
Citation: Kausar, A.; Ahmad, I.;

Rakha, S.A.; Eisa, M.H.; Diallo, A.

State-Of-The-Art of Sandwich

Composite Structures:

Manufacturing—to—High

Performance Applications. J. Compos.

Sci. 2023, 7, 102. https://doi.org/

10.3390/jcs7030102

Academic Editor:

Francesco Tornabene

Received: 22 December 2022

Revised: 13 February 2023

Accepted: 1 March 2023

Published: 7 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

State-Of-The-Art of Sandwich Composite Structures:
Manufacturing—to—High Performance Applications
Ayesha Kausar 1,2,3,* , Ishaq Ahmad 1,2,3,*, Sobia A. Rakha 4, M. H. Eisa 5 and Abdoulaye Diallo 2,6

1 NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering,
Northwestern Polytechnical University, Xi’an 710060, China

2 UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, iThemba LABS,
Somerset West 7129, South Africa

3 NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering,
National Centre for Physics, Islamabad 44000, Pakistan

4 National Center of GIS and Space Applications, Institute of Space Technology, Islamabad 44000, Pakistan
5 Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU),

Riyadh 13318, Saudi Arabia
6 Département Physique-Chimie, Faculté des Sciences et Technologies de l’Éducation et de la

Formation (FASTEF) Boulevard Habib Bourguiba BP 5036 Dakar-Fann, Cheikh Anta Diop University,
Dakar 10700, Senegal

* Correspondence: dr.ayeshakausar@yahoo.com (A.K.); ishaq_ah@yahoo.com (I.A.)

Abstract: This cutting-edge review highlights the fundamentals, design, and manufacturing strategies
used for sandwich composites. Sandwich composite structures have the advantages of light weight,
high strength, impact resistance, stability, and other superior features for advanced applications. In
this regard, different core materials have been used in the sandwich composite structures, such as
cellular polymer foam, metallic foam, honeycomb, balsa, tubular, and other core geometries. Among
these, honeycomb sandwich composite materials have been effectively applied in space engineering,
marine engineering, and construction applications. The foremost manufacturing techniques used
for sandwiched composite structures include hand lay-up, press method, prepreg method, vacuum
bagging/autoclave, vacuum assisted resin infusion, resin transfer molding, compression molding,
pultrusion, three-dimensional (3D) printing, four-dimensional (4D) printing, etc. In advanced com-
posite manufacturing, autoclave processes have been the method of choice for the aerospace industry
due to less delamination between plies and easy control of thickness dimensions. Moreover, machin-
ing processes used for sandwich composites are discussed in this article. In addition to aerospace,
the high-performance significance of sandwiched composite structures is covered mainly in rela-
tion to automobile engineering and energy absorption applications. The structure-, fabrication-,
and application-related challenges and probable future research directions are also discussed in
this article.

Keywords: sandwich composites; core; honeycomb; manufacturing; aerospace; automobile; energy
absorption

1. Introduction

Sandwich composite structures usually consist of two outer thin laminates and a
middle core structure [1,2]. Sandwich structures possess a range of advantages, like
light weight, high mechanical/thermal stability, crashworthiness, corrosion resistance,
etc., compared with other structural materials. Due to their unique design, the sandwich
composite structures have been applied in the important engineering technological fields
of aerospace, automobiles, marine engineering, construction, etc. [3]. Different types of
core materials and designs have been employed in the sandwich composites including
honeycomb core, polymer foam core, metallic foam core, balsa core, tubular core, and
other complex core geometries [4]. Depending on the type of the core, the stiffness and
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flexural/impact strength of the sandwich composites may vary [5]. Moreover, the sandwich
composites possess high thermal insulation properties reliant on the nature of the core.
The inimitable sandwich composite structures have been manufactured using various
facile methods like manual techniques, autoclave, vacuum assisted methods, compression
molding, printing, and various other methods [6–8]. The choice of core structure, face
sheets, and processing methods in turn determine the stability and physical properties
of the sandwich composites. The obtained sandwich structures have been applied in
high-performance engineering and technical fields.

The sandwich composites have a spatial structure with low cost, facile construc-
tion, light weight, high strength/stiffness, high strength-to-weight ratio, and good ther-
mal/acoustical/fire insulation properties [9]. The mechanical, thermal, non-flammability,
and other essential properties of the sandwich composites have been found directly depen-
dent on the core structure, face panels, and manufacturing technique used. In addition to
aerospace engineering, these composites need to be utilized in civil engineering applica-
tion [10]. Therefore, future efforts have been found desirable on the sandwich structures
for uniform energy absorption capacity and dimensional stability of the civil structures.
Moreover, in the future, the overall versatility of sandwich composites may also contribute
to the ballistic resistance for defense purposes [11]. The composites can also be investigated
to overcome the sound transmission problems in civil and space applications. Moreover,
studies on the life cycle assessment of environmental impact sandwich material models
depicted that the mass reduction also reduced the ecological influence over its lifetime [12].
Accordingly, future studies may reveal further environmental impact of the sandwich
structures in various technical uses.

Concisely, in this cutting-edge review, core structure, composite design, fabrication,
and performance of the sandwich structures are considered. Specifically, the review struc-
ture is outlined as follows: Section 2 covers the design of composite structures, Section 3
regards various manufacturing techniques for sandwich composites, Section 4 regards ma-
chining of sandwich composites, Section 5 covers high-performance applications (aerospace,
automotive, energy absorption application), and Section 6 outlines future directions of the
manufacturing/applications of these composites. The core structures have been developed
in different ways to improve the overall sandwich composite properties like mechanical,
thermal, shock, impact, and crash resistance. Incidentally, the high performance sandwich
composite structures have been scrutinized for the aerospace [13] and automobile [14]
engineering and energy absorption [15] applications. Henceforth, this article offers a
groundbreaking and original review on sandwich composite structures considering the
core design, manufacturing techniques, and high-tech end uses. To the best of knowledge,
no such all-inclusive review covering all aspects of sandwich composite structures and
similar outline has been reported previously. In this regard, advancements in sandwich
materials are explored using the related manufacturing technologies. Considerable recent
literature (2018–2023) on sandwich structure manufacturing are discussed here. However,
a few significant reports observed in previous years were also important to mention in
this article. Thus, we attempted to include almost all possible important literatures in this
review to portray the main progress in the field of sandwich composite design, fabrication,
and applications. Future developments in the field of these composites are not possible for
researchers before getting knowledge of the reported field literature.

2. Sandwich Composite Structures
2.1. Cellular Polymer Foam Core

Sandwich structures have been designed using polymeric foams as core material [16,17].
Compared with the metallic core or metallic foam core, a cellular polymer foam core has
the advantages of low cost and facile fabrication. The sandwich structures with cellular
polymer foam have shock wave absorption properties, low velocity impact, blast mitigation,
and crashworthiness for space applications. Various polymers used to develop cores in
sandwich structures include polyurethane [18], poly(vinyl chloride) [19], polystyrene [20],
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and styrene acrylonitrile [21] and other matrices. Depending on the polymer core type,
the sandwich structure may behave differently. Generally, uniform density polymer cores
are preferred for high performance sandwich structures. In polymer foam core sandwich
structures, the face sheets may consist of metal or fiber composites. The energy absorption
(during any shock, impact, or crash) by the sandwich structure depends on the failure
mechanism of the composite core as well as face sheets. Figure 1 shows different cores used
to develop sandwich composite structures.
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Figure 1. Different core structures in sandwich composites.

2.2. Metallic Foam Core

Metallic foam cores have also been developed for better energy absorption perfor-
mance of sandwich structures [22–24]. Aluminum is among the most common metallic
core materials used in sandwich structures. In metallic core sandwich structures, the face
sheets are usually comprised of metals (aluminum/steel) or fiber composites [25,26]. For
high energy absorption, design parameters of metallic core sandwich structures need to be
optimized. Unlike polymer foam cores, the graded metallic cores perform better than the
uniform density cores. The metallic core sandwich structures with composite face sheets
revealed high blast resistance and crashworthiness. However, the metallic sandwich panels
have the disadvantages of high density and processing complexity.

2.3. Honeycomb Core Sandwich Structure

An important type of sandwich structures is the honeycomb core structures. The
honeycomb core sandwich structures have been found to perform outstandingly during
the dynamic loading events in space applications [27–29]. Moreover, the honeycomb core
sandwich structures have better shock wave absorption, crash merit, and low velocity
impact in high performance applications [30]. Face sheets used in the honeycomb core
sandwich panels include fiber composite sheets or metals like aluminum or stainless
steel [31–33]. Previously, aluminum has been used to form the honeycomb core in sandwich
structures. Later, polymers such as Nomex has been included as honeycomb cores [34].
In honeycomb core sandwich structures, the graded cores act better than the uniform
density cores. The honeycomb core has high energy absorption capability, depending upon
the failure mechanisms and design parameters. Moreover, the strain rate and crushing
behavior of the honeycomb core define the overall energy absorption capability of the
sandwich material.
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2.4. Wood Core Based Structure

Efforts towards the implication of ecologically sustainable materials have led to the
use of balsa wood in sandwich structures [35,36]. The balsa core sandwich structures
have been researched for microstructures, thermal stability, mechanical properties, design
engineering, and high-tech applications [37,38]. Consequently, the balsa core sandwich
panels are cost effective, environmentally sustainable, and have high thermal insulation
and low specific mechanical properties [39]. Face sheets of glass fiber reinforced polymer
and carbon fiber reinforced polymer have mostly been used in the balsa core sandwich
panels. The balsa core sandwich structures have been widely used in marine and civil
structural applications. The challenges in the application of balsa core sandwich structures
may include the intricate processing, low water durability, and low impact resistance [40].
Anjang et al. [41] designed the balsa core sandwich panels with face sheets of vinyl ester/E-
glass laminates. Figure 2 displays the temperature–time history for the balsa core sandwich
structures with vinyl ester/E-glass laminates. The thermal flux was found to affect the
front sheets directly exposed to fire. The balsa core structure was found less affected due to
low thermal flux passage. After the fire test, the compression properties of the balsa core
sandwich composite were found to decrease due to the damage of face sheet.
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2.5. Tubular, Corrugated, Auxetic, or Other Cores in Sandwich Structures

Tubular core sandwich structures’ design is comprised of tubes [42,43]. The tubular
cores have been developed using metals as well as polymers. Face sheets used in the tubular
core sandwich structures include fiber based composites and metals [44,45]. The unique
tubular core designs, between the face sheets, offer high blast resistance and shock/crash
sustainability [46]. Hence, the tubular core sandwich structures possess fine energy absorp-
tion competences. Another type of unique core in the sandwich materials is the corrugated
core-like structures. The corrugated core sandwich panels revealed fine performance under
compression testing [47,48] and impact/shock refluxes [49]. In corrugated core panels, the
face sheets may comprise of metals or fiber composites [50,51]. The failure mechanism
in such sandwich composites may involve corrugation buckling. Furthermore, origami
core sandwich structures have also been designed and used [52,53]. Meta or auxetic core
structures along with the fiber composite face sheets or metal face sheets have been devel-
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oped [54–56]. The meta or auxetic cores have been created using metal or polymer-based
materials. Three-dimensional printing has been used to efficiently design these unique
cores [57]. Such structures may overcome the constraints of debonding/delamination of
the face sheet from the core during shock/impact effects.

3. Manufacturing Strategies Used for Sandwiched Composite Structures
3.1. Manual Processes

Hand lay-up is the simple manual process used for sandwich composite structures [58].
Figure 3 shows a simple process for the hand lay-up technique. Atas et al. [59] developed
epoxy and glass fiber based sandwich composite laminates using the hand lay-up method.
This technique is also used for repairing the damaged composite samples. The performance
of the hand lay-up sandwich structures was analyzed using the impact tests under various
energies. Firuz et al. [60] designed sandwich composite structures of floral foam core
laminates with aluminum face sheets. Epoxy resin was used for the adhesion of the floral
foam core with the aluminum face sheets, using the hand lay-up method. The floral
foam core sandwich structures were found to have high flexural strength. The cracks,
delamination, and core failure modes were observed in the sandwich structures. The
press method has also been applied as a common manual technique [61]. The pressing
technique was used to effectively bind the adhesive layer between core and face panels.
The sandwich panels created by the press method revealed fine mechanical properties such
as compressive strength, impact strength, and flexural strength. The results revealed that
the pressure applied during the press-based hand lay-up sandwich structures influenced
the structural properties.
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3.2. Prepreg Methods

The prepreg method involves the pre-impregnation of pre-reinforced carbon fiber,
glass fiber, graphite, or other fillers with resin, and then curing to form the composite struc-
ture [62,63]. The most widely used prepreg processing methods include vacuum bagging
and autoclave [64]. The vacuum bagging technique is similar to autoclave molding; how-
ever, the basic difference is the application of greater pressures on sandwich laminates in
autoclave to form denser parts, relative to the vacuum bagging technique. Hence, vacuum
bagging has been effectively used to form sandwich composites [58]. Valenza et al. [65]
applied a vacuum bagging technique to form epoxy resin/glass fiber-based sandwich
composites with poly(vinyl chloride) core. The vacuum level during processing was found
to influence the morphology and mechanical properties of the sandwich composites. There-
fore, the sandwich structures were fabricated at constant vacuum pressure, whilst changing
the viscosity of the epoxy resin. Scanning electron microscope (SEM) was used to study
the sandwich structure morphology including the state of matrix, fibers, and voids. Kratz



J. Compos. Sci. 2023, 7, 102 6 of 28

et al. [66] applied the vacuum bagging method on honeycomb core sandwich structures.
The pressure application during sandwich panel manufacturing was monitored (Figure 4).
The air permeability was measured across the honeycomb core sandwich structure. The
honeycomb core was 150 × 150 × 60 mm3, while face sheets were 200 × 200 mm2 in
dimensions. Upon vacuum application, honeycomb core pressure was decreased, and
air flow occurred. Thus, the volume of air flowing through the structure depends on the
honeycomb core pressure [67].
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The autoclave technique has established its worth for sandwich composite process-
ing [68]. Sutter et al. [69] used the autoclave technique to process large sandwich composite
structures with aluminum core for heavy-lift launch vehicles. The mechanical properties
and composite quality were assessed for the performance analysis of the sandwich compos-
ites. Lavaggi et al. [70] applied the autoclave method for the honeycomb core sandwich
structure with thermoset prepreg face sheets. The fabrication was found dependent on
the autoclave cure cycle. The physics-based simulation was used to study the autoclave
processed honeycomb core sandwich structure and process parameters. However, the
physics-based simulations need intricate computational efforts.

3.3. Injection Processes

Resin injection molding, or vacuum assisted resin injection molding, has been adopted
as an effective technique for sandwich composite structures [71–73]. Yan et al. [74] applied
vacuum-assisted resin injection molding on the foam core sandwich structure. Figure 5
shows the set-up for the vacuum assisted resin injection molding and resin flow in the
upper and lower skin/faces of the foam core sandwich structure. The resin flows from
lower to upper skin to form a large area for the resin distribution medium. After filling
the upper skin, resin flows to the lower skin, and the process continues to form the reverse
flow. Thus, a reverse resin wrapping phenomenon has been observed due to the reverse
resin flow strategy. The polymer is heated in a molding machine and injected continuously
under high pressure into the cool mold. The homogeneous wrapping of mold with resin is
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ensured by continuous and reverse/cyclic resin flow to upper and lower skins covering the
mold. The continuous resin flow and mold design determines the distribution of polymer
and uniform resin wrapping of the mold. In this way, the resin is entirely wrapped on
the mold. Figure 6 depicts the variation of resin flow and mold filling time for different
resin inlet and outlet positions and areas of resin distribution medium. The resin flow
filling time in Case 1 is found to be shorter than that of Case 2, having the same area of
resin distribution medium. In Case 1, the mold filling time was decreased by 17.8%, 35.2%,
and 36.7% for each additional 1/4 of resin distribution medium area, relative to 1/4 of the
area used. Consequently, the technique of using resin distribution medium enhanced the
mold-filling efficiency of resin. In Case 2, the resin filling times were reduced by 10.5%,
16.2%, and 2.0%, respectively, as compared with the filling time in Case 1. Nevertheless, an
extended resin flow time was observed for the 4/4 resin distribution medium, then for that
of the 3/4 resin distribution medium. The reason seemed to be the faster resin flow rate to
upper skin for the 4/4 resin distribution medium. According to the analysis of injection
time, increasing the area of the resin distribution medium shortens the resin flow time.
Furthermore, the resin flows more effectively in Case 1 than in Case 2. Thus, the mold filling
efficiency of resin can be better controlled using the vacuum-assisted resin injection molding
technique, relative to non-vacuum injection molding. Advantages of vacuum assisted resin
injection molding involves low volatile compound emissions. Moreover, this technique
avoids fiber misalignment and voids formation for defect-free manufacturing, due to the
vacuum-assisted process. This technique also assists mass production of voids/defect free
sandwich composite structures.
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Alshahrani et al. [75] prepared sandwich composite structures of glass fiber/poly(vinyl
chloride)/Elium resin and glass fiber/polyethylene terephthalate/Elium resin, glass
fiber/poly(vinyl chloride)/epoxy resin, and glass fiber/polyethylene terephthalate/epoxy
resin have been prepared using the vacuum-assisted resin injection molding technique.
Figure 7 illustrates the load vs. displacement performance of the sandwich composite
structures. It has been observed that the glass fiber/poly(vinyl chloride)/Elium resin
composite had higher load absorption of 1308 N at high displacement of 5.3 mm, among
all sandwich composites. Moreover, the glass fiber/poly(vinyl chloride)/Elium resin com-
posite revealed a higher flexural strength of 244 MPa (Figure 8). The higher load-bearing
effect was observed due to the excellent bonding strength of the poly(vinyl chloride) core
structure. In these composites, the poly(vinyl chloride) core bonds efficiently with resin
(more than the polyethylene terephthalate) due to its soft nature and flexible molecular
structure. Consequently, poly(vinyl chloride) may transfer load uniformly without crack
propagation [76]. The polyethylene terephthalate has a semi-crystalline/amorphous and
rigid molecular structure with no free volume to stretch. Thus, the polyethylene tereph-
thalate core sandwich panels had lesser load absorption properties. In addition, the use
of Elium resin-based composites led to considerably higher mechanical properties to re-
place the traditional epoxy resins in advanced applications. For example, Cousins and
co-workers [77] measured higher flexural strength of Elium-based composite laminates
(1006 MPa), relative to the epoxy-based reference composite material (809 MPa). In addition,
Davies et al. [78] reported a higher flexural strength of glass fiber-filled Elium composites
(703 MPa), relative to epoxy/glass fiber composite (606 MPa).
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Figure 7. Load vs. displacement of sandwich glass fiber-reinforced composite struc-
tures [75]. GF/PVC/Elium = glass fiber/poly(vinyl chloride)/Elium resin; GF/PET/Elium = glass
fiber/polyethylene terephthalate/Elium resin; GF/PVC/epoxy = glass fiber/poly(vinyl chlo-
ride)/epoxy resin; GF/PET/Elium = glass fiber/polyethylene terephthalate/epoxy resin. Reproduced
with permission from MDPI.
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Figure 8. Flexural strength of the sandwich composite structures [75]. GF/PVC/Elium = glass
fiber/poly(vinyl chloride)/Elium resin; GF/PET/Elium = glass fiber/polyethylene tereph-
thalate/Elium resin; GF/PVC/epoxy = glass fiber/poly(vinyl chloride)/epoxy resin;
GF/PET/Elium = glass fiber/polyethylene terephthalate/epoxy resin. Reproduced with per-
mission from MDPI.

In addition to vacuum assisted resin injection molding, the resin transfer molding
technique has also been used [79–81]. Both resin injection molding and resin transfer
molding can form high quality products in similar ways. The difference is that the resin
injection molding technique mix and prepare the materials simultaneously. On the other
hand, the resin transfer molding demands prior preparation of the material and placing in
the mold. Chen et al. [82] prepared the poly(vinyl chloride) foam core sandwich structure
using vacuum-assisted resin transfer molding method. The epoxy/glass fiber composite
face sheets were used in the sandwich structure. The aramid, carbon, and glass fibers were
filled in the poly(vinyl chloride) foam core. The purpose was to enhance the interfacial
bonding between the foam core and face sheets materials. Inclusion of chopped fibers in
the foam cores enhanced the energy absorption by 161%, relative to unfilled sandwich
composites. Moreover, resin transfer molding was found effective to perfectly bind the
sandwich composite panels and enhance the interfacial properties [83].

3.4. Compression-Based Processes

The compression molding technique has been used for engineering purposes espe-
cially for the manufacturing of automotive parts [84–86]. Compression molding has been
explored for the process parameters and material suitability. Li et al. [87] fabricated the
three-dimensional Kevlar fiber core sandwich structure with Jute composite face sheets
using the compression molding process. The polyurethane resin was impregnated into
the structure during compression molding. This technique led to uniform resin and voids
distribution in the composite. The non-sandwich or blank composite was also prepared
using the polyurethane and jute filler and used as reference material. Figure 9 shows the
set-up for the compression molding technique. Table 1 demonstrates the compression
properties of the sandwich composite. The Kevlar fiber core sandwich structure with
polyurethane had significantly higher compression strength and modulus compared with
the non-sandwich composite. The results exposed the effectiveness of the sandwich com-
posite structure as well as the compression molding technique to enhance the mechanical
properties. Such compression molded sandwich composites have been suggested effective
for the automobile and construction industries [88].
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Table 1. Compression properties of blank composite and sandwich composite [87]. Reproduced with
permission from Elsevier.

Sample Maximum Compressive Load (kN) Strength (MPa) Modulus (MPa) Yield Strength (MPa)

Blank composite 9.63 ± 2.54 2.78 ± 0.48 10.77 ± 2.67 0.67 ± 0.15

Sandwich composite 78.42 ± 4.22 21.35 ± 1.17 72.60 ± 7.41 3.67 ± 1.37

3.5. Continuous Process or Pultrusion

Pultrusion is among the frequently used methods to form sandwich composite struc-
tures, especially for the civil and marine engineering applications [89,90]. In a pultrusion
or continuous process, the fibers are pulled through a heated die under a constant ap-
plied pressure. During this process, the resin is melted and impregnated in the fibrous
reinforcement. This method has been used to efficiently disperse the resin on the fillers.
Garrido [91] produced the pultruded sandwich composites using polyurethane foam core
and carbon/glass-fiber reinforced polymer face sheets. The optimization of the core density,
fiber reinforcement in the face sheets, and processing parameters have been analyzed
to develop high performance sandwich composites. Consequently, superior structural
durability, mechanical resistance, thermal insulation, and acoustic performance have been
observed. Zhang et al. [92] formed rectangular wood core sandwich composites with glass
fiber reinforced polymer face sheets using a pultrusion process. The four-point bending
was applied to test the mechanical stability of the sandwich composites. Zhang et al. [93]
also proposed the wood core sandwich composite with glass fiber reinforced polymer face
sheets through pultrusion. ISO-834 fire test was applied to explore the charring, thermal
response, and insulation behavior of the pultruded sandwich composites. The composite
design and pultrusion technique were found effective to enhance the flame resistance of
the sandwich structure.

3.6. Three Dimensional (3D) and Four Dimensional (4D) Printed Sandwich Structures

Three-dimensional (3D) printing is a manufacturing technique used for the construc-
tion of three-dimensional objects. The 3D printing technique has been employed to design
sandwich composites with improved physical behaviors for technical applications [94–96].
Dikshit et al. [97] used an inkjet 3D printer to print the sandwich core structure. The 3D
printer was also applied to print the face-sheets. The photopolymer was used to form
the core, while the face sheets consist of nylon/glass fiber composites. The compressive
failure of the sandwich composite was studied. The results suggested better out-of-plane
compressive strength of the 3D printed sandwich composite. Lu et al. [98] investigated the
use of 3D printing technology for honeycomb core sandwich composites. The mechanical
performance of 3D printed sandwich composite was characterized by three-point bending
test. The mechanical properties of 3D sandwich composites were found higher than the
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non-printed structures. Sugiyama et al. [99] used a 3D printer to form a honeycomb core.
The carbon fiber reinforced polymer composite was used to form the face sheets of the
sandwich structure. The 3D printed sandwich composites were tested using three-point
bending test. The sandwich composite had high load and flexural modulus due to increased
density of the unique core. The 3D printed honeycomb core revealed superior energy ab-
sorption aptitude. Moreover, the 3D architected core structures have potential for range of
industrial applications [100]. Sarvestani et al. [101] developed lightweight 3D architected
sandwich structures with meta core that have Isomax, octet, cubic, and auxetic cellular core
geometries. Figure 10 shows the results of energy absorption and the maximum load of
meta-sandwich plates (30% and 50%), subjected to 3J impact load. It was observed that
with low impact energy, Isomax, octet, and cubic meta-sandwich plates had same energy
absorption performance, i.e., higher than that of the auxetic sandwich plate. Alternatively,
for Isomax, octet and cubic meta-sandwich plates, the magnitude of maximum contact load
was not found similar. Here, the cubic meta-sandwich plate depicted maximum contact
load and auxetic sandwich plates had minimum magnitude of contact load for both 30%
and 50% relative densities. It was suggested that the impact energy used on the sandwich
plates was initially absorbed by failure and damaged the core and face-sheets. Thus, ac-
cording to the results, the maximum contact load was amplified significantly by enhancing
the relative density. Nevertheless, Isomax and auxetic sandwich plates showed almost
the same or a marginal drop in the energy absorption capability. These observations were
attributed to the improved stiffness of the materials due to increase in the relative density.
Figure 10 also illustrates the deformation configuration and equivalent stress distribution
on the cross section of meta-sandwich plates under 3J impact.
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Four-dimensional (4D) printing technique is used for the creation of four-dimensional
objects. The 4D printing has also been used to form sandwich composite structures [102,103].
This technique offers more design freedom and time dimension than the 3D printing. Xin
et al. [104] formed 4D printed honeycomb core sandwich structures. An origami core
structure was formed. The shape fixity and recovery ratio of 4D printed sandwich structures
were found to be 98% and 99%, respectively.

4. Final Manufacturing Steps for Sandwich Composites: Machining, Milling, Drilling,
or Cutting

Machining of sandwich composite materials has been found inevitable in manufactur-
ing to attain a final net shape [105]. Machining has been found important for final surface
finish and dimensional tolerance of the product designs/shapes [106]. Thus, the machining
of composite materials has been investigated to study the influence of numerous process
parameters on the quality of machining. According to literature, the machining of glass
or carbon fiber reinforced plastic composites reduced the problem of delamination [107].
Especially, the carbon fiber reinforced plastics applied in the wings, J-nose, beams, etc.,
of commercial air crafts and vehicles have been manufactured close to the final shape;
nevertheless, after processing, all parts need to be trimmed to attain the right dimensions
and shape [108]. In this regard, various machining processes have been used for sand-
wich composites including milling, drilling, cutting, etc. Drilling has been investigated
as an essential step to prevent composite delamination [109–111]. Milling has been used
as a distinct process for making large diameter holes [111,112]. In the cutting process,
fiber alignment in sandwich composites as well as cutting speed have been considered
important [113–115].

Drilling and helical or orbital milling are key processes used in the machining of
sandwich composites for precise and accurate cutting of the materials [116,117]. Helical
milling and ultrasonic vibration helical milling have also been developed for hole-making
of fiber reinforced composites [118–120]. In helical milling, the tool follows a helical path
while it rotates around its own axis. Helical milling employs a rotating special tool attached
to a rotating spindle, which traverses the helical trajectory to machine a hole. The hole has
a larger diameter than that of the tool (Figure 11) [121]. Figure 12 shows an experimental
setup of helical milling for the measure of cutting forces in which machining tests were
conducted under dry conditions. The chips were collected through a vacuum tube [122].
This process has flexible kinematics, low cutting forces, tool wear, and better borehole
quality. However, helical milling may face the disadvantages of rough finish and slower
feed rate.
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Dry machining through drilling has been developed as a low-cost ecological machining
process. It has been found favorable for open-faced machining operations involving milling
operations. In the milling operations, multiple cutting edges are involved continuously
in the cutting action and the produced heat can be managed without affecting the process
parameters. In this regard, valuable literature on machining of sandwich composites has
been reported by Lopez de Lacalle et al. [123], Miguelez et al. [124–127], and Cantero
et al. [128–130].

Nevertheless, the machining industry is shifting towards the use of dry milling using
carbon dioxide coolant application. This machining technique has been considered efficient
and environmentally friendly. López de Lacalle et al. [131] compared the use of two sustain-
able cutting approaches for glass fiber reinforced polymer composites, i.e., dry cutting and
using liquid CO2. The use of two processes were compared for the machining performance
parameters such as surface roughness, temperature, modulus of cutting force, tool wear,
power consumption, and life cycle assessment. Figure 13 demonstrates the cutting force
modulus obtained using dry and liquid CO2 conditions. The use of liquid CO2 conditions
reduced the cutting force modulus up to 5%, showing the effectiveness of the conditions
used. The reason appeared to be the reduction in fracture strain and embrittlement of the
material, due to lower cutting force at cryogenic condition. Figure 14 depicts the higher
tool wear and higher cutting force modulus for dry machining, relative to the cryogenic
machining. Moreover, the superior machining performance was achieved using liquid
CO2 based cutting in terms of 9% lower power consumption, 80% lower cutting zone
temperature, and reduced surface roughness, as compared to the dry machining technique.

Drilling has been applied to form final finished sandwich composites. Rodríguez
et al. [132] used liquefied CO2 as fluid for drilling carbon fiber reinforced plastic composites.
It was observed that using the liquefied CO2 and hole diameter below 0.5% maintained the
surface integrity of the composite structure. The dry-drilling technique with liquefied CO2
was found as an effective eco-friendly machining process. Figure 15 shows the experimental
setup and cutting conditions. The tool tip temperature was maintained constant ~0 ◦C.
The holes were made under dry conditions and in dry conditions along with liquified CO2
(Figure 16). Under dry conditions (without CO2), temperature increased exponentially
during 80 holes and stabilized at 325 ◦C. Using of CO2 as cutting fluid, the tool coating
layer in the edge disappeared and material was easily adhered to tool edges. It was
observed that the tool edge remained sharper through using liquified CO2, relative to dry
machining conditions.
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Machining of aluminum alloy-carbon fiber reinforced polymer-based sandwich com-
posites was performed using the milling process [133]. The surface quality of composite
was studied in terms of the height deviation. The cutting speed had least influence on the
surface quality. Lacalle et al. [134] adopted router milling tools to perform high perfor-
mance milling of carbon fiber reinforced plastic composites. Different milling tools were
formed and used for the composite structures. The tested milling tools have a diameter
12.7 mm and 6.35 mm. The milling tool of 6.35 mm broke at a 1 m cut length owing to the
high radial forces. However, milling tools of the diameter 12.7 mm performed well for the
milling process. The finishing and damage using up-milling and down-milling conditions
were analyzed. The up-milling operation resulted in better finishing, compared with the
down-milling process, which showed delamination.



J. Compos. Sci. 2023, 7, 102 15 of 28J. Compos. Sci. 2023, 7, x FOR PEER REVIEW 15 of 28 
 

 

 

Figure 15. Experimental setup for drilling of carbon fiber reinforced plastic composites [132]. Re-

produced with permission from Elsevier. 

 

Figure 16. Drilling under dry conditions and with liquified CO2; Red circle indicates the quality of 

edge surface [132]. Reproduced with permission from Elsevier. 

Machining of aluminum alloy-carbon fiber reinforced polymer-based sandwich com-

posites was performed using the milling process [133]. The surface quality of composite 

was studied in terms of the height deviation. The cutting speed had least influence on the 

surface quality. Lacalle et al. [134] adopted router milling tools to perform high perfor-

mance milling of carbon fiber reinforced plastic composites. Different milling tools were 

Figure 15. Experimental setup for drilling of carbon fiber reinforced plastic composites [132]. Repro-
duced with permission from Elsevier.

J. Compos. Sci. 2023, 7, x FOR PEER REVIEW 15 of 28 
 

 

 

Figure 15. Experimental setup for drilling of carbon fiber reinforced plastic composites [132]. Re-

produced with permission from Elsevier. 

 

Figure 16. Drilling under dry conditions and with liquified CO2; Red circle indicates the quality of 

edge surface [132]. Reproduced with permission from Elsevier. 

Machining of aluminum alloy-carbon fiber reinforced polymer-based sandwich com-

posites was performed using the milling process [133]. The surface quality of composite 

was studied in terms of the height deviation. The cutting speed had least influence on the 

surface quality. Lacalle et al. [134] adopted router milling tools to perform high perfor-

mance milling of carbon fiber reinforced plastic composites. Different milling tools were 

Figure 16. Drilling under dry conditions and with liquified CO2; Red circle indicates the quality of
edge surface [132]. Reproduced with permission from Elsevier.



J. Compos. Sci. 2023, 7, 102 16 of 28

In machining, the effect of cutting parameters and tool geometry on the surface
quality have been investigated [135]. Doluk et al. [136] studied the cutting process of
the epoxy-carbon sandwich structures. It was observed that the cutting parameters and
machining configuration affected the final composite design. The change in the cutting
parameters may cause defect formation on the composite surface during the machining
process. In addition to drilling, milling, and cutting, various experimental attempts have
been performed on the peripheral trimming of composite parts during machining to attain
final finished products [137–139].

5. High Performance Applications of Sandwiched Composite Structures
5.1. Aerospace Structures

In the aerospace industry, the sandwich composite structures have been applied;
however, only selected structures have performed effectively [140–142]. The honeycomb
core formed using aluminum, aluminum alloy, and Nomex have found success. In face
sheets or skin of aerospace sandwich panels, carbon, Kevlar, or glass fiber composites
and aluminum alloys have been used. The face sheets have usually been developed with
a thickness of <2 mm [143]. Symmetrical and asymmetrical sandwich composites have
been employed in aircraft or space craft construction [144–146]. Symmetric sandwich
structures are comprised of upper and lower face sheets of the same material. However, the
asymmetric structures consist of two different skins or face sheets in the upper and lower
parts of the sandwich core. For aerospace fuselages, two types of face sheets used are carbon
fiber laminate and aluminum-based laminate. Nowadays, asymmetric structures have
found success for the construction of space parts and structures under extreme conditions
to better withstand the high pressure and aerodynamic load [147,148]. Symmetric sandwich
composites have low pressure bearing capabilities, and are, thus, used in the lightweight
aircrafts/helicopter [144], drone structures [149], and solar planes [150]. Figure 17 depicts
the use of various sandwich composite structures in Dassault Mirage F1 [151]. Sandwich
composite structures have been used in the fins, engine doors, and other parts of the
Dassault Mirage F1. The sandwich composite technology has been applied in advanced
airplanes such as F-18 and F-35 [152].
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Figure 18 depicts the use of sandwich composite structure in F-35 aircraft. Since, F-35
can fly at a maximum speed of 540 ms−1, pressure was applied to the stealth radome and
studied via flow analysis. The flow analysis confirmed the applied pressure of 62.6 kPa
to the stealth radome. The cross-section of stealth radome structure showed the use of a
sandwich composite structure of glass fiber reinforced plastics (GFRP) with a poly(vinyl
chloride) core. Moreover, the position of active frequency selective surface (AFSS) attached
inside the radome was apparent. The pressure load was applied using the flow analysis
and inertia relief was used to consider inertial loads. The maximum principal strain was
found to be 7.338 × 10−4. The maximum principal strain value was used to assess the
fracture of the diode in AFSS. Moreover, the development of flexible 4D sandwich structures
have potential for space deployable structures like antennas [153]. Accordingly, there is a
wide-ranging scope in the aerospace field for the application of various high performance
sandwich structures.
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5.2. Automotive

The automotive industry has explored various novel structures and manufacturing
processes for lightweight and enhanced performance of the vehicles [154]. The sandwich
composite structures have been adopted to replace the conventional metallic materials like
aluminum and steel [155]. For automobiles, the sandwich structures have high flexural
strength, stiffness, impact resistance, thermal insulation, and energy absorption features.
The manufacturing strategies have been developed for sandwich composite structures of
varying geometries for automotive application [156,157]. In this regard, the compression
molding, injection molding, and thermoforming have been applied to produce sandwich
structures on a large scale for automobile application [158,159]. Commercial high per-
formance foam cores have been prepared for automotive sandwich composites using
thermoforming [160]. This method produces foam core structures with low density and
uniform cell morphology. Contrarily, the injection molded foam cores may have high
density and poor cell microstructure. Thus, the thermoformed core structures have high
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durability, mechanical properties, and pressure bearing capabilities for automotive vehi-
cle structures. Thus, techniques have been continually researched to develop complex
geometry sandwich cores for automotive applications.

5.3. Energy Absorption Application

Engineering structures have been designed with energy absorption properties, in addi-
tion to load bearing, fatigue resistance, and high pressure tolerance features [161]. Among
engineering structures, sandwich structures have been successfully used for the energy
absorption relevance [162]. The engineering structures based on sandwich composites
have been developed with varying core/face materials, geometries, and manufacturing
processes. The sandwich structures must be lightweight in addition to having an energy ab-
sorption application [163]. The sandwich structures may absorb energy during a dynamic
event such as a collision impact, ballast, and high strain rate [164–166]. The sandwich
composite-based energy absorbers have the capability to absorb the change in kinetic
energy during blast, collision, etc. [167–169]. During a blast/crash wave, the sandwich
panel is usually compressed flatwise [170]. The core structure plays a vital role in absorbing
energy [171]. In edgewise compression, both the face sheets and core structure have been
found important for absorbing energy. The failure mechanism of the sandwich composite
structure has been considered significant for energy absorption capabilities. Research on the
core/face material design and fabrication processes is desirable to form high performance
sandwich composites for better energy absorption capacities.

6. Future Research Direction

From the above presented literature review, it has been observed that the sandwich
structures have been developed using various core structures, face sheets, and fabrication
techniques (Table 2). Traditionally, polymer/metallic foam core or balsa core structures
have been used. Then, the use of honeycomb cores and architected cores have brought
improvements in the structural designs to overcome the challenges. The choice of core
material and core design play an important role in the final sandwich composite properties.
Moreover, the selection of face sheet materials must be suitable for the desired end use.

Table 2. Specifications of sandwich composite structures.

Sandwich Structure
Fabrication Findings Refs.

Core Face Sheets

Polymer foam
of polyurethane,

poly(vinyl chloride)
polystyrene, styrene

acrylonitrile

Metal or fiber
composites

Hand lay-up; vacuum
bag process;

vacuum assisted resin
infusion

Uniform density polymer cores;
crash worthiness;

energy absorption;
aerospace

[18–21]

Aluminum metallic foam
core

Aluminum/steel or
fiber composites

Hand layup process;
vacuum bag process;

vacuum assisted resin
infusion

Graded metallic cores;
high blast resistance;

crashworthiness;
space sector

[25,26]

Honeycomb aluminum;
Nomex

Fiber composite sheets;
aluminum Vacuum bagging, etc.

Uniform density cores;
energy absorption capability;

crash merit;
aerospace

[34]

Balsa core

Glass fiber reinforced
polymer;

carbon fiber reinforced
polymer composite

Hand lay-up;
compression method

Compression properties;
flame resistance;

automobiles
[39]

Balsa core Vinyl ester/E-glass
laminates

Manual methods,
pultrusion, etc.

the compression properties;
thermal flux [41]
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Table 2. Cont.

Sandwich Structure
Fabrication Findings Refs.

Core Face Sheets

Tubular polymer;
metals Fiber composite; metals Printing techniques

Blast resistance;
shock/crash sustainability;

energy absorption;
space sector

[44,45]

Floral foam core Aluminum Hand lay-up
Flexural strength;

compressive strength;
impact strength

[60]

Poly(vinyl foam chloride) Epoxy resin/glass fiber Vacuum bagging Morphology;
mechanical properties [65]

Poly(vinyl chloride) foam Carbon fiber or glass
fiber/epoxy or Elium

Vacuum assisted resin
injection molding Flexural strength [75]

Poly(vinyl chloride) foam
core and chopped fibers Epoxy/glass fiber Resin transfer molding

Interfacial bonding energy
absorption;
Aerospace

[82]

Kevlar fiber core
Jute composite face

sheets/polyurethane
resin

Compression molding Compression strength/modulus;
automotive [87]

Polyurethane foam core Carbon/glass-fiber Pultrusion
Mechanical resistance;

thermal insulation;
acoustic performance

[91]

Photopolymer Nylon/glass fiber
composite Inkjet 3D printing Compressive strength;

energy absorption [97]

Subsequently, processing is an important step to attain high performance sandwich
composites. Initially, manual techniques like hand lay-up and pressing have been used.
Then autoclave, vacuum bagging, and compression techniques have been successful. The
use of resin infusion or transfer molding techniques revealed advantages of better resin
distribution throughout the sandwich core and face of panels. Pultrusion has also been
found to be an efficient technique for better resin impregnation. More recently, sophisticated
techniques like 3D/4D printing have also been adopted, keeping in view the technical
applications. Hence, the selection of processing method strongly depends on the material
and the property requirements for the specific application.

Despite successful methods for composite manufacturing, the final parts often need
post-mold machining and drilling steps [115,172]. The purpose of machining is basically
to attain the surface quality, dimensional tolerance, and functional requirements of the
sandwich composite structures. Experimental studies have been performed on machining
of fiber reinforced composites [173]. The edge trimming of carbon fiber reinforced com-
posites depends on the fiber or filler orientation in the matrix. For machining, dry cutting
conditions have been used to meet the industrial specifications [174]. Especially, the edge
trimming method with the aid of adhesives has been preferred [175].

High-performance sandwich structures have been observed as good candidates for
the construction of aerospace and automotive engineering structures and also for energy
absorption applications. In space/vehicle engineering, various sandwich composite de-
signs have been used. For energy absorption application, different sandwich designs and
fabrication methods have been applied. The failure mechanism of sandwich composite
structures performs a crucial role in determining the energy absorption abilities. Structural
geometry, material configurations, size, and loading situations have been investigated as
important parameters in the design of the energy absorber. For particular applications
of sandwich composites, both experimental and theoretical studies have been found es-
sential for understanding the structural response and performance. Optimum structural
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and processing parameters need to be analyzed to achieve high mechanical properties,
crashworthiness, and blast resistance performance.

The manufacturing techniques used for the sandwich composite structures face several
processing challenges, affecting the final composite structure and properties. Therefore,
focused future attempts have been found desirable to optimize the design and parameters
of manufacturing techniques for the formation of high-performance sandwich composites.
Specifically, the sandwich materials produced by the simple press method, regardless of
the type of material used, has the major challenge of delamination of the core and skin.
Furthermore, the pressed composites have the disadvantage of cracking of the composite
core parallel to the direction of impact. Therefore, the use of the press method has been
found limited in aerospace applications. The sandwich composites prepared by the hand
lay-up method also have delamination and cracking challenges due to low impact resistance.
However, the cracks in hand lay-up composites can be recovered using adhesives. Both
the press method and hand lay-up technique require several modifications to fulfil the
technological requirements (particularly high mechanical properties, crashworthiness, and
least damages) of the space and automotive sectors.

Additionally, several liquid molding processes have been used to manufacture sand-
wich components such as resin injection molding, resin transfer molding, and vacuum
injection molding. These techniques are similar due to initial placement of reinforcement in
the mold and infusion of liquid resin through difference in pressure. The liquid molding
methods has the advantage of low temperature processing; however, they face challenges of
moisture-related damages in composite structures. This problem can be resolved through
the use of highly pure, moisture free resins during processing.

In the compression molding technique for sandwich structures, the choice of core
material has been considered important to ensure that the material may withstand the
molding pressure (between 0.2 to 4 MPa) and reveal high compression strength. Only the
materials with mechanical properties and good bonding of core to face can be processed
by this method. Thermoformability is also needed to develop complex-shaped parts. If
material is not chosen carefully for compression molding, the dimensional stability of
the composites can be affected. In the future, the appropriate choice of material can only
resolve the processing challenges of the compression molded structures, to achieve high
mechanical/thermal/crash resistance.

The 4D processing of sandwich structures have become interesting for energy absorp-
tion applications. The final composite quality depends upon the impact of design, core
shape, and printing parameters (layer height, nozzle temperature, and printing speed).
Especially, the printing speed need to be controlled for better compression strength of
the fabricated composites. Therefore, controlled printing speed has been identified as a
challenging factor to improve the mechanical properties of the sandwich composites. In the
future, the 4D printing of tunable meta-structures need to be explored for better damage
resistance and crashworthiness applications, and so to minimize the hazards related to
serious human injuries.

In advanced composites, autoclave processes have been widely adopted for the
aerospace construction. The autoclave-processed composites are characterized by the
greatest average value of impact strength and the lowest crack formation. This method
has reduced the bulk factor and prevented the delamination between plies to controls the
thickness dimension. Generally, good moldings have been achieved through regular de-
molding cycles with hydrostatic pressure during curing. Moreover, the high-performance
composites have been produced on a large scale using the autoclave methods for aerospace.
However, the autoclave processes still need to be improved for the capital expenditure.
Especially, the moisture retention in the processed sandwich composite structures has been
identified as a challenge. The structures may be damaged due to moisture exposure. In
addition, only the heat stable polymers can be used in autoclave processing. Future modi-
fications in the autoclave processing parameters may resolve the challenges of moisture
damage and high temperature requirements. Future modifications in autoclave processes
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may further lead to significantly high compression strength, flexural strength, damage
resistance, and crash worthiness of the sandwich structures, relative to other techniques
used.

Other major challenges related to the manufacturing of sandwich composites include
the impact of adopted technique on the environment and also the use of sustainable mate-
rials and conditions. Injection molding has received research interest due to its low cost
and its capability of producing geometrically complex structures without affecting the
environment. The injection processes are carried out in closed molds. These methods also
require the lowest temperature and energy demands. However, in the automotive and
aerospace industries, still the most adopted techniques for sandwich composites are the
autoclave processes due to the benefits of large-scale processing, high mechanical prop-
erties, and less delamination and damage issues. Hence, all the manufacturing strategies
have relative advantages and disadvantages for being applied in the space/automotive
engineering and energy absorption-related applications. From this discussion, it can be
suggested that considerable future efforts are needed to improve the structural designs
of sandwich composites and also to resolve the challenges related to the manufacturing
methods used.

7. Conclusions

This comprehensive review outlines the design and manufacturing specifications
along with the high-performance applications of sandwich composite structures. From the
vast literature surveys, it can be concluded that the design of sandwich composite structures
is dependent on the unique core structures such as honeycomb, foam, wood, tubular, meta,
etc. Moreover, the selection of the materials and type of the core and face sheets were found
to affect the properties of final sandwich composite structure. Consequently, different cores
and face sheets have been used in sandwich panels in various literature reports. According
to observations, the range of manufacturing techniques have been successfully applied for
sandwich structures, including the manual lay-up, pressing, vacuum bagging/autoclave,
vacuum-assisted resin infusion/transfer molding, compression molding, pultrusion, and
3D/4D printing. The choice of sandwich composite structure manufacturing technique
was made depending on the type of the core and face sheet structure, as well as the desired
final properties and application. It can be concluded that the types of core and fillers
were crucial for the performance of the sandwich. Furthermore, the properties of final
sandwich composites were dependent on the manufacturing techniques and factors such
as resin type, resin viscosity, temperature, vacuum, composite morphology, voids, etc.
For the as prepared sandwich composites, machining and milling/drilling were applied
as final manufacturing steps. Sandwich composite structures, obtained using various
facile techniques, have been effectively applied for the aerospace/automotive engineering
structures and energy absorbers.
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