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State-of-the-art MEMS and microsystem tools for brain

research
John P. Seymour1, Fan Wu2, Kensall D. Wise1,3 and Euisik Yoon1,3

Mapping brain activity has received growing worldwide interest because it is expected to improve disease treatment and allow

for the development of important neuromorphic computational methods. MEMS and microsystems are expected to continue to

offer new and exciting solutions to meet the need for high-density, high-fidelity neural interfaces. Herein, the state-of-the-art in

recording and stimulation tools for brain research is reviewed, and some of the most significant technology trends shaping the field

of neurotechnology are discussed.
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INTRODUCTION

‘Neuroscience today is like chemistry before the periodic table:
People knew about elements and compounds but lacked a
systematic theory to classify their knowledge.’ –Paul Allen and
Francis Collins, Wall Street Journal, 2013 (Ref. 1).
The lack of a systematic theory of neural activity is complicated

by the scale of the human brain, with an estimated 85 billion
neurons, 100 trillion synapses, and 100 chemical neurotrans-
mitters2. Understanding what makes any one neuron fire, or not
fire, is a central question in neuroscience, and thus, the ideal
sensing tool must span from the single neuron to its complex
network of connections if we are to understand how a particular
‘cell type’ assimilates information3,4. In doing so, neuroscientists
will identify new circuit ‘elements’ or neuronal cell types that may
someday provide the world with a general theory of brain
activity5,6, similar to how the periodic table arose from the study of
repeating physical properties. Microelectromechanical systems
(MEMS) and microsystems have enabled the study of neurons
from the single unit to the scale of large populations, and all
indications are that these technologies will continue to be an
important tool-making platform for the neuroscience community.
Since the 1950s, recording capacity has been steadily increasing

through the use of improved microelectrode technology, but this
technology alone has not yielded the fundamental breakthroughs
required to thoroughly understand the cellular components of a
neuronal circuit. Beginning in 2005, seminal studies on opto-
genetics introduced methods for exciting and inhibiting neurons
in ways specific to genetic and chemical markers of a particular
cell type7,8. Optical control of genetically engineered ion channels
is a powerful tool for parsing circuit elements and cell types
in the dense heterogeneous populations surrounding a micro-
electrode recording site4,9. Biotechnologists are rapidly dis-
covering new opsins (light-activated ion channels)10–12, and
neurotechnologists are racing to scale light-delivery instruments,

while simultaneously scaling electrical recording capabilities in the
illuminated regions of tissue. Like optogenetics, other novel
means of neuron control are beginning to be used, especially in
the form of small molecules either ‘caged’ and released with local
light stimulation13 or with receptor-specific ligands that can be
controlled temporally and locally with other drugs (commonly
called DREADDs for designer receptors exclusively activated by
designer drugs)14,15. The contribution that microscale devices can
make to these latest biology tools is still unproven but certainly
intriguing given the many delivery, sensing, and actuation
modalities that can be applied.
The potential to generate breakthroughs in mapping brain

activity has prompted many governmental and non-governmental
agencies to invest in new tools. The Human Connectome Project,
an early mapping initiative, began in the United States in 2010
and emphasized macroscale anatomical connections. Europe’s
Human Brain Project is a 10-year program that began in 2013 and
increased the focus on supporting neurotechnology development
for functional mapping in animals and humans. President Obama’s
‘brain research through Advancing Innovative Neurotechnologies’
(BRAIN) Initiative began funding research in 2014, with funding
also tailored toward technology development for functional
mapping and microscale neural circuit reconstruction. Japan
announced their own program, Brain/MINDS, in October 2014,
which is specializing in mapping activity in a marmoset animal
model. An important aspect of brain mapping technology is that it
should also be compatible with awake behavioral studies, which
will require considerable advances in miniaturization and packa-
ging. This surge in investment worldwide will have long-term
benefits for all societies by improving the understanding of
neurological diseases, which are the cause of 6.8 million deaths
annually16. Beyond the obvious health benefits, insight into how
animals and humans self-learn and perform pattern recognition
will inform the burgeoning field of neuromorphic computing17,18.
Neuromorphic computing is a biomimetic architectural approach
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that is replacing the von Neumann architecture with highly
parallel, analog processing to achieve brain-like energy efficiency
and adaptability. Systems neuroscience knowledge gleaned from
neurotechnology will disrupt the microprocessor industry, while
creating powerful new research tools and consumer products.
This paper will review recent developments in MEMS and

microsystems for large-scale sensing and perturbation of brain
activity with a focus on electrical recording and optical stimulation
modalities. Electrical recording methods provide the greatest
temporal resolution and frequency range and complement
genetically targeted optical stimulation. New modalities also have
the potential to contribute and perhaps displace electrical
approaches in some applications. Two nascent implantable
technologies include optical recording devices and optical
stimulation, both used in conjunction with genetic modification
to enable either an optical to ionic transduction or an ionic to
optical transduction. Finally, despite modest improvements in
microsystem density and integration in the last decade, we
present encouraging trends in high-density circuit architecture
and packaging.

RECORDING BRAIN ACTIVITY

Brief history

The intracellular electrode was fundamental to understanding the
action potential and remains the gold standard for understanding
single-cell neurophysiology19–21, but it is difficult to scale and
is damaging to the cell. The extracellular electrode, which can
electrically record the signature of several neuronal action
potentials, proved to be another major breakthrough because
an array can sense a large number of single-neuron action
potentials with limited disruption to the local circuit. The
extracellular microelectrode (Figure 1) penetrates the brain and
has a recording range of 65 (Ref. 22) to 150 μm (Ref. 23).
Importantly, this electrode can capture ‘single-unit activity’ or
‘spikes’ in the context of population dynamics and thus was the
first technology capable of circuit mapping24. Microwires were the
first such devices and have been an effective research tool for
studying the brain for nearly 60 years (Refs. 25,26). Microwires
evolved into stereotrodes and tetrodes22,27 with a variety of
insulating and conductor materials depending on the recording or
stimulation requirements. Electrode measurements approximate
the superposition of voltages from a series of monopolar current
sources in the local tissue, derived from Ohm’s law,

V ¼
X

n

i¼1

Ii

4πσri
ð1Þ

where Ii is the current of one point source, σ is the conductivity of
the extracellular space, and ri is the distance from the source to
the electrode (a dipole assumption results in a more complex
isopotential and an amplitude proportional to 1/r2, but arguably
the ratio is neither a monopole or dipole28–31). Given the close
spacing of tetrodes, multiple spike signals can be used to
triangulate and localize a specific cell in space32.
The pioneering work of Wise at Stanford University33,34 and at

the University of Michigan35,36 in developing microfabricated
silicon electrode arrays was a major advancement. The geome-
trical precision of lithographic techniques has allowed neuro-
scientists to imagine unique electrode designs having
unprecedented site density. In 1982, engineers first used selective
boron doping of microelectrode silicon probes to create wet etch-
stops in a technique that produced smooth needle-like structures
ideal for minimizing tissue damage37. This technique spread
throughout the MEMS community and formed the basis for many
other novel electromechanical structures. The planar lithography
approach has evolved over the years to include integrated
interconnects38, active electronics35,39,40, cochlear implants41,42,

polytrodes31, and three-dimensional arrays29,43–45. An important
simplification for defining and releasing fine neural probe
structures has been the use of silicon-on-insulator (SOI) wafers
and deep reactive ion etching (DRIE)46,47 that many groups have
adopted.
Another MEMS technology that has redefined the microelec-

trode is the ‘Utah’ array, originally developed by the Normann
group at the University of Utah48–50. The ‘Utah’ array is generally
fabricated as a 10-by-10 array of tines machined from 3-mm-thick
silicon wafers. These tines are anisotropically etched and doped to
form a monolithic array of conductive needles. Lithography is
used on the backend to define bonding pads with one channel
per tine. This approach provides robust mechanical properties that
have made it very popular in primate research51–54. This silicon
electrode platform has been the basis for successful human trials
using a brain machine interface55–57 and has been adapted by
several groups for wireless integration58–60.
Another form of high-density recording arrays is surface arrays,

either for in vitro or in vivo experiments. Surface arrays for tissue
slices and retinal recording are known as multi-electrode arrays
(MEAs). Electrical recording with MEAs from the retina or
hippocampal slices has provided the highest density of information
available, in part because there is no requirement for miniaturiza-
tion on the backend. Despite the lack of physical constraints, certain
MEA architectures have achieved unprecedented miniaturization, as
discussed in Subsection ‘High-density active recording’ below.
Commercial MEAs containing tens of thousands of electrode
channels provide remarkable resolution of neural activity spreading
over time, often referred to as electrical imaging, and have been
designed for tissue culture and slices. MEAs are usually CMOS
devices with relatively simple post-CMOS metallization. Several
reviews on in vitro or MEA approaches are available61–63. However,
nanoscale MEMS-based processing is increasingly being developed
to achieve intracellular recordings in particular64–66. We will return
to the topic of MEAs because advances in wafer thinning, chip
integration, and flexible electronics are blurring the line between
in vitro and in vivo devices.
Surface recordings on the brain record an electrocorticoence-

phalogram (ECoG) and are often referred to as ECoG arrays or
microgrids. These arrays are effectively flexible versions of MEAs.
ECoG arrays are less invasive than microelectrodes and have
higher spatial resolution67 than electroencephalogram (EEG)
arrays, which is limited to signals spatially filtered by the dura
and skull (Figure 1). Macroscale versions of an ECoG array are
generally platinum discs soldered to metal wires and molded in
medical grade silicone or polyurethane. These devices exist
commercially, but a significant push toward microscale structures
has revealed important physiological data that neuroscientists
have embraced23,68. Advancing ECoG and EEG electrodes and
their microsystems will be particularly useful for conducting
neuroscience and neurology studies in human patients.
ECoG and microECoG are the best surface array methods for

source localization, but recent advances in EEG source localization
when accounting for patient-specific anatomy and conductivities
now claim sub-cm2 resolution69. Technology improvements for
EEG systems have also witnessed an increase in funding, including
those made at the Army Research Laboratory in the United States,
with the goal of making EEG a practical tool for widespread
human-based neuroscience in real-world applications70. EEG
systems will benefit from microscale electrode features such as
microneedle electrode designs that reduce the variability in skin
contact71 and mixed-signal front-ends with reduced size and
power to eliminate long analog wires.

Advantages and challenges of high-density recording arrays

Systems neuroscience is seeking to monitor single-neuron activity
in the context of very large populations to identify how the
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constituent parts lead to the emergent properties of the whole.
The number of simultaneously recorded neurons has been
doubling approximately every 7 years (Refs. 72,73). Additional
investment in brain mapping technology is ongoing and justified
because even at this rate of doubling we are still far from
achieving recording densities capable of whole-brain mapping6,74.
Although new optical imaging and recording modalities will
certainly accelerate this rate of discovery, electrical recording
methods still provide the greatest temporal resolution and
frequency range. Many neuroscientists continue to rely on the
simultaneous measurement of single-cell spiking and local field
potentials (which includes delta, theta, alpha, beta, spindle bursts,
and gamma oscillations) to derive complex network effects75.
Tetrodes (four wires closely spaced together) continue to be the
workhorse of electrophysiology because they are often fabricated
in research labs at low cost. However, neuroscientists have
increasingly found it efficient to use high-density microfabricated
electrodes. Microfabricated arrays offer a large design space and
geometric precision and can at least match the two-dimensional

cellular density of the brain over a greater span than that
observed for tetrodes. Three other compelling advantages of
microfabricated recording arrays are also worth noting. First,
overlapping recording regions can form multiple tetrodes or
polytrodes and have proven the best means for maximizing
single-cell identification on a per-channel basis. Microstructures of
various materials and geometries also offer ways to minimize
adverse tissue reactions. Finally, the integration of MEMS-based
probes with actuators and amplifier microsystems will provide
more effective tools for brain mapping (discussed in Sections
‘STIMULATING BRAIN ACTIVITY’ and ‘SCALABLE IMPLANTABLE
MICROSYSTEMS’, respectively). Despite all of these advantages,
several key remaining challenges should be addressed.
The recording of spikes in a mammalian brain is as much a

software challenge as it is a hardware one. Thermal, electrical, and
biological noise sources can combine to severely limit the signal-
to-noise ratio76,77 and, when combined with spiking variability,
can result in false spike detection, missed detection, and erro-
neous classifications78,79. Despite 450 years of advances and a

Figure 1 Recording and stimulating technologies vary across scale and degrees of invasiveness. (a) Illustration of the rodent brain and a
variety of technologies from electroencephalogram (EEG) to intracortical microelectrodes. (b) High-density systems will increasingly require
built-in active electronics to serialize large data streams and reduce the size of the connectors. Sample electrical signals show the amplitudes
of various signal sources. The intracortical arrays are often microelectrodes but may also include chemical and optical sensors. (c) Polyimide
electrocorticogram (ECoG) for large area mapping67. (d) A “Utah array” with 400 μm shank spacing and 100 channels has been used in human
studies50. (e) Close-packed recording sites with 9×9 μm area and a pitch of 11 μm178. (f) MicroLED optoelectrode made from GaN on silicon176.
(g) Parylene ECoG with greatly improved resolution over EEG and even single-cell capabilities23. (h) CMOS integration on probe shaft and
backend40. (i) Fluidic probe for drug delivery45. (j) Active 3D silicon recording system with flexible parylene interconnect182.
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plethora of algorithms for addressing issues of accuracy and
speed, neuroscientists, mathematicians, and technologists are still
far from reaching the goal of real-time automated spike
sorting30,80. The stereotrode27 and tetrode22 were hardware
solutions designed to help address the problem of spike sorting
accuracy. Overlapping recording regions to maximize confidence
in a putative action potential was first recognized using two
twisted microwires measuring 20 μm in diameter and spaced only
a few microns apart27. In one study, a MEMS-based array with a
linear tetrode was validated using intracellular recordings as
‘ground truth’ for spike sorting. Tetrode versus single-site
recordings yielded both greater accuracy and greater numbers
of units per channel78. Another study extended this logic and used
a dense 2D array of 54 channels on 1 shank to compare the
performance of virtual tetrodes (grouping four adjacent electro-
des) and polytrodes (more than four electrodes). The authors’ data
were limited to relatively large site pitches (43–65 μm) but showed
that polytrodes outperformed even tetrodes in isolating multi-unit
clusters into individual single units31. This same study also found
as many as 24 single units in a virtual tetrode in the relatively
sparse visual cortex. More recently, software algorithms that utilize
precise spatial information as part of the sorting logic show great
promise for improving both speed and accuracy30,80–82. Investi-
gating the optimal microelectrode size and pitch for speed and
accuracy in spike sorting is an important research area.
Accurate real-time automated spike sorting is still unproven but

will be a heralded breakthrough in systems neuroscience and in
clinical applications such as neural prostheses requiring a brain-
machine interface. Using MEMS-based arrays to improve software
tools for neuroscientists also involves neuronal location
information9,24,29,31 and cell classification of neurons4,83, which
are critical in brain mapping. The need for technologies to enable
cell typing in brain research was highlighted as the number one
priority by the U.S. BRAIN Initiative84, and combining recording
techniques with genetically targeted methods such as optoge-
netics and pharmacogenetics85 is expected to make cell typing
more reliable6. MEMS-based devices can certainly provide the
resolution if this expectation proves to be the enabling require-
ment for new software tools, but device reliability and micro-sized
packaging solutions are significant constraints that must be part
of the solution.

Tissue response and structure size

The adverse tissue response to implantable neurotechnology has
been an ongoing area of active research and is reviewed
elsewhere (Jorfi, Capadonia 2015)86. Important components of
the adverse response have been studied, including insertion
trauma87–89, the intrinsic foreign body response90,91, and strain-
induced damage from mechanical mismatch92–94. Long-term
reliability is clearly more of a challenge in clinical applications
than for neuroscience; nonetheless, tools for brain mapping
should be designed to minimize disruption to the circuits being
investigated. The size of the device placed into spinal cord or brain
tissue undoubtedly affects the degree of initial damage. The mean
distance from the center of a neuron (somatic center) to the
nearest microvasculature is only 15 μm (Ref. 95); thus, regional
damage to the blood–brain barrier is unavoidably a function
of size88. The intrinsic foreign body response is complex and
intertwined with the issue of micromotion, which is related to
mechanical factors such as the probe cross-sectional area, lattice
or porous architecture, total surface area, and stiffness. Biochem-
ical factors may include material stability, chemical properties, and
protein adhesion. Work on these mechanical factors will be briefly
reviewed here because MEMS allow for the selection of a large
range of materials and geometries.
There is mixed evidence indicating that geometric size is an

important design criteria in achieving reliable high-density

recordings (Figure 2). Evidence from several groups indicates that
when small features are used there is a significant improvement in
many histological markers, but whether those are the best
markers to predict performance is unclear. In early studies on
geometry, differences in relatively large structures resulted in
similar long-term outcomes96,97. When cellular-scale probe thick-
ness dimensions (5 μm) were compared against the dimensions of
a polymer shank (~50 μm), however, there was a significant
difference in non-neuronal density (300% higher at the shank) and
neuronal density (40% lower at the shank) in favor of smaller
structures98 (Figure 2a). Qualitatively, the interface around the
5 μm edge also showed improvement in microglia and astrocyte
reactivity. Two other studies independently supported these
results using different materials and elastic moduli, with similarly
small feature sizes99–101. Silicon was used to make a lattice probe
with exceptionally fine features102,103 measuring 5 μm that was
implanted and reduced a variety of glial reactive markers99,104. The
most creative application of the lattice structure was recently
demonstrated by creating an injectable SU-8-based lattice
inserted through a 22-gauge needle and electrically connected
to a printed circuit board (PCB) using anisotropic conductive film
during surgery105. Although histological evidence supports the
use of smaller, lattice-like structures, no group has yet provided
strong evidence that reliable single-cell resolution can be
achieved across many channels for more than even one year.
Currently, the gold standard among neuroscientists seeking long-
term single-cell recording is the use of a microdrive to periodically
‘tune’ the position of silicon neural probes (particularly those with
thicknesses ranging from 12 to 15 μm and shanks measuring
approximately 60 μm wide for rodent studies)106. Therefore,
interest in and funding for advanced microelectrodes have been
increasing given both the current success and the potential for
further improvements of large-scale long-term electrophysiology.

Substrate materials and microfabrication

A variety of materials and methods have been explored for use in
neural probes. Figure 3 highlights seminal studies on novel
substrates and compares the substrates’ intrinsic stiffness. Each of
these substrate materials has shown good biostability, albeit with
varying degrees of evidence, but many other properties must also
be considered in the context of the application at hand, including
the practical processing questions regarding deposition, etching,
adhesion, and general process compatibility. Many substrate
materials have been explored to date, providing researchers an
excellent toolbox.
Substrates can be classified as inorganic (for example, silicon33,

titanium107, diamond108, zinc oxide109, and silicon carbide110) or
organic (for example, carbon fiber101, parylene111,112, SU-8105,113,
polyimide114,115, and silicone116). Silicone, which includes poly-
dimethylsiloxane (PDMS), is an important class of silicon-based
organics that provides a useful range of properties, particularly
elasticity, not otherwise available. Brain tissue elasticity is still two
orders of magnitude lower than the softest PDMS currently being
used (not including Ecoflex® or gels, Macungie, PA, USA).
Nonetheless, useful devices have been demonstrated on either
end of the modulus spectrum, with stiffer materials enabling
robust micron-sized structures and elastic materials enabling
stretchable substrates at the expense of thickness or requiring the
use of insertion aids. PDMS, the best known of the silicones, has
proven amazingly versatile in the microfluidics and medical device
communities but has found limited use in thin-film devices. The
primary challenges have been metal adhesion and creating thin
substrates, although improvements are forthcoming117,118. Impor-
tant work reported by Minev et al. (Ref. 116) recently demon-
strated that PDMS is an effective substrate for stimulation and
drug delivery. As the feature size improves, the material may
become equally useful for high-density recording. Even more
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Figure 3 Log scale of elastic modulus for many substrates used in implantable arrays. Seminal research has covered inorganic substrates such
as silicon33, titanium107, diamond108, zinc oxide109, and silicon carbide110. Studies on organic substrates have covered carbon fiber101,
parylene111, SU-8105,113, polyimide114,115, and silicone116.

Figure 2 Seminal work supporting the hypothesis that the tissue response is a function of local device structure. (a and b) Tissue around the
end of a thin polymer structure showed significant reduction in encapsulating cells (modified from Ref. 98). (c and d) Tissue response around
solid and fine lattice structures showed significant reduction in reactive markers such as CD68 and IgG99,104. (e and f) Carbon fiber
microthreads with an 8-μm diameter reduced tissue reactivity and improved neuron density of microthread101. IgG, immunoglobulin G.
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under-utilized than PDMS are polyurethanes, polymers with
urethane links (NH–(C =O)–O–), which may also prove important
because their mechanical properties are highly tunable and their
surfaces are readily functionalized119,120.
Reducing the mechanical mismatch between a MEMS device

and the extremely soft brain121,122 (Figure 3) has been a focus of
some research. The challenge is to insert a highly flexible substrate
along a straight trajectory to a deep brain region. In addition, an
insertion aid that has a sharp, rigid tip is necessary to pierce the
dura or pia matter of the brain (Figure 1). One approach involves
the creation of a biodegradable stiffener using silk over a thin
parylene-C structure and shaping the silk with a microfabricated
mold123. As indicated by Equation (2) (rectangular cantilever
stiffness),

k ¼
Ewt3

4‘
ð2Þ

lowering the Young’s modulus E, the width w, and particularly the
thickness t should greatly reduce tethering forces. Several groups
have tried to quantify the local strain effects using finite element
models92,124. Nonetheless, no research has clearly identified a
threshold of relative stiffness that will mitigate the tissue response
or, more importantly, enhance the recording quality. Silicones
not only reduce the mechanical mismatch but achieve the
greatest yield strain of all substrates used to date. Creating
metal conductors that are resilient inside a stretchable substrate
utilize wavy metal conductors125,126, thin metals forming percola-
tion networks116,127, organic conductors128,129, and stitched
gold wires130. Further development of silicone or polyurethane
substrates requires improving the feature resolution of the
conductors and structures, validating the long-term adhesion
and insulation of the conductors to the substrate, and engineering
higher density packaging options.
An application in which flexibility and fracture toughness are

absolute necessities is the electroencephalogram (ECoG). In this
case, a microgrid is placed over the curved surface of the brain
that requires close contact with the surface to maximize the
recorded signal amplitudes. An early design used a polyimide
substrate measuring 20 μm thick and had an electrode spacing of
1 mm (Ref. 68). Others have further improved the flexibility by
developing a polyimide array measuring only 2.5-μm thick
supported by biodegradable silk to aid in placement131. Most
recently, the Buzsáki group developed the ‘NeuroGrid,’ a 4-μm-
thick parylene-C ECoG array featuring low-impedance electrodes
and a pitch of 30 μm to enable tetrode sorting techniques,
resulting in the ability to record single-cell activity in both rats and
humans23 (Figure 1g). This latest development is particularly
significant because it overturned the long-standing assumption
that single-unit recordings were only possible with intracortical
microelectrodes.
By far, the most successful material for intracortical extracellular

neuroscience research has been silicon, which has led to at least
four neural probe companies at the time of this writing. Some of
most advanced silicon designs include double-sided, high-density
arrays29,102, three-dimensional arrangements43, and integrated
electronics39,40,132. Although the inherent brittleness of silicon is a
concern for some clinical applications, its electrical, mechanical,
and thermal properties offer the greatest design options and are
supported by a wide range of commercial microfabrication tools.
The large mechanical stiffness of silicon has been cited as a
possible hindrance to long-term recording quality, but achieving
thinner and finer structures would resolve this concern in many
situations. Silicon devices can penetrate many brain types and
depths. Unlike polymer arrays, silicon and other stiff materials
have the ability to be moved on a microdrive during long-term
recording and thereby maximizing the number of cells recorded in
a session106.

Other stiff materials include ultrananocrystalline diamond108,
SiC110,133, and particularly carbon fiber materials101,134. These
materials are all relatively new to field but have two significant
advantages over silicon—a higher fracture toughness and a
higher elastic modulus. These substrates may someday prove to
be more reliable and achieve smaller dimensions in the hands of
neuroscientists, but first manufacturing and handling limitations
must be addressed.

Advanced electrodes

The electrode recording site is ultimately the interface where
cellular activity is accessed and where some improvements must
continue to be made. Sites are usually at least 10 μm in diameter,
but the real tissue interface occurs at the scale of the electrical
double-layer (Helmholtz layer), which makes all electrode technol-
ogy from the EEG scale to the single-cell scale fundamentally a
nanotechnology challenge. Several extensive reviews provide a
historical perspective of this research space135,136. Electrical
stimulating and recording electrode requirements share some
similarities, but the electrochemical stability and current injection
requirements of stimulation demand greater rigor in material
selection and validation. Attention to charge-carrying capacity,
charge balancing, voltage limits due to water hydrolysis, and long-
term testing is required for function electrical stimulation, which
continues to make important contributions to neuroscience137.
Electrode requirements for recording have evolved as scientists

have debated the optimum site impedance and size. Lempka et al.
modeled the effect of electrode size on signal amplitude and
showed that site diameters ranging from 7.5 to 20 μm produced
nearly identical amplitudes; however, large pyramidal cells were
assumed as current dipoles138. The results may be very different
when recording near apical dendrites or smaller cell types. When
site sizes 420 μm can be used, thin-film materials such as Au, Pt,
and Ir often show good performance. For tetrode sorting
techniques discussed above, a pitch (diameter plus gap) as small
as 20 μm is desirable. In these applications, thin-film Au, Pt, and Ir
would all produce significant noise without additional steps
to increase surface roughness. Research has demonstrated that
electroplated Au29, reactive sputtering of TiN139, sputtered
iridium140, and activated iridium139 all lower the electrode
impedance and decrease the electrical noise. Modification of the
electrode material or the deposition method is a well-proven
means to lowering the impedance and therefore the thermal
noise. This modification is also likely to lower susceptibility to
electromagnetic interference76,141.
New electrode alternatives continue to be developed and

tested because past methods either do not provide sufficiently
low noise or are unstable over time in vivo (or may provide
insufficient charge storage capacity for electrical stimulation).
Delamination and stability of the coating is a serious challenge.
Causes include mechanical and chemical instabilities that are a
function of the deposition method or due to non-reversible redox
reactions. Furthermore, after implantation, the electrode will
immediately biofoul and undergo electrochemical interactions.
Over the last decade, conductive polymers, particularly poly(3,4-
ethylenedioxythiophene) (PEDOT), have received much attention,
outperforming thin-film metals in the first several weeks of use
before biofouling and the foreign body response presumably
reduce performance142,143. PEDOT has excellent charge injection
capacity144 and one of the lowest site impedances per unit area of
any material. The two most common dopant molecules for
PEDOT are polystyrene sulfonate (PSS) and, more recently, carbon
nanotubes (CNT)143. Nevertheless, no electrode material has
proven to monitor single neurons for years or even months
without significant degradation in the signal-to-noise ratio; thus,
more research on the electrode-tissue interface is certainly
needed.
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Regardless of which advanced material may solve this problem,
the manufacturing method chosen is an important part of
development. Some common electrode materials for brain
research, for example, electroactive iridium, electroplated gold,
and electrodeposited PEDOT, are deposited after the electrode
array is in the final assembled state. This approach creates
efficiency and uniformity challenges that could be better
addressed at the wafer level, for example, batch electrodeposition.
A cost-effective solution recently demonstrated is the use of a dry
etchant to roughen thin-film gold at the wafer level145, resulting in
impedance values similar to those of PEDOT. Methods such as this
may prove to be effective to neuroscientists and efficient to
neurotechnologists.

STIMULATING BRAIN ACTIVITY

Introduction to optogenetics

Recording passively from local brain circuits is informative, but
neuroscience can be much more effective at mapping a circuit
by using controlled stimulation while monitoring cellular
responses and their correlation to animal behavior. Over the
past few decades, the electrical stimulation of the brain has
provided tremendous insight into its functionality146,147. However,
advanced neuroscience capable of studying cellular interactions
in complex networks can be accelerated with selective activation
or silencing of neurons of specific types. This feat cannot be
achieved easily by electrical stimulation due to its lack of spatial
resolution, non-specific stimulation, and the inability to silence
neurons148.
Optogenetics has begun to improve neuronal circuit analysis by

introducing photosensitive proteins (opsins) into specific cell
types such that these cells can respond to an optical stimulus with
defined action potential patterns8,149. Using an appropriate
wavelength to target a particular opsin(s), cell-type specificity
can be achieved with well-controlled spatial and temporal
resolution (on the order of milliseconds)7. For example,
channelrhodopsin-2 (ChR2) and halorhodopsin can be co-
expressed in the same cell types for the depolarization and
hyperpolarization of this specific target using blue light (~473 nm)
or yellow light (~590 nm), respectively7,150–154. This specific
targeting allows for more sophisticated manipulations of neural
activity and the testing of spike timing during specific neural
computations and behaviors, but the sophistication is also a
function of the light delivery tool itself. A major trend in
optogenetic stimulation is the improvement of spatial selectivity
because illuminating large volumes of tissue introduces a
number of potential confounds to the experiment. There is the
possibility of altering the threshold of excitation or creating

action potentials because of light absorption and heat155 and
the superposition of multiple spike waveforms on recording
channels156. Furthermore, stimulating many neurons in synchrony
is not a natural way to generate synthetic input157; therefore,
we discuss several technological approaches that can address
these limitations. Two-photon stimulation techniques offer the
greatest spatial resolution158 and a large field of stimulation,
but because it is not capable of accessing deeper tissue struc-
tures and requires head-fixed experiments, there continues to be
great interest in improving MEMS-based optical stimulation
devices.

Early development of optogenetic tools

Despite recent rapid advances in optogenetics, supporting
technologies for reliably delivering light to and record electrical
signals from deep brain structures are not readily available. Early
work involving in vivo optogenetics relied on the manual assembly
of commercially available components such as microwires and
optical fibers, which are not only bulky but can also experience
large misalignments due to human error9,159. Since then,
engineering efforts have gradually evolved towards MEMS
technologies for miniaturization, high-density integration, and
precise definition of the probe dimensions with lithographic
resolution. For example, MEMS dielectric waveguides fabricated
on silicon substrates for stimulating the brain at multiple locations
with blue and red light have been reported160. However, no
recording electrodes were integrated on these devices; therefore,
they could not support both optical stimulation and electro-
physiology. Stark et al.9 reported a hybrid approach for manually
assembling optical fibers onto MEMS recording probes. Coupled
to laser diodes of various emission wavelengths, this device could
excite and silence neural populations monitored by a high-density
electrode array161. Nevertheless, the manual attachment (gluing)
of fibers to each probe shank is very labor-intensive, resulting in
potential misalignments and contamination of the recording sites
by misplaced glue.

MEMS optical waveguide integrated probes

Advanced MEMS technologies can enable micron to sub-micron-
scale features to be accurately defined using lithography. Planar
architectures such as the ‘Michigan style’ probe shown in
Figures 1e and f are particularly attractive for the integration of
optics because of the versatility in depositing and patterning
additional layers to form high-density optical and optoelectronic
components.
Some of the first neural probes monolithically integrating both

optical and electrical components are illustrated in Figures 4a–g.

Figure 4 Example optoelectrodes with integrated waveguides: (a–c) Laser diode coupled waveguide probe demonstrating diode directly
mounted on neural probe165; (d) a digital micromirror directing multi-color light into waveguides terminated with metal-coated corner
mirrors171; (e) single waveguide on a silicon recording array162; (f and g) schematic of multi-color laser diodes coupled from a PCB using
graded-index lenses and mixed on the neural probe and micrograph of an actual device166; and (h) a 4x4 ZnO array demonstrating a very
similar form factor as the Utah array with the added capability of optical stimulation through the ZnO tine and ITO-coated tip109.
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In these devices, an optical waveguide is integrated onto the probe
shank to deliver light from an externally coupled optical source to
a stimulation site at the center of an integrated electrode array162.
The waveguide can be made out of polymers such as SU-8 (Refs.
163,164) or dielectrics162 and has a small rectangular light emission
area on the order of 100 μm2. The lithographically defined
waveguide has a precisely positioned stimulation site relative to
the recording sites to provide the spatial resolution necessary for
circuit mapping (Figure 4e). The waveguide can also be freely
configured to guide light through different paths164 or to have
multiple stimulation sites160,163 for specific application needs
(Figure 4d). The probe shank dimensions are defined with micron
resolution using a double-sided DRIE process on an SOI wafer. Even
a simple design having a single waveguide and eight electrode
sites can demonstrate the utility of optogenetics from a high-
density population such as the CA1 pyramidal layer in a rat by
optically inducing single-unit activity from two cell types, which
can be distinguished by the relative timing between the induced
spikes and the light stimuli162.
An important modification to the waveguide approach is

eliminating the need for a tethered optical fiber because it can
severely limit animal movement, especially when multiple fibers
are used. A recent report demonstrated the feasibility of coupling
a bare laser diode chip to an integrated waveguide165. The
semiconductor light-emitting device requires only thin flexible
cables for power, which is attractive for freely behaving animal
experiments. Using unpackaged bare laser chips has the
advantage of efficient coupling to waveguides with a similar
numeric aperture (Figures 4a–c) and reaching optical intensities of
up to 29.7 mWmm− 2 using a red (650 nm) laser diode. Given the
high cost of laser diodes and alignment and packaging, it may be
useful to package the source at the PCB and either butt couple or
focus the source into the probe. A recent example of this
approach used commercially available gradient refractive index
lenses to couple end-fire lasers166,167 (Figures 4f and g). Another
solution was demonstrated with a novel substrate material, zinc
oxide, to form both the recording channel and waveguide in a
form factor and fabrication method similar to the Utah array109

(Figure 4h). Both the on-chip and on-PCB approaches will
undoubtedly be useful, but as one scales the number of
independent light sources or stimulating at higher duty cycles,
the on-PCB approach may be the better choice, as evidenced by
thermal modeling. In contrast, coupling an light-emitting diode
(LED) to a waveguide is a fundamentally inefficient task due to the
Lambertian emission profile of LEDs and the small area of
minimally invasive waveguides.
The equations governing the basic design constraints of

coupling a light source to a waveguide and then coupling the
light into tissue are highly dependent on material and geometry.
To briefly summarize, thin-film approaches allow engineers to
maximize irradiance in the tissue using the equation

I ¼ PsUηcouplingUηscatterUΦgeometry ð3Þ

where Ps is the optical power of the source, η is the coupling
efficiency or scatter efficiency, and Φ is the function accounting
for geometric spread as a function of depth, waveguide radius,
and numerical aperture168. By careful selection of materials
and the waveguide geometry, the optoelectrode can be
chosen to match the refractive index at each optical interface to
maximize coupling, but it is also desirable to maximize the
numerical aperture of the waveguide to accept a wider angle of
incoming light and to emit a wider angle at the output using
Equation (4),

NA ¼ n0 sin ya ¼ n2core - n
2
clad

� �1=2
ð4Þ

where n0 is the surrounding refractive index and θa is acceptance
angle. These factors are also related to the index of the core and

cladding. Furthermore, the maximum efficiency in source-coupled
waveguide is given by Equation (5),

Ec ¼ AWGNA
2=ðAsourcen

2
0Þ ð5Þ

where AWG is the cross-sectional area of the waveguide and Asource
is the area producing light at the emitter. Even a small LED
(100 × 100 μm) will have a source area, Asource, ~ 10 000 times
larger than that of a typical laser diode. On the far side of the
waveguide, light will enter the tissue, and the effects of geometric
spreading and light scattering inside the tissue create some
constraints on the volume of tissue that will be irradiated. The first
is the spreading angle. Equation (4) can also be used to calculate
the divergence angle of light in the tissue, but in that case
n0=ntissue. Unlike geometric spreading, scattering is a function of
the wavelength of light168. Calculating the volume of excitable
tissue also requires that some assumptions be made. First, one
must estimate the irradiance threshold at which a neuron can
be stimulated or silenced, which is a function of the opsin type,
the consistency of expression in a cell, and local neuron orien-
tation9,169. A second assumption must be made about the
maximum irradiance allowed in tissue before heating170 and
cellular155 changes occur. A Matlab tool for predicting the tissue
irradiance and the heat generated using different spatial
and temporal light input was provided by Stujenske et al.170.
Despite these limitations, there is plenty of room for customizable
illumination patterns given our control of numerical aperture,
waveguide dimensions, and the addition of micromirrors160,171

and diffusion elements. Photonic waveguides are commonly
fabricated with micron dimensions, and thus, the number of
independent light ports will increase rapidly, especially as the light
sources are more efficiently packaged and coupled at the device
backend.

MEMS LED integrated probes

An alternative to using a waveguide to transmit light from
an external source to the probe tip is to integrate the light
sources onto the probe tip directly. InGaN LEDs are attractive for
optogenetic applications because the emission wavelength can be
tailored for the activation of common opsins172.
GaN-based LEDs are most commonly grown on sapphire or SiC

substrates for minimal lattice mismatch at the GaN-substrate
interface173 because this structure enables efficient electron-
to-photon conversion. Recently, LED arrays fabricated from
a sapphire substrate have been demonstrated for opto-
genetics174. Thermal and optical characterization shows that
blue LEDs can deliver enough optical power to activate
ChR2 without overheating the tissue. However, no recording
electrodes were integrated with these optical sources, and
the probe shanks were not released from the sapphire
wafer. The report demonstrates that the probe shanks can be
patterned by laser dicing and that the substrate can be thinned
mechanically; however, this approach may not achieve a needle-
like probe body sufficient for fine features with minimal tissue
damage.
To circumvent the difficulty in patterning conventional sub-

strates such as sapphire, LEDs originally grown and patterned on
sapphire can be transferred to another substrate by a laser lift-off
technique. Figure 5a shows the assembly of several microfabri-
cated LEDs at the tip of a flexible polymer platform for light
generation precisely at the stimulation sites175. This approach is
highly versatile, allowing for the integration of not only LEDs of
different colors but also photodiodes and temperature sensors in
a multi-layer structure to monitor the performance of the LEDs.
Although the individual LEDs could be made relatively small
(50 × 50 μm), the hybrid assembly resulted in a probe shank width
of over 400 μm. Once implanted, the LEDs can be wirelessly
controlled.
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Our group’s ongoing work on the monolithic integration of
μLEDs and electrodes onto silicon probe shanks is highlighted in
Figures 5b and c. This highly scalable approach allowed for
12 μLEDs and 32 electrodes to be integrated onto a four-shank
probe, where each shank was only 70 μm wide176. The μLEDs and
electrodes have been defined to have cellular dimensions, which
can provide high spatial resolution for single-unit stimulation and
recording in a highly populated brain region. The biggest
challenge to any μLED approach is reducing μLED crosstalk, often
called stimulation artifact. Addressing this challenge will require
improved EMI immunity and better system integration at the
backend.
We reviewed two broad approaches to fiberless optical

stimulation: the use of an optical waveguide to transmit light
from an external source and LEDs integrated next to the recording
channels. The waveguide approach affords the ability to choose
from commercial light sources, with many available wavelengths
and output power levels available. Coupling into the waveguide is
greatly improved with the use of advanced packaging tools such
as a die bonder. Furthermore, the electromagnetic interference
and heat generated by the light source are more easily managed
given the greater distance from the susceptible recording
channels. In contrast, the direct integration of light sources on
the probe shank allows for highly efficient coupling into tissue and
creates a stimulation zone well matched to the recording zone.
The LED efficiency is closely associated with the semiconductor-
to-substrate interface defect density. Thus, the light-emitting
materials and substrate are constrained, limiting the available
wavelengths and process compatibility. Obtaining a reasonable
power efficiency is much more critical for this approach than for
the waveguide approach because heat is generated near the
cellular population of interest. Nevertheless, the LEDs can be
scaled more effectively than the waveguides in terms of reducing
their size and increasing their number, with the potential for
highly confined stimulation at multiple locations. In addition,
μLEDs consume less power than commercial laser diodes and
therefore will be more easily powered wirelessly, which is ideal for
behavioral animal experiments (assuming the cost is practical).
Both approaches can offer advantages for particular optogenetic
applications; however, significant engineering efforts are still

needed to achieve their full potential in neuroscience and possible
clinical applications.
Fortunately, the field of nanophotonics has developed many

approaches to integrating light sources and efficiently transmit-
ting and modulating light. Optogenetics will benefit greatly from
these rapid advances, and several groups have already provided
evidence that light stimulation arrays are capable of matching the
density of electrical recording technology. With greater effort in
microsystem design, advanced packaging, and easy-to-use soft-
ware interfacing, optoelectrode technologies will transition from
being used in a few neuroscience laboratories to widespread use.

SCALABLE IMPLANTABLE MICROSYSTEMS

Current state-of-the-art electrical recording systems are still far
from matching nature’s scale in the central nervous system. The
mouse brain has approximately one neuron in every 22 μm
voxel74, which only passive electrodes can match in 2D, but
certainly not in 3D. Although electrical interfaces have been
noticeably bad at achieving spatial scale, the resolution and
breadth of their temporal domain continues to make this mode
very attractive to neuroscientists. The average action potential is
~ 2 ms long and shows spiking (periodicity) at approximately 5 Hz,
although this spiking could be in the range 0.5 and 500 Hz
(Ref. 177). A 1 kHz bandwidth can capture most details of a cell,
from the single neuron to population activity. Neuroscientists
often prefer an ~ 0.1–10 kHz bandwidth with sub-microvolt
analog-to-digital converter (ADC) resolution so that one may
analyze the waveform shape itself. Even at a 10 kHz bandwidth,
the digital clock speeds in a typical smartphone could sample
~ 100 000 electrode channels with excellent fidelity.
The scaling bottleneck continues to be the spatial limits of the

analog front-ends and the electrode array itself. The first
significant limitation of recording systems is the sheer number
of interconnects required. When the shank width increases
beyond 50–80 μm, there is a noticeable loss of neural signals,
thus making this range of widths a widely accepted upper limit.
However, as few as 128 channels on one narrow shank pushes the
resolution toward expensive manufacturing options such as
e-beam or deep ultraviolet lithography. Even if resources were

Figure 5 Fiberless optical stimulation using μLEDs. (a) GaN μLEDs grown on sapphire wafers and transferred onto a polymer substrate by laser-
liftoff achieved 50 × 50 μm2 μLEDs175. (b) First demonstration of monolithic integration of multiple GaN μLEDs on silicon neural probes and
capable of a 50 μm pitch. Scale= 15 μm. (c) In vivo demonstration of same optoelectrode controlling pyramidal cells (PYR) in distinct parts of
the CA1 pyramidal cell layer176.
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unlimited and e-beam lithography, for example, could be used to
pattern the interconnects, the next bottleneck becomes the
bonding pad interface, whether it be a cable, PCB, or an ASIC.
Recently, one group demonstrated the feasibility of e-beam
interconnects resulting in a 1000 microelectrode array, but the
structure was still limited by having a very large silicon backend
and PCB178. We believe the recent advancements in packaging
and mixed-mode circuit design are creating a unique opportunity
that will accelerate efforts to address scale. We explore some of
the latest research that is addressing these limitations, including
alternative analog front-end architectures and packaging.

High-density active recording

Because the vast majority of neurons we have access to are just
above the noise floor (~5–20 μV), the strategy of integrating on-
chip amplifiers is an attractive one. Low-noise amplifiers (LNAs) on
the same substrate as the electrode array (or packaged very close
to it) will in theory reduce the load capacitance and attenuation
of the biological signal. Short leads also reduce inter-channel
crosstalk and become less susceptible to electromagnetic inter-
ference. Ideally, the analog front-end density should match that of
the electrode array density. Furthermore, if the area spanned by
the electrodes could even include the ADC and data serialization
circuitry, then what would limit its scalability? If this challenging
proposition could be achieved, then the field would have an
unprecedented active system—one that is truly expandable and
not limited to choosing only a few regions. We discuss recent
analog-to-digital systems that have made impressive gains in area
efficiency and some of the performance tradeoffs that should be
addressed.
A comparison of the highest-density and highest-performing

systems is shown in Figure 6. Inclusion in this comparison requires
that the ASIC integrate the digital convertors with the analog-front
end and be capable of wideband recording. Although MEA
amplifiers and in vivo amplifier ASICs have historically been
considered different device types, we wanted to directly compare
the best area efficiency from each camp. It should also be noted
that the lines between in vivo and in vitro are blurring because the
ASIC can become the probe. A large project undertaken by
researchers at HHMI and Imec has recently resulted in an implan-
table ASIC with 966 selectable channels by post-processing CMOS

circuits using a silicon-on-insulator 130 nm process179. ASICs may
also be further post-processed into flexible arrays, using deep
reactive ion etching, that stop on several pre-defined metal etch
stops to leave only islands of interconnected electrodes and
amplifiers180. Other ASICs we include (Figure 6, Table 1) are
designed for in vivo use and packaged on the backend of the
system (intantech.com, Park15 (Ref. 181), and Perlin10 (Ref. 182)).
This contrast also allows for the comparison of three different
architectures (Figure 6b): (i) one-to-one mapping of electrode to a
high-gain LNA, (ii) multiplexed array with a switch matrix to allow
site-selective multiplexing, and (iii) a multiplexed array with full-
frame readout similar to an active pixel sensor (APS) imager.
Table 1 compares many of the performance metrics of each

example as well. It is also critical to note that the many
performance metrics can shift in weight based on the application.
It can be argued that the emphasis on system density (Figure 6)
should not overlook the other metrics. The common-mode
rejection ratio, for example, is an important predictor of noise
immunity when using a system in awake behaving animals.
Obviously, a wireless or battery-powered system places a
premium on low power; therefore, the advantages and disadvan-
tage of each approach should be considered in context. Table 1
shows a variety of tradeoffs. The commercial Intan system is
currently the lowest-cost solution and exhibits excellent noise
performance, but at some cost to size and power. Park15 has been
optimized for the combination of low power, high resolution, and
moderate density. Lopez16 (Ref. 179) successfully implemented a
channel selection switched matrix as the neural probe itself with
many competitive metrics. Ballini14 (Ref. 183) and Johnson13
(Ref. 184) achieved the two highest densities with competitive
input-referred noise values, but these devices were tested over a
higher frequency band, limiting a proper comparison. None-
theless, the magnitude of the system density suggests that future
systems may choose scale over the slight limitation of a smaller
bandwidth tuned only for single-unit activity (for example,
300–5000 Hz).
Regarding the noise performance of the various systems, the

noise amplitude is somewhat crude because it is not uniformly
tested and is a function of both the bandwidth and the actual
band. For CMOS devices in particular, flicker noise or 1/f noise is
the dominant source at low frequencies (corner frequency is
typically 500–10 000 Hz) for small transistors. Input referred noise

Figure 6 Scalability of leading high-density recording systems having integrated digital output. (a) Channel count versus density for
three different architectures. Color indicates the input-referred noise (μVrms). Actual channel count was significantly lower compared with
the number of available recording sites for the switch-matrix architecture (□). The arrow indicates the direction and color of
advancing microsystems. (b) Legend for inset A showing three common architectures discussed in recent work. Table 1 draws further
comparison.
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can be skewed by a limited bandwidth and particularly by a large
high-pass frequency such as 20 Hz (Table 1). A few important
points are worth noting in the model for the flicker noise voltage
spectrum S2:

S21=f fð Þ ¼
K f

CoxA

1

f α
ð5Þ

where Kf is a technology feature size and is a foundry-specific
value, Cox is the gate oxide capacitance and A is the area of the
gate. The exponent α is another empirically measured value and
determines the slope of the low-frequency response (typically
close to 0.9 for NMOS and 1.1 for PMOS)185,186. A large α will
attenuate the noise faster with respect to frequency and thus is
desirable. Cox is the normalized capacitance, which generally
increases with decreasing feature size but will vary depending on
the oxide thickness of a given process. Although most LNA circuit
designers tend to choose large process nodes (180–600 nm,
Table 1), there has been a slow but steady trend toward advanced
nodes. One group demonstrated very low noise in a 65 nm node
that also had a small amplifier area187 of 0.013 mm2, although with
only two channels. Circuit designers should also pay close
attention to the process-defined values of K, Cox, and α, which
will help reduce noise. Even if transistors must be made much
larger than required by the technology node for an equivalent
noise floor, the digital circuit design in particular will benefit from
the higher density and lower power of a smaller node. Future
solutions may also employ the mixing of processes by vertical
integration or by special processes such as graphene or SiGe
BiCMOS. SiGe BiCMOS can employ low-noise bipolar transistors in
the front-end and high-resolution low-power CMOS in the digital
domain.
Given these size-performance constraints related to flicker and

thermal noise, the strategy employed by the switch matrix
architectures (Figure 6) is to separate amplification stages such
that a smaller circuit is near the electrode. The electrode stage
amplifier is switched into a column readout amplifier, which
generally is a programmable gain amplifier (PGA) connected to an
ADC. It has been a precept by many that having a dedicated LNA,
PGA, and ADC per channel would provide the lowest noise design,
but the noise performance of a few switched-matrix MEAs has
become good enough that the density advantages may now be
attractive for in vivo use. To date, very few integrated micro-
systems have been tested in animals; thus, further in vivo
validation is needed to assess biological noise and motion artifact
noise. The switched matrix design also reduces the number of
interconnects leading to the array itself from (row count × column
count) to only slightly more than (row count+column count). But

the selectable179,183,188 and the active pixel architectures184,189,
have important differences between them.
Using a switched matrix architecture with selectable electrodes

(Table 1) is an effective way to reduce power in a circuit
design. One can switch the data stream to regions of high activity
and ignore quiescent regions. However, an important limitation
of this architecture can be illustrated in the context of a clinical
application such as a brain-machine interface versus brain
mapping. In the former, the clinician can scan for a priori features
in the neural data, but in the latter, almost nothing is a priori. Once
a putative neuron signal is found, it is especially important to look
across the entire array in search of network effects—activity
occurring immediately before and after the action potential to
help determine coherence, phase, and ideally, network connec-
tions. Selective spike detection as a means of data compression is
a challenging and risky proposition for circuit mapping because
when one threshold event occurs (a putative neuron), one must
simultaneously analyze many or all of the channels on the array or
risk losing valuable data. For a high-density array, there will be a
good probability of one neuron firing at almost any moment in
time, and thus, sampling sporadically is only useful when much is
already known. Therefore, high-density full-frame readout
schemes such as the ‘active pixel’ approach will ultimately be
most attractive to systems neuroscientists.

Packaging developments

The packaging requirements for implantable and wearable
neurotechnology are generally to protect the tissue from heat,
to protect the electronics from the ingress of water and ions,
and to minimize the device dimensions while presenting a
user-friendly form factor. A variety of solutions to these problems
have already been pioneered using microfabrication methods
to package gyroscopes, infrared sensors, and resonators in
very difficult non-biological environments. These applications
require atmospheric, thermal, and mechanical isolation and thus
provide neurotechnologists with many useful strategies. Similarly,
advancements in the vertical stacking of ICs, also known as
system-in-package, are providing new methods of packaging to
address the needs of combining dissimilar technologies such as
MEMS, CMOS ASICs, and memory. Several reviews such as (Refs.
190 and 191) cover a range of creative methods for achieving
ultrahigh-density packaging. We will discuss recent work that has
borrowed from these two broader packaging developments and
have been applied to neurotechnology.
Commercially available recording and stimulating technologies

rely on relatively low-density methods; hence, the typical backend
of a silicon neural probe consumes the largest area on a given
mask set. Wire bonding is the most common method for

Table 1 Performance comparison of leading system architectures

Perlin10 Intan Park15 Frey10 Ballini14 Lopez16 Shahrokhi10 Johnson13

Architecture, Figure 6b One-to-one (Δ) Selectable (□ ) Active pixel (○)

Sampling rate, kHz 16 30 25 20 20 30 14 20
Input noise, μVrms 4.8 2.4 3.3 3.0 2.4 6.4 6.1 4.3
Bandwidth, Hz 10–10k 0.1–10k 0.4–11k 1–100k 300–10k 0.3–10k 10–5k 20–50k
Total power/Ch, μW — 830 19 1107 73 49 19 —

CMRR, dB — — 60 — 72 460 60 21 (66)a

ENOB/resolution —/8 —/16 10.9/1b —/8 —/10 —/10 6.2/8 8.2/10
No. of Ch. availability 64 64 128 122 1024 384 128 1120
No. of electrodes 64 64 128 11 011 26 400 966 128 1120
Tech node, nm 500 — 180 600 350 130 350 180
Reference 182 c 181 188 183 179 189 184

Abbreviations: Ch, channel; Tech, technology. aCMRR measured to be 21 dB, but after principal component analysis was performed, 66 dB was achieved.
bADC oversampled 32X. cwww.intantech.com.
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connecting to a silicon device, and typical bonding pad pitches
are 100–150 μm. For polymer substrates, MicroFlex inter-
connection (a form of ball bumping) offers an alternative to wire
bonding but has a similar pitch192. Certain high-end consumer
products are capable of 40–50 μm pitch, and state-of-the-art
packaging research has demonstrated 10 μm pitch using micro-
bumps and flip chip bonding193. Unfortunately, these approaches
also require greater investment in packaging tools such as die
bonders with highly precise thermocompression and alignment
capabilities. Finally, the testing tools that ensure reliability will also
become more costly with increasing scales and finer features.
Nonetheless, research continues to demonstrate promising

solutions. In one example of neural probe-to-ASIC integration, Xie
et al. improved the encapsulation performance of a wireless
microsystem flip-chip mounted on a Utah-style array. Al2O3 was
deposited by atomic layer deposition on both the passive
recording array and the integrated backend to significantly
extend the lifetime of both compared with the use of parylene-C
alone194. In another example, Perlin et al. demonstrated 3D
stacking of high-density planar arrays that were interconnected on
a common platform through the novel use of tabs with a pitch of
40 μm (Ref. 182; Figure 1j). Consumer electronics have also created
a demand for the stacking of silicon devices. Vertical feedthroughs
in an IC die allow the circuit to be stacked on other ICs or on an
interposer with multiple ICs in parallel (also known as 2.5D
technology). This technology could become a cost effective way to
integrate neural probes and front-end amplifiers. Through-silicon-
vias (TSVs) have now matured to the point that TSVs within
interposers or stacked ICs have demonstrated high yield by a
number of vendors. TSVs can also be built into the exterior of a
sensor capsule195, similar to the way feedthroughs are built into
medical devices. MEMS-based solutions for feedthroughs and
hermetic capsules reduce the volume of a microsystem by several
orders of magnitude compared with conventional titanium
housings with ceramic feedthroughs. Furthermore, wafer-level
packaging of sensor arrays and vertical enclosures have been
demonstrated using a variety of low-temperature eutectic
bonds196 and thus also have the potential to be cost-effective
and compatible with many materials.
Packaging is a significant roadblock to the implementation and

commercialization of high-density microsystem tools for neu-
roscience. The field will continue to witness both monolithic and
hybrid solutions in the coming years. Arguably, monolithic
integration greatly simplifies the packaging challenge, but as the
substrate materials continue to vary and new modalities arise, the
field will undoubtedly benefit from the ongoing advancements in
heterogeneous vertical stacking. It is not difficult to imagine a day
in the near future when vertical IC/MEMS integration is as simple
as wire bonding is today. When this happens, we envision that the
number of recording and stimulation channels on current ASICs
will not necessarily increase, but instead, technologists will
modularly package them in parallel on sensor and actuator arrays.
In other words, the typical path forward is to move the arrow on
the channel count versus density plot (Figure 6) directly
orthogonal to the figure of merit, but there might be an
advantage if chipsets feature a low channel count and therefore
are easily distributed throughout the system. CPU speed and
transistor count, by analogy, are no longer steadily increasing;
instead, computer makers have relied on parallel processing. With
this in mind, hybrid packaging approaches appear to be a
practical solution for addressing the need for scalability while
acknowledging that applications such as brain mapping and
medical devices are inherently small-volume.

FUTURE TECHNOLOGIES FOR NEUROSCIENCE RESEARCH

Since 1990, over one thousand neuroscience and neural
prostheses studies have used silicon-based neural probes for

monitoring brain activity, and an increasing number using
both light stimulation and recording arrays in tandem are
being published. Although these advancements are impactful,
both neuroscientists and technologists agree that our current
rate of development is insufficient to expect major break-
throughs in neuroscience without improved scale, density, and
specificity. The goal of reverse engineering even a basic brain
function, such as memory or learning, may be many years
away given that our tools are still very crude compared with the
systems under study. There are no trivial solutions because
sensors, actuators, ASICs, and packaging must all progress in
step if practical solutions are to become readily available to the
larger neuroscience community. The field has recently witnessed
an influx of new ideas and researchers with continued govern-
ment and foundation investment anticipated. We can expect
nascent technologies to become increasingly relevant and
disruptive.
Optical methods of stimulating and monitoring neural activity

have already become an important complement to electrical
methods197. Future neuroscience discovery will undoubtedly rely
on a novel combination of sensing and actuating modalities, but
which will be most effective at revealing neuronal cell types and
circuit function? Neurochemical sensing and control is arguably
the most promising modality yet to achieve scale. Importantly,
multimodal methods are needed to combine intracellular
monitoring, such as monitoring protein or metabolic changes,
with our current extracellular techniques. Although studying the
electrical response of a cell in the context of behavior has been
important, some experiments will additionally require monitoring
intracellular changes, for example, RNA and protein changes198, if
we are to answer that most basic question: What makes any one
neuron fire or not fire? This vision, we believe, will require
long-term effort by MEMS and microsystems engineers working
closely with neuroscientists. With further interest and investment,
we expect the coming decade to see significant breakthroughs in
our understanding of brain function and disease-related
dysfunction.
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