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Abstract: Machine learning (ML) models have been widely used in the modeling, design and
prediction in energy systems. During the past two decades, there has been a dramatic increase in
the advancement and application of various types of ML models for energy systems. This paper
presents the state of the art of ML models used in energy systems along with a novel taxonomy
of models and applications. Through a novel methodology, ML models are identified and further
classified according to the ML modeling technique, energy type, and application area. Furthermore,
a comprehensive review of the literature leads to an assessment and performance evaluation of the
ML models and their applications, and a discussion of the major challenges and opportunities for
prospective research. This paper further concludes that there is an outstanding rise in the accuracy,
robustness, precision and generalization ability of the ML models in energy systems using hybrid
ML models. Hybridization is reported to be effective in the advancement of prediction models,
particularly for renewable energy systems, e.g., solar energy, wind energy, and biofuels. Moreover,
the energy demand prediction using hybrid models of ML have highly contributed to the energy
efficiency and therefore energy governance and sustainability.

Keywords: energy systems; machine learning; artificial neural networks (ANN); support vector
machines (SVM); neuro-fuzzy; ANFIS; wavelet neural network (WNN); big data; decision tree (DT);
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1. Introduction

An energy system is a group of organized elements designed for the purpose of generation,
control and/or transformation of energy [1,2]. Energy systems may incorporate combinations of
mechanical, chemical, thermal, and electromagnetical components, covering a wide range of energy
categories including renewables and alternatives [3-5]. The advancement of energy systems is facing
critical decision-making tasks to satisfy numerous demanding and contradictory objectives considering
functional performance, efficiency, financial burden, environmental impact, etc. [6].

The growing utilization of data collectors in energy systems has resulted in a massive amount
of data accumulated. Smart sensors are now extensively used in energy production and energy
consumption [7-9]. Such big data has created a vast number of opportunities and challenges for
informed decision-making [10,11]. ML models have contributed to the implementation of big data
technologies in various applications [12-16]. Since prediction methods based on ML models simplify
the extraction of functional dependencies from observations, such data-driven models have gained
popularity in the energy realm [17-19]. Today, ML models in energy systems are essential for predictive
modeling of production, consumption, and demand analysis due to their accuracy, efficacy and
speed [20,21]. ML models also provide an understanding on energy system functionality in the context
of complex human interactions [22,23]. The use of ML models for conventional energy systems, along
with alternative and renewable energy systems, has been promising [24,25]. Due to the popularity
of the field, many review papers have emerged that present insight into present applications and
future challenges and opportunities [26]. However, the existing review papers either survey the
applications of a single ML model, e.g., ANNs [17], or cover only one energy domain, e.g., solar
radiation forecasting [24]. Consequently, the advancements of ML models and their progress in
various energy systems have not yet been addressed in the literature. Therefore, a comprehensive
review of essential ML models is the main objective of this paper. Consequently, the contribution of
this paper is to present the state of the art of ML models in energy systems and discuss their likely
future trends.

The rest of this paper is organized as follows. In Section 2 the methodology of the research is
presented. In the section three state of the art of ML models in energy systems is presented with an
initial analysis of the database search. The ML models are categorized and the original papers with
high relevance have been reviewed. Each subsection contains a brief discussions and outlook on the
results related to each subject. Section 3 also includes an overview of recently emerged hybrid ML
models. Section 4 focuses on the latest advancement of hybrid ML models in the highly demanding
application areas e.g., solar, wind, and demand energy systems. Finally, in Section 4, an overall
discussion and conclusions are presented.

2. Methodology of Survey

The purpose of the research methodology is to identify, classify and review the notable ML
and DL models used in energy systems. In our comprehensive review, using the Thomson Reuters
Web-of-Science and Elsevier Scopus for implementation of the search queries would ensure that any
paper in the database would meet the essential quality measures, originality, high impact, and high
h-index. Furthermore, to present an in-depth review and understanding of each modeling technique
and its progress, we aimed at having four different categories for the models used in energy systems,
i.e., single ML models, hybrid models, ensemble models, and DL.

Figure 1 demonstrates the methodology of this review. In step 1 of the methodology the initial
database of the relevant articles is identified based on the search queries of: “energy system” and
“machine learning” or “neural network” or “support vector” or “ANFIS” or “WNN" or “DT” or “MLP”
or “ELM” or “ensemble” or “deep learning.” However, for every ML method, we applied a new search
query to suit that search well. These queries will identify the relevant articles, yet the queries are
uncertain whether the ML model belongs to either ensemble or hybrids. Also, some articles in the
initial database might not be relevant at all. For instance, a hybrid or ensemble model of ML may
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include single model (s). For that reason, steps 2 and 3 of the methodology are designed in such a way
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Figure 2. The growth in the number of articles during the past two decades.



the quantity of the literature on the use of ML in various energy systems (see Figure 2). Considering
the application areas of the database, ML models have been extensively used in diverse applications
of energy systems, especially for predicting electrical energy and renewable energies demand and
consumption. The continued growth of literature can also confirm the great potential of ML models
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comparative performance parameters are the root mean squargerror (RMSE) and correlation coefficient
(r), which are used to indicate the error|an Et{(iiswﬁ (ﬁ e models [27,28]; Equations (1) and (2)

represent these parameters. r=1-| = )
RMSE = 1
n l:1 . . . ( )
where x: represents the target value, xyi represents the predicted value, and # is the number of data points.
n
2
,Zl(xti — Xpi)
=
r=11- i, ’ 2)
L (xt)

i=1

where x;; represents the target value, x,; represents the predicted value, and 7 is the number of
data points.
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Figure 4. Results for study by Abbas et al. (2018). Reproduced from [29], Elsevier: 2018.
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Anwar et al. (2017) [30] presented a novel strategy for generation scheduling and power
smoothing for a hybrid system of marine current and wind turbines. In this study, innovative
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The output of the system was measured for one year. The photovoltaic system output was simulated
and predicted by self-organizing feature maps, feed-forward networks, support vector machines,
and multi-layer perceptron. Ambient temperature and solar radiation data were these model’s inputs,
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Shlmray etal. (2017) [ per%ormed a stud on the 1nst£Ntlon ofl hy ropower p ant sites ranking

makers to rank potential power plant sites based on water quahty, air quahty energy delivery cost,
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P@memﬁnmﬁﬂayer perceptron and neural autoregressive with exogenous inputs was
presented. The proposed model has excellent ability to produce hourly solar radiation forecasts for

cheaper data such as relative humidity and temperature. The results of the best model are presented
in Table 3 for the developed model. The study proposes the NARX method in conjunction with the
MLP method. As is clear from Table 3, the proposed method has the best prediction capability with
reference to nRMSE and correlation coefficient values.
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3.3. EEM and Other Advaneed ANNs

In erder to find an advaneed version of ANNg, the keywerds of the seareh here were exireme
learning machine, Feed-forward neural netwerks, Back-propagation neural aetwerks, functienal
neural netwerk, Feedferward, and baek propagation. The ELM has a high speed of learning and the
proper ability of generalization. Talphe 4 s SRR IRRRA AR RS ith s Rl

Table 4 Notable EEM models used in energy sysiems.
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Arat and Arslan (2017) [42] presented an optimum design for a geothermal heat pump for a
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Figure 9. r values of study of Arat and Arslan (3017). Reproduced from [43}; Elsevier: 2017

Table 5. RMSE values of the study of Arat and Arslan (2017). Reproduced from [42], Elsevier: 2017.
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Bagnasco et al. (2015) presented a study of power consumption forecasting (load forecasting
model) in hospitals. The presented artificial neural network utilizing a backpropagation training
algorithm canttddecl daddstitimeththdadnylathatercancenitiy: e éyxgalay day. (evgekdagkdaidobdad
ardtheeather. Tataprdpespddpasedt tdpesashmlgorithrasitn ibe gasiy iintegrat®dildite ManBuélding
Sfstargemealtinys emsi tedh nys taranaséng isydtetns haseedthneliutes anel TestBindatdesddy iseal
tonipdestdey ddtaaR Mspendtieschdate bR resdnesihavBigeen Presented in Figure 10.
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3.5. Wi takes the benefits of both the theory of wavelets and neural networks and combines them.
This R e e St Ihe R ot R SR REorks A Lo e e
This method contains an FFNN with one hidden layer. One of the missions of WNNSs is to estimate
the function of a process or a trend or computing. A WNN can train the structure of a function using

a series of data and generate or compute an expected output value for a given input value [52]. WNN
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function of a process or a trend or computing. A WNN can train the structure of a function using a
series of data and generate or compute an expected output value for a given input value [52]. WNN
has f?gyﬁ)@l ﬁvgg?g@mg@%er neural networks. WNN needs a smaller training amount than thg

method, and has fast convergence. Table 7 presents some important papers in this field.
has several advantages over other neural networks. WNN needs a smaller training amount than the

MLP method, and has fasta3f{eRsiARl IR P edelsatiekBhsasiap i papers in this field.
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Figure 14. RMSE and r values for study by Gu et al. (2018). Reproduced from [54], Elsevier: 2018.
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Qin et al. (2018) [56] introduced online energy management control of hybrid electric vehicles
based on NDP to optimize battery state of charge and fuel economy at the same time. In the proposed
NDP method, the action network was a conventional wavelet neural network, and the critic network
was a multi-resolution wavelet neural network. The action network was constructed on the Morlet
function, and the critic network was stem from the Meyer wavelet function. Based on results, the
NDP EMS have a high capability the same as the NDP in online applications. Based on comparisons,
the RBFNN-based NDP EMS supports the efficiency of the CWNN and MRWNN.
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Table 8. Notable ANFIS models used in energy systems.
3.6. ANFIS
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Abdulwahid and Wang (2018) [58] introduced a novel protection method for preventing reverse
power flow developed on neuro-fuzzy networks for utilization in the smart grid. This study presented
an upgraded protection device using a newly developed intelligent decision support system (IDSS).
The presented IDSS was a decision system support system that coupled the robust specification for
fuzzy inference systems and neural networks. The proposed methodology can monitor extreme
environmental conditions.
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power flow developed on neuro-fuzzy networks for utilization in the smart grid. This study
presented an upgraded protection device using a newly developed intelligent decision support
system (IDSS). The presented IDSS was a decision system support system that coupled the robust
Eggg}efg%%ogk fl% 1fuzzy inference systems and neural networks. The proposed methodology 2B
monitor extreme environmental conditions.

Bassam et al. (2017) [59] developed an adaptive neuro-fuzzy inference to estimate the
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Mohammadi et al. (2016) [61] presented a method to identify the essential parameters for
forecasting global solar radiation utilizing an ANFIS selection procedure. In this study, a
methodology based on ANFIS was applied to identify the most related parameters for daily
prediction of global solar radiation. Three different cities were considered as case studies. Nine
parameters of extraterrestrial radiation, sea level pressure, relative humidity, water vapor pressure,
minimum, average and maximum air temperatures, maximum possible sunshine duration, and
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Kampouropoulos et al. (2018) [60] introduced a novel approach for multi-carrier energy systems’
energy optimization. In this study, an adaptive neuro-fuzzy inference system was applied to forecast
Entg}gejepﬁ)‘iv?E 2d%'&and 'of'a fzilctory, aer a genetic algo.rithm was used to model its energy ﬂOV\@"gPL&
objective of the optimization algorithm was to fulfill the power demand of the factory to reduce
optimization criteria. The proposed method was validated at SEAT.
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Sajjadi et al. (2016) [62] performed a sensitivity analysis using catalyzed-transesterification as a
renewable energy production system [63] by an ANFIS-based methodology. Influential parameters on
transesterification yield should be analyzed and predicted. ANFIS was applied in this paper to select
the most critical parameters based on operational variables. Experimental results were used to extract
training data for an adaptive neuro-fuzzy inference system network. The robustness of the presented
method was verified by the simulation results.

3.7. Decision Trees

The decision tree method is used to approximate discrete-valued target functions that the learned
function is illustrated by a decision tree. These methods are among the most powerful inductive
inference algorithms and are successfully used in many different energy systems. Table 9 presents
some important papers in this field.

Table 9. Notable decision trees models used in energy systems.

Year Authors Journal Application
2018 Aguado et al. [64] IEEE Transactllons on Railway electric energy systems optimal
Smart Grid operation
2016 Costa et al. [65] Electric Power Systems  Security dispatch mgthod for coupled natural
Research gas and electric power networks
2017 Kamali et al. [66] Applied Energy Prediction of the risk of a blackout in electric
energy systems
2016 Moutis et al. [67] Applied Energy energy storage planning and energy controlling
2016 Ottesen [68] Energy Total cost minimization in energy systems for

the prosumers’ buildings
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Aguado et al. (2018) [64] introduced a methodology for railway electric energy systems optimal
operation considering PV panels and wind turbines as renewable energy sources, hybrid electric
energy storage systems, and regenerative braking capabilities. The uncertainties related to renewable
energies were considered through a scenario tree methodology. All the compliments were coupled
into a multi-period optimal power flow problem. Results were reported for different cases for different
operation modes.

Costa et al. (2016) [65] presented a security dispatch method based on decision trees, which can
be applied to coupled natural gas and electric power networks against contingencies that may cause
interruptions. Preventive measures to the optimal gas production and electric energy generation were
performed based on boundaries of controllable variables and security regions determined by decision
trees. The decision tree’s rules give details of the security regions were tractable constraints and
were included in the optimization procedures of gas production and power generation rescheduling.
Kamali et al. (2017) [66] presented a novel two-stage method to predict the risk of a blackout in an
electric power network. Firstly, electric islands’ boundaries were determined to utilize a mixed integer
nonlinear programming method that optimized the cost of load curtailment and power generation
re-dispatch. Secondly, a data-mining method was completed to forecast the risk of an electric island
separation from the rest of the network. Several scenarios such as island and non-island situations
were analyzed and then used by the decision tree classification method to forecast a possible blackout.

Moutis et al. (2016) [67] presented a novel tool for utilization of decision trees for planning storage
systems in microgrids and controlling energy resources to balance energy for planned community
microgrids. The presented methodology was validated by sensitivity analysis for several case studies.
A test implementation was introduced for the utilization of distributed controller hardware to run
the algorithm of energy balancing in real-time. Ottesen et al. (2016) [68] used decision tree for energy
balancing and planning for planned community microgrids. The goal of this paper was to minimize the
total cost by trading in an electricity market and considering grid tariffs costs, imbalance penalization
and fuels use. The flexibility properties of the energy systems in the buildings of prosumers was
modeled bidding rules and handling the interrelations between hours were considered. Uncertain
parameters’ information structure was captured through scenario trees. Therefore, a two-stage
stochastic mixed-integer linear program was applied for bidding decisions and scheduling.

3.8. Deep Learning

Deep learning aims at modeling the hierarchical characterization behind data prediction patterns
through stacking multi-layer information processing modules. Increasing computing power and
increasing data size resulted in the popularity of deep learning. Table 10 presents some important
papers in this field.

Table 10. Notable deep learning models used in energy systems.

Year Authors Journal Application
2018 Chemali et al. [69] Journal of Power Sources Battery State-of-charge estimation
2017 Coelho et al. [70] Applied Energy Household electricity demand forecasting
. Computational Intelligence Estimation of the power consumption of
2017 Kim etal. [71] and Neuroscience individual appliances in the distribution system

Sustainable Energy, Grids,

2016 Mocanu et al. [72] and Networks

Prediction of building energy consumption

Energy Conversion and

2017 Wang et al. [73] Management

PV power forecasting
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Chemali et al. (2018) [69] introduced a machine learning methodology for state of charge (SOC)
estimation in Li-ion batteries utilizing deep neural networks. In this study, a new approach utilizing
deep neural networks was presented for estimating battery SOC. Training data were generated in
the laboratory by applying drive cycle loads for different ambient temperatures to a Li-ion battery.
As a result, the battery can be exposed to variable dynamics. The ability of deep neural networks
to encode dependencies into the network weights in real time was demonstrated. Coelho et al.
(2017) [70] presented a deep learning model for Graphics Processing Unit for time series forecasting.
A new parallel methodology for time series learning was designed. The presented methodology
was applied in a hybrid metaheuristic model for mini/microgrid forecasting problem (household
electricity demand). Calculated results demonstrated that the presented graphics processing unit
learning methodology was a robust deep learning tool to be used in smart sensors. Kim et al. (2017) [71]
presented a nonintrusive load monitoring method based on advanced deep learning. In this study, an
energy disaggregation utilizing advanced deep learning and long short-term memory recurrent neural
network model was proposed. Then, a new signature to upgrade the proposed model classification
performance in multistate appliance case was designated. It was demonstrated that the combination
between novel signature and advanced deep learning could be a robust solution for improving load
identification performance.

Mocanu et al. (2016) [72] introduced two novel models, namely Factored Conditional Restricted
Boltzmann Machine and Conditional Restricted Boltzmann Machine, for prediction of energy
consumption time series. The models were evaluated by four years of one-minute electric consumption
data gathered from a residential building. The results demonstrated that Factored Conditional
Restricted Boltzmann Machine outperformed ANN, SVM, RNN, and CRBM. In this study, predictions
were performed in various scenarios. RMSE and correlation coefficient were employed to compare the
results to choose the best model. Figure 18 presents the RMSE (a) and correlation coefficient (b) values
in case of prediction for a year with a weekly resolution.

Wang et al. (2017) [73] introduced a new method for photovoltaic electricity forecasting utilizing
wavelet transform and deep convolutional neural network. The deep convolutional neural network
was used to extract invariant structures and the nonlinear features exhibited in each frequency.
Numerical results demonstrated that the introduced methods could improve the accuracy of forecasting
for various seasons and different prediction horizons. Figure 19 presents the average RMSE values in
two scenarios, 45- and 75-min-ahead PV power forecasting.
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3.9. Ensemble Methods

Ensemble methods employ multiple learning algorithms in machine learning and statistics, in
order to reach the best modeling performance compared any other single learning algorithms. In
statistical mechanics, the ensemble method contains only a concrete finite set of alternative models
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3.9. Ensemble Methods

Ensemble methods employ multiple learning algorithms in machine learning and statistics, in
order to reach the best modeling performance compared any other single learning algorithms. In
statistical mechanics, the ensemble method contains only a concrete finite set of alternative models
but allows for a flexible architecture to exist among alternative models [74]. Table 11 presents some
important papers in this field.

Table 11. Notable ensemble models used in energy systems.

Year Authors Journal Application

forecasting of building

2015 Burger and Moura [75] Energy and Buildings electricity demand
2017 Changfeng et al. International ]ournallof Control and Non-linear faglt features
Automation extraction
Cooling load forecasting in
2018 Fu, G. [76] Energy buildings
. . . . Human energy expenditure
2015 Gjoreski et al. [77] Applied Soft Computing Journal estimation
2016 Hasan and Twala [78] Interna.tlonal ]ourna.l of Innovative Prediction of the underground
Computing, Information, and Control water dam level

Burger and Moura (2015) [75] worked on the generalization of electricity demand forecasting by
formulating an ensemble learning method to perform model validation. By learning from data streams
of electricity demand, this method needed little information about energy end use, which made it
desirable for real utilization.

Changfeng et al. (2017) used ensemble empirical mode decomposition (EEMD) and multiclass
relevance vector machine for diagnosis of faults of self-validating air data sensing system. The
EEMD working principle was highlighted for distinct faults features extraction. The multiclass
relevance vector machine was utilized for fault diagnosis in a self-validating air data sensing system.
By the failure mode analysis and prototype design of the self-validating air data sensing system,
an experimental system was designed to verify the execution of the presented methodology.

Fu (2018) [76] presented an ensemble approach for forecasting of the cooling load of the
air-conditioning system. The presented approach was used for deterministic forecasting of the cooling
load with high precision. In this approach a deep belief network, empirical mode decomposition, and
the ensemble technique were utilized. The data series of the original cooling load was decomposed
into several components. The ensemble method was used to mitigate the influence of uncertainties,
such as data noise and model uncertainty, on forecasting precision. Figure 20 presents the RMSE
values of the study for each season by the employed models.

Gjoreski et al. (2015) [77] utilized the ensemble method for estimation of human energy expenditure.
In this paper, a multiple contest ensemble method was presented to extract multiple features from
the sensor data. Every feature was utilized as a context for building multiple regression models and
applying other features as training data. The models related to the feature values in the evaluated
sample were assembled regression models ensemble to estimate the energy expenditure of the user.
Figure 21 presents the RMSE values of the study for each activity by the employed models.

Hasan and Twala (2016) [78] presented an ensemble technique to monitor and predict the
underground water dam level. Six different classifier methods were applied for this goal. The paper
introduced a new method to select the most appropriate classifiers to construct the most accurate
ensemble. This methodology was based on the determination of the amount of mutual information
between pairs of classifiers and was utilized to find the optimum number of classifiers to build the
most precise ensemble.
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the electr1c load to several parts related to hlgh frequencies and an approx1mate part related to low
frequencies. The quantum particle swarm optimization algorithm was utilized for optimizing the
parameters of support vector regression. The validation of the method demonstrated that it could
provide forecasting with good precision and interpretability. Qu et al. (2016) [83] introduced a hybrid
model for wind speed forecasting based on fruit fly optimization algorithm and ensemble empirical
mode decomposition. The original data of wind speed was divided into a set of signal components
using ensemble empirical mode decomposition. Then, the fruit fly optimization algorithm was used
to optimize parameters of prediction artificial intelligence models. The final prediction values were
acquired by reconstructing the refined series. The empirical results demonstrate that the presented
hybrid model was better than some of the existing forecasting models. Figure 23 presents the RMSE
values of the study by the employed models.
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Renewable energy systems such as wind and solar are site- dependent and highly difficult to
predict [7,87,88]. The prediction model using hybrid ML models effectively contributes to increased
solar energy production [89]. The economic and environmental aspects of solar photovoltaic as a
renewable energy source have caused a significant rise in the number of PV panels in recent years. The
high level of computational power and data has empowered ML models for more precise predictions.
Due to the significance of prediction in solar photovoltaic power output for decision makers in the
energy industry, ML models are employed extensively. Table 13 lists some critical papers in this field.
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Table 13. Notable hybrid ML models in solar energy systems.

Year Reference Journal ML Model Application
. Hybrid Forecasting of the solar
2016 David et al. [90] Solar Energy ARMA-GARCH model irradiance
International Journal GRNN, RF, ELM and
2017 Feng et al. [91] of Hvdrogen Ener optimized back Estimating daily Hd
ydros 8y propagation GANN
. Gradient boosting, RF . .
2017 Hassan et al. [92] Applied Energy and bagging Modeling solar radiation
Salcedo-Sanz et al. . A hybrid CRO-ELM Estimation Of. da.uly global
2018 (93] Applied Energy model solar radiation in
’ Queensland, Australia.
2017 Salcedo-Sanz et al. Renewable Energy A hybrid CCRO-ELM Glf)b.al solar ra.ldlahon.
[94] model. prediction at a given point
. Forecasting the output
2017 Touati et al. [95] Renewable Energy Hybrid of M4, A.R and power of PV panels in
ARMA modeling - .\
environmental conditions.
linear quadratic . .
2017 Voyant et al. [96] Energy estimation Prediction of solar yields
2017 Voyant et al. [97] Energy Hybrid of multilayer For?ca'stmg of global
perceptron radiation time series

David et al. (2016) [90] evaluated performances of a combination of ARMA and GARCH models
in econometrics to establish solar irradiance probabilistic forecasts. A testing procedure has been
utilized to evaluate probabilistic forecasts and point forecasts. The results are presented in Table 14

and Figure 25.

Table 14. Results related to the study by David et al. (2016). Reproduced from [90], Elsevier 2016.

Method RMSE
Recursive ARMA 20.8%
SVR 20.8%
NN 20.6%
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As is clear from Table 14 and Figure 25, Recursive ARMA has a low value for RMSE compared
with other models. Therefore it can be claimed that the presented model can carry out point forecasts
as accurately as other models established on machine learning techniques, and the accuracy of the
proposed model is same as the other machine learning techniques for both point and probabilistic

forecasts.
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As is clear from Table 14 and Figure 25, Recursive ARMA has a low value for RMSE compared
with other models. Therefore it can be claimed that the presented model can carry out point
forecasts as accurately as other models established on machine learning techniques, and the accuracy
of the proposed model is same as the other machine learning techniques for both point and
probabilistic forecasts.

Feng et al. (2017) [91] incorporated GRNN, RE, ELM, and optimized back propagation GANN to
estimate daily Hd for two stations in northern China. All presented artificial models were compared
with the empirical model (Table 15 and Figure 26).

Table 15. Results related to the study by Feng et al. (2017). Reproduced from [91], Elsevier: 2017.

Station ML Model RMSE r
ELM 173 0.919
GANN 17.1 0.9209
Beijing RF 183  0.9102
GRNN 19.2 0.8902
Igbal 329 0.8865
ELM 13.8 0.947
GANN 134 09515
Zhengzhou RE 15 0.9408
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normal cledrness index as the output of the model.
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model. H1 is an hourly model with horizontal global irradiation, sunshine time, day number as
inputs, and horizontal global irradiance as the output of the model. H2 is an hourly model with global
clearness index, sunshine fraction, day number as inputs, and a diffuse fraction as the output of the
model. H3 is the hourly model with global clearness index, sunshine time, day number as 1nputs7 and
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2
1.8
1.6
14
X112
=]
50'8
0.6
04
02
0 ia sl o nanuliun I8 1 0 0 B 0 oo
PSR P e SER|pE8SSh|pen S E|peaSERpERSER
28 =2w |28 2w FHs=Ew ZH 2w |[FH 2w |2y ==
£z & & Z 2 sz sz 2z
= = (== (=3 =) QL = =] =3 =1
= = £ ] ol =]
Energies 2019, 12, x FOR PHER REYIEW D2 D3 H1 H2 H3 28 of 43
(a)
1
09
0.8
0.7
=06
0.5
04
03
02
0.1
S 1
R R I e CErEI EE BT
SR SnSE 8 zi”-&‘@%zi”ﬁg‘g Sz-5 g zgaé'ga zgo
gn 8m 8:: 80: c @ 53
(=3¢ -] =2 -] (= -1 = =1 = = = =1
= E-] = = = =
D1 D2 D3 Hl H2 H3
(b)
Figure 27. (@) RMSE and (b) r values for study by Hassan et al. (2017). Rigpuatiwest! ffam [B2],

Elsevier: 201177.

Based on Figure 27, generally, SVR has the best prediction ability esmpared with the sther
technigues because it has a high eorrelation eoefficient and a lew average RMSE eompared with the
sther models employed By Hassan et al: [14]. Saleedo-8anz et al: (2018) [93] integrated the ERO with
the ELM meodel in their study. The presented algerithm was applied in twe stages: An ELM algorithm
was used for the feature selection process; and selar radiation was estimated using the eptimally

sereened variables by the CRO-FN Rl (Higree29).
Based on Figure 28, the hybrid CRO-(ELM)-ELM model has the highest accuracy compared with

that for hybrid CRO-(ELM)-MLR, CRO-(ELM)-MARS, and CRO-(ELM)-SVR and the GGA models.
Generally, the CRO-baséfl hybrid system is carefully screened through a wrapper-based modeling
system. The hybrid CRO4ELM)-ELM model presents clearer advantages compared with the alternative
machine learning appzoaches.

Salcedo-Sanz et El 4(2017) [94] studied the prediction of global solar radiation at a given point
incorporating a mulﬁlqiy,er perceptron tfained with extreme glearning | machines. A coral reefs
optimization algonth% with species was used to reduicefthe number of significant predictive variables.
Based on the results (Figure 28), the propesed madel -SP) hds been tested by Toledo (Spain)
data. The average best re%ul&of RMSE was egual to 69 19 &W /m )@whlch led to higher accuracy of
predictions compared w1th}0th§r Clgﬁ'[e l&ar{ﬁiﬁ u&ts %l&‘élalﬁ’ is evident in Figure 29,
which presents the avelégg é&;a 1&§§‘ 0&-@7\/@ @v tl&@‘foz@i‘x\ d lgpgct@'clgﬁ\ques
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techniques because it has a high correlation coetficient and a low average RMSE compared with the
other models employed by Hassan et al. [14]. Salcedo-Sanz et al. (2018) [93] integrated the CRO with
the ELM model in their study. The presented algorithm was applied in two stages. An ELM algorithm
was used for the feature selection process, and solar radiation was estimated using the optimally
srreeneehyaniables by the CRO-ELM model (Figure 28). 28 of 42
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atmospheric conditions. This study’s goal was to investigate photovoltaic performance in the harsh
environmental conditions of Qatar. The ML model was used to relate various environmental factors
such as irradiance, PV surface temperature, wind speed, temperature, relative humidity, dust, and
umul%ll\é? 15111% o power production. Figure 30 presents the results of the analysis with correzléaglfo&

nergies 2
coefficient.
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Figure 30. Correlation coefficient values for study by Touati et al. (2017). Reproduced from [95], the
Elsevier: 2017.

As is clear from Figure 30, Linear Regression and M5P tree decision algorithms have been
developed for prediction proposes equipped with CFS and RelifF to select subsets of relevant and
high-quality features. Based on the results, the M5P model equipped with RelifF creates more accurate
predictions due to its high correlation coefficient value; on the other hand, the developed models are
relatively simple and can be readily equipped to predict PV power output.

Voyant et al. (2017) [96] proposed models based on the Kalman filter to forecast global radiation
time series without utilizing historical data. These methodologies were compared with other
data-driven models with different time steps using RMSE values. The results claimed that the
proposed model improved the prediction purposes. Voyant et al. (2017) [97] presented a method to
better understand the propagation of uncertainty in the global radiation time series. In this study, the
reliability index has been defined to evaluate the validity of predictions. The presented method has
been applied to several meteorological stations. The comparisons were performed using RMSE factor.
The results were promising for successfully applying in these stations in the Mediterranean area.

There are many novel hybrid ML models proposed to forecast solar radiation. Hybrids of
the ANN method have often been used for this purpose and SVM and SVR are being used more
extensively nowadays. SVM and SVR usually have the same forecasting performance. Also, the
ensemble models were reported to generally deliver higher performance. SVR, GP, and NN have
better forecasting performance than AR in forecasting solar radiation. The RMSE values of ELM,
GANN, RF, and GRNN [18] shows that there is no meaningful difference between them in terms of
forecasting performance.

In order to integrate highly volatile wind power in a power grid, precise forecasting of wind
speed is crucial. This would result in less of a need to control the energy provided by wind, having
battery loading strategies and planning reserve plants. ML models can predict a time interval from
seconds to hours and, as a result, are essential for energy grid balancing. Table 16 shows some
critical papers in this field. The estimation of the total power collected from wind turbines in a wind
farm depends on several factors such as the location, hub height, and season. Cornejo-Bueno et al.
(2017) [98] applied different machine learning regression techniques to predict WPREs. Variables from
atmospheric reanalysis data were used as predictive inputs for the learning machine. RMSE was
employed as a comparison factor among the developed models. The results have been presented in
Figure 31. In general, GPR followed by MLP has the lowest RMSE compared with SVR and ELM for
each farm. This shows the high prediction capability of GPR and MLP models, in line with the purpose
of the study.
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Table 16. Notable hybrid ML models in wind energy systems.

Year Reference Journal ML model Application
Cornejo-Bueno et al. . SVR, MLP and ELM, GPs, Accurate prediction of
2017 Energies . . .
[98] ERA-Interim reanalysis Wind Power Ramp Events

MLP, SVR, fuzzy inference
2018 Khosravi et al. [99] Applied Energy system, ANFIS, and group
model of data handling

Prediction of wind speed
data for Osorio wind farm

International Journal Accurate wind power

2017 Burlando et al. [100] of Renewable Energy Hybrids of ANNs ! +
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identify early failures, boost production, limit downtime, and lower the energy cost. A Gaussian
Process algorithm was presented to roughly calculate operational curves, which can be utilized as a
reference model to recognize critical failures of the wind turbine and enhance power performance.
Figure 33 presents the correlation coefficient for the prediction results of four variables using
Gaussian process compared with the target values. Based on Figure 33, this model successfully
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estlmated the power curve compared with other Varlables Sharlflan et al (2018) [102] presented a
new model based on the fuzzy neural network to forecast wind power under uncertain data
conditions. The proposed model was established using a particle swarm optimization algorithm. This
model was based on the neural network’s learning and expert knowledge of the fuzzy system. The
f%%iéﬁ%%?ﬁ%&%qlwas validated against a real wind farm. The results are presented in Figure 3431%8&{%
RMSE values for each case study. As is evident, RMSE for the first case study has the lowest value

enauiiasstheafifBecass sthdudas dherbijshestyabiticihereipre it dambagiaimedothatchsRresipion af
thegapioyed model for the first case study is higher than that of other case studies.
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Kuroha et al. (2018) [108] presented an operational planning model for residential air conditioners.
In this study, the focus was on automatic air conditioners for thermal comfort improvement and
electricity cost reduction. An energy management methodology was introduced to provide an air
conditioner operation plan by learning the installation environment characteristics from result data of
the historic operation. Based on the results, the proposed model could reduce the electricity cost about
39.7% compared with that for the benchmark method.

The type of data that is available today is continuously evolving. Some data already encode
information that is used as proxy metrics to predict energy consumption in buildings. For example,
geometry, size, and height can be used to predict energy consumption in buildings. Wang et al. [109]
developed the Unige Building Identifier to correspond attribute data and building energy to smooth
the way for corresponding across datasets. Depecker et al. [110] matched the consumption of heating
of the buildings and their shape. In this study, the criterion for the shape of buildings was presented.
Fourteen buildings were chosen based on their shape varieties. The results demonstrated that the
energy consumption of buildings is inversely proportionate to the building’s compactness. Qi and
Wang [111] introduced a novel model for calculation of shape coefficient of buildings utilizing Google
Earth. Astronomy principles, geometry, and GIS slope analysis were used for calculation of shape
coefficient of buildings. This new model can be used for energy-saving measures in existing buildings.

ML and big data have led to believe that personally identifiable information is released when
predicting energy patterns, and so forth. However, this is not often the case. The following studies show
how to protect data privacy while predicting and disclosing information about energy in commercial
buildings. Livingston et al. [112] presented a solution to measure the impact of modifying the utility
meter aggregation threshold for dweller privacy and on buildings that are qualified for energy usage
reporting. As the threshold rises, lesser buildings are qualified for disclosure of energy use data. This
paper’s goal was to study the resemblance between whole-building totals and individual utility meters
at various aggregation levels. Sweeney et al. [113] proposed a solution for data privacy. The solution
included a formal protection model titled k-anonymity as a series of accompanying policies. For this
definition of privacy, in a k-anonymized dataset, every record is identical from at least k-1 other records.
Machanavajjhala et al. [114] studied two problems about k-anonymity; little diversity in sensitive
attributes and background knowledge of attackers. They introduced a new privacy criterion called
l-diversity that can shield against such attacks. The hybridization of ML models in energy demand
field demonstrated that the accuracy of energy demand forecasting could improve significantly. Also,
an ensemble model has significantly higher generalization ability than ANN and SVM models, and it
has a lower uncertainty of forecasting [7,32].

3.11. Comparative Analysis of ML Models

Table 18 provides a comparative study of ML models and deep learning for prediction in
different energy systems. In this table, the complexity of ML models, user-friendliness, accuracy,
speed, and dataset type are summarized. Hybrid ML models are reported to be superior in terms of
user-friendliness, accuracy, and speed. However, the complexity of their methodologies has increased.

There is not any meaningful difference in the forecasting performance of SVR, GP, and NN
models [17]. Therefore, their quality of forecasting is the same. Considering the reviewed papers,
these models have the same statistics of error. Also, SVM and SVR have similar performance, with
no statistical forecasting performance difference among them. SVR models have lower forecasting
performance than ELM, GPR, and MLP models [20]. Decision Tree models have a lower fluctuation
of performance than SVM and NN models for quarter-hourly, daily, and weekly periods [46]. The
RMSE value of SVM models are higher than the MLP models, and therefore it has lower forecasting
performance [52]. The hybrid models have a lower RMSE value than ARIMA, EEMD-FOASVR, and
EEMD-FOAGRNN [96]. Hybridizing existing methodologies and algorithm ensemble are among the
most effective ways to improve the ML models.
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Table 18. Comparative study of ML models in energy systems.

ML Model Complexity User-Friendliness Accuracy Speed Dataset Type
ANN Reasonably high Low High Reasonable Historical
MLP Reasonable Reasonable Reasonably high High Historical
EILM Reasonable Reasonably high Reasonable Reasonably high Historical
SVM Reasonably high Low High Low Historical

DT Reasonable Low Reasonable Reasonable Historical
DL High Reasonable High Reasonable Historical
Ensemble High Low Reasonable High Historical
WNN Reasonable Low High Low Historical
ANFIS Reasonable Reasonable Reasonable High Historical
Hybrids Reasonable High High High Historical

4. Conclusions

Smart sensors, smart grid, and IoT technologies have enabled big data with new challenges and
opportunities to the energy systems. The ML models have gained popularity in putting big data in the
constructive use for informed-decision and more efficient models. The state of the art of ML models in
energy systems identified 10 groups of ML algorithms with the highest popularity for model building
in energy systems, i.e., ANN, MLP, ELM, SVM, WNN, ANFIS, decision trees, deep learning, ensembles,
and advanced hybrid ML models. Diverse applications of each ML models have been reviewed
showing the popularity and effectiveness of ML models almost in any energy domain. The example
application of ML models include energy consumption prediction, demand prediction, cost prediction,
wind speed estimation, load forecasting, solar radiation prediction, ranking, various optimization
tasks, power generation forecasting, power quality estimation, time series forecasting, load perdition,
wind speed forecasting, power demand prediction, risk prediction, storage planning, energy control,
peak load management, dynamic energy pricing, cost minimization, battery charge estimation, price
prediction and more. Further investigation of the accuracy and generalization ability of the various
ML models suggested that novel hybrid models are superior to the more conventional ML models.
The trend in advancement of hybrid ML models will continue to deliver higher performance and
sophisticated energy models.

The progress of renewable energy systems is dependent on the advancement of ML models.
Note that renewable energy systems have recently gained popularity due to climate protection and
sustainability concerns, so it is more acceptable to extract energy from the wind, sun, and other
renewable energy resources. The central aspect of all renewable energy resources is their dependence on
the environment and huge barriers to controlling and planning. Furthermore, due to the expansion of
the electricity grid, it is necessary to forecast power generation and demand. Nevertheless, fluctuations
in wind and solar energies and energy demand have a negative impact on the grid and its users if not
managed properly. Therefore, ML models have become essential in such energy systems. The review
of these particular applications has demonstrated the promising robustness of the ML models. Based
on the results, the research direction is moving toward personalized ML models designed for a
particular application. This trend has shown that the highest degree of accuracy can be achieved
though case-based ML model development. Although the hybrid ML models are reported as the
optimal choice and the future trend in energy systems, further evaluation and comparison of various
hybrid ML models are essential, considering alternative comparative performance parameters besides
the RMSE and r.
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Acronyms

AR Autoregressive

ARMA Autoregressive Moving Average

ANNSs Artificial Neural Networks

ANFIS Adaptive Neuro-Fuzzy Inference System
BANN Back Propagation Neural Network

BP Back Propagation

CFs Correlation based Feature Selection

CGP Cartesian Genetic Programming

CRBM Conditional Restricted Boltzmann Machines
CRO Coral Reefs Optimization

CWNN Convolutional-Wavelet Neural Networks
DL Deep Learning

DOPH Direct Optimum Parallel Hybrid

DT Decision trees

EANN Evolutionary Artificial neural networks
EEMD Ensemble Empirical Mode Decomposition
ELM Extreme Learning Machine

EMD Empirical Mode Decomposition

FCRBM Factored Conditional Restricted Boltzmann Machine
FFNN Feed Forward Neural Network

FIS Fuzzy inference system

FOARBF Fruit Fly Optimization Algorithm Radial Basis Function

FOAGRNN  Fruit Fly Optimization Algorithm Generalized Regression Neural Networks
FOASVR Fruit Fly Optimization Algorithm Support Vector Regression

GA Genetic Algorithm

GANN Neural Networks by Genetic Algorithm
GARCH Generalized Autoregressive Conditional Heteroskedasticity
GHG Greenhouse Gas

GFF General Factorization Framework

GP Gaussian Processes

GPR Gaussian Processes Regression

GRNN Generalized Regression Neural Networks
IDSS Intelligent Decision Support System

IoT Internet of Things

KELM kernel-based extreme learning machine
KFCM Kernel Fuzzy C Means

KNN K-Nearest Neighbors

LM Levenberg-Marquardt

MARS Multivariate Adaptive Regression Splines
ML Machine Learning

MLP Multilayer Perceptron

MR Multi-Resolution

MLR Multiple linear regression

MTL Method of transmission lines

MRWNN Multi-Resolution Wavelet Neural Network
NARX Nonlinear Auto-Regressive with external input
NDP Neuro-Dynamic Programming

NN Neural Networks

NWP Numerical Weather Prediction

OLR Outgoing long-wave radiation

PR Persistence model

PSO Particle Swarm Optimization

PV Photovoltaic
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r

Correlation coefficient

RBF Radial Basis Function

RBENN Radial Basis Function Neural Networks

RF Random Forests

RMSE Root Mean Squared Error

RNN Recurrent Neural Network

SANN Subsequent Artificial Neural Networks

SAPSO Self-Adaptive Particle Swarm Optimization
SARIMA Seasonal Autoregressive Integrated Moving Average
SCADA Supervisory Control and Data Acquisition

SCG Scaled Conjugate Gradient

SE Solar radiation

SEAT A car manufacturing plant in Spain

SOC State of Charge

SOFM Self-Organizing Feature Map

SVM Support Vector Machine

SP Coral Reefs Optimization algorithm with species

SVR Support vector regression

WPRE Wind Power Ramp Events

WNN Wavelet Neural Network
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