.

Efficient Shading With ray tracing, samples are only sha-

ded after visibility has been determined. Given the trend

toward more and more realistic and complex shading, this

avoids redundant computations for invisible geometry.

Simpler Shader Programming Programming shaders that

create special lighting and appearance effects has been at

the core of realistic rendering. While writing shaders (e.g.

for the RenderMan standard 4) is fairly straightforward,

adopting these shaders to be used in the pipeline model of

rasterization has been very difficult 29. Since ray tracing is

not limited to this pipeline model it can make direct use

of shaders 10; 36.

Correctness By default ray tracing computes physically

correct reflections, refractions, and shading. In case the

correct results are not required or are too costly to compu-

te, ray tracing can easily make use of the same approxima-

tions used to generate these effects for rasterization-based

approaches, such as reflection or environment maps. This

is contrary to rasterization, where approximations are the

only option and it is difficult to even come close to reali-

stic effects.

Parallel Scalability Ray tracing is known for being “trivi-

ally parallel” as long as a high enough bandwidth to the

scene data is provided. Given the exponential growth of

available hardware resources, ray tracing should be better

able to utilize it than rasterization, which has been diffi-

cult to scale efficiently 8. However, the initial resources

required for a hardware ray tracing engine are higher than

those for a rasterization engine.

Coherence is the key to efficient rendering. Due to the low

coherence between rays in traditional recursive ray tra-

cing implementations, performance has been rather low.

However, as we show in this report, ray tracing inherently

offers considerable coherence that can be exposed by new

algorithms in order to to speed up rendering to interactive

levels even on a standard PC.

It is due to this long list of advantages that ray tracing is an

interesting alternative even in the field of interactive 3D gra-

phics. The challenge is to improve the speed of ray tracing to

the extent that it can compete with rasterization-based algo-

rithms. This report will mainly concentrate on existing soft-

ware implementations for interactive ray tracing. In addition

we provide a brief discussion on current research work to-

wards ray tracing hardware, as it seems that some dedicated

hardware support will eventually be needed.

At this point is is worth noting that the use of the ray tra-

cing algorithms goes well beyond graphics applications such

as rendering. Ray casting is a fundamental task that is at the

core of a large number of algorithms from other disciplines.

Examples are the simulation of neutron transport in physics,

radio wave propagation 7, and diffusion 33. If we can accele-

rate ray tracing to interactive performance in rendering app-

lications this will have significant effects also for these other

disciplines.
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1.1. Document Organization

In the following, we will first introduce and classify the dif-

ferent techniques for accelerating ray tracing. In Section 3

we give a brief survey of acceleration techniques based on

approximations before concentrating on techniques to im-

prove the performance of the ray tracing algorithms itself.

In Section 4, we discuss the first interactive ray tracing sy-

stems that have been realized on large supercomputer sy-

stems. This is followed by a more detailed discussion of

interactive ray tracing systems implemented on inexpensive

PCs and clusters of workstations in Sections 5 and 6.

An brief overview of ongoing research towards the design

of ray tracing hardware is given in Section 7 and Section 8

presents the most important open research issues. The report

ends with a brief summary, and an outlook on the potential

future of interactive or even realtime ray tracing.

2. Accelerated Rendering of Ray Tracing Effects

There are several options to achieve ray tracing effects at

interactive rates. The basic approach is to speed up the ray

tracing algorithms itself and its implementation. This will be

the main focus of this paper. However, there have also been a

number of other approaches that work with approximations

and hybrid rendering techniques. These techniques typical-

ly trade image quality for rendering performance. We can

classify all these approaches broadly into the following four

categories. We describe some of them in more detail in the

next section.

Rasterization-Based Approximation These techniques

combine the high rendering speed of todays rasterization

hardware with the superior image quality of ray tracing.

Early approaches only tried to accelerate ray tracing

using rasterization by precomputing index structures such

as vista-buffers and light-buffers.

Newer approaches use ray tracing to augment

rasterization-based images with ray tracing effects:

triangle rasterization is used to compute a low-quality

frame at interactive rates, and ray tracing is then used to

add effects that are difficult to achieve with other means.

However, due to the approximations these approaches ty-

pically show artifacts. Even more importantly, they are ba-

sed on the assumption that rasterization is faster than ray

tracing. As we will show later, this is no longer the case

for more complex scenes.

Image-based Approximation These techniques mix ray

tracing with image-based rendering techniques. One ap-

proach is to approximate a new frame with information

from previous frames and augment this by tracing some

new rays in order to obtain new information as time al-

lows. Examples include techniques like the Holodeck 19

or the RenderCache 43.

For static situations this method converges to the same

image as a traditional ray tracer as all pixels of a frame

will eventually be computed by ray tracing. However, this

approach suffers from the fact that traditional ray tracing

only allows for computing a limited number of rays per

frame, which leads to noticeable artifacts in dynamic si-

tuations.

Ray Tracing Based approximation These techniques aim

at reducing the cost per pixel by approximations in the

ray tracing process. For example, adaptive sampling me-

thods like pixel-selected ray tracing 2 can be used to re-

duce the average number of rays per pixel: color inter-

polation in image space is used in image regions with a

smooth change in colors. Only image regions with high

contrast will be sampled with higher accuracy. A more

advanced approach using interpolation in ray space with

error bounds has been presented by Bala 5.

Accelerating Ray Tracing Due to its high computational

cost researchers have been looking for improving the per-

formance of ray tracing since the introduction of ray tra-

cing. Much research has focussed on acceleration struc-

tures and their traversal algorithms like BSP trees, oc-

trees, (hierarchical) grids, bounding volume hierarchies,

hybrids of these, and many more.

Little research has been done to deal with the recursive na-

ture of the algorithm, which is well-known to be ill-suited

for today’s CPU and memory architectures 37. Exposing

coherence by reformulating or creating new algorithms is

an essential tool for achieving efficiency on current archi-

tectures. Then the implementation needs to be optimized

to the features of todays CPUs such as its cache, memo-

ry bus, pipeline, and commonly also SIMD extension in

order to exploit this coherence.

Another way of accelerating ray tracing is to exploit the

inherently parallel nature of ray tracing by parallel pro-

cessing. However, scalability over a large number of ma-

chines in an interactive environment requires good load

balancing, hiding of latencies, and careful optimization

of communication overhead. This is especially true when

using a cluster of networked PCs based on commodity

network technology.

Eventually, we also have to consider hardware solutions

in order to improve the performance of ray tracing.

3. Approximative Ray Tracing Techniques

Ever since the development of ray tracing, people have

sought to accelerate ray tracing by approximations and by

mixing it with other technologies. For many applications,

fast visual feedback during interactions is more important

than correctness of the image. Trading image quality for in-

teractivity makes sense in those cases. Approximative tech-

niques can typically provide visual feedback at a rate faster

than the renderer could generate complete frames — at the

cost of producing approximate images during camera and

object motion.
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3.1. Combining Ray Tracing and Rasterization

When fast graphics hardware became available researchers

have tried to exploiting such hardware for accelerating ray

tracing. In the simplest form they used rasterization to ob-

tain visibility information by rasterization of geometry whe-

re colors encode the id of the rendered object. This allows

for creating vista buffers (for accelerating primary rays), sha-

dow buffers (for point light sources), and similar data struc-

tures. This allowed for resolving visibility for primary and

shadow rays by a simple texture lookup at the cost of mi-

nor discretization artifacts. Variations of these techniques are

still in use in many renderers today.

More recently, Stamminger, et al. have introduced correc-

tive textures 38, a technique to combine the rendering speed

of polygon rasterization with the high image quality of ray

tracing: All non-specular lighting effects (calculated with a

radiosity) are rendered with rasterization hardware. Specular

effects are then progressively added in a second step. Infor-

mation from the rasterization pass (i.e. information on which

pixels are covered by specular objects) is used to determine

where a-posterior corrections must be applied.

The specular component is then rendered with a conven-

tional ray tracer, and saved in texture maps. These so-called

corrective texture maps can then be used by the rasteriza-

tion hardware to add the specular effect to the object (see

Figure 2). As a conventional ray tracer can not deliver all

the corrective information in real time, the approach genera-

tes artifacts. However, it is progressive in the sense that the

image quality converges to that of ray tracing as soon as the

view is static.

Figure 2: Corrective Textures: Left: The scene without cor-

rective information as rendered by the rasterization hardwa-

re. Middle: The same scene with corrective textures applied.

Right: The corrective texture for the hourglass after having

shot only a few samples.

Recently, Haber et al. 11 have extended the approach to in-

clude perceptual information: This is used to focus the samp-

ling effort towards perceptually important regions, thus get-

ting visually pleasing images in less time. Corrective infor-

mation is no longer stored in textures, but is splatted directly

into the image. Here too, the image quality improves pro-

gressively as more and more corrective samples are compu-

ted (see Figure 3).

However, accelerating ray tracing with rasterization hard-

Figure 3: Perceptually Guided Corrective Splatting: A ra-

sterized image gets progressively better as more ray traced

corrective information is applied. Left: Without corrective

information. Middle: After having splat only few corrective

samples. Right: Converged image after a few frames.

ware is only useful as long as rasterization hardware is con-

siderably faster than the ray tracer. This is definitely true

for small models as they are typically used in games or

other interactive applications. For complex models however,

interactive ray tracers are already faster than even high-

performance graphics accelerators (see Section 5.5).

3.2. Image-Based Approximation: The RenderCache

Another approach to accelerate ray tracing is to reduce the

number of rays that have to be traced for an image. With the

RenderCache 43 information from previous frames is reused

for successive frames by reprojecting the information alrea-

dy computed to the new camera position. After a ray for a

pixel has been traced and shaded, it is stored in a cache of

active samples (the so-called RenderCache) together with in-

formation on the ray, the hit-position, the color computed for

that ray, and so on.

When a new frame is to be rendered, all samples in the

render cache are reprojected to the new camera position, and

stored in the frame buffer. As this reprojection step can re-

sult in artifacts (e.g. holes in the image, disocclusion, or war-

ping several samples to the same new pixel position), several

heuristics have to be applied to reduce such artifacts. Sever-

al different samples per pixel can simply be resolved by z-

buffering. Holes, disocclusion, and other artifacts can often

be detected and fixed by other simple heuristics (like com-

paring depth and color contrast of neighboring pixels). In

a third pass, an error value is computed for each pixel also

based on simple heuristics, which specifies the necessity of

re-tracing certain pixels. In the last step, a small number of

rays is traced based on the error value of pixels. It is shaded

and inserted into the render cache, replacing some of the old

samples.

With this approach, interactive rendering speed can be

achieved for moderate resolutions (up to 15 frames per se-

cond for resolutions of 320x320 pixels) 43. As not all pixels

are traced every frame, the method creates visually objectio-

nable artifacts. However, it is progressive in the sense that

image quality improves towards the correct image for static

views as all pixels are eventually re-traced.
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The RenderCache is especially interesting for achieving

interactive frame rates when the cost for computing a pixel

is very high, for example when using a full global illumi-

nation solver instead of a simple interactive ray tracer. This

allows the RenderCache to even render a scene with full path

tracing at interactive rates (see Figure 4).

However, the efficiency of the RenderCache relies on the

fact that it is much faster to reproject the samples and per-

form the error analysis than to trace new rays. With inter-

active ray tracers this not obvious anymore if only simple

shading is performed. The RenderCache also performs non-

local operations in image space, which complicates a parallel

implementation in a distributed environment.

Figure 4: Path-Tracing in Kajiyas original example scene,

rendered interactively with the RenderCache.

3.3. Light-field like Methods: The Holodeck

Similar to the RenderCache, the Holodeck 19 achieves in-

teractive speeds of ray traced environments by reusing old

ray samples. The Holodeck subdivides the entire scene into

a three-dimensional grid of cells in which previous illumi-

nation samples (rays with their corresponding radiance) are

stored. When a new image is generated, these illumination

samples are used to generate the image in a light-field like

approach 20; 9.

Similar to the render cache, new illumination samples are

computed with a non-interactive, traditional ray tracer (e.g.

the Radiance system 45). These samples are computed in se-

veral parallel threads and inserted into the current cell as

soon as they are available. Contrary to the RenderCache, the

Holodeck progressively builds up an object space represen-

tation of the light field. Old samples are never discarded, but

written out to disk if they are no longer needed by the cur-

rent view. If the user reenters a previously visited cell, the

corresponding old samples can be read back from the file. In

order to hide i/o latencies, prefetching is used for obtaining

the samples for nearby viewing cells even before they are

visited.

The problem with all the above approaches is the reduced

image quality at least during interactions such as camera or

object movements. It would instead be very valuable to be

able to do full ray tracing on an entire image at interactive

rates.

4. Interactive Ray Tracing on Supercomputers

For a long time researchers have pointed out the advanta-

ges of ray tracing over rasterization. They argued that the

sub-linear complexity and the better scalability of ray tracing

should eventually make ray tracing more efficient than poly-

gon rasterization. However, it took almost two decades un-

til the first interactive ray tracing systems have actually be-

en built. They were first realized on highly parallel, shared-

memory supercomputer systems.

4.1. The Interactive Ray Tracing System by Muuss

The first big step towards interactive ray tracing is due to

Muuss 24; 25. He required interactive frame rates for simu-

lating the airplane and missile sensors and their automatic

target recognition system. His models were highly detailed,

realistic outdoor scenes modeled with CSG primitives. Due

to the high model complexity, brute force triangle rasteriza-

tion was impossible even on the most expensive rasterization

hardware: The models used in their simulations were made

up of several hundred thousands of CSG primitives, corre-

sponding to several million polygons when tessellated.

He used a traditional ray tracing system to directly ren-

der the CSG models, saving both the memory overhead as

well as the compute time to generate and store the tessel-

lated objects. In order to achieve interactive framerates, he

used a highly parallel, 96-processor SGI PowerChallenge ar-

ray computer and achieved rates of 1-2 frames per second for

video resolution.

4.2. The Utah Parallel Ray Tracing System

At the University of Utah, Parker et al. 28 have built an in-

teractive ray tracing system also based on a shared-memory

supercomputer. Like the Muuss system, their approach is a

’brute force’ implementation in that it uses the same ray tra-

cing algorithms as used by conventional ray tracers. How-

ever, their system is carefully optimized for the available

system resources. It takes advantage of fast synchronizati-

on available on the SGI Origin 2000 supercomputer with its

fast interconnection network (see Figure 5).

The Utah system has also been adapted to accomplish
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Figure 5: Simulation of crack propagation visualized with

the Utah interactive ray tracer using 35 million spheres. The

image at 512 by 512 pixels runs at approximately 15 frames

per second on 60 CPUs.

other interactive visualization tasks, like interactive rende-

ring of volumetric data and for high-quality iso-surface ren-

dering. Examples are shown in Figures 6 and 7. Due to the

flexibility of ray tracing, simple changes to the core of the

algorithm suffice to directly ray trace such data without ha-

ving to first generate a triangular representation. Similarly,

the system was easily extended to also support realistic sha-

dows. This yields a much better three-dimensional appearan-

ce of the volumetric model as shown in Figure 6.

Figure 6: Example images from the Utah Interactive Ray

Tracing System when rendering a complex volume data set.

Left: without shadows, right: with raytraced shadows.

The Utah system supports both synchronous as well as

asynchronous operation with frameless rendering. In syn-

chronous operation, synchronization overhead is minimized

with an optimized static load-balancing scheme of variable-

sized jobs. In order to achieve good caching behavior (for the

pixels as well as for the job tiles), the job sizes are multiples

of the caching granularity. With this load balancing scheme,

the Utah system showed near-linear scalability for up to 128

processors.

Figure 7: Scalability of Utah ray tracing engine: The graph

on the right shows almost linear scaling behavior for up to

128 CPUs.

5. Interactive Ray tracing on Desktop PCs

The Muuss and Utah ray tracing systems already achieve in-

teractive frame rates with high image quality even for highly

complex scenes. However, their approaches are based on ex-

pensive, shared-memory supercomputers, which are not ge-

nerally accessible. On the other hand, standard PCs are rea-

dily available in almost every lab loosely connected using

commodity Fast-Ethernet technology. Even dedicated PC

clusters typically cost only a fraction of a supercomputer,

and thus are accessible to a wider range of people.

Thus, the goal was to design a ray tracer that efficiently

runs on these PC architectures and exploits as much of the

available performance as possible. Additionally, it should be

possible to run on loosely-coupled cluster systems, in order

to fully exploit the compute power that is available in many

environments.

The low performance of ray tracing on todays computers

is strongly affected by the structure of the basic algorithm.

It is well-known that the recursive sampling of ray trees nei-

ther fits with the pipeline execution model of modern CPUs

nor with the use of caching to hide low bandwidth and high

latency when accessing main memory 37. These optimizati-

ons become more and more important as processor pipelines

get longer and the gap between processor speed and memory

bandwidth and latency opens further.

In order to exploit all the performance offered by todays

CPUs, we have to address issues such as reducing code com-

plexity, optimizing cache usage, reducing memory band-

width, and prefetching data. The Utah ray tracer has alrea-

dy shown that such issues are important for parallel shared-

memory systems. However, due to the typically much poorer

architecture of PC systems (i.e. cache size, memory speed,

slower networks, higher latencies, lack of shared memory
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architecture), they become even more crucial for PC archi-

tectures.

The coherent ray tracing algorithms presented below con-

sists of four main ingredients:

� We designed a new algorithm for coherent ray tracing

by reformulating the traditional depth-first recursive al-

gorithm and reordering ray evaluations. Using packets of

rays the algorithms operates in a partial breadth-first order

exposing significantly more coherence.

� This coherence is used by optimization techniques to bet-

ter adapt the algorithms to the properties of today’s CPUs

and memory systems. In particular we make sure that the

ray tracing algorithm runs almost completely in the ca-

ches of the CPU. While these optimization techniques are

well-known they can only be effective due to the increa-

sed coherence exposed by the new algorithm.

� Next we exploit the SIMD extensions now commonly

available on CPUs, such as the Intel’s SSE extension to

the x86 instruction set. This allows us to operate on up to

to four data values in parallel during ray traversal, inter-

section, and shading.

� Finally, we use the coherence available in the new ray

tracing algorithm for efficient distributed computing on a

number of loosely coupled machines in a network. Taking

advantage of the available coherence we store the scene

data only once without replicating it to each client. Instead

we use the memory of the client machines as caches for

the scene data that is fetched on demand. Again, careful

attention is payed to proper use of these third level caches.

5.1. Coherent Ray Tracing

In the standard recursive ray tracing algorithms relatively

little work is done for each recursive invocation of the tra-

versal, intersection, and shading operations. This does not

run efficiently on the long pipelines of today’s CPUs. Addi-

tionally, adjacent primary rays operate on almost the same

data during traversal, intersection and shading. The same is

true to a somewhat lesser degree for secondary rays, such as

shadow rays to the same light source, or reflection rays off of

spatially close intersection points from coherent primary or

even secondary rays. However, these operations are far apart

in time due to the depth-first recursive traversal of traditional

ray tracing.

By grouping related, coherent rays into packets of rays

and traversing, intersecting, and shading them in parallel,

we expose significantly more coherence. We can make good

use of this coherence for the general optimizations, for per-

forming data parallel operations in SIMD fashion, and for

cache coherent demand loading of scene data in the distri-

buted case. It is the combined effect of the better algorithm

and the optimizations that allow us to perform interactive ray

tracing on standard PCs.

5.2. Optimizing Code and Memory Access

Even though modern processors have hardware features for

performing branch prediction, instruction reordering, specu-

lative execution, and others optimizations, their success is

fairly limited for complex code paths. Therefore, we prefer

simple code that contains few conditionals, and organize it

such that it can execute in tight inner loops. Such code is ea-

sier to maintain and can be well optimized by the program-

mer as well as by the compiler (also see 37).

Contrary to general opinion a ray tracer is not bound by

CPU speed, but is usually bandwidth-limited by access to

main memory. Especially shooting rays incoherently, as do-

ne in many global illumination algorithms, results in almost

random memory accesses and bad cache performance. On

current PC systems, bandwidth to main memory is typically

up to 8-10 times less than to primary caches. Even more im-

portantly, memory latency increases by similar factors as we

go down the memory hierarchy.

We employ an optimized memory layout for the most

commonly used data structures, like BSP nodes, triangle in-

tersection data, and even ray and hit point data structures. We

keep data together if and only if it is used together: E.g. only

data necessary for a triangle intersection test (plane equa-

tion, etc.) are stored in our geometry structures, while data

that is only necessary for shading, such as vertex colors and

normals, shader parameters, etc., is stored separately. Becau-

se we intersect many triangles before we find an intersection

that requires shading, we avoid loading shading data that will

not be used.

Since data transfer between memory and cache is always

performed in cache lines of typically 32 bytes, the effecti-

ve cost when accessing memory is not directly related to the

number of bytes read, but the number of cache line transfers.

Thus we need to carefully align data to cache lines: This mi-

nimizes the additional bandwidth required to load two cache

lines just because some data happens to straddle a cache li-

ne boundary. However there are trade-offs: our triangle data

structure requires 37 bytes. By padding it to 48 bytes we

trade-off memory efficiency and cache line alignment.

Given the huge latency of accessing main memory it be-

comes necessary to load data into the cache before it will

be used in computations and not fetch it on demand. This

way the memory latency can be completely hidden. Most of

todays microprocessors offer instructions to explicitly pre-

fetch data into certain caches. However, in order to use pre-

fetching effectively, algorithms must be simple enough such

that it can easily be predicted which data will be needed in

the near future.

With such carefully designed data structures, we reduce

bandwidth, cache misses, and false sharing of cache lines as

much as possible. This allows to render even large scenes

with good caching behavior, and enables the CPU to run at

full performance most of the time.
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5.3. Using SIMD extensions for Ray Tracing

In addition to the more implicit use of coherence to better

use caches, we explicitly exploit coherence between several

rays by traversing, intersecting, and shading packets of rays

in parallel. With this approach, we can reduce the number of

operations by using SIMD instructions on the data of multi-

ple rays in parallel, reduce memory bandwidth by requesting

data only once per packet, and increase cache utilization at

the same time.

SIMD extensions (such as Intel’s SSE 13, AMD’s 3D-

Now! 1, and IBM/Motorola’s AltiVec 23) are offered by se-

veral modern microprocessor architectures. These extensi-

ons allow to execute the same floating point instructions in

parallel on several (typically two or four) data values, yiel-

ding a significant speedup for floating point intensive appli-

cations.

These SIMD extensions can be used by either exploi-

ting the instruction-level parallelism in already existing al-

gorithms, or by explicitly designing new, data-parallel algo-

rithms. Our experiments have shown that the performance

gains obtained by instruction level parallelism are too small

to be of significant impact 42. Data-parallelism can be extrac-

ted in two ways: One could traverse one ray and intersect it

with four triangles in parallel or traverse four rays in parallel.

Intersecting one ray with four triangles would require us

to always have four triangles available for intersection to

achieve optimal performance. However, voxels of accelera-

tion data structures contain only few triangles on average

(typically 2-3).

In contrast it is much simpler to bundle four rays and in-

tersect them with a single triangle. This approach requires

us to always have a bundle of four rays available together,

which requires the new scene traversal algorithm. The data-

parallel ray-triangle intersection computation corresponds

almost exactly to the original algorithm and is straightfor-

ward to implement in SSE and shows almost ideal speedup.

C code SSE speedup

min 78 22 3.5

max 148 41 3.7

Table 1: Amortized cost (in CPU cycles) for the different

intersection algorithms. 41 cycles correspond to roughly 20

million intersections per second on a 800 MHz Pentium-III.

The algorithm for traversing four different rays through

a BSP tree works essentially the same way: For each BSP

node, we use SSE operations to decide which subtrees of

a node a packet of rays needs to traverse. This decision is

based on the requirements of all rays: If any ray requires tra-

versal of a subtree, then the entire packet will traverses that

subtree. Of course this introduces some overhead, as some

rays might traverse parts of the tree that they would not have

traversed otherwise. In practice, this overhead is relatively

small, less than a few percent, especially for small packet

sizes of two by two rays and large image resolutions in the

order of 1K by 1K. The traversal operation has a higher me-

mory access to computation ratio such that the speedup is

limited to roughly a factor of two.

Similar to the efficient data-parallel intersection and tra-

versal code, the same benefits also apply for shading com-

putations. We can shade four rays in parallel but since the

four hit points may have different materials, we may have

to re-arrange them first in order to expose more coherence.

Although this results in some overhead, the following sha-

ding operations can be very efficiently implemented in SSE,

yielding good utilization of the SSE units.

Texturing has shown to be relatively cheap. Even an unop-

timized implementation has reduced frame rates by less than

10 percent, even in large, highly textured models as shown in

Figure 8. This shading cost could probably be reduced even

more as there is a large potential for prefetching and parallel

computations that we currently do not take advantage of. As

shading typically still makes up for less than 10 percent of

total rendering time, more complex shading operations could

easily be added without a major performance hit.

Implementing traversal, intersection, and shading with

SSE operations gives a overall speedup of 2 to 2.5 as com-

pared to a highly optimized C implementation.

5.4. Comparison with Other Ray-Tracers

After all the parts of a full ray tracer are now together we eva-

luated the overall performance of our interactive ray tracing

system (RTRT). We start by evaluating the performance for

primary rays as this will allow us to compare the ray tracing

algorithm directly to rasterization-based algorithms that do

not directly render advanced optical effects such as shadows,

reflection, and refraction.

In absolute terms, we achieve a rendering performance

from about 200,000 to almost 1.5 million primary rays per

second for the SSE version of our algorithm and for scenes

of different complexity on a single Pentium-III 800 MHz.

In order to evaluate the relative performance increase of

our optimized ray tracing engine we tested it against a num-

ber of freely available ray tracers, including POV-Ray 27 and

Rayshade 17. We have chosen the set of test scenes such that

they span a wide range regarding the number of triangles

and the overall occlusion within the scene. Unfortunately,

both other systems failed to render some of the more com-

plex test scenes due to memory limitations even with 1GB

of main memory, even though RTRT was used with only 256

MB of memory for all test cases.

The numbers of the performance comparison for the case

of primary rays are given in Table 2. It demonstrates clearly

c
 The Eurographics Association 2001.



Wald, Slusallek / Interactive Ray Tracing

that our new ray tracing implementation improves perfor-

mance consistently by a factor between 11 and 15 (!) com-

pared to both POV-Ray and Rayshade. The test also indicate

that the performance gap widens for more complex scenes,

which indicate that the caching effects get even more pro-

nounced in these cases.

The numbers show that paying careful attention to ca-

ching and coherence issues can have a tremendous effect

on the overall performance, even for well-known and well-

analyzed algorithms such as ray tracing.

Tris Rayshade POV-Ray RTRT

MGF office 40k 29 22.9 2.1

MGF conf. 256k 36.1 29.6 2.3

MGF theater 680k 56.0 57.2 3.6

Library 907k 72.1 50.5 3.4

Soda Floor 5 2.5m OOM OOM 2.9

Soda Hall 8m OOM OOM 4.5

Table 2: Performance comparison of our ray tracer against

Rayshade and POV-Ray. All rendering times are given in mi-

croseconds per primary ray including all rendering operati-

ons for the same view of each scene at a resolution of 5122

(OOM = out of memory).

5.5. Comparison with Rasterization Hardware

Up to now it was widely believed that ray tracing is not yet

competitive with graphics hardware. By comparing our in-

teractive ray tracing engine to the performance offered by

the fasted available rasterization hardware, we show that the

performance crossover point has already been reached. We

outperform rasterization hardware even with a software ray

tracer running on a single CPU – at least for complex scenes

and moderate screen resolutions.

We compared the performance of our ray tracing imple-

mentation with the rendering performance of OpenGL-based

hardware. In order to get the highest possible performance

on this hardware we chose to render the scenes with SGI

Performer 35, which is well-known for its highly optimi-

zed rendering engine that takes advantage of most available

hardware resources including multiprocessing on our multi-

processor machines. We have used the default parameters of

Performer when importing the scene data via the NFF for-

mat and while rendering. Unfortunately, the 32-bit version

of Performer that we used was unable to handle the largest

scene (Soda Hall) because it ran out of memory. Simple con-

stant shading has been used for all measurements.

The rasterization measurements of our experiments we-

re conducted on three different machines in order to get a

representative sample of todays hardware performance. On

our PCs (dual Pentium-III, 800 MHz, 256 MB) we used a

Nvidia GeForce II GTS graphics card running Linux. Ad-

ditionally, we used an SGI Octane (300 MHz R12k, 4 GB)

with the recently introduced V8 graphics subsystem as well

as a brand new SGI Onyx-3 graphics supercomputer (8x

400 MHz R12k, 8 GB) with InfiniteReality3 graphics and

four raster managers. The results obtained by these measu-

rements are shown in Table 3.

Scene Tris Oct. Onyx PC RTRT

MGF office 40k >24 > 36 12.7 1.8

MGF conf. 256k >5 > 10 5.4 1.6

MGF theater 680k 0.4 6-12 1.5 1.1

Library 907k 1.5 4 1.6 1.1

Soda Floor 2.5m 0.5 1.5 0.6 1.5

Soda Hall 8m OOM OOM OOM 0.8

Table 3: OpenGL rendering performance in frames per se-

cond with SGI Performer on three different graphics hard-

ware platforms compared with our software ray tracer at a

resolution of 5122 pixels on a dual processor PC. The ray

tracer uses only a single processor, while SGI Performer ac-

tually uses all available CPUs.

These results show clearly that the software ray tracer run-

ning on a single CPU outperforms the best hardware rasteri-

zation engines for scenes with a complexity of roughly 1 mil-

lion triangles and more and is already competitive for scenes

of about half the size. Note that the ray tracing numbers can

be scaled easily by adding more processors — just enabling

the second CPU on our machines doubles our RTRT num-

bers given in Table 3. Due to the scalability problems of the

rasterization pipeline this scaling is not easily possible for

graphics hardware.

In order to visualize the scaling behavior of rasterization

and ray tracing-based renderers, we used a large terrain sce-

ne (see Figure 8) and sub-sampled the geometry. The results

are shown in Figure 8. Even though SGI Performer uses a

number of techniques to reduce rendering times, we see the

typical linear scaling of rasterization. Even occlusion culling

would not help in this kind of scene. Ray tracing benefits

from the fact that each ray visits roughly a constant number

of triangles but needs to traverse a BSP tree with logarith-

mically increasing depth. Ray tracing also subsamples the

geometry for the higher resolution terrain as the number of

pixels is less than the number of triangles.

For scenes with low complexity, rasterization hardware

benefits from the large initial cost per ray for traversal and

intersection required by a ray tracer. This large initial cost

per ray also favors rasterization for higher image resoluti-

ons. However, this effect is linear in the number of pixels

and can be compensated by adding more processors, for in-

stance in form of a distributed ray tracer. Also, we believe

that there is still room for some performance improvements.

These test have compared ray tracing only as far as it

offers the same features as rasterization hardware. Due to

its much more flexible structure, advanced rendering effects
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Figure 8: This figure shows the logarithmic scaling of ray

tracing with input complexity. We also show the linear sca-

ling of different rasterization hardware. The terrain scene on

the left contains one million textured triangles and was sub-

sampled to obtain different sized scenes. Note, that this a

worst-case scenario for ray tracing as there is no occlusion

in this scene.

such as shadows, reflection, complex shading effects, and

may more can easily be added. This is not true for rasteriza-

tion hardware.

6. Interactive Distributed Ray Tracing on PC Clusters

So far we have concentrated on simple ray tracing with pri-

mary rays only. As we add special ray tracing effects such

as shadows, reflections, or even global illumination, we are

confronted with the need to trace an increasing number of

rays. Due to the “embarrassingly parallel” nature of ray tra-

cing the results achievable on a single processor scale well

with the use of multiple processors as long as they all get the

necessary bandwidth to the scene database.

Both the system realized by Muuss, as well as

Utah system have proven that this is easily realized

for shared-memory multiprocessor supercomputer systems

(see 24; 25; 28). In this case all processors have the same high-

speed access to the single scene database. However, on PC

architecture shared-memory is not available, which has ma-

de large distributed ray tracing systems difficult to imple-

ment efficiently in the past.

In addition to high performance ray tracing through par-

allelization we also want to be able to handle very complex

scenes. Because ray tracing can easily be run in a demand

load mode in respect to accessing the scene data base, it be-

comes feasible to render huge data sets as long as each frame

accesses only a small fraction of the data. Fortunately there

is a large number of applications that fall into this category.

Examples are large engineering application (e.g. constructi-

on of whole airplanes, cars, or power plants), visualization

of large data sets such as urban environments, realistic ren-

dering with detailed displacement maps, and many more.

For more and more disciplines it becomes too costly to

subdivide or preprocess large models to reduce complexity

before being able to display them in interactive setups. Ex-

amples are the car industry, where several man month must

often be spend on remodeling a car with low polygon counts

for visualizing it in a virtual reality environment.

For testing both high performance through distributed ren-

dering as well as the handling of large data sets we have cho-

sen a well-known reference model, which has been used for

similar purposes before by Aliaga et al. 3. This “UNC power

plant” model contains 12.5 million individual triangles.

We have chosen the model since it has been used to de-

monstrate interactive walkthrough using rasterization hard-

ware 3. However, this required excessive preprocessing that

was estimated to take up to three weeks for the entire power

plant model. Advanced preprocessing techniques were re-

quired in order to reduce the number of polygons that had

to be rendered per frame. The techniques included textured

depth-meshes, triangle decimation, level-of-detail rendering,

and occlusion culling. Ray tracing can render the same scene

without any of these advanced and still only semi-automatic

techniques. It only requires simple spatial indexing of the

scene database.

For stress testing the ray tracing algorithm we also crea-

ted a larger model by replicating the power plant four times

generating a model with 50 million triangles total.

6.1. Overview

We use the classic setup for distributed ray tracing with a

single master machine responsible for display and schedu-

ling together with many working clients that trace, intersect,

and shade rays. The main challenges of this approach are

efficient access to a shared scene data base, load balancing,

and efficient preprocessing.

We solve these issues with a novel approach that exploits

coherence using the same basic ideas as described above but

on a coarser level:

Explicit management of the scene cache: In a preproces-

sing step a high-level BSP-tree is built while adaptively

subdividing the scene into small, self-contained voxels.

Since preprocessing is only based on the spatial location

of primitives it is simple and relatively fast. Each voxel

contains the complete intersection and shading data for

all of its triangles as well as a low-level BSP for this vo-

xel. The complete preprocessed scene is stored only once

and all clients request voxels on demand. Each client ex-

plicitly manages its own local cache of voxels.

Latency hiding: By reordering the computations we hide

some of the latencies involved in demand loading of sce-

ne data across the network by continuing computations on

other rays while waiting for missing data to arrive. This

approach can easily be extended by trying to prefetch da-

ta for future frames based on rays coarsely sampling a

predicted new view.

Load balancing: We use the usual task queue approach ba-
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sed on image tiles for load balancing. Instead of random-

ly assigning image tiles to clients we try to assign tiles

to clients that have traced similar rays in previous frames.

Reordering of computations and buffering of work tiles

is used to bridge communication and voxel loading laten-

cies, thus achieving almost perfect CPU utilization.

6.2. Data Management in a Distributed Environment

In the original implementation of coherent ray tracing as de-

scribed above 42 we created a single binary file containing

the model. We used the main memory layout for storing data

in the file such that we could directly map the entire file into

our address space using the Unix mmap-facilities. However

this is no longer possible with huge model that generate files

larger than the supported address space.

On the other hand we did not want to replicate the en-

tire model of several GB on each of our client machines.

This means that demand loading of mapped data would be

performed across the network with its low bandwidth and

large latency. While this approach is technically simple by

using mmap across an NFS-mounted file system, it drasti-

cally reduces performance for large models. For each access

to missing data the whole ray tracing process on the client

is stalled while the operating system reads a single memory

page across the network.

Even only a few milliseconds of stalling due to network

latency are very costly for an interactive ray tracer: Because

tracing a single ray costs roughly one thousand cycles 42, we

would lose several thousand rays for each network access.

Instead we would like to suspend work on only those rays

that require access to missing data. The client can continue

working on other rays while the missing data is being fetched

asynchronously.

6.3. Explicit Data Management

Instead of relying on the operating system we had to expli-

citly manage the scene cache ourselves. For this purpose we

decompose the models into small voxels. Each voxel is self-

contained and has its own local BSP tree. In addition, all

voxels are organized in a high-level BSP tree starting from

the root node of the entire model (see Figure 9). The leaf no-

des of the high-level BSP contain additional flags indicating

whether the particular voxel is in the cache or not.

If a missing voxel is accessed by a ray during traversal

of the high-level BSP, reordering of computations if per-

formed: the current ray is suspended and an asynchronous

loader thread is notified about the missing voxel. Once the

data of the voxel has been loaded into memory by the loa-

der thread, the ray tracing thread is notified, which resumes

tracing of rays waiting on this voxel. During asynchronous

loading, ray tracing can continue on all non-suspended rays

currently being processed by the client. More latency could
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Figure 9: The data structure used to organize the model da-

ta. Voxels are the smallest entity for caching purposes. Their

average compressed size is roughly 75 KB.

still be hidden by deferring shading operations until all rays

are stalled or a complete tile has been traced. We use a sim-

ple least-recently-used (LRU) strategy to manage a fixed size

geometry cache.

The time to load a voxel is strongly dominated by the time

to transfer a voxel over the network. To reduce the transfer-

red data volume, voxels are transferred in a compressed form

and unpacked on-the-fly on the client side. For packing, we

use the LZO compression library 26, that allows fast and ef-

ficient decompression of the voxels. Though this compres-

sion is more optimized towards speed, its compression ratio

is approximately 3:1 for our voxel data. Decompression per-

formance is significantly higher than the network bandwidth,

taking at most a few hundred microseconds, thus making the

decompression cost negligible compared to the transmission

time even for compressed voxels.

6.4. Preprocessing

The total size of single copy of our reference power-plant

model is roughly 2.5 GB after preprocessing including the

BSP-trees and all triangle and shading data. Due to this large

data size an out-of-core algorithm is required to spatially sort

and decompose the initial model.

This algorithms needs to read the entire data set once in

order to determine the bounding box. It then recursively de-

termines the best splitting plane for the current BSP node,

and sorts all triangles into the two child nodes. Triangles

that span both nodes are replicated. Note that the adaptive

decomposition is able to subdivide the model finely in high-

ly populated areas (see Figure 11) and generates large voxels

for empty space.

Once the size of a BSP node is below a given threshold

we create a voxel and store it in a file that contains its data

(triangles, BSP, shading data, etc.). At this stage each node

is a separate file on disk in a special format that is suitable

for streaming the data through the preprocessing programs.

The cost of preprocessing algorithms has a complexity of

O(n logn) in the model size. Preprocessing is mainly I/O
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bound as the computation per triangle is minimal. We are

currently using a serial implementation, where each step in

the recursive decomposition is a separate invocation of a sin-

gle program. The resulting files are all located on a single

machine acting as the model server.

6.5. Load Balancing

The efficiency of distributed/parallel rendering depends to a

large degree on the amount of parallelism that can be extrac-

ted from the algorithm. We are using demand driven load

balancing by subdividing the image into tiles of a fixed size

(32 by 32 pixels). As the rendering time for different tiles

can vary significantly (e.g. see the large variations in model

complexity in Figures 1 and 13), we must distribute the load

evenly across all client CPUs. This has to be done dynami-

cally, as the frequent camera changes during an interactive

walkthrough make static load-balancing inefficient.

We employ the usual dynamic load balancing approach

where the display server distributes tiles on demand to cli-

ents. The tiles are taken from a pool of yet unassigned tiles,

but care is taken to maintain good cache locality in the cli-

ents. Currently, the scheduler tries to give clients tiles they

have rendered before, in order to efficiently reuse the data in

their geometry caches. This approach is effective for small

camera movements but fails to make good use of caches for

larger movements.

6.6. Implementation

Our current setup uses two servers — one for display and

one for storing and distributing the preprocessed models.

Both machines are connected via Gigabit Ethernet to a Giga-

bit switch. These fast links help in avoiding network bottlen-

ecks. In particular we require a high bandwidth connection

for the display server in order to deal with the pixel data at

higher resolutions and frame rates. The bottleneck for the

model data could be avoided by distributing it among a set

of machines.

For our experiments we have used seven dual P-III 800-

866 MHz machines as ray tracing clients. These clients are

normal desktop machines in our lab but were mostly unu-

sed while the tests were performed. The client machines are

connected to a 100Mbit FastEthernet switch that has a Gi-

gabit uplink to the switch the model and display server are

connected to.

We have tested our setup with the power-plant model from

UNC 3 to allow for a direct comparison with previous work.

This also provides for a comparison of algorithms based on

rasterization versus ray tracing. The power-plant test model

consists of roughly 12.5 million triangles mostly distributed

over the main building that is 80 meter high and 40 by 50

meters on either side (see Figure 15).
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Figure 10: Frame rate and transfered data rate after decom-

pression during a walkthrough heading from the outside to

the inside of the power-plant building. The frame rate is pret-

ty constant around 4-5 fps unless large amounts of data are

transfered (at the beginning where the whole building is vi-

sible). The frame rates have still been measured without the

SIMD optimizations. The newest version runs about twice as

fast at about 8–10 fps.

6.7. Results

Figure 10 gives a compact summary of our overall results.

It shows the frame rate achieved by our system as well as

the amount of geometry fetched over the course of a walk

through the model. The total time of the walkthrough is 92

seconds using all seven clients. Note that we only trace pri-

mary rays for this test in order to allow direct comparison

with the results from 3. We only show the results of a single

walkthrough, as they closely match those from other tests.

With seven dual CPU machines we achieve an almost con-

stant frame rate of 3–5 fps. However, all numbers are com-

puted with plain C++ code. We have currently disabled the

optimized SIMD version of our ray tracing engine because

it had not yet been converted to use the new two level BSP

tree. Latest experiments with the updated SSE version of the

ray tracer has indeed shown the expected speedup by a fac-

tor of two and increased the framerate to roughly 8–10 fps,

which is about the same frame rate achieved in 3. Note that

we still render the original model with all details and not a

simplified version of it.

Figure 11 visualizes the BSP structure that is built by our

preprocessing algorithm. The voxel size decreases signifi-

cantly for areas that have more geometric detail.

In order to test some of the advanced features of ray tra-

cing, we added a distant light source to the model and made

some of the geometry reflective (see Figure 12). Of course,

we see a drop in performance due to additional rays being

traced for shadows and reflections. However, the drop is

mostly proportional to the number of traced rays, and shows
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Figure 11: Two images showing the structure of the high-level BSP tree by color coding geometry to each voxel in the image at

the bottom. Voxels are relatively large for the walls but become really small in regions with lots of details.

little effect due to the reduced coherence of the highly diver-

ging rays that are reflected off the large pipe in the front as

well as all the tiny pipes in the background.

We also tested the scalability of our implementation by

using one to seven clients for rendering exactly the same fra-

mes as in the recorded walkthrough used for the tests above

and measured the total runtime. The experiment was perfor-

med twice — once with empty caches and once again with

Figure 12: Shadow and reflection effects created with ray

tracing using one light source. The performance drops

roughly proportional to the number of total rays traced but

the size of the working set increases. Note the reflections

off all the small pipes near the ground. Diffuse case: 1 ray

per pixel, 4.9 fps, with shadow and reflection (multiple of 2

rays): 1.4 fps.

the caches filled by the previous run. The difference between

the two would show network bottlenecks and any latencies

that could not be hidden. As expected we achieved almost

perfect scalability with filled caches (see Figure 14), but the

graph also shows some network contention effects with 4

clients and we start saturating the network link to the model

server beyond 6 or 7 clients. Note, that perfect scalability is

larger than seven because of variations in CPU clock rates.

Because we did not have more clients available, scalabili-

ty could not be tested beyond seven clients. However, our re-

sults show that performance is mainly bound by the network
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Figure 14: Our implementation shows almost perfect scala-

bility of from 1 to 7 dual CPU PCs if the caches are already

filled. With empty caches we see some network contention ef-

fects with 4 clients but scalability is still very good. Beyond 6

or 7 clients we start saturating the network link to the model

server.
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Figure 13: Two complex view of the power-plant. Both still render at about 8 to 10 frames per second.

bandwidth to the model server, which suggests that a distri-

buted model data base would allow scalability well beyond

the above numbers.

Figure 13 shows some other views of the power-plant

showing some of the complexity hidden in this test model.

For a stress test of our system we have placed four copies

of the power-plant model next to each other resulting in a

total model complexity of roughly 50 million triangles (see

Figure 15). Preprocessing time increased as expected, but

the frame rates stay almost identical compared to the sin-

gle model. Essentially the depth of the higher-level BSP tree

was increased by two, which hardly has any effects on inside

views.

However, for outside views we suffer somewhat from the

relatively large voxel granularity, which results in an in-

creased working set and accordingly longer loading times

that can no longer be completely hidden during movements.

When standing still the frame rates quickly approach the

numbers measured for a single copy of the model.

7. Towards Ray Tracing Hardware

The the last two sections we have shown that interactive ray

tracing is indeed possible even now. By carefully optimizing

the ray tracing algorithms to take advantage of current CPU

and memory architectures, we were able to speedup the soft-

ware more than an order of magnitude.

While these results are encouraging it remains the fact that

the computational power of current CPUs is not sufficient

for interactive rendering of high-resolution, high-framerate

images unless rather large number of these CPUs are em-

ployed. If ray tracing is ever to be widely used as a rendering

technique for consumer PCs, some hardware support will be

necessary. Thus, the question arises if one could build spe-

cial purpose hardware for ray tracing that would offer better

use of the available silicon and offer higher performance at

a lower price point.

The first commercially viable approach towards ray tra-

cing hardware has been taken by Advanced Rendering Tech-

nologies with their RenderDrive 39. However, their system

is not targeting interactive frame rates, but is rather an off-

line hardware accelerator for non-interactive software ray

tracers.

Figure 15: Four copies of the UNC power-plant reference

model with a total of 50 million triangles. In this view a lar-

ge fraction of the geometry is visible. At 640x480 pixels the

frame rate is 3.4 fps using seven networked dual Pentium-III

PCs.
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7.1. Hardware Volume Ray Tracing

In 1999, Pfister et al. from MERL have presented the Vo-

lumePro 500 board 31, which was the first single-chip real-

time volume rendering engine for consumer PCs. It imple-

ments ray casting with parallel slice-by-slice processing and

renders 500 million interpolated, Phong illuminated samples

per second. This is sufficient to render volumes with up to

2563 voxels in real time. They too pointed out that coherent

memory access is crucial to achieve this performance.

Similar projects have been realized as university research

projects, namely the VIRIM project 41 of the University of

Mannheim, and the VOGUE and VIZARD boards at the

University of Tübingen 16.

As a successor to the VolumePro board, Pfister et al. ha-

ve recently proposed the RAYA architecture 30. The RAYA

architecture extends the volume ray casting approach of Vo-

lumePro to a full ray tracing approach for environments con-

sisting of both volumen and geometry primitives. The design

of RAYA was inspired by Pharr’s Memory-Coherent Ray

Tracing 32 approach: It uses an explicit scene management

in which the scene is subdivided into blocks.

Rays are maintained in queues for each voxels and are ex-

plicitly scheduled to one of many processing elements for

intersection computations. Due to the accumulation of many

rays per voxel this approach maintains coherent access to the

geometry data contained per voxel. Rays that did not inter-

sect any geometry in a voxel are forwarded to the respective

neighboring voxel.

Even though detailed simulations have still to be perfor-

med preliminary results indicate that the RAYA architecture

with a programmable shading unit should be realizable wi-

thin a single chip 30. This would enable real-time volume ray

tracing for medium sized volumes.

7.2. Ray Tracing on Smart Memories

Last year Mai et al. have proposed the Smart Memories ar-

chitecture 22. A Smart Memories chip is a modular and re-

configurable architecture made up of many processing tiles,

each containing local memory, local interconnect, and a pro-

cessor core (see Figure 16). These components can be recon-

figured to match different applications, making it possible

that a wide range of architectures from stream processors to

speculative multiprocessors can be mapped to this architec-

ture.

The Smart Memories architecture is not a special ray tra-

cing chip, but a highly integrated, general purpose multipro-

cessor that can be configured to provide a NUMA multipro-

cessor architecture on a chip. In this configuration it con-

sists of 64 simplified RISC-microprocessors with 128 KB of

local memory each and a high-bandwidth, low latency in-

terconnection between the different processors. Tim Purcell

from Stanford University is currently designing the SHARP

ray tracing architecture that maps the ray tracing algorithms

directly to the Smart Memories hardware architecture.

Chip

Quad Network16x8Kb SRAM

Interconnect

RISC Processor

Figure 16: The Smart Memories architecture: A chip (right)

consists of 4 by 4 interconnected quads (middle), each

being composed of 4 tiles. A tile consists of a fast general-

purpose RISC microprocessors, together with local RAM

and a fast interconnection network. Communication band-

width is 64GB/s between units on the same quad, and still 8

GB/s to off-chip memory.

Since Smart Memory chips are not yet available, the sy-

stem is currently designed based on simulations. However,

the simulations already provide a good estimate on the theo-

retical performance of this architecture. They show that the

Sharp architecture would indeed be limited only by compute

power of the Smart Memory architecture, and would deli-

ver frame rates of 50 frames per second at resolutions of

512x512 pixels (primary rays only) for scenes with several

hundred thousand triangles.

7.3. Hardware Ray Tracing on a Custom Design Chip

Custom hardware ray tracing is currently being designed at

the Saarland University. This architecture is based on the ex-

perience gathered from the interactive software ray tracer al-

ready described above and uses the same techniques to re-

duce bandwidth and exploit parallelism. It implements the

complete ray tracing pipeline including ray generation, ray

traversal, intersection, and shading in a single chip solution.

This architecture is based on a modular pipeline in which

several traversal units are directly connected to a set of inter-

section units. This direct connection between sets of traver-

sal and intersection units allows a simple, high bandwidth in-

terconnect. The pipeline is feed from ray generators that are

integrated with the shading units that compute the reflected

light at intersections, generate shadow rays if required, and

forward the final pixel values to the framebuffer. In contrast

to the SHARP architecture, bundles of rays are traversed and

intersected in lock-step thus enforcing coherence and further

reducing memory bandwidth to caches and memories.

Similar to the other hardware architectures this project has

not been completed yet. However, preliminary results from

simulations indicate that a complete ray tracing chip would

be realizable with about as much hardware effort as is being

spent for todays rasterization chips or CPUs, while being ab-

le to deliver full-screen, real-time ray tracing performance of
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Figure 17: The ray tracing architecture of Saarland Univer-

sity.

25+ frames per second, for scenes with up to several million

of primitives, three point light sources, and up to 2 secondary

rays per pixel. Similar to the software architecture the per-

formance is directly related to the number of rays that need

to be processed per frame.

8. Remaining Research Challenges

In the preceding sections we have presented an overview of

the current state-of-the-art in interactive ray tracing. Much

has already been achieved and much more is still in progress.

However, there remain quite a number of open research is-

sues that need to be addressed. In the following we give a

short overview and describe them in more detail later.

Dynamic Scenes Fully interactive applications, like virtu-

al reality systems or computer games, require the ability

to modify the scene at runtime. Ray tracing, however, re-

quires expensive preprocessing for the computation of the

underlying acceleration structure. This typically limits ray

tracing to static environments and walkthrough applicati-

ons. As ray tracing was typically an offline application,

where preprocessing time was amortized over the rende-

ring time, little research has been done on dynamic scene

updates.

Ray Tracing API In order to be useful for a wide range of

software developers, a common API has to be developed

for interactive ray tracing similar to the OpenGL API for

triangle rasterization. This API will be an important pre-

requisite for the widespread use of ray tracing based ren-

derers as it will allow applications to be portable across

different implementations.

Hardware In order to make interactive ray tracing availa-

ble for a wide class of users, ray tracing hardware will

eventually be needed. Such hardware is currently being

designed as described above.

Extensions to Global Illumination As shooting rays is of-

ten the most time-consuming part in global illumination

algorithms, interactive ray tracing brings interactive glo-

bal illumination closer to reality. However, in order to ex-

ploit the full performance of interactive ray tracing sys-

tems, global illumination algorithms have to be explicitly

designed to work well within those environments. In par-

ticular, large coherence between rays must be maintained

in order to stay efficient. Unfortunately, the most promi-

sing algorithms are based on the Monte-Carlo technique

and generate essentially random rays. Algorithms that are

better suited for interactive use must still be developed.

8.1. Dynamic Environments

Because rasterization algorithms process geometry on a tri-

angle by triangle basis the handling of dynamic scenes is

fairly simple. During rendering the model is update and the

new geometry is being sent to the graphics subsystem. Ho-

wever, this approach becomes more difficult if only the rele-

vant parts of a model are to be send. In this case acceleration

structures such as octrees or bounding boxes must be main-

tained in order to quickly cull entire subsets of the model.

Maintenance of these data structures can be quite costly and

dynamic models are often not included in these data structu-

res.

Ray tracing depends on these data structures more stron-

gly in order to avoid costly computations and achieve its

sub-linear performance. These acceleration structures can-

not currently be updated in real-time. As the cost for building

the acceleration structure is at least linear in the number of

scene primitives, completely rebuilding it for every frame is

not feasible.

Until today, relatively few researchers have addressed the

problem of dynamic environments: A first suggestion to-

wards ray tracing of dynamic scenes has been made by Par-

ker et al. 28. In their system dynamic objects are being kept

out of the acceleration structure and checked individually for

every ray. Of course, this is only feasible for a small number

of dynamic objects.

If the majority of the scene remains static, another ap-

proach would be to only rebuild those parts of the accelera-

tion structures that are actually affected by moving objects.

However, large objects are often contained in a large num-

ber of voxels, which would require to update an excessive

amount of voxels for a single moving polygon. To solve this

problem, Reinhard et al. 34 have proposed a dynamic accele-

ration structure that is based on hierarchical grids. In order

to quickly insert and delete objects independent of their size,

bigger objects are being kept in coarser levels of the hier-

archy. Thus objects always cover approximately a constant

number of voxels, making possible to update the accelerati-

on structure in constant time.

In order to deal with the problem that arises when objects
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leave the bounding box of the scene, they propose a scheme

in which objects are wrapped around the bounding box of the

scene: If an object leaves the grid on the right side, it reenters

it on the left side. If rays are wrapped around in a similar

manner, objects can leave the scene bounds without having

to rebuild the entire data structure. Only when the current

bounding box differs too much from the size of the grid,

the data structure is rebuilt. This way, the cost for rebuilding

the data structure can be amortized over several frames. A

sketch of this process and some example images are shown

in Figure 18.

Logical bounding box
Physical bounding box

0 2 31

0

1

2

3

0

1

2

3

0 2 31

Figure 18: Top row: The dynamic data structure proposed

by Reinhard et al. Left: The sphere has moved outside the

physical grid, now overlapping with voxels (4,2) and (5,2).

Therefore, it is inserted at the location of the shaded voxels.

The logical bounding box is extended to include the newly

moved object. Right: Ray traversal through extended grid.

Bottom: two example frames from an interactive animation.

8.2. Benchmarks for Dynamic Scenes

It is obvious that more research is needed before interactive

ray tracing will be able to deal with dynamically changing

models. In order to evaluate the performance of different ap-

proaches a benchmark is very useful. Recently, Lext, As-

sarsson, and Moeller have proposed the BART 21 test suite

as a standard testing environment for dynamic scenes. This

is intended to augment the Standard Procedural Database 12

(SPD), which has served as a benchmark suite for traditional

ray tracers, but which does not contain animated scenes.

For designing representative test scenes, they first identi-

fied and categorized the different stresses that a ray tracer

has to deal with in dynamic environments: these include is-

sues such as hierarchical versus unorganized animation, the

teapot-in-a-stadium problem, lower coherence, large wor-

king sets, overlap of bounding volumes, and changing object

distributions. After having identified and classified these se-

ven stress cases, they propose three parametrically animated

test scenes, each concentrating on a different set of issues 21.

8.3. Realtime Ray tracing API

Graphics APIs provide an abstraction layer above the de-

tails of the underlying rendering engine, thus enabling pro-

grammers to write 3D graphics programs that can run with

any graphics boards that supports the specific API. To-

day’s quasi-standard and cross-platform API for 3D gra-

phics programming is OpenGL, which is mainly designed

for immediate-mode polygon rasterization. Many of its fea-

tures are closely related to graphics pipeline as defined by

the rasterization approach.

Due to its strong ties to rasterization, OpenGL is not well

suited as an API for interactive ray tracing. For example, ap-

plications send all polygons repeatedly for every frame of an

animation, while ray tracing would benefit from static parts

being sent only once. It seems very difficult to design a ray

tracing engine that works efficiently if driven by OpenGL or

other immediate-mode APIs.

As a consequence, if realtime ray tracing should ever be

used by a significant set of applications, a new API has to be

developed that is especially designed for the needs of inter-

active ray tracing. This new API should allow for specifying

scene changes incrementally, by posting only those parts of

the scene that actually have changed since the last frame.

Additionally, the API should enable the use of all the addi-

tional features that rasterization does not support. This spe-

cifically includes great flexibility in specifying shaders, hier-

archical scene descriptions and instantiations, and tracing of

flexible sets of rays. In order to allow for arbitrarily complex

scenes it seems useful to support a pull model of operation,

where the renderer requests those parts of the scene that are

needed for further computation. It should also be possible to

specify procedural objects that are only generated once they

need to be accessed.

Still, such an API should be as similar to OpenGL as pos-

sible, in order to allow for easy porting of existing applica-

tions, and to make it possible for the OpenGL-experienced

graphics programmer to more easily use interactive ray tra-

cing as an alternative. A good ray tracing API should there-

fore use as much of the syntax and semantics from OpenGL

as possible (e.g. for specifying geometric primitives) while

enabling access to the advanced features of ray tracing.

Such an API is currently being designed in a joint project

by the graphics groups of Saarland University and Stanford

University. It will first be implemented and tested in a soft-

ware interactive ray tracer, but with the goal to use the same

API for hardware implementations. The main issues stem
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from that fact that the field of interactive ray tracing is still

a moving target. Nonetheless, it seems very helpful to defi-

ne at least a draft API in order to test different approaches

to implementing interactive ray tracing and start writing and

porting applications to use the new rendering technique.

8.4. Ray Tracing Hardware

The main future challenge for interactive ray tracing is to de-

sign, develop and build special purpose hardware. Ray tra-

cing requires significant computational resources for scene

traversal, triangle intersection, and shading that should be

put onto a single chip. No detailed estimates on the size and

the power requirements of such chips are available yet but

current estimates indicate that the necessary hardware re-

sources are or will soon be available.

One major problem for ray tracing hardware is the mul-

titude of ray tracing algorithms. Dozens of algorithms and

data structures exist for scene traversal and triangle intersec-

tion. Though the performance of these algorithms seems to

be similar for software implementations, their applicability

to hardware implementation has not yet been thoroughly in-

vestigated.

8.5. Interactive Global Illumination

Fast global illumination algorithms have been a major rese-

arch goals for quite some time. Since most global illumina-

tion systems are being build on ray tracing, improvements in

ray tracing speed (like development of ray tracing hardwa-

re) should lead to a similar increase in the speed of global

illumination algorithms.

However, most global illumination algorithms depend on

shooting very large numbers of rays (often in the order of

hundreds of rays, e.g. for Monte Carlo sampling of area

light sources, for pixel-supersampling, or for final gathering

steps in calculating indirect illumination). Even worse, most

of these algorithms tend to generate these rays incoherently.

As interactive ray tracing typically tries to exploit coherence

among rays, this loss of coherence can drastically reduce the

efficiency of the ray tracing algorithm. Even if the ray tra-

cer can be scaled to cope with the increased amount of rays,

interactive global illumination algorithms would have to ge-

nerate a much higher degree of coherence to be efficient.

Another problem is that not all global illumination algo-

rithms are dominated by the cost for shooting rays. For some

algorithms, the cost for shading can even be more expensive

than the cost for tracing rays (e.g. a photon map query can

be several times as expensive as shooting a single ray). Even

for mainly ray-based approaches such as path-tracing or bi-

directional path-tracing 15; 18; 40, the cost for random number

generation, importance sampling of BRDFs, and BRDF eva-

luations is not negligible.

Therefore, global illumination algorithms that aim at ex-

ploiting the advantages of interactive ray tracing should be

oriented towards the following design goals:

Coherent Sets of Rays: Rays should be generated co-

herently. This has been shown to be crucial even today,

and will become even more important in the future, as

the gap between compute power and memory performan-

ce can be expected to widen, especially for hardware im-

plementations.

Exploiting View-Importance: In order to make caching

efficient, data that has no (or only minor) effect on the

final image should not be touched. If an algorithm tou-

ches the entire data set of a large scene instead of only

the visually important data, caching can no longer work

efficiently.

Efficient Computations: The algorithms should require

the computation of as few rays as possible (e.g. by appro-

ximative techniques where possible), as well as having as

few other costs as possible. This is especially important

for future hardware implementations, where ray shooting

will most probably be several times cheaper than general-

purpose operations such as sampling or BRDF evaluati-

ons.

High Degree of Parallelism: The trend towards more par-

allel units (e.g. by more CPUs or by SIMD extensions) is

already apparent, and seems to become even stronger for

the future. Future ray tracing hardware is therefore likely

to employ lots of parallel ray tracing pipelines. In order

to exploit this potential, a interactive global illumination

algorithm should be explicitly designed to fit into such a

parallel framework. In practice, that means that it should

avoid communication between independent rays as much

possible.

Interactive framework: If only a few milliseconds of ti-

me are available per frame, little preprocessing and global

communication is possible . This poses severe restrictions

on the algorithms that should work in this setup. Algo-

rithms that require extensive preprocessing and mainte-

nance of global data structures (such as e.g. Radiosity 6 or

the PhotonMap 14) are less suited for interactivity.

9. Summary and Conclusions

This report provides an overview of the current state-of-the-

art in interactive ray tracing. We motivated this new research

area by pointing out some of the problems of rasterization-

based rendering and by describing the advantages that ma-

ke ray tracing an interesting alternative. Some of the major

advantages are the increased flexibility in image generati-

on through the arbitrary handle arbitrary of rays, superior

image quality through the simple use of advanced shading

algorithms including effect such as shadows, and better sca-

lability with model size and the number of CPUs.

Next we reviewed previous work and classified the dif-

ferent approaches to interactive ray tracing into two main
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categories, namely those that use approximations in order to

reduce the number of rays that must be traced and those that

concentrate on accelerating the basic ray tracing algorithms

itself. Before concentrating on the latter approaches we gave

a brief overview of the most important approximating algo-

rithms.

The main part of this report then concentrated on techni-

ques that accelerate the basic ray tracing algorithm direct-

ly. Early systems of this kind were exclusively implemented

on large shared-memory supercomputers and are described

briefly. We concentrated in more detail on an implementa-

tion of interactive ray tracing on low-cost, networked PCs.

This implementation improves software performance by mo-

re than an order of magnitude and beats even the most expen-

sive rasterization hardware when in comes to more complex

models. We showed that even model like the UNC power

plant with 12.5 million polygons can be rendered at interac-

tive rates after some simple and fast preprocessing.

In the last part of the report we mention several ongoing

research projects that design ray tracing hardware to further

increase the speed of rendering with ray tracing and maybe

making it competitive with rasterization hardware. Finally

we discuss a number of open research issues in interactive

ray tracing including dynamic scenes, the design of a ray

tracing API, hardware, and the idea of interactive global il-

lumination computations.

An interesting observation is that ray tracing and raste-

rization algorithms seem to slowly converge towards each

other with extensions to rasterization hardware such as oc-

clusion culling, hierarchical z-buffers, advanced shading,

and others. The fundamental difference between the two

techniques lies in the selection of geometry for rendering.

With ray tracing the renderer selects and requests geometry

from the scene data base or the application on a ray by ray

basis (or packet by packet). Accordingly it can efficiently

handle small sets of rays. With rasterization algorithms the

application has to select objects based on an conservative

estimate of their visibility across the screen and send them

to the graphics subsystem to be render by all pixels (i.e. rays)

that may be covered by these objects.

Even though ray tracing is still widely believed to be a

high-quality but very slow rendering technique, this report

clearly demonstrates that this is no longer the case. Software

implementations are already available and research for hard-

ware implementations is well under way.

We strongly believe that what we see today is only the be-

ginning of an exciting new field of computer graphics and

that it will have effects on a number of related disciplines as

well. The simplicity and flexibility of ray tracing, the support

for advanced shading, and the way it avoids most of the pro-

blems associated with rasterization hardware offer signifi-

cant benefit for many applications. Even though it is not cle-

ar if ray tracing could ever replace rasterization algorithms,

these properties ensure that ray tracing will play an import-

ant role in the future of interactive 3D graphics.
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