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Abstract 

 

With the continuous increasing size and flexibility of large wind turbine blades, aeroelasticity has 

been becoming a significant subject for wind turbine blade design. There have been some 

examples of commercially developed wind turbines experiencing aeroelastic instability problems 

in the last decade, which spokes for the necessity of aeroelastic modelling of wind turbine blades. 

This paper presents the state-of-the-art aeroelastic modelling of wind turbine blades, provides a 

comprehensive review on the available models for aerodynamic, structural and cross-sectional 

analysis, discusses the advantages and disadvantages of these models, and outlines the current 

implementations in this field. This paper is written for both researchers new to this research field 

by summarising underlying theory whilst presenting a comprehensive review on the latest studies, 

and experts in this research field by providing a comprehensive list of relevant references in which 

the details of modelling approaches can be obtained. 
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1. Introduction 

 

The capacity and dimension of commercial wind turbines have being increased exponentially over 

the last three decades, from a rated power of 75kW and a rotor diameter of 17m for earlier designs 

up to a rated power of 7.5MW and a rotor diameter of over 125m for modern machines. The trend 

of increasing size of large wind turbines is expected to continue in the next decade. The power 

rating of commercial wind turbines has gone up to 8MW [1], and the potential for 10-20MW wind 

turbines is being investigated [2, 3]. 
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The increasing size of large wind turbines lowers the cost of wind power generation in term of 

levelised cost of energy ($/kWh); however it introduces significant aeroelastic effects, which are 

caused by the interaction of aerodynamic loads, elastic deflections and inertial dynamics. 

Specifically, during the operation of a wind turbine, the blades experience elastic deflections due 

to aerodynamic loads exerted by the airflow passing the blades. The deformed blades affect, in 

turn, the flow field around the blades, which in return influences the aerodynamic loads on the 

blades. The inertia dynamics play a significant role in the correlation between the aerodynamic 

loads and elastic deflections, and the resulting accelerations. The blade can experience oscillation 

due to the aeroelastic effects, and it becomes unstable under harmonic conditions and/or when the 

damping is negative. 

 

Aeroelastic effects might result in instability problems, such as edgewise instability and flutter, 

which can be devastating both to the blades and the wind turbine. For instance, as reported in Ref. 

[4], 0.5% of the LM (Lunderskov Mobelfabrik) 19m wind turbine blades were damaged within 

one year. These blades were mounted on 600kW wind turbines around the world and were 

damaged due to blade edgewise instability. The changes in wind turbine blade design due to the 

growth in size might lead to other not yet recognised aeroelastic instabilities. Therefore, 

investigating the aeroelasticity characterisation of large wind turbine blades is playing an 

important role in the development of large wind turbines.  

 

An aeroelastic model should contain an aerodynamic part to calculate the aerodynamic loads and a 

structural part to determine the structural dynamic responses. In aeroelastic modelling, wind 

turbine blade structure is often represented as a series of 1D beam elements, which are 

characterised by the cross-sectional properties of the blade, such as cross-sectional stiffness and 

mass per unit length. It should be noted that wind turbine blades are generally made of composite 

materials and have a complicated structural layout. Due to the intrinsic nature of composite 

materials and the complexity of blade structural layout, obtaining the cross-sectional properties of 

the composite blades is quite challenging and requires a specialised cross-sectional analysis model. 

Fig. 1 presents the components of the aeroelastic modelling of wind turbine blades, and each 

component is reviewed in this paper.  

 

In order to develop more advanced and reliable aeroelastic models for wind turbine blades, it is 

important to have a view of the state of the art in aeroelastic modelling of the blades. For this 

concern, a comprehensive review of the aeroelastic modelling of wind turbine blades has been 

developed within this paper.  
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This paper is structured as follows. Sections 2, 3 and 4 review the aerodynamic, structural and 

cross-sectional analysis models, respectively. Section 5 presents the current implementations, 

followed by a discussion in Section 6 and a conclusion in Section 7.  

 

2. Aerodynamic model 

 

In order to perform aeroelastic modelling of wind turbine blades, an aerodynamic model should be 

included to calculate the aerodynamic loads exerted by the airflow passing over the blades. Four 

types of aerodynamic models have been used in the aeroelastic modelling of wind turbine blades, 

i.e. BEM (blade element momentum) model, vortex model, actuator type model and CFD 

(computational fluid dynamics) model.  

 

2.1. BEM (blade element momentum) model 

 

The BEM model was originally proposed by Glauert [5] by combining blade element theory and 

blade momentum theory. The blade element theory discretises the blade into several elements and 

ignores the mutual influence between two adjacent elements, as shown schematically in Fig. 2 

reproduced from Ref. [6]. The aerodynamic loads on each element depend on its local airfoil 

characteristics, i.e. its lift and drag coefficients. The sum of these loads yields the total loads on 

the blade. The blade momentum theory introduces axial induction factor a  and angular induction 

factor a  to respectively calculate the induced velocity in the axial and tangential directions, as 

shown schematically in Fig. 3. The induced velocity affects the angle of attack of the blade and 

therefore influences the aerodynamic loads calculated by the above blade element theory.  

Combining blade element theory and blade momentum theory provides a solution to obtain the 

performance parameters of each blade element through an iterative procedure [6, 7]. 

 

The original BEM model has several limitations which are usually found in wind turbine 

applications. The majority of these limitations have been overcome through introducing empirical 

corrections borrowed from helicopter applications or based on wind turbine experience. 

 

2.1.1. Tip loss 

 

One of the main limitations of the original BEM model is that it ignores the effects of vortices 

shedding from the blade tip on the induced velocity. Practically, these effects play a significant 

role in the induced velocity distribution along the blade, especially the region near the blade tip. In 

order to compensate for this deficiency in the BEM model, several tip loss correction factors have 

been proposed. Prandtl [8] proposed a tip loss correction factor through modelling the wake of the 

wind turbine as vortex sheets. Prandtl’s tip loss correction is simple and efficient and also 
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improves the accuracy in the predictions of induced velocity distribution. Based on the Navier-

Stokes solutions, Xu and Sankar [9] proposed a correction of the Prandtl model, showing good 

agreement with the experimental data of the NREL Phase VI rotor [10].  

 

2.1.2. Turbulent wake state  

 

Another limitation of the original BEM model is that the model becomes invalid when the axial 

induction factor a  is larger than around 0.4. This occurs for the cases when wind turbines operate 

at high tip speed ratios, e.g. fixed-speed wind turbines at low wind speeds, as the blade gets into 

turbulent wake state ( 5.0a ).  For the turbulent wake state, the wind velocity behind the blade, 

calculated based on blade momentum theory, becomes negative, which is obviously unreasonable.  

The original BEM model is incapable of providing a reasonable thrust coefficient when the blade 

operates in the turbulent wake state. In order to overcome this limitation of the BEM model, 

several empirical models have been proposed, such as Glauert model [11], AeroDyn model [12], 

Buhl model [13], GH-Bladed model [14], Burton model [15] and Spera model [16]. Fig. 4 

(reproduced from Ref. [17]) presents a comparison of these models. From Fig. 4 we can see that 

all these models agree well with the experimental data except for the Spera model. 

 

2.1.3. Dynamic inflow 

 

The induced velocities calculated using the original BEM model are quasi-steady, which implies 

the wake is in equilibrium with the inflow. Practically, if the inflow is changed, before a new 

equilibrium is achieved there exists a time delay, which is a function of the rotor diameter and 

wind speed [18]. Fig. 5 (reproduced from Ref. [18]) depicts the predicted and measured dynamic 

response on the rotor shaft torque of the Tjaereborg 2MW wind turbine [19] for a sudden change 

in pitch angle. At s2t , the pitch angle is changed from 0  to 7.3 , reducing the local angle of 

attack. The rotor shaft torque firstly decreases from 260 to 150kNm, and then gradually increases, 

taking approximately 10s delay to reach a new equilibrium state with a value of around 220kNm. 

At s32t , the pitch angle is adjusted back to 0 , and a similar time delay in the rotor shaft 

torque response is observed. Taking account of this time delay needs a dynamic inflow model. 

Several empirical dynamic inflow models have been developed, such as Øye model [20] and Pitt-

Peters model [21]. The comparison of these models in Ref. [22] shows that all these models agree 

well with the trends of measurements. Recently, Henriksen et al. [23] proposed a simplified 

dynamic inflow model, in which the induced axial wind speed states are gathered in a single 

averaged induced axial wind speed. The simplified dynamic inflow model has been demonstrated 

as being able to capture the most significant dynamics of the more advanced dynamic inflow 

model, and its application in wind turbines can be found in Ref. [24]. 
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2.1.4. Dynamic stall  

 

Dynamic stall is the nonlinear unsteady aerodynamic effect that occurs when airfoils quickly 

change the angle of attack, and it is associated with the separation of the boundary layer. During 

the dynamic stall, the boundary layer initially separates at the trailing edge, and gradually shifts to 

the leading edge with an increasing angle of attack [25]. The angle of attack of rotating blades 

changes dynamically due to sudden change in wind, such as wind shear and atmospheric 

turbulence. The response on aerodynamic loads introduced by changing the angle of attack has a 

time delay and depends on whether the boundary layer is attached or separated. In the case of an 

attached boundary layer, the time delay can be calculated using the Theodorsen theory for 

unsteady lift [26]. In the case of a separated boundary layer, the separation point position needs to 

be taken into account in the calculation of the time delay. The dynamic stall phenomenon has been 

evident from the measurement of aerodynamic coefficients on practical wind turbine blades. One 

example illustrated in Fig. 6 (reproduced from Ref. [27]) is the dynamic stall event measured at 

the 30% span position of the CER (Combined Experiment Rotor). As can be seen from Fig. 6, due 

to the dynamic stall effects, the airfoil normal force coefficient 
N

C  changes dynamically with the 

angle of attack and is significantly different from the value measured in static conditions. A 

number of dynamic stall models have been developed, such as BL (Beddoes-Leishman) model 

[28], ONERA model [29], Snel [30] model, Øye [31] model, BV (Boeing-Vertol) model [32] and 

Risø [33] model. Comparisons of different dynamic stall models can be found in Refs. [34, 35], 

showing that all these models show reasonable agreement with experimental data but none of the 

models is significantly better in all cases than the others. 

 

2.1.5. Other corrections 

 

Various other corrections have been proposed to correct the BEM model, including 1) stall delay 

corrections [36-38], which account for stall delay due to the rotation of the blade; 2) radial flow 

corrections [39], which take account of radial flow in the calculation of aerodynamic loads; and 3) 

skewed wake corrections [40, 41], which account for skewed wakes introduced by non-

axisymmetric flow (e.g. wind turbines operating at yaw angles relative to the incoming wind). 

These corrections further improve the accuracy of the BEM model. 

 

2.1.6. Validity and applications 

 

The validity of the BEM model has been extensively established by comparing it with 

experimental data [42-45]. Because it is simple, efficient and well-proven, the BEM model has 

become a standard method for analysing the aerodynamic performance of wind turbine blades. 

Additionally, the high efficiency of the BEM model makes it suitable for blade design 
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optimisation, which generally involves a large number of case studies. Based on the BEM model 

and different optimization strategies, authors have conducted a series of case studies on the design 

optimization of wind turbine blades [7, 46-49].  

 

Compared to other aerodynamic models, the BEM model is fast and able to provide accurate 

results when reliable airfoil aerodynamic data are available. For this reason, the BEM model has 

been used for the aerodynamic part by most wind turbine aeroelastic models. 

 

2.2. Vortex model 

 

In order to better model the wake dynamics of wind turbine rotors, the vortex model [50], in 

which the trailing and shed vorticity in the wake are represented by lifting lines or surfaces, has 

also found applications in the aeroelastic models of wind turbine blades. Fig. 7 (reproduced from 

Ref. [51]) presents an example of the wake modelling of a two-bladed wind turbine rotor using the 

vortex model.  

 

The wake in vortex models can be calculated using either the prescribed-wake method or free-

wake method.   

 

In a prescribed-wake method, the wake shedding from the blade is assumed to be rigid and is 

described using semi-empirical formulations. The applications of prescribed-wake vortex models 

in analysing the wakes of wind turbine blades can be found in Refs. [52, 53]. The prescribed-wake 

in these models saves computation time but limits their application to steady incoming flow.  

 

A free-wake method, in which the wake can be varied freely both in time and space, is necessary 

for unsteady flow. A typical layout of the free-wake modelling of a wind turbine blade is 

presented in Fig. 8 (reproduced from Ref. [54]). 

 

Free-wake vortex models have been applied to wind turbine blades to study the unsteady wakes of 

the blades [51, 55, 56], and the aeroelasticity of the blades [54, 57]. The free-wake method used in 

these models enables them to be capable of handling a complex unsteady flow, e.g. dynamic 

inflow. However, the free-wake method is much more computationally expensive than the 

prescribed-wake method. 

 

Compared to the BEM model, the vortex model requires more computational resources, and it 

tends to diverge due to the intrinsic singularities of the vortex panels in the developing wake. 

Additionally, viscous effects are ignored in the vortex model, which limits its application to wind 

turbines to some extent. 
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2.3. Actuator type model 

 

In the actuator type model, the wind turbine blade is represented by a disc/line/surface with 

distributed loads on the disc/line/surface. Various forms of actuator type model have been 

developed, which can be classified based on the representation of the blade, namely: actuator disc 

model, actuator line model and actuator surface model.  

 

The actuator disc model is possibly the earliest model used for studying rotor performance. The 

classical actuator disc model, which is derived from the 1D momentum theory initially developed 

by Rankine [58] and Froude [59], is ended up with BEM model [5]. In its general form, however, 

the actuator disc can also be numerically combined with the Euler or Navier-Stokes equations. 

 

In a numerical actuator disc model, the Euler or Navier-Stokes formulations are typically solved 

by finite volume or difference scheme, as in a usual CFD calculation. However, the flow around 

the blades and the geometry of the blades are not resolved. The surface of the blade is replaced by 

distribution forces acting on the incoming flow.  

 

In the simple case of a uniformly loaded actuator disc, the force acting on the disc is determined 

by thrust coefficient and reference wind speed. In the case of a non-uniformly loaded actuator disc, 

the force acting on the disc varies along the radial location but remains constant over the annulus. 

Similar to BEM, the local forces on the blades can be calculated using the lift and drag 

coefficients of the airfoil section. A relevant issue is the determination of the local angle of attack 

to find the lift and drag coefficients. Shen et al. [60] provided a method to determine the local 

angle of attack according to information slightly upstream of the blade plane.  

 

Sørensen and Shen [61] extended the non-uniformly loaded actuator disc method to the actuator 

line approach, in which the blade forces are represented using a line with distributed loads. The 

wake modelling of a three-blade wind turbine rotor based on the actuator line model is illustrated 

in Fig. 9 (reproduced from Ref. [61]). In their later study [62], the actuator line approach is 

applied to the aerodynamic modelling of the MEXICO (Model Experiments in Controlled 

Conditions) rotor, showing good agreement with the measurements. 

 

Shen et al. [63, 64] further extended the actuator line approach to the actuator surface method, in 

which the wind turbine blade was represented by a planar surface. Sibuet Watters and Masson [65] 

proposed their actuator surface method using a slightly different approach. Kim et al. [66] 

proposed an improved actuator surface model for wind turbine analyses, overcoming the need for 

tip loss correction.  
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The actuator surface method needs not only the lift and drag coefficient of airfoils, but also the 

skin friction and pressure distribution on the airfoil surface. Dobrev et al. [67] used a linear 

function, which is determined from the lift and drag coefficients, to represent the pressure 

distribution in the actuator surface method.  

 

The actuator type models discussed above should be granted the credit for providing a better 

insight into the 3D (three-dimensional) flow development and the credit for contributing to a 

better understanding of wake dynamics. However, solving the Navier-Stokes equations is more 

time-consuming than BEM, and the actuator type models, in which loads on the blade are still 

calculated based on blade element theory and tabulated airfoil data, do not predict aerodynamic 

loads more accurately than the BEM model.  

 

2.4. CFD (computational fluid dynamics) model 

 

With the advancement of computing resources, CFD has received considerable attention in recent 

years. The CFD method solves the governing equations of fluid flow at thousands of positions on 

and around the blade in an iterative process, which does not require predetermined airfoil 

aerodynamic data for the calculation. In addition to aerodynamic load calculations, CFD is also a 

valuable tool to visualise the flow field around the blade, as shown in Fig. 10 from Ref. [68]. 

 

To perform CFD modelling of wind turbine blades, the 3D blade geometry needs to be exactly 

described in a digitised format. Wind turbine blades often have a complex geometric shape with 

varied spanwise cross-sectional information, i.e. airfoil shape, chord and twist angle distributions. 

The 3D blade geometry is generally constructed using CAD (computer aided design) software, 

such as SolidWorks [69] and UG [70].  

 

Due to the complex geometry of a wind turbine blade, it is quite challenging to generate an 

appropriate mesh for the CFD modelling of the blade. There are three typical types of mesh, i.e. 

structured, unstructured and hybrid, as illustrated in Fig. 11.  Structured mesh has advantages in 

high resolution, easy convergence and low memory usage. However, it is difficult and time-

consuming to generate a structured mesh for complex geometries, such as highly twisted blades. 

The major advantage of unstructured mesh is the ease of mesh generation for complex geometries. 

However, unstructured mesh consumes more computation time, as it generally results in higher 

cell numbers than structured mesh filling the same volume. Hybrid mesh, also known as adaptive 

mesh, is the combination of structured and unstructured meshes. In hybrid mesh, structured mesh 

is used for important regions, such as boundary layers, while unstructured mesh is used elsewhere. 

Due to the flexibility of hybrid mesh, it has been widely used for the mesh generation of CFD 

modelling of wind turbine blades [71-73].  
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The mathematical fundamentals of CFD are the NS (Navier-Stokes) equations [74], which are the 

governing equations of fluids derived from the momentum, energy, and continuity conservations. 

For wind turbine blades, the relative wind speed is much lower than the speed of sound and 

therefore the flow can be considered incompressible [75]. The governing equations of 

incompressible NS equations (convective form) are given by [76]: 

  uuu
u 2

 P

t
    (1)  

0 u      (2)  

where u  is the flow velocity, P  is the pressure divided by the density,   is the (constant) 

coefficient of kinematic viscosity. 

 

The discretisation of NS equations can be achieved through three typical discretisation methods, 

i.e. FVM (finite-volume method), FEM (finite-element method) and FDM (finite-difference 

method). FVM is a common method used in CFD modelling, as it has advantages in solution 

speed and memory usage. FEM is mainly utilised in structural analysis, but it can also be applied 

to fluids. For instance, ANSYS CFX [77], a widely used commercial CFD software package, is 

based on FEM. Compared to FVM, FEM is much more stable, but it consumes more memory and 

has slower solution times [78]. FDM is easy to implement, but it is limited to simple grids. 

Currently, FDM is only utilised in a few specialised CFD codes. 

 

Directly solving NS equations, known as DNS (direct numerical simulation), requires huge 

computational resources, which exceed the capacity of current computers. In order to apply NS 

equations to solve practical engineering problems on wind turbine blades, some kind of turbulence 

modelling is required. Currently, turbulence models are mainly derived based on RANS (Reynolds 

Averaged NS equations), which give approximate time-averaged solutions to NS equations. 

Various RANS-based turbulence models have been used for wind turbine applications, such as the 

k  SST model [79], k  model [80] and Spalart-Allmaras model [81]. Among these models, 

the k  SST model is found to be most successful for both 2D airfoil and 3D blade CFD 

modelling [82-84].  

 

A number of studies have been performed on the CFD modelling of stall-regulated wind turbines, 

showing that all RANS-based turbulence models fail to accurately model the stalled flow at a high 

angle of attack [18]. Possible solutions to this problem are to use more complicated turbulence 

modelling approaches, such as 1) LES (large eddy simulations) [85], which retains large eddies 

and ignores small eddies in solving NS equations; and 2) DES (detached eddy simulations) [86], 

which is a hybrid method combining RANS and LES. However, both LES and DES are much 

more computationally costly than RANS, as they require considerably finer computational meshes 

and the computations have to be carried out with time-dependent (unsteady) analysis. 
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Due to its high fidelity, CFD has been extensively used for wind turbine wake modelling. 

Bechmann et al. [87] investigated the wake behind MEXICO wind turbine using CFD with RANS 

turbulence model, showing good agreement with experimental data. AbdelSalam and Ramalingam 

[88] studied the wake characteristics in the near and far wake regions of wind turbine blades using 

CFD and compared the results against both experimental data and actuator disc model. The results 

from the CFD model showed better agreement with the experimental data than the actuator disc 

model. A review of CFD for wind turbine wake aerodynamics was presented in Ref. [89], in 

which different CFD techniques for modelling the rotor and the wake were discussed. The general 

review of wind turbine wake aerodynamics can be found in Refs. [75, 90], and the general review 

of wind turbine aerodynamics can be obtained from Refs. [91, 92]. 

 

Studies have been carried out to combine CFD with simpler aerodynamic models to develop 

hybrid models. Esfahanian et al. [93] developed a hybrid CFD/BEM model to predict the 

aerodynamic performance of wind turbine blades. In the hybrid model, CFD was used to calculate 

2D aerodynamic coefficients of a series of spanwise sections of the blades, and BEM was used to 

simulate the 3D flow field through the wind turbine blade. The hybrid model was demonstrated to 

be much faster than merely CFD while able to retain desirable accuracy. Suzuki et al. [94] 

developed a hybrid CFD/vortex model to simulate wind turbine aerodynamics at yaw angles by 

coupling an unsteady CFD model and a prescribed wake model. The results were compared to 

both experimental data and a free wake model, showing that hybrid CFD/vortex model provided 

better predictions than the free wake model for low yaw angles. Sturge et al. [95] presented a 

hybrid technique combining actuator disc and full rotor CFD for wake modelling of wind turbine, 

showing more rapid and accurate calculations than using either method on its own. 

 

CFD has been applied to the aeroelastic modelling of both wind turbine blades [96-98] and the full 

turbine [99-101], showing promising results and providing a better understanding of the flow field 

around the deformed blades and the turbine. Fig. 12 from Ref. [97] presents an example of air 

speed distribution around the deformed blade obtained from the CFD-based aeroelastic modelling. 

Currently, CFD is still computationally too expensive, which is the main obstacle of its industrial 

applications in aeroelastic modelling.  

 

3. Structural model 

 

In order to perform aeroelastic modelling of wind turbine blades, a structural model needs to be 

included to determine the structural dynamic response of the blade. Structural models used in 

aeroelastic modelling of wind turbine blades can be roughly categorized into two groups, i.e. 3D 

FEM model and 1D equivalent beam model.  In the 3D FEM model, wind turbine composite 

blades are generally discretised using 3D composite shell elements, which are capable of 
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describing composite layer characteristics throughout the shell thickness. For the 1D equivalent 

beam model, in order to discretise the blade into a series of 1D beam elements, three types of 

discretisation methods are often used in the aeroelastic modelling of wind turbine blades, i.e. 

modal approach, MBD (multi-body dynamics) and 1D FEM.  

 

3.1. 3D FEM (finite-element method) model and 1D beam model 

 

Wind turbine blade structures can be modelled using either a 3D FEM model with shell elements 

or a 1D beam model with beam elements. 

  

3.1.1. 3D FEM model 

 

In the 3D FEM model, wind turbine composite blades are generally constructed using 3D 

composite shell elements, which are capable of describing composite layer characteristics 

throughout the shell thickness. An example of a 3D FEM model of wind turbine composite blades 

is illustrated in Fig. 13. 

 

Due to the complicated aerodynamic shape and structural layout of a wind turbine composite 

blade, generating a 3D FEM model of the blade using general-purpose commercial finite-element 

packages, such as ANSYS [102] and Abaqus [103], is tedious and time-consuming. In order to 

facilitate the generation of 3D FEM models of wind turbine blades, Berg and Resor developed a 

specialised tool called NuMAD v2.0 (Numerical Manufacturing And Design version 2.0) [104], 

which is a stand-alone pre-processor for ANSYS. NuMAD v2.0 provides a user-friendly GUI 

(graphic user interface), as depicted in Fig. 14,  for defining the blade geometry information (such 

as chord and twist angle distributions) and the blade structural layout information (such as shear 

web locations and composites layup). The output from NuMAD v2.0 is a series of APDL 

(ANSYS Parametric Design Language) commands used to generate the 3D FEM model of the 

blade in ANSYS. In addition to the creation of the finite element model, NuMAD v2.0 includes 

some advanced capabilities, such as tabularised input format and output for CFD mesh creation. 

 

3D FEM is an incredible tool for examining the detailed stress distributions within a blade, and it 

has been applied to aeroelastic modelling of wind turbine blades by coupling it with an 

aerodynamic model. 3D FEM is generally coupled with CFD to perform aeroelastic modelling of 

wind turbine blades [96-98].  The aeroelastic modelling based on coupled 3D FEM and CFD is 

able to provide accurate results, but it is computationally expensive. A way to save computational 

cost is to couple the 3D FEM with an efficient aerodynamic model, e.g. BEM model. Verelst [105] 

studied the aeroelasticity of wind turbine blades based on an FEM-BEM coupled approach, in 

which the finite element program Abaqus is coupled with the a BEM code WT_Perf [106]. This 
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approach is an attempt to develop an efficient aeroelastic model, but it is still not efficient enough 

and has not been widely used in industrial applications in the aeroelastic modelling of wind 

turbine blades. 

 

3.1.2. 1D beam model 

 

Wind turbine blades are slender structures having one of their dimensions significantly larger than 

the other two. Such structures can be efficiently modelled using beam models. The beam axis is 

defined along the largest dimension, and a cross section perpendicular to this axis is considered to 

be varying along the span of the beam.  An example of a beam model of wind turbine blades is 

presented in Fig. 15. 

 

A number of beam models exist and they can be roughly categorised into two groups, i.e. linear 

and nonlinear. 

 

Two widely used linear beam models are the Euler-Bernoulli beam model [107] and the 

Timoshenko beam model [108]. The Euler-Bernoulli beam model, also known as the classical 

beam model, deals with slender beams subjected to extensional, torsional and bending loads. The 

shear deformation effects are ignored in the model. The Timoshenko beam model was developed 

by Timoshenko in the early 20
th

 century. This model takes account of shear deformation effects, 

making it more suitable for describing the behaviour of thick and short beams than the Euler-

Bernoulli beam model. Regarding wind turbine blades, which generally have a thin and slender 

structure, the Timoshenko beam model shows little difference from the Euler-Bernoulli beam 

model. Due to its easy implementation, the Euler-Bernoulli beam model has been used by most 

structural models in the aeroelastic modelling of wind turbine blades. 

 

Both the Euler-Bernoulli and Timoshenko beam models contain the assumption of small 

deflections. This assumption is invalid for very flexible blade design because such blades often 

experience large deflections. Handling large deflections requires a nonlinear beam model, taking 

account of the geometric nonlinearities caused by large deflections. A well-known example is the 

GEBT (geometrically exact beam theory) [109], in which the deformed beam geometry (i.e. the 

displacements and rotations of the beam reference line) is represented exactly.  

 

Compared to the 3D FEM, the 1D beam model is much faster, saves much computation time and 

is capable of providing accurate results if constructed properly. Therefore, almost all aeroelastic 

models represent the blades as a series of 1D beam elements instead of 3D shell elements. Authors 

[110] developed a nonlinear aeroelastic model called NAM_WTB (Nonlinear Aeroelastic Model 

for Wind Turbine Blades) based on the nonlinear beam model GEBT. NAM_WTB takes account 
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of large blade deflections and geometric nonlinearities, and thus greatly improves the accuracy of 

the aeroelastic analysis of wind turbine blades. The results from NAM_WTB show good 

agreement with experimental data, and its nonlinear capability has been demonstrated through 

case studies. 

 

3.2. Discretisation methods of the 1D beam model 

 

In order to discretise the blade into a series of 1D beam elements, three types of discretisation 

methods are often used in the aeroelastic modelling of wind turbine blades, i.e. modal approach, 

MBD and 1D FEM.  

 

3.2.1. Modal approach 

 

In the modal approach, the deflection shape of the flexible bodies, such as the blade and tower, is 

described as a linear combination of a set of mode shapes, which are usually obtained from a finite 

element pre-processor. Fig. 16 (reproduced from Ref. [111]) presents an example of first and 

second mode shapes of a wind turbine blade.  

 

Using mode shapes is an effective way to reduce the number of DOFs (degrees of freedom) and 

therefore reduce the size of matrices and speed up the computations per time step. Therefore, the 

modal approach is computationally efficient, resulting in a rapid simulation. For this reason, the 

majority of the present commercial wind turbine blade aeroelastic models use the modal approach 

to calculate the structural dynamics of the blades. 

 

However, the flexibility of the modal approach is restricted somewhat by its restraints on the type 

and number of DOFs allowed in the structure. For instance, FLEX5 [112], which is a 

commercially widely used aeroelastic analysis model based on the modal approach, uses only the 

initial three or four (two flapwise and one or two edgewise) eigenmodes for the blade. The 

torsional eigenmodes, which are important for flutter analysis, are generally not available in 

modal-approach-based aeroelastic models.  

 

Another major limitation of the modal approach is that it is inherently limited to linear analysis 

due to its linear assumption, i.e. the deflection shape of the flexible components must be a linear 

combination of the provided mode shapes. This means that the modal approach is not capable of 

handling the large deflections of the flexible blade.  

 

Additionally, the accuracy of the modal approach greatly depends on the prescribed mode shapes. 

In order to obtain the mode shapes of the blade, a finite-element-based pre-processor is required. 
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3.2.2. MBD (multi-body dynamics) method 

 

In the MBD method, the structure is discretised into a number of bodies, which can be either 

flexible or rigid. These bodies are interconnected by force elements (such as springs) or kinematic 

constraints (such as joints) [113, 114]. The dynamics of the structure can then be evaluated using 

equations of motion, which are usually derived from Lagrange’s equations or Newton-Euler 

equations.  

 

The MBD method benefits from high modelling flexibility due to its capability to generate and 

couple together an arbitrary number of separate bodies in a single dynamic system. Fig. 17 

(reproduced from Ref. [115]) presents an example of wind turbine configuration based on MBD. 

From Fig. 17 we can see that the three blades (flexible bodies) are attached to the hub (rigid body) 

using joints called ‘pitch hinges’, which allow the relative pitching motion of the blade with 

respect to the hub. Compared to the modal approach, the MBD method requires more 

computational resources, but it enables an increased number of DOFs to be modelled. 

 

3.2.3. 1D FEM method 

 

The 1D FEM approach finds approximate solutions of 1D beam problems by the analysis of an 

assemblage of finite elements, which are interconnected by nodes, as illustrated in Fig. 18. The 1D 

FEM allows a more comprehensive and accurate deformation description of wind turbine blades, 

and it only requires slightly more computational resources than the other two discretisation 

approaches. Therefore, the 1D FEM has been adopted by most of recently developed aeroelastic 

models of wind turbine blades [18]. 

 

4. Cross-sectional analysis model 

 

Wind turbine blades generally are made of composite materials due to their high strength-to-

weight ratio and good fatigue performance. To construct a 1D beam model of wind turbine blades 

for aeroelastic modelling, the cross-sectional properties of the blade, such as mass per unit length 

and cross-sectional stiffness, are essential pieces of information. Fig. 19 (reproduced from Ref. 

[116]) depicts the structural layout of a typical blade cross-section, comprising three cells with 

two shear webs.  As can be seen from Fig. 19, each cell includes several laminates, each of which 

is made up of several plies, and each ply is a composite mat placed at different angles, resulting in 

a complicated structural topology. Due to the intrinsic nature of composite materials and the 

complexity of blade structural topologies, it is quite challenging to obtain the cross-sectional 

properties of a wind turbine blade. 

 



15 

 

In order to obtain the cross-sectional properties of wind turbine blades, various cross-sectional 

analysis models have been developed, which can be categorised into three groups, i.e. 3D FEM-

based model, 2D FEM-based model and CLT (classical lamination theory)-based model.  

 

4.1. 3D FEM based model 

 

The most complex method to calculate the cross-sectional properties of wind turbine blades is 

based upon 3D FEM. 3D FEM, despite its capability for accurate displacement and stress analysis, 

cannot directly yield the cross-sectional properties of wind turbine blades. It relies upon 

computationally complex post-processing of force-displacement data. One such post-processing 

tool is BPE (Blade Properties Extractor) [117], which has been developed by Sandia National 

Laboratories and Global Energy Concepts. As illustrated in Fig. 20 (reproduced from Ref. [118]), 

BPE applies unit loads at the blade tip and then transfers the displacement results of the 3D FEM 

model of the blade to several MATLAB routines, which calculate the stiffness matrices for the 

equivalent beam elements. In principle, BPE should be capable of providing the most accurate 

cross-sectional properties because all 3D information can be captured by the 3D FEM model. 

However, it seems the BPE method faces several challenges. Firstly, loads must be applied 

carefully to minimise the boundary layer effects. In addition, the cross-sectional properties 

calculated by BPE are sensitive to the length of the blade segment that has been chosen to perform 

the finite-element analysis. Decreasing the length of the blade segment may even result in a 

singular stiffness matrix under some extreme situations, such as a blade having highly twisted or 

considerably distorted cross sections [118].  

 

4.2. 2D FEM based model 

 

Several other cross-sectional analysis tools based on 2D FEM have also been developed. Cesnik 

and Hodges [119] developed VABS (Variational Asymptotic Beam Sectional analysis) based on a 

variational asymptotic method, in which the 3D structural model is replaced with a 2D model in 

terms of an asymptotic series of several small parameters of the structure. VABS needs a 2D 

finite-element discretisation of the cross section to yield its input files, which are the 2D mesh of 

the cross section and the corresponding materials. For a realistic wind turbine blade made of layers 

of composites, generating VABS input files is very tedious and requires a separate pre-processor 

called PreVABS [120]. Blasques [121] developed a cross-sectional analysis tool named BECAS 

(BEam Cross section Analysis Software) based on anisotropic beam theory, which was originally 

presented by Giavotto et al. [122] for calculating the stiffness and stresses of a beam section made 

of anisotropic and non-homogeneous materials. Similar to VABS, BECAS also needs a 2D finite-

element discretisation of the cross section. A separate pre-processor called Aifoil2BECAS [123], 

which is a Python code, is employed to generate the input files for BECAS. Fig. 21 from Ref. [123] 
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depicts an example of 2D mesh generated by Airfoil2BECAS. Currently, the cross section in 

Airfoil2BECAS is restricted to eight distinct regions, to which thickness and layup information 

can be assigned.  

 

Compared to the 3D FEM-based cross-sectional analysis models, the 2D FEM-based cross-

sectional analysis models require fewer computational resources, but they are still not efficient 

enough because they require a separate pre-processer to generate their input files. 

 

4.3. CLT (classical lamination theory) based model 

 

In comparison to the finite-element techniques, CLT [124], which is an extension of the classical 

plate theory [125] to laminated plates, is efficient and reasonably accurate. CLT can be utilised to 

combine properties and the angle of each ply in a pre-defined stacking sequence to determine the 

overall effective performance for a laminated structure. Based on some reasonable assumptions 

(such as linear strain and plane stress), CLT transfers a complex 3D elasticity problem into a 

solvable 2D problem [126].  

 

CLT has been extensively utilised for analysing the structural performance of composite materials 

[127, 128]. In terms of wind turbine composite blades, Bir [129, 130] developed a Fortran code 

called PreComp (Pre-processor for computing Composite blade properties) at NREL (National 

Renewable Energy Laboratory) based on CLT. PreComp does not require a separate pre-processor 

to create the input files, which are the geometric shape and interior structural layout of the blades, 

and allows a general layup of composite laminates and an arbitrary number of shear webs. 

However, PreComp ignores the effects of shear webs in calculating torsional stiffness. In other 

words, if the number of shear webs on a cross section is altered, no change in the calculation 

results of torsional stiffness will be observed using PreComp. This is invalid for a realistic blade 

cross section, where the torsional stiffness will be increased as the number of shear webs grows. 

Authors [131] developed a Matlab code called CBCSA (Composite Blade Cross Section Analysis) 

by incorporating CLT with the EBSFT (extended Bredt-Batho shear flow theory). In CBCSA, all 

cross-sectional laminates are discretised into many area segments, each of which encloses several 

angled plies. The effective engineering constants of each angled ply are calculated using CLT. The 

area moments of inertia of each area segment are first calculated with respect to their local axes 

and centroid, and then transformed to the elastic axes and centre of the cross section. The torsional 

stiffness is calculated using EBSFT while the other cross-sectional properties are obtained by 

means of adding the contributions of all the area segments. The flowchart of CBCSA is presented 

in Fig. 22 from Ref. [131]. CBCSA can rapidly calculate the cross-sectional properties of the 

composite blades, and its results have been validated against experimental data. CBCSA provides 
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a more accurate torsional stiffness calculation than PreComp due to the consideration of the shear 

web effects by using EBSFT.  

 

Compared to both the 3D FEM-based and 2D FEM-based cross-sectional analysis models, the 

CLT based cross-sectional analysis models are more efficient. The drawback of CLT-based 

models is that they ignore the shear deformation in calculating cross-sectional properties, making 

them unsuitable for modelling short and thick blades. 

 

5. Current implementations 

 

Investigating the aeroelasticity of wind turbine blades needs a wind-turbine-specific aeroelastic 

model. One of the earliest wind turbine aeroelastic models, STALLVIB [132], was developed 

within the European Non-Nuclear Energy project JOULE III. This model was developed for 

predicting dynamic loads and investigating the edgewise instability problems. 

 

After the first attempts, a considerable number of aeroelastic models have since been developed. 

The models being widely used within wind turbine research organisations and industrial practices 

are listed below with short descriptions.  

 ADAMS/WT (Automatic Dynamic Analysis of Mechanical Systems – Wind Turbine) 

o ADAMS/WT is a wind-turbine-specific add-on for ADAMS, which is a widely 

used commercial multi-body dynamics software package. ADAMS/WT has been 

developed by MDI (Mechanical Dynamics Inc.) with the help of NREL (National 

Renewable Energy Laboratory) [133]. 

 

 FAST (Fatigue, Aerodynamics, Structures, and Turbulence) 

o FAST has been developed by the NREL to model both two- and three-bladed 

horizontal-axis wind turbines. In 2005, GL (Germanischer Lloyd), one of the 

leading certification organisations in the wind energy area, issued FAST with a 

certification on its load calculation of onshore wind turbines [134]. 

 

 FLEX5 

o FLEX5 has been developed by the Fluid Mechanics Department at the DTU 

(Technical University of Denmark). This code is capable of simulating wind 

turbines with different configurations, e.g. turbines with one to three blades [112].  
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 GAST (General Aerodynamic and Structural Prediction Tool for Wind Turbines) 

o GAST has been developed by the National Technical University of Athens. The 

code contains an additional module to generate turbulent wind fields and a post-

processing module to perform fatigue analysis [135].  

 

 GH-Bladed 

o GH-Bladed is an integrated commercial software package developed by GH 

(Garrad Hassan) Ltd. GH-Bladed has a friendly windows-based GUI (graphical 

user interface), and has been validated against experimental data for a number of 

wind turbines with different sizes and configurations [136]. 

 

 HAWC2 (Horizontal Axis Wind Turbine Code 2
nd

 generation) 

o HAWC2 has been developed by the DTU. The code analyses the aeroelastic 

behaviour of horizontal axis wind turbines in a time domain [137]. 

 

 PHATAS (Program for Horizontal Axis Wind Turbine Analysis Simulation) 

o PHATAS has been developed by ECN (Energy research Centre of the 

Netherlands) for predicting the dynamic behaviour and the corresponding loads 

on horizontal axis wind turbines. PHATAS includes additional programs used to 

generate load-case files following international standard IEC or GL [138]. 

 

The features of the above seven aeroelastic models are summarised in Table 1. From Table 1 we 

can see that six of the seven aeroelastic models use BEM (blade element momentum) theory as the 

aerodynamic part. For the structural part, all of these models represent wind turbine blades as a 

series of 1D beam elements, and require blade cross-sectional properties as input. All the three 

discretisation methods, i.e. modal approach, MBD (multi-body dynamics) and 1D FEM (finite-

element method), which are addressed in Section 3.2, find applications in these aeroelastic models.  

 

Additionally, most of these aeroelastic models are linear models based on assumption of small 

blade deflections, and do not take account of large deflection effects on modelling responses and 

loads. However, with the increasing size and flexibility of large wind turbine blades, this 

assumption is not valid anymore because the blades often experience large deflections, which 

introduce significant geometric nonlinearities. Therefore, developing nonlinear aeroelastic models 

to take account of geometric nonlinearities is necessary for future development of large wind 

turbine blades. 
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6. Discussion 

 

The key components for aeroelastic modelling of wind turbine blades are aerodynamic, structural 

and cross-sectional analysis models. A discussion of these models is presented below. 

 

6.1. Aerodynamic model 

 

For the aerodynamic part of aeroelastic modelling of wind turbine blades, four types of 

aerodynamic models are generally employed, i.e. BEM (blade element momentum) model, vortex 

model, actuator type model and CFD (computational fluid dynamics) model. Compared to other 

aerodynamic models, the BEM model is the fastest and capable of providing accurate results when 

reliable airfoil aerodynamic data are available. For this reason, the BEM model has been 

employed as the aerodynamic part of most wind turbine aeroelastic models. In order to better 

understand wake dynamics, the vortex model has been applied to wind turbine blades. Compared 

to the BEM model, the vortex model requires more computational resources, and viscous effects 

are ignored in the vortex model, which limits its application to wind turbines to some extent. The 

actuator type model should be credited because it provides a better insight into the flow 

development and contributes to a better understanding of the wake dynamics. However the 

actuator type model demands more computational resources than the BEM model, and it does not 

predict aerodynamic loads more accurately than the BEM model because it still relies on tabulated 

airfoil aerodynamic data for the calculation of aerodynamic loads on the blades. The CFD model 

solves the governing equations of fluid flow at thousands of positions on and around the blade in 

an iterative process, and does not need the predetermined airfoil aerodynamic data for the 

calculation of aerodynamic loads on the blades. It is capable of modelling complex 3D flow fields 

accurately and simulating fluid dynamics reliably. Currently, CFD is computationally too 

expensive, which is the main obstacle for its industrial application in aeroelastic modelling. Table 

2 presents a comparison of the four types of aerodynamic models in terms of accuracy, 

computational speed, whether requiring airfoil aerodynamic data and whether including viscous 

effects. 

 

6.2. Structural model 

 

For the structural part of aeroelastic modelling of wind turbine blades, the blade structure can be 

modelled using either a 3D FEM model with shell elements or a 1D beam model with beam 

elements. The 3D FEM is an incredible tool for examining the detailed stress distribution within a 

blade. However, the 3D FEM is computationally expensive and this undesirable feature limits its 

application in aeroelastic modelling to some extent. Compared to the 3D FEM model, the 1D 

beam model is much faster and is capable of providing accurate results if constructed properly. 



20 

 

Therefore almost all the aeroelastic codes model the structure of a wind turbine blade as a series of 

1D beam elements instead of 3D shell elements.  

 

In order to discretise the blade into a series of 1D beam elements, three discretisation methods are 

often used in aeroelastic modelling of wind turbine blades, i.e. modal approach, MBD (multi-body 

dynamics) and 1D FEM (finite-element method). Modal approach is computationally efficient and 

is capable of providing reasonable results in cases of small deflections. However, the flexibility of 

modal approach is limited somewhat by its constraints on the type and number of DOFs (degree of 

freedoms) allowed in the structure. Additionally, the accuracy of the modal approach greatly relies 

on the prescribed mode shapes, which are generally obtained by a finite-element-based pre-

processor. The MBD method, which discretises the structure into a number of bodies, benefits 

from high modelling flexibility due to its capability to generate and couple together an arbitrary 

number of separate bodies in a single dynamic system. Compared to the modal approach, the 

MBD method requires more computational resources, but it enables an increased number of DOFs 

to be modelled. Compared to above two discretisation methods, 1D FEM allows a more 

comprehensive and accurate deformation description of wind turbine blades, and requires only 

slightly more computational resources than other two discretisation methods. Additionally, it 

enables a large number of DOFs to be modelled. Table 3 presents a comparison of the three types 

of discretisation methods in terms of accuracy, computational speed, number of DOFs and 

whether requiring prescribed modal shapes. 

 

6.3. Cross-sectional analysis model 

 

To construct the 1D beam model of a wind turbine blade for aeroelastic modelling, the cross-

sectional properties of the blade, such as mass per unit length and sectional stiffness, are essential 

information. Due to the intrinsic nature of composite materials and the complexity of blade 

structural topologies, obtaining the cross-sectional properties of a wind turbine blade is quite 

challenging. 

 

In order to obtain the cross-sectional properties of a wind turbine blade, various cross-sectional 

analysis models have been developed, which can be categorised into three groups, i.e. 3D FEM-

based model, 2D FEM-based model and CLT-based model. 3D FEM-based models are 

computationally expensive because they rely on computationally complicated post-processing of 

force-displacement data. Compared to the 3D FEM-based models, 2D FEM-based models requires 

fewer computational resources, but they are not efficient enough since they require a separate pre-

processor to generate the input files. CLT-based models are most efficient, however shear 

deformations of cross sections are ignored in the processing the cross-sectional properties, which 

makes them unsuitable for modelling short and thick blades. Further theoretical and experimental 
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works are required to validate these cross-sectional analysis models. Table 4 presents a 

comparison of the three types of cross-sectional analysis models in terms of accuracy, 

computational speed, whether requiring post-processing of force displacement data and whether 

requiring a preprocessor. 

 

7. Conclusions 

 

Ever increasing size and flexibility of large wind turbine blades have been introducing severer 

aeroelastic effects, which are caused by the interaction of aerodynamic loads, elastic deflections 

and inertial dynamics. The aeroelastic effects may cause aeroelastic instability problems, such as 

edgewise instability and flutter, which can be devastating both to the blades and wind turbine 

when the wind turbine is getting larger and larger. It is therefore crucial to investigate the 

aeroelasticity characterisation of wind turbine blades for next generation of large wind turbine 

development.  

 

This paper presents a comprehensive review on the aeroelastic modelling of wind turbine blades, 

covering aerodynamic models, structural models and cross-sectional analysis. The advantages and 

disadvantages of each model are critically analysed, and the state-of-the-art implementations are 

presented. 

 

The BEM (blade element momentum) and 1D beam models have been used in most aeroelastic 

models due to their high efficiency and reasonable accuracy in computation. However, these 

models are incapable of providing detailed aerodynamic information (such as visualisation of flow 

field around the blade) and detailed structural information (such as stress distributions within each 

layer of composite blades). Although CFD (computational fluid dynamics) and 3D FEM (finite 

element method) models are computationally much expensive than those simple models, coupling 

CFD and 3D FEM is one of the future trends for aeroelastic modelling in order to obtain more 

precise results for complex cases and to gain detailed information for blade designers to further 

optimise the blade. 

 

Combining CFD with simpler aerodynamic models to develop hybrid aerodynamic models (such 

as hybrid CFD/BEM model and hybrid CFD/vortex model) provides the possibility to well utilise 

the advantages of both CFD and the simpler model, retaining desirable accuracy and saving 

computational time. More studies are to be carried out in developing hybrid aerodynamic models 

and applying these models to aeroelastic modelling. 

 

Additionally, the majority of existing aeroelastic models are linear models based on assumption of 

small blade deflections. However, with the increasing size and flexibility of large wind turbine 
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blades, this assumption is not valid anymore because the blades often experience large deflections, 

which introduce significant geometric nonlinearities. Therefore, developing nonlinear aeroelastic 

models to take account of geometric nonlinearities would also be the future trend of aeroelastic 

modelling of wind turbine blades. 
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 Figure 1. Components of the aeroelastic modelling of wind turbine blades 
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Figure 2. Schematic diagram of the blade element theory; reproduced from Ref. [6] 
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Figure 3. Schematic diagram of the blade momentum theory; reproduced from Ref. [6] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



31 

 

 

Figure 4. Comparison of thrust coefficient correction models; reproduced from Ref. 

[17] 
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Figure 5. Predicted and measured dynamic response on the rotor shaft torque of the 

Tjaereborg 2MW wind turbine for a sudden change in the pitch angle; reproduced 

from Ref. [18] 
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Figure 6. Dynamic stall event measured at the 30% span position of the CER; 

reproduced from Ref. [27] 
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Figure 7. Wake modelling of a two-bladed wind turbine rotor using the vortex model; 

reproduced from Ref. [50] 
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Figure 8. Typical layout of the free-wake modelling of a blade; reproduced from Ref. 

[53] 
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Figure 9. Wake modelling of a three-bladed wind turbine rotor based on the actuator 

line model; reproduced from Ref. [60] 
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Figure 10. Visualised flow field around the blade using CFD [67] 
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a. Structured mesh      b. Unstructured mesh      c. Hybrid mesh 

Figure 11. The types of CFD meshes 
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Figure 12. Air speed distribution around the deformed blade [85] 
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Figure 13. 3D FEM model of a wind turbine composite blade 

 

 

 

 

 

 

 

 

 

 

 

 



41 

 

 

Figure 14. GUI of NuMAD v2.0 
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Figure 15. Examples of a beam model of wind turbine blades 
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Figure 16. First and second mode shape of a wind turbine blade; reproduced from Ref. 

[99] 
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Figure 17. An example of wind turbine configuration based on MBD; reproduced 

from Ref. [102] 
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Figure 18. Elements and nodes in 1D FEM 
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Figure 19. Structural layout of a typical blade cross-section; reproduced from Ref. 

[103] 
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Figure 20. Three-dimensional blade model and equivalent beam element in BPE; 

reproduced from Ref. [105] 
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Figure 21. An example of 2D mesh generated by airfoil2BECAS [110] 
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Figure 22. Flowchart of CBCSA [118] 
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Table 1. Overview of wind turbine aeroelastic models 

Name Structural part Aerodynamic part Requires blade 

cross-sectional 

properties as 

input? 

Blade 

representation 

Discretisation 

method 

ADAMS/WT 1D beam MBD BEM Yes 

FAST 1D beam Modal approach BEM Yes 

FLEX5 1D beam Modal approach BEM Yes 

GAST 1D beam 1D FEM Free-wake vortex Yes 

GH-Bladed 1D beam Modal approach BEM Yes 

HAWC2 1D beam MBD BEM Yes 

PHATAS 1D beam 1D FEM  BEM Yes 
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Table 2. Comparison of aerodynamic models 

 BEM 

model 

Vortex 

model 

Actuator type 

model 

CFD 

model 

Accuracy *** *** *** **** 

Computational speed **** *** ** * 

Airfoil aerodynamic data required? Yes Yes Yes No 

Viscous effects included? Yes No Yes Yes 
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Table 3. Comparison of discretisation methods 

 Modal approach MBD 1D FEM 

Accuracy * ** *** 

Computational speed *** ** * 

Number of DOFs * ** *** 

Prescribed modal shapes required? Yes No No 
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Table 4. Comparison of cross-sectional analysis models 

 3D FEM-based 

model 

2D FEM-based 

model 

CLT-based 

model 

Accuracy *** ** * 

Computational speed * ** *** 

Post-processing of force-displacement data 

required? 

Yes No No 

Preprocessor (used to generate input files) 

required? 

No Yes No 

 

 


