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ABSTRACT The acoustic emission technique has been applied successfully for the identification,
characterization, and localization of deformations in civil engineering structures. Numerous localization
techniques, such as Modal Acoustic Emission, Neural Networks, Beamforming, and Triangulation methods
with or without prior knowledge of wave velocity, have been presented. Several authors have conducted
in-depth research in the localization of AE sources. However, existing review papers do not focus on the
performance evaluation of existing source localization techniques. This paper discusses these techniques
based on the number of sensors used and the geometry of the structures of interest. Furthermore, it evaluates
them on the basis of their performance. At the end of this paper, a comparative analysis of existing methods
has been presented based on their basic principles, key strengths, and limitations. A deep learning circular
sensor cluster-based solution has the potential to provide a low-cost reliable localization solution for acoustic
emission sources.

INDEX TERMS Acoustic emission, beamforming, closed form, iterative methods, time reversal, source
localization

I. INTRODUCTION

The localization of active damages using a set of sensors
has become an interesting topic in recent years. It has
been used extensively in many fields, such as structural
health monitoring, deep mining, and intrusion detection.
However, due to limitations associated with measurement
errors and real-life implementation, it is hard to achieve
the desired accuracy [116]. A variety of non-destructive
testing (NDT) methods such as smart pigs, GPS mapping
devices, guided wave ultrasonic, hydrostatic, and acoustic
emissions (AE) have been used to monitor structures. Among
these methods, AE is a passive method that can detect
any deformation in various material structures. Acoustic
emission is known as the class of processes where a rapid
release of energy generates transient elastic waves from
a localized source or sources within the material [79].
Various acoustic emission sources include the impact of
a foreign object, crack or leak generation, delamination,

structural element failure, corrosion, and fiber breakage in
a composite material. AE sensors record data about the
structure either periodically or continuously. These sensors
cannot measure the damage but can measure the response
of the structure against this damage. Thus, this data contains
sensitive information. Feature extraction using advanced data
analytics is a way to relate the observations with the damage
characteristics. Feature extraction aims at the detection,
localization, identification, and severity of the damages.
Various sources of acoustic emission are shown in Fig. 1.

A significant amount of research has been published in
the field of damage identification and localization using the
acoustic emission technique. The majority of investigations
on the analysis of AE signals are aimed at identifying
the damage processes in diverse materials. Shigeishi et al.
[114] evaluated the possibility of using acoustic emission
technology to enable a long term condition monitoring
of bridges at a low cost. Colombo et al. [17] further
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FIGURE 1. Various sources of acoustic emission in material structures.

introduced a new metric for the AE signal analysis called the
“relaxation ratio” . The recorded AE energy was quantified,
and the bending failure load of the RC beams showed
a visible correlation. Clark et al. [16] claimed to have
presented the first application of acoustic emission technique
for monitoring the railway concrete sleepers. The ability to
approximate the damage location corresponding to an energy
event was also made feasible by channel-wise separation of
AE data. Janeliukstis et al. [52] presented an innovative
approach which significantly reduced the size of acquired
AE data for characterizing cracking mechanism in railway
prestressed concrete sleepers subjected to flexural loading.

The review by Ono [92] discussed several important fields
of acoustic emission technology, such as the attenuation of
AE signal, signal loss, and metal damping to provide a useful
method for AE monitoring. He also discussed the source
location, and bridge monitoring. Kundu [63] compared
different techniques for localization of AE sources in a
variety of structures, and discussed their merits, and demerits.
Kannan et al. [5] discussed various AE parameters and
some innovative methods for damage characterization using
the acoustic emission technique. Finally, they mentioned a
list of unpopular AE descriptors and explained the limited
use of these descriptors in the FRPs. M. Saeedifar and
D. Zarouchas [105] presented an extensive review on the
damage characterization and the estimation of Remaining
Useful Life (RUL) in laminated composites. They mainly
focused on prognostic approaches for AE data such as
regression models, artificial neural networks (ANN), and
hidden Markov-based models. Verstrynge et al. [122]
addressed specific challenges and their recent findings in the

application of the acoustic emission technique for masonry
structures in their comprehensive review. They discussed
some site applications of identifying the crack location in
historical masonry structures, buildings, and masonry arch
bridges. Tziavos et al. [120] performed an experimental
study of the application of AE on GCs under bending loads.
Several AE parameters were investigated to find out the
one which is most sensitive to failure, to be used as KPIs
for damage assessment. Finally, b and Ib-values were also
analyzed as a tool for crack detection for UHPC grouts.
They concluded that RMS is one of the KPIs that can be
used as a prognostic tool. McCann and Forde [80] discussed
the major methods used within civil engineering, with their
advantages and limitations. Fewer known methods were also
discussed to familiarize the readers with the complete range
of methods. Reza et al. [90] presented a comprehensive
insight into the application of acoustic emission into brittle
materials. They mainly addressed the properties related to
crack growth behavior and localization. However, none of
these research papers focused on the performance evaluation
of contemporary techniques used for the localization of AE
sources.

This paper aims to provide a review of the acoustic
emission source localization techniques for a variety of
structures such as steel structures, buildings, and seismology.
The focus of research is to present a performance evaluation
of the existing localization approaches such as analytical
methods, time reversal methods, machine learning methods,
and beamforming methods. Moreover, these techniques have
been comparatively analyzed based on their basic principles,
key strengths, and limitations.

This paper is organized as follows: Section II presents the
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Nomenclature CTFS Cross-Time Frequency Spectrum
MCMC Markov Chain Monte Carlo

AE Acoustic Emission WORC Wavelet-based Optimized Residual Complexity
NDT Non-destructive Testing MSC Magnitude Square Coherence
FRP Fiber Reinforced Plastic DTW Dynamic Timing Warping
RUL Remaining Useful Life CFRP Carbon-Fiber Polymer Pressure
ANN Artificial Neural Networks TDM Time Difference Mapping
MAE modal acoustic emission TSA Thermo-elastic Stress Analysis
PLB Pencil Lead Break GP Gaussian Process
HF High Frequency RBF Radial Basis Function
LF Low Frequency RP Refraction Path
CWT Continuous Wavelet Transform ASTM American Society for Testing and Materials
RMSE Root Mean Square Error TOF Time of Flight
MP Matching Pursuit ALM A Localization Method
AIC Akaike Information Criteria MLM Multi-step Localization Method
TDOA Time Difference of Arrival TLM Traditional Localization Method
TDDT Time Distance Domain Transformation NBLM Node Block Location Method
LLS Linear Least Square GA Genetic Algorithm
CFC carbon-fiber composite FFNN Feed-Forward Neural Networks
MFC Macro-Fiber Composite TDNN Time Delay Neural Network
AMA Adaptive Meshing Algorithm MAR Measured Amplitude Ratio
GMM Gaussian Mixed Model UWC Unsupervised Waveform Clustering
PSO Particle Swarm Optimization SFLA Shuffled Frog Leaping Algorithm
EKF Extended Kalman Filter TR Time Reversal
SVD Singular Value Decomposition PCA Principal Component Analysis
LMA Levenberg-Marquardt Algorithm VESPA Velocity Spectral Analysis
FBBM Fast Bartlett beamforming method PDF probability destiny function
HCBF Hilbert curve-beamforming method ICA Independent Component Analysis
SDAE Stacked denoising autoencoders GRNN Generalized Regression Neural Network
SART Simultaneous Algebraic Reconstruction Technique CLMAI Collaborative Localization Method for analytical and iterative solutions
PCSWE Preconditioned closed-form solution for weight estimation

domain’s background as preliminaries, mentioning various
parameters of acoustic emission signal and the sensor
placement in the localization process. Section III presents a
detailed discussion of various source localization approaches
used for AE source localization, along with their performance
evaluation. Section IV includes a detailed discussion
about the challenges in the application of localization
using acoustic emission with recent developments. AE
localization techniques have been analyzed based on their
strengths, weaknesses, and limitations. Section V presents
the conclusion and future research objectives.

II. PRELIMINARIES
AE is preferred for its real-time capability, high sensitivity,
and its ability to be monitored globally [61]. AE sensors
are used to collect transient waves and convert them
into electrical signals for further processing. Distinguishing
between burst and continuous signal types is one of the
significant challenges in AE monitoring. AE is mainly
concerned with the burst type signals because a burst is
related to some abnormality in the structure. These burst
signals can be described by their time domain, frequency
domain, or joint time-frequency domain features. A burst
signal, along with its time and frequency domain, is shown
in Fig. 2.

Either the waveforms or the features which have been
extracted from these waveforms are used for the analysis of
the signal. Commonly used features are:

Threshold, which is the voltage for the AE signal. Values
greater than a specific threshold are recorded as a hit. It is
measured in decibels (dB).

Amplitude is considered as the height or voltage of the

signal, and it is also recorded in dB.
The duration can be defined as the difference in time

between the first and last crossing of the threshold level.
Microseconds (µs) is the recording unit.

Rise time is the time interval between the first crossing
of the threshold and the highest amplitude. It is recorded in
microseconds (µs).

Counts refer to the number of times the signal crosses the
threshold within one hit.

Energy is the area under the waveform within a specific
duration. The reporting unit is attojoule (aJ) (1 aJ = 10-18 J).

A. LINEAR LOCALIZATION
This technique is suitable for rod-like structures where the
length is far greater than the width, as shown in Fig. 3.

Let the time of arrival of the AE signal at AE sensor-1 and
sensor-2 be represented by T1 and T2, and the wave velocity
be represented by V . The difference of arrival times4T can
be expressed mathematically as shown in Eq. (1).

4T = T2 − T1 (1)

Then, the distance between AE sensor-2, which is closer, and
the AE source d2 can be calculated as shown in Eq. (2).

d2 = 1/2(D −4TV ) (2)

B. PLANAR LOCALIZATION
For plate-like structures, AE source localization can be
considered as planar localization. Suppose s(xs, ys) is an AE
source in a uniform medium. AE sensors are placed on the
plate to be monitored, and the coordinates of an arbitrary
sensor i is (xi, yi) . The onset time of the AE signal is
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(a) (b) (c)

FIGURE 2. The representation of an AE hit in (a) time domain, (b) frequency domain, and (c) time-frequency domain

FIGURE 3. The diagram of the 1D linear.

denoted by T0 , and it reaches to any sensor i at time Ti.
The principle of planar location of an source is shown in Fig.
4.

FIGURE 4. The diagram of the 2D planar location.

Then, the distance between AE sensor-2, which is closer,
and the AE source d2 can be calculated as shown in Eq. (3).

d2 = 1/2(D −4TV ) (3)

The distance between the AE source s and sensor i can be

obtained by Eq. (4)

d(x, y) =
√
((xs − xi )2 + (ys − yi )2 ) (4)

As the exact time of arrival of AE signal T0 is very difficult
to measure accurately, the time difference of arrival (TDOA)
of any two sensors i and j can be described as in Eq. (6):

4T(i− j) = d(s− i)/V − d(s− j)/V (5)

According to the above relationships, it is possible to localize
the AE sources using three acoustic emission sensors that
are not placed linearly. Iterative algorithms are widely used
in acoustic emission monitoring systems to calculate the
numerical solution of a 2D planar location.

C. 3D LOCALIZATION
The 3D location principle of an AE source assumes an AE
source s(xi, yi, zi) to be in some medium, as illustrated in
Fig. 5. The AE sensors are mounted on the structure with the
coordinates of an arbitrary sensor i(xi, yi, zi). The distance
d between the AE source s and sensor i can be expressed by
Eq. (5)

d(s, i) =
√
((xs − xi )2 + (ys − yi )2 + (zs − zi )2 ) (6)

This equation provides the basis to obtain the solution of the
analytic problems. The 3D localization technique has been
shown diagrammatically in Fig. 5.

III. AE SOURCE LOCALIZATION TECHNIQUES
The damage diagnosis tools today aim at determining the
best possible location of the damage in various structures
[80]. To improve the accuracy and the error-tolerance
in real-time implementation, various source localization
techniques have been used. Each technique has its own
advantages, disadvantages, and limitations. Each of these
source localization techniques efficiently solve a specific
class of the source localization problem. This study is
an attempt to give a better understanding of the existing
techniques. There is a dire need of a global method which can
solve localization problems in isotropic as well as anisotropic
structures with complex geometries. Some of the well-known
techniques used for localization of acoustic emission sources
are depicted in Fig. 6.
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FIGURE 5. Localization of AE sources in 3-D structures.

FIGURE 6. Source localization methods for acoustic emission.

A. MODAL ACOUSTIC EMISSION

Single sensor approaches rely on modal acoustic emission
(MAE), which typically requires the identification of arrival
times of extensional and flexural wave modes. Since
group velocities for both the modes are different, it is
possible to calculate the distance covered by propagating the
wave modes if their respective velocities are known. The
implementation of MAE has several associated issues. Some
of the common issues are wave reflections and the separation
of multiple AE events. Even within the same event, it
is not straightforward to distinguish the two wave modes,
especially in case of single transducers [34]. Furthermore,

the calculations of arrival time for the direct paths from AE
source to sensor, are the key reason behind the uncertainties
in location estimation.

The method proposed by Ciampa and Meo [15] enabled
the acoustic emission to be optimally focal in the time and
frequency domain using a single passive sensor. Neither
iterative algorithms, nor the advanced knowledge of the
mechanical properties, or the anisotropic group velocity
is essential for this method. Holford and Carter [47]
analyzed Lamb waves’ propagation to estimate the locations
of sources of acoustic emission over long distances. A high
pass frequency filter (>100kHz) and a lowpass frequency
filter (<100kHz) were applied to the signal to separate the
two modes present in the wave. The velocities of high
frequency (HF) and low frequency (LF) components in steel
were calculated as 5200 m/s and 3400 m/s, respectively.
LabVIEW software was used to implement this approach.
The extensional wave’s attenuation was measured to judge
its applicability in the long-range localization of the sources.
Gorman [39] focused on the amplitudes of different modes of
the waves to calculate the source’s dimensions. Jingpin and
Bin [56] developed a multimodal and dispersive algorithm
which focused on the analysis of the AE signals using the
Gabor wavelet transform to acquire a single-mode time at
a specific frequency level. A three-step approach developed
by Arvin Ebrahimkhanlou and Salamone [32] did not have
any blind spot leverages. Estimating the distance between
AE source and the sensor, yields the first step. They used
continuous wavelet transform (CWT) and dispersion curves
for this purpose. In the second step, an analytical model
was developed that simulates the edge reflected waves using
estimated distances. Finally, the location was estimated by
using a correlation between the simulated and experimental
waveforms. The performance of the algorithm was validated
by the pencil lead break (PLB) test on an aluminum plate.
They further investigated [33] the ambiguities in the AE
source localization by proposing a probabilistic approach.
The direct distance between the AE sources and the sensor
was estimated, and the envelope of AE signals reflected from
the edge was then reconstructed by using an analytical model.
Finally, the location of the AE sources was estimated by
using confidence contours. However, this approach ignored
the impact of natural and geographical constraints on location
accuracy.

Deep learning can learn the practical relationships between
the inputs and the outputs. Some authors implemented it
for the localization of AE sources. Ebrahimkhanlou et al.
[31] proposed a pre-trained version of stacked autoencoders
for the localization and classification of AE sources.
Furthermore, the proposed approach was compared with the
triangulation and machine learning approaches. Additionally,
the generalization capability of the proposed approach
was verified for the input patterns generated by complex
morlet mother wavelets and 8th-order complex Gaussian.
However, this approach was not successful in the case of
raw signals as input patterns. Arvin Ebrahimkhanlou and
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Salamone [34] used stacked autoencoders and convolutional
neural networks for complex geometry metallic plates, like
stiffeners connected with a rivet. Overall, both deep learning
networks performed equally well in terms of consistency
and flexibility. Comparatively better output was obtained by
the stacked autoencoders (100 percent accuracy versus 95.2
percent). The convolutional neural network was more stable
in allowing more information rich inputs in the frequency
domain. The AE source zone was identified; however, finding
the exact coordinates of the source could not be made
possible.

MAE has also been implemented with more than one
sensor. Castagnede et al. [9] proposed a method based on
the speed of quasi-longitudinal bulk waves. It performed
well for thick structures. However, the performance saw a
gradual degradation for thin plates in cases of larger distance
between the sensor and the point of impact. Sheer bulk
and longitudinal waves’ contributions were negligibly low
in the obtained signals. Xin Qiu et al. [98] improved the
location accuracy within asphalt mixtures by using a cross-
correlation function. Mostafapour et al. [86] integrated
wavelet packet decomposition with a cross-time frequency
spectrum (CTFS). The comparison of the proposed method
with traditional methods indicated that the average location
errors estimated by the CTFS method are three times lower
than those estimated by the correlation method. Yang Li et
al. [73] used the cross-correlation and geometric positioning
theory for localization of AE sources within plywood.
However, it was found that if the signal is broken down,
the length of the approximation signal is reduced, while the
details are reduced by half. Yan and Tang [128] identified a
Bayesian parameter to estimate the location and velocity at
a given frequency. For the posteriors’ estimation, a markov
chain monte carlo (MCMC) algorithm was used for drawing
the samples. Results obtained at multiple frequencies were
then blended by a data fusion scheme to maximize the
accuracy and minimize the uncertainty regarding the final
location. Mostafapour and Davoodi [87] used a rectangular
array of four sensors. The approach proposed by Perelli et al.
[96] succeeded to overcome the issues related to the detection
of arrival time using conventional threshold methods.

Wavelet packet decomposition at a frequency spectrum
of 0 – 250 kHz was performed. A wavelet-based optimized
residual complexity (WORC) function was used to determine
the time delay of the captured signals. Dispersion curves
were used for the calculation of frequency-varying velocity.
The comparison of the proposed method with CTFS and
cross-correlation techniques indicated that the proposed
method could minimize the location error. Chen et al. [10]
designed an identification technique to gauge the similarity
in AE signals by integrating magnitude square coherence
(MSC) with wavelet coherence and dynamic timing warping
(DTW). The proposed method improved the accuracy with
high quality signals using a more exact onset picking time
compared to complicated optimization algorithms with low
quality signals. Surgeon and Wevers [118] reduced the

number of sensors required for modal acoustic emission
localization. The estimation of linear source location could
be possible in case of known arrival time difference between
the two modes and the propagation velocity. Achdjian et
al. [1] combined related features extracted from the average
envelopes or the Schroder’s integral with the early wave
packet energies. This method did not require the sensors
to be synchronized in time; however, the localization area
was reduced comparatively. Some of the related papers about
single sensor and modal acoustic emission are listed in Table
1.

Even though several contributions have been made to the
algorithms for source localization using a single sensor, the
requirements for the implementation of these algorithms are
still challenging. It requires the collection of baselines in
huge quantities, even for simple isotropic materials, and they
are also computationally expensive [55].

B. TRIANGULATION METHOD
This procedure for AE source localization relies on the
identification of precise arrival times and the knowledge of
an appropriate propagation velocity. With these parameters,
a triangulation method can be established where the source is
identified as the intersection of three circles, whose centers
are the sensors’ location [103]. This approach is straight
forward; however, several associated difficulties may arise
because of reflections, and mode conversion and distortion of
the waveform within anisotropic materials. The performance
of the triangulation method degrades with unknown wave
velocity. The triangulation method can be applied in two
kinds of situations, either with or without known wave
velocity.

1) SOURCE LOCALIZATION WITH KNOWN VELOCITY
Several works have been published about AE source
localization in three-dimensional workspace, which considers
a constant known propagation velocity Vp, which does not
change even if the specimen incurs some damage. For
three dimensional structures, Li and Dong [72] proposed
a solution which can calculate Vp as well; however, this
algorithm requires previous knowledge of the onset time of
each signal. Rodriguez and Celestino [102] proposed the
CLAPWaVe methodology which assumes a fixed value for
Vp specified for a material. This assumption does not reflect
a real-life situation and may yield unreasonable results. The
analytical solution presented by Dong and Li [22] used six
sensors. The relocation results were clear and realistic with
actual coordinates in the monitoring network for internal
and external events. Location error for the traditional time
difference method was in the range of 0.01-0.03 m for
internal events, while the location errors for external events
were as large as 1080986 m. Zhou et al. [137] focused
on propagating waves having refraction points. Snell’s law
was used to solve the refraction points integrated with
TDOA equations. TDOA equations need to be converted to
linear equations. The linear equations-based trial solution
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TABLE 1. LIST OF PUBLISHED PAPERS USING SINGLE SENSOR AND MODAL ACOUSTIC EMISSION

Author Methods/Models Performance index (unit) Value
Ebrahimkhanlou2017 [32] MP model Max offset (cm), 5.3

Min offset (cm) 0.6
Jiao 2004 [55] Gabor wavelet, & contour plot. Location error (%) <5
Ebrahimkhanlou2017 [33] MP model RMSE radial (cm) 1

RMSE tangential (cm) 2.4
Ebrahimkhanlou2019 [31] Stacked autoencoders Zonal location Error % (inch) 44(1.7”)

Zonal location Error % (inch) 13(0.5”)
Ebrahimkhanlou2018 [34] Stacked autoencoders, Auto-encoders zonal accuracy (%) 100

convolutional neural networks CNN zonal accuracy (%) 95.2
Qiu 2020 [98] Threshold rule optimized by RMSE (mm) 0.0459

Fruit Fly Optimization Algorithm (FOA)
Mostafapour 2014 [86] Wavelet transform & CTFS Max error (x) %, 2.76

Max error (y) % 3.5
Li 2018 [73] Wavelet analysis & cross correlation Relative error (%) <4

Yan 2015 [128] CWT, MCMC algorithm Max Error (%) 5.3
Min Error (%) 1.1

Mostafapour 2017 [87] Algorithm-Wavelet packet decomposition, WORC Maximum source locating error (%) 3.5

is then updated iteratively to estimate the AE source’s best
possible location. However, there are certain limitations to
the proposed algorithm. This method requires each layer
to be of isotropic dispersive nature, the geometry of which
should be known. Besides, the wave propagation velocity
for each layer must be measured beforehand. Gollob et
al. [38] improved the standard Dijkstra’s algorithm by
identifying the fastest path between different nodes. P waves
generated from the same AE source are used to estimate
the location. However, fastway needs many calculations as
well as a matrix of the known wave velocity. The wave
velocity is highly affected by any variation in factors such
as air pressure, temperature, and geometry. Additionally, the
premeasured velocity is not always the same for different
paths.

Kalafat and Sause [57] used experimental training
data acquired from carbon-fiber polymer pressure (CFRP)
vessels. Comparison of the proposed method with established
localization methods revealed that an improvement in
accuracy is possible if an alternative strategy is applied
to determine the signal’s arrival time. Early identification
of damage in reinforced fiber composite was demonstrated
by Eaton et al. [30] using the time difference mapping
(TDM) method. This approach produced relatively consistent
results, and the root mean square (RMS) error was reduced
by more than 30 mm in some cases. The results were
validated by thermo-elastic stress analysis (TSA). Dehghan
Niri et al. [91] presented two nonlinear Kalman filtering
algorithms, extended Kalman filter (EKF) and unscented
Kalman filter (UKF), for the estimation of location AE
sources in anisotropic panels. These algorithms were applied
to the cases such as known velocity profile and unknown
velocity profile. The algorithms were compared with the
traditional nonlinear least squares method.

Hensman et al. [46] used a gaussian process (GP)

having radial basis function (RBF) kernels-based regression
to investigate the relationship between the artificially created
AE data and real damage location. Al-Jumaili et al. [3]
presented a fully automated time difference (4T ) mapping
strategy based on the clustering algorithm for automatic
identification and selection of events at each grid point,
which are highly correlated. Simultaneously, for estimating
the source location, a minimum difference of arrival approach
was used. A skilled operator’s prerequisite is eliminated in
this approach, which saves time and is less error prone.
Pearson et al. [95] integrated (4T ) mapping with akaike
information criteria to resolve the shortcomings of exact
arrival time identification. The results indicated that the
proposed approach could minimize the orientation that helps
to determine the group velocities. Each node of the sensors
array has a combination of (4T ). A comparison of the
estimated (4T ) combinations and that of the map is made.
This technique is known as "the best-matched point search
method". For some instances, the location accuracy was high,
but the reduced accuracy was observed on the plates’ edge.
Based on the current approaches Quy et al. [99] offered
a novel approach for locating cracks in a fluid pipeline.
The proposed method provided the frequency feature that
allowed the elimination of unwanted emission sources for
localizing AE sources, improving the location accuracy. The
technique was designed to recognize Rayleigh waves in
order to correlate wave velocity to flight time. This approach
achieved a high level of localization accuracy.

To improve the location accuracy, Dong et al. [25]
presented a multi-step localization method (MLM) which
does not require the wave velocity to be known in advance for
heterogeneous media. A 15% improvement in accuracy was
observed with a premeasured velocity of 1350 m/s. However,
the proposed method still has many drawbacks. Firstly,
MLM requires an additional sensor relative to traditional
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localization methods. Secondly, the initial velocity for the
proposed method should be calculated appropriately. Hu and
Dong [48] proposed the A∗ localization method (ALM)
approach to solve the associated issues with fixed wave
velocity dealing with irregular structures. The use of sensor
grids avoids manual, repetitive training. ALM significantly
improved the accuracy of localization. Without assuming the
coordinate distribution, Zhou et al. [134] used a trivariate
kernel density estimator, which could achieve good location
accuracy and stability in the presence of TDOA outliers.
However, in most scenarios, the TDOA measurements did
not have the outliers and only contain random errors. In
these scenarios, the proposed method did not achieve optimal
accuracy. Moreover, due to the intensive computation of
preliminary positioning, this method had poor real-time
performance, especially in many sensors. Zhou et al. [138]
developed a weighted linear least squares method which
does not require the wave velocity to be measured in
advance. Initially, the governing equations are linearized,
and the mean reference equation is established. Then, the
weight of these linear equations is used to estimate the
residuals. Dong et al. [24] measured TDOA and localized
the AE sources, employing a 3d analytical approach. The
fundamental principle of this approach depends on solving
several nonlinear governing equations. The proposed method
could cover some of the drawbacks of the closed form
solutions. Scholey et al. [108] were involved in generating
time of arrival difference (4T ) maps for some specific
structures. The actual distance was used to calculate t and
the fiber’s orientation that helps to determine the group
velocities in this method. Each node of the sensors array has
a combination of t. A comparison of the estimated (4T )
combinations and that of the map is made. This technique
is known as the best-matched point search method". For
some instances, the location accuracy was high, but the
reduced accuracy was observed on the plates edge. Prasanna
et al. [97] used a more generalized configuration by
selecting the minimum energy path on a surface containing
finite discontinuities. By applying both methods, AE sources
can be localized in heterogeneous and irregular geometries
with unknown properties of materials. However, due to a
firm reliance on the grid’s partition, the two approaches
either have a high computational burden or unsatisfactory
results. These conventional methods for localization where
the velocity is known would lead to unavoidable errors.

Table 2 enlists the published papers about localization
with known velocity. These location algorithms are based
on known wave speed. These methods are applied only
to multilayered structures of isotropic non-dispersive layers
where the geometry and layer-to layer interfaces are known.
The wave velocity should be measured in advance. Therefore,
operational errors in velocities may occur, which can lead
to errors in the final AE source locations. Moreover, the
accuracy in localization also depends on sensor layout and
structural geometry [137].

2) SOURCE LOCALIZATION WITH UNKNOWN VELOCITY

Meo et al. [83] calculated the wave speed and integrated
it into a sequence of nonlinear equations to determine the
source’s location. For various loading levels, the cumulative
error in the coordinates of the source was not more than
9 percent. The solution provided by Kundu et al. [64]
did not require precise travel time. The proposed method
performed equally well for both the isotropic and anisotropic
plates. The simplex algorithm often faced a convergence to
local minima, which has been fixed by finding the global
minimum of the objective function. Kundu et al. [65]
aimed towards the minimization of an objective function.
The objective function components are the TDOA and the
speed of the elastic waves in various directions, received
at multiple sensors. The issues in the proposed strategy lie
in the length of the terms for a large number of receiving
sensors, which was addressed by Hajzargerbashi et al. [42],
who modified the objective function. He implemented the
technique using four sensors, whereas the earlier technique
required three sensors. Koabaz et al. [58] used a different
objective function to simplify the optimization procedure.
The traditional threshold method was replaced with various
peaks in the acquired time histories. Experiments were
performed on a carbon-epoxy plate, having an acoustic
source. Sen et al. [111] slightly modified the rhombus-based
technique, taking three distinct wavefront shapes: a rhombus,
an ellipse, and a parametric curve. They stopped believing
that the wave propagates in a straight path. Sen and Kundu
[112] proposed a strategy that was based on the elliptical
wavefront. The location of the source is an iterative process
where the objective function is reduced to a minimum. It
does not presume the path of the wave propagation to be
a straight line. The source location can be estimated with
unknown material properties. They further investigated the
issue of convergence to the exact coordinates by using a
technique [113] based on the elliptical and parametric
curves. The technique performed well for an unknown angle
between axes of symmetry and the Cartesian reference
coordinates. The orientation of the axes of symmetry was
treated as an additional unknown in addition to the other
various unknowns like the source coordinates and the curve
parameters. This technique can be further expanded by
considering the influence of the frequency contents in the
acquired signals. Wang and Ge [123] addressed the issues
regarding high background noise. They integrated digital
filtering, an optimization method based on absolute value,
a simplex algorithm, and the reliability analysis. Global
convergence is not assured because of the presence of
strong cohesion in determining high horizontal stresses for
a limestone mine. The initial conditions are indispensable
for minimizing extremely non-linear cost functions. A
hybrid approach was introduced by Kundu et al. [67]
for heterogeneous plates with unknown material properties.
The initial step of the proposed method was to estimate
the location with the assumption of straight-line wave
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TABLE 2. PUBLISHED PAPERS ABOUT THE LOCALIZATION METHODS WITH KNOWN VELOCITY

Author Methods/Models Material Wave velocity (m/s) Performance index (unit) Value
Zhou 2018 [137] Refraction Path (RP) Iron 6047 Absolute distance

1.05Method Marble 5007 Error (mm) (11 layer)
Granite 4442

Gollob 2017 [38] Fastway velocity Steel reinforcing bar 4400 Average error median (mm) 17.4model and EEP-concrete
Kalafat 2015 [57] Advanced L-BFGS-B CFRP (x direction) 5636 Mean location Error (cm) 1.31algorithm (y direction) 4230
Eaton 2012 [30] Delta T mapping, TSA Carbon fibre composite: A0 (1500-1600) Average Error (mm) <8MTM28-1/HS-135-34%RW S0 (5300-7400)
Dehghan Niri 2014 [91] EKF, UKF, Nonlinear CFRP (1200-1600) Average Error (cm) 0.6243least squares algorithm
AlJumaili 2016 [3] Automatic DTM algorithm ASTM 516 gr 70 steel 4600 Av Error Isotropic (mm) 3.13

Av Error Anisotropic (mm) 3.88
Pearson 2017 [95] AIC-Delta-T algorithm Complex geometry 5400 Average Errors (mm) <4.2aluminum 2024-T3
Dong 2019 [27] CLMAI Kaiyang mine 4500 Absolute distance error (m) 39.82

Dong2017 [25] MLM Simplified building 1350 Location accuracy (%) 15test model
Hu2020 [48] A Localization Method without Granite block 5000 Average location error (cm) 2.2

premeasured velocity (ALM) Max. location error (cm) 1.4
Zhou 2019 [48] Trivariate kernel density estimator granite specimen 5000 Max abs distance error (mm) 9.92

Zhou2018 [138] Preconditioned closed-form solution Granite 4600 Maximum distance Error (mm) 5.9based on weight estimation (PCSWE)

propagation. The step is based on minimizing the error
function by considering wave energy propagation through
a curved path. This approach decreased the probability of
convergence into the local minima rather than the global
minimum. To minimize the modeling and simulation issues
associated with previous methods, Ciampa et al. [15] and
Coverley and Staszewski [18] proposed an optimization
approach based genetic algorithm for the analysis of the
strain wave velocity. The finding was optimal, but even
then, the real optimum results were not assured. Huang et
al. [49] presented a localization algorithm based on Geiger
optimization. The initial Geiger value was computed using
the phase difference approach. The iterative version of the
Geiger algorithm integrated with the least square method can
get the optimal solution. The proposed method could reduce
the average error by approximately 5 mm. Friswell et al.
[109] proposed a search strategy based on the best-matched
search method. Two tests were conducted on a heterogeneous
carbon-fiber composite (CFC) plate and on a disc of oolitic
limestone, where the source was located parallel to the disc’s
mid-plane. The result was excellent for the limestone location
method, but some events could not estimate the location very
well. Schumacher et al. [110] improved on the standard
Geiger’s method by combining the Markov Chain Monte
Carlo (MCMC) and Bayesian analytical methods, where
posterior probability density functions (PDFs) represented all
the source location parameters. The impact of the uncertain
parameters on accuracy is minimized by using either a
Bayesian approach or the proposed approach. However,
the latest probabilistic algorithm was unable to generate
corresponding distributions.

To reduce the impact of wave velocity on location
accuracy, Ciampa and Meo [14] proposed a method for
isotropic and anisotropic plates. This method used six sensors

to estimate the group velocity. Li et al. [69] established a
cost function based on the quotient of the time-difference
principle. The geometry of the AE source can be determined
by scanning the initial value of the simplex method. Dong
and Li [23] introduced a three-dimensional approach for
locating the micro-seismic sources. This method utilizes
the arrival times of longitudinal as well as transverse
waves. The time of arrival of the flexural Lamb waves was
identified by CWT. The linear search was conducted using
an iterative approach called Local Newton, and the output
was combined with the methods of polynomial backtracking.
The source coordinates and the values of wave velocity
were determined by solving a variety of nonlinear equations.
The proposed technique reduced the number of sensors
while still confidently and accurately predicting the acoustic
source. The approach developed by Simone et al. [20]
contains a set of non-linear equations. These equations are
then linearized with the help of only four sensors. Ciampa
and Meo [13] presented an unconstrained optimization
strategy associated with the iterative method called local
Newton. The coordinates of the source location and the
wave speed were obtained by solving several nonlinear
equations. This method surmounted the demerits associated
with the triangulation method. Moreover, this proposed
algorithm achieved convergence using several guess points.
The algorithm is computationally efficient; however, the
estimation goes wrong for distances longer than 650 mm.
Li and Dong [71] compared the outputs of the nonlinear
multi-robe location method. The findings of the proposed
method were compared with the analytical method. It was
demonstrated that the proposed method produces a single
solution, and locating the source is comparatively easy. The
analytical solution presented by Dong et al. [26] avoided the
square root calculations for unknown wave velocity, which
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could calculate the source coordinates if the arrival time
of P-waves and the sensors’ coordinates were known. For
the location determination of micro-seismic sources, log-
logistic distribution was utilized. Zhang et al. [132] used
a phased array method for the localization of radial and
axial defects by considering the original propagation path
of waves. The Time of Flight (TOF) difference for each
sensor provided the basis for this method, which develops
trajectory differences. However, the proposed algorithm
is not applicable when system resolution is more than
the difference in TOF. Comparatively better results were
produced by Mahajan and Walworth [77]; however, these
methods were intensely concerned with the number of AE
sensors, and the adjustment of extra sensors in the network is
hectic.

For highly dispersive mediums like composite materials,
Duff et al. [68] estimated the source location by calculating
time intervals. This method generated robust, flexible, and
accurate results for a glass-fiber/epoxy plate. Das et al. [19]
proposed a positioning method for uncertain wave velocity
systems through independent spatial location modifications
and the average wave velocity. This method requires the
determination of sensor coordinates and arrival times with
unknown wave velocity. Zhou et al. [135] presented a
solution based on weighted linear least squares, which
does not require to measure the wave velocity. The main
equations are first linearized by establishing the mean
reference equation. The estimated residuals are then used
to set a weight for these equations. Finally, the location
result considering the parameter constraint is obtained by
introducing an orthogonal projection matrix. However, the
basic assumption that the AE signal from the source to
the sensor is a straight line, still exists. The velocity free
system proposed by Zhou et al. [136] uses complete TDOA
measurements. The nonlinear governing equations are first
converted into a set of linear equations with complete TDOA
measurements. Then, an orthogonal projection operator
is introduced to reduce the ill-condition of this linear
system. The proposed method has a significant deviation
in the presence of outliers. Finally, an orthogonal matrix
is introduced which can estimate the location keeping the
parameter in mind. However, this approach assumes straight-
line wave propagation which is not the case in real world
signals.

Adaptive meshing algorithm (AMA) was presented by
Boniface et al. [8], which has the capability to be
quickly modified for modeling complex structures. However,
compared to other algorithms, AMA performed poorly for
errors that were less than 1 cm. A collaborative model,
node block location method (NBLM), was proposed by
Xiao et al. [126] for quasi- cylinders with complex
holes. NBLM neglected the space and could represent the
propagation of waves properly in the complex structures.
NBLM outperformed the traditional methods, adaptive
location method, and the time difference method. The key
feature of the proposed strategy by Grabowski [41] was to

compensate dispersion. Additionally, fewer input parameters
were required. Phase shifting of the waveform was done
by using a single sensor for more reliable output. The
proposed solution is developed by integrating Time-distance
domain transformation (TDDT) with a selection technique
to calculate the best possible distance. The literature about
localization methods with unknown wave velocity is listed in
Table 3.

One of the limitations of the closed-form solutions is
that they are highly dependent on the TDOA value. A
high TDOA value in a noisy environment results in a
huge localization error. Another limitation relates to the
coefficient matrix of these linear equations. These matrices
appear to be ill-conditioned because of the variation in their
components by several orders of magnitude. In case the
TDOA measurements contain outliers, the location result will
have a great deviation. Therefore, a location method which
can automatically identify and filter the outliers is important
[102].

C. BEAMFORMING
Beamforming is a signal processing technique used in sensor
arrays for directional signal transmission or reception [121].
Beamforming is used in acoustic source localization, for
which several localization algorithms have been developed.
For AE source localization, delay-and-sum algorithm is
usually used. Delay-and-sum is a simple and effective
algorithm utilized in beamforming techniques [129].
Considering the distance between AE source and array
of sensors, the analysis schemes based on beamforming
techniques can be divided into near-field and far-field
methods. A common rule of thumb is that the near-field
sources are located at a distance can be expressed by Eq. (7):

r ≤ 2L2/λ (7)

where r is the radial distance from an arbitrary array origin,
L is the largest array dimension, and λ is the operating
wavelength [78]. The acquired wave front from the sound
source, in such conditions, is assumed to be spherical due
to the transmission characteristics of waves. The far-field
sources refer to those where the location r is larger than
2L2/λ, of which the wave front is usually assumed planar.
The basic concept of beamforming can be illustrated as in
Fig. (7).

The beamforming technique can measure the acquired
signal from an array of sensors. The beamforming method
has been applied successfully in several fields such as
sonar, telecommunication, radar, source identification, and
localization. AE beamforming approach was introduced
by McLaskey et al. [82] for the localization of AE
sources in civil engineering. They concluded that a
more straightforward sensor arrangement, marginal channel
attenuation, and localization of multiple sources make the
beamforming method superior. The method proposed by
Nakatani et al. [88] does not require accurate velocity. Two
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TABLE 3. PUBLISHED PAPERS ABOUT ANALYTICAL LOCALIZATION METHODS WITH UNKNOWN VELOCITY

Author Methods/Models Performance index (unit) Value
Meo2005 [83] Orthotropic algorithm Maximum location error (%) 9
Koabaz 2012 [58] Simplex algorithm Localization error (%) <5
Sen 2018 [111] Levenberg–Marquardt algorithm Parametric location error (mm), 10.53

Modified eclipse error (mm) 19.98
Sen 2020 [112] Nelder-Mead algorithm Error for n=5 (mm), 25.11

Error for n=6 (mm) 19.8
Ciampa 2012 [15] Line search method, polynomial Quasi-isotropic CFRP MLE (mm) 3

backtracking technique Sandwich plate MLE (mm) 2
Ciampa 2010 [14] Unconstrained optimization and Max location error (mm), 4

local Newton-Raphson iterative method Wave velocity (m/s) 3
Das2019 [19] Taylor’s expansion and error optimization. Av. error with slowness 1.1(cm) 2.63

Av. error with slowness 3(cm) 3.89
Dong 2017 [26]

TDCAS-PDF

Arrival time error with 5%,

Improved TDArrival time error with 10%,
Arrival time error with 15%,
Arrival time error with 20 %

Xiao2020 [126] Node Block Location Method (NBLM) Average error internal (mm) 7.7
Average error external (mm) 11.3

Zhou 2020 [136] Orthogonal projection operator to Average absolute distance errors, Depends on
reduce the ill-condition. standard deviation at different noise levels noise scale

Boniface 2020 [8] Adaptive Meshing Algorithm (AMA) For errors <2 cm (%) 44

Grabowski2016 [41] Time–Distance Domain Transformation Localization error (m), Localization error (%) 0.7
(TDDT) 14

Coverley 2003 [18] Classical triangulation combined with X-error (%), 11.63
Genetic Algorithms (GAs) Y-error (%) 13.16

Zhou 2020 [135] Novel weighted LLS method without absolute distance error (mm) 13.36wave velocity
Zhou 2021 [133] A new algebraic solution average abs distance error (mm) 3.55

minimum positioning accuracy (mm) 1.12

FIGURE 7. Concept of beamforming technique.

uniform sensor arrays were installed to estimate the location
of various sources from two directions with an apparent
divergence of the actual velocity from the localizing velocity.
Yin et al. [131], Kundu et al. [66], and Kundu [62] arranged
six sensors in two L shaped clusters. No knowledge of
the direction dependent wave velocity was required for the

implementation of this strategy in large complex structures.
Tai et al. [119] proposed the fast Bartlett beamforming
method for an L-shaped array which significantly enhanced
the localization performance while maintaining the accuracy
of broadband Bartlett beamforming. The proposed method
was almost 224 times faster than traditional beamforming.
Bartlett beamforming method (BBM), proposed by Huston
[50], entirely ignored the damages that were perpendicular
to the sensors array. Nakatani et al. [89] proposed two
amendments in determining the accurate TDOA. The first
one was to consider only the first dip and peak of the
full-time histories. The second modification was related
to sensor placement in the clusters. It was suggested to
place the sensors as close as possible. These modifications
significantly improved the localization accuracy. Mhamdi
and Schumacher [85] proposed a circular phased array and
compared it with the traditional time of arrival technique.
Two circular arrays are capable to estimate the direction as
well as the location of the source. A single phased array
can only estimate the direction of the source. Phased array
eliminates the need to select the wave phase. Sabzevari and
Moavenian [104] presented a method based on attenuation
analysis which requires fewer sensors. They used four
sensors arranged in two clusters for the sources in anisotropic
plates. This technique is capable to handle only a single
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source. The solution of eight unknowns is the main drawback
of this approach. Aljets et al. [4] used a triangular array of
three sensors for localization in composite plates. The time of
flight (TOF) algorithm was combined with the modal source
location algorithm to develop the proposed method. Wavelets
transform (WT) was used at a specific frequency to determine
the arrival time of the A0 and its propagating angle. A
numerical model can be formulated if the smallest and largest
value for the wave velocity of S0 wave mode is known.
This technique is not suitable for complicated structures.
Salamone et al. [107] arranged an array of macro-fiber
composite (MFC) transducers as rosettes. This arrangement
detects high-velocity wave modes in isotropic and anisotropic
structures. This approach is favored since it does not require
the wave’s speed to be known in the material. Park et al.
[94] proposed a technique for non-circular wavefronts for
known material properties. The location can be estimated
by using a geometric vector analysis or an optimization
method. Two common shapes of wavefront typically found in
highly anisotropic plates are rhombus and ellipse. However,
since the waveforms acquired from the CFRP plate were
comparatively more complicated than that of the isotropic
steel plate, the overall accuracy is decreased if the A0 mode
is used in the location estimation.

For improving the accuracy in the beamforming methods,
Liu et al. [74] used wavelet packet transform to decompose
the generated AE signal due to damages in the welded
joint. Validation results revealed the potential of the
proposed technique to accurately estimate the location of
the failure. He et al. [44] investigated the AE waves’
dispersion behavior and its impact on the accuracy of
the beamforming approach. Additionally, they proposed an
approach to calculate group velocity by integrating plate
wave theory with wavelet packet transformation. Rivey
[101] observed the potential of beamforming methods to
identify the origin location of stress waves by scattering,
attenuation, and reflections. He et al. [43] introduced
the Hilbert curve to minimize the cost and maximize
the computational performance of AE beamforming. The
efficiency could be improved approximately 154 times as
compared to the traditional beamforming method. Wang
et al. [125] proposed a joint localization method based
on beamforming and TDOA. Both the simulation and
experimental results demonstrate the improved accuracy
of the proposed method. The amount of calculation is
greatly reduced in comparison to the TDOA method and
the beamforming method. xue et al. [127] looked at the
positioning error of multi-sensor cluster systems with sensors
organized in either an isosceles right-angled triangle or
triangular pyramid form. The two-dimensional amendment
algorithm outperformed with an average positioning error of
1.4 mm on the Plexiglas plate, which is 23.1 mm smaller
than that of IRT (24.5 mm). While the average position error
on concrete sheet is 46.6 mm, which is 18.1 mm smaller
than that of IRT (64.7 mm). In case of anisotropic structures,
the positioning accuracy of two-dimensional amendment

algorithm in locating AE sources is 27.8 % higher than that
of IRT. The arbitrarily triangle-shaped clusters approach was
used by Fu et al. [36] to localize the AE sources in a
cylindrical vessel. They compared the method with existing
acoustic source localization techniques developed for flat
plates and investigated its applicability potential for source
localization in cylindrical structures. The findings provided a
theoretical and experimental foundation for future research.
The beamforming related papers are listed below in Table 4.

Although high localization precision is observed with
great robustness in beamforming methods, its inherent
limitations must be kept in mind during implementation. As
beamforming compares the shape of signals, all the sensors in
the array should have similar amplitude and phase responses.
Moreover, to avoid spatial aliasing, the beamforming array
is required to have a relatively small aperture. Similar ray
paths from source to sensor experience the same propagation
effects [121].

D. TIME REVERSAL AND ARTIFICIAL NEURAL
NETWORK
Artificial neural network (ANN) is an extremely effective
procedure for the localization of AE sources. It is considered
an alternative to classical triangulation methods. Contrary to
the classical methods, the ANN-based location procedures
have two important advantages: they are suitable for AE
source location in highly anisotropic media, and elastic
wave velocity is not a necessary input parameter of the
algorithms [63]. The input parameters for the basic ANN-
based algorithm use time differences, just like the common
triangulation algorithm. However, determining the exact
arrival time is a serious factor when using time differences.
Therefore, in case of high noise background levels, these
methods can give inaccurate results. Grabec et al. [40]
proposed Neural Networks (NN) for the processing of AE
data acquired from a small aluminum block. Baxter et al.
[6] trained a structure by creating artificial acoustic emission
sources. They used this knowledge to estimate the location
of real AE sources by comparing with the recorded time
of arrivals, which are called Delta-T. To resolve the issues
related to nonlinear inversion, Spall et al. [117] used
feed-forward neural networks (FFNN). They validated the
approach on a steel beam. The velocity of AE signals in
various propagation directions was contradictory even for
isotropic materials. The training for a given NN configuration
faced nonlinear parameter estimation, which requires picking
NN weights from a collection of training data. Blahacek et
al. [7] pointed out concerns about the calculation of correct
arrival times. Standard parameters of the AE signals such as
amplitude, duration, and rise time were used as input data
set for the ANN based location algorithm. The algorithm
successfully selected optimum parameter set scenarios. RMS
was selected as the most sensitive parameter that can
be modified to extract energy parameters. To resolve the
drawbacks associated with ANN based approaches, Chlada
et al. [12] proposed an approach, which does not need the
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TABLE 4. LIST OF BEAMFORMING RELATED PUBLISHED PAPERS

Author Methods/Models Performance index (unit) Value
McLaskey 2010 [82] VESPA (Velocity Spectral Analysis) Confidence (%) 95
Yin 2018 [131] Z-shaped array clusters Error Min (cm) Error Max (cm) 0.76

1.59
Tai 2019 [119] Fast Bartlett beamforming method Average time (µs) 0.72

(FBBM) Scanning accuracy (mm) 5
Nakatani 2014 [89] Delay-and-sum algorithm, first dip and peak Location Error ±10°
Mhamdi 2015 [85] automatic onset time picking Max Error (mm) 9.6algorithm, Phased array approach
Aljets 2012 [4] Combination of TOF and Location accuracy (%) 97.93modal source location algorithms
Park 2017 [94] Levenberg-Marquardt Algorithm (LMA) Error (Elliptic) mm, 18.8

Error (rhombus) mm 2.68
He 2019 [44] Nine-Four bisection’ method, Min error in Steel (mm), 2

Hilbert curve-beamforming method (HCBF) Max error in Steel (mm), 15
Min error in CRFP (mm), 5.4
Min error in CRFP (mm). 20.2

Wang 2020 [125] Joint beamforming and Average calculation time (s) 0.53TDOA Localization Method
Xue 2021 [127] Two-dimensional amendment algorithm Average position error in Plexiglas plate (mm) 1.4

Average position error in concrete (mm) 46.6
Fu 2021 [36] The arbitrary triangular- Min Error(cm) 0.42

shaped clusters Max Error(cm) 3.72

material properties to be known. McCrory [81] concluded
that much research is still required in AE source localization,
after performing a comparison of various approaches such
as delta-T, ANN, unsupervised waveform clustering (UWC),
and modified measured amplitude ratio (MAR). Deng et
al. [21] attempted to improve the location accuracy by
integrating the potential of modified gaussian mixed model
(GMM) and a time delay neural network (TDNN). Fu 2015
et al. [37] used backpropagation algorithm to adjust weights
and biases. The minimum mean square error was found to
be 0.93 if there were seven hidden neurons, and if the steady
state arrived after 141 iterations. Minor errors were observed
at the boundary points with a maximum error of 5.1 mm. For
large monitoring areas, location accuracy is hard to maintain
because of the attenuation of the stress wave attenuates
propagating for the long distance. A chaotic neural network
technique was introduced by Lu et al. [76] by proposing
an improved version of particle swarm optimization (PSO),
which did not require training samples or the adjustment
of specific parameters. Cheng et al. [11] replaced the
traditional gradient algorithm with shuffled frog leaping
algorithm (SFLA). The latter proved to be more efficient
as compared to the traditional gradient algorithm in the
wavelet neural network parameter optimization. However,
in case of insufficient training samples, the error rates
were irregular. Liu et al. [75] improved the accuracy by
proposing generalized regression neural network based on
time difference mapping (GRNN-TDM). The time difference
mapping data of all the sensors was used as input data
for the training process, and the coordinates of the grid
nodes were used as output data of the training. The

performances of the traditional time difference mapping (T-
TDM), improved time difference mapping (I-TDM), and
GRNN- TDM methods were tested on different materials and
structures. The accuracy of the localization results obtained
from the proposed method was significantly improved. Yang
and Xu [130] presented a pre-trained stacked denoising
autoencoders (SDAE)-based framework to localize acoustic
emission (AE) sources in common and complex metallic
panels. Bayesian information criteria (BIC) approach was
used to optimize the number of layers and hidden nodes
of SDAE used for coordinate-based location. To improve
the localization accuracy a ten-fold cross-validation method
was utilized. The proposed method outperformed traditional
machine learning approaches such as SVM and ANN with
a zonal localization accuracy of 100%, and the root mean
squared (RMS) localization errors of two metallic panels
were 38 mm (1.5") and 48 mm (1.9"), respectively. Jang et
al. [53] constructed a regression model for the estimation
of impact location using the four multiplexed FBG sensor
array. The constructed regression model was validated by
non-baseline signals. Regression model accurately estimated
the location of AE source with an average and maximum
error of 4.77 cm and 9.00 cm, respectively for non-baseline
cases. Ai et al. [2] presented an approach to localize
SCC sources with fewest acoustic emission (AE) sensor. To
enhance the traditional source localization, three machine
learning approaches such as ANN, RF, SAE were used.
Source localization is considered as a classification issue in
this work.Stacked autoencoders performance was the best
with an accuracy of 97.8%. The accuracy of random forest
and ANN was 91.5% and 80.0% respectively.
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TABLE 5. LOCALIZATION METHODS BASED ON ANN & TR

Author Methods/Models Performance index (unit) Value
Chlada 2010 [12] ANN, classical triangulation Location error (mm) 9
Blahacek 2006 [7] Backpropagation (BP) ANN Max location error (mm) 70
Fu 2015 [37] Backpropagation (BP) ANN Max location error (mm) 10.6
Lu 2016 [76] Improved PSO Average error (m) 0.009
Cheng 2014 [11] Wavelet Neural Network, Error rate (%) <3Shuffled Frog Leaping Algorithm
Liu 2020 [75] GRNN-TDM algorithm Absolute error (cm) <2

Yang 2020 [130] Stacked denoising autoencoders RMSE (inches) 1.5
(SDAE) RMSE (inches) 1.9

Ai 2021 [2] ANN (Accuracy%) 80.0
RF 91.5
SAE 97.8

Jang 2021 [53] Regression Average error (cm) 4.77
Max error (cm) 9.00

Ing 2005 [51] Time reversal technique Contrast (8 sensors) ≈4.9
Contrast (1 sensor) ≈1.8

Ribay 2007 [100] Time reversal technique Correlation Coefficient (25C) 0.96
Correlation Coefficient (26.5C) 0.72

Ernst 2014 [35] Time reversal approach Relative location error (%) <5

Jiang 2015 [54] SART algorithm, Elapsed time (ET), 0.0553
Adaptive medifilt2 and Mean absolute error (MAE) 0.1983
Medifilt2 iterative mean Correlation coefficient (CC) 0.8281

Wang 2021 [124] VTR Location error in
circumference direction 30°

TABLE 6. LOCALIZATION ALGORITHMS FOR MULTIPLE AE SOURCES

Author Methods/Models Performance index (unit) Value
Choi 2017 [115] Acoustic beating envelopes - -
Dubuc 2018 [29] Sparse reconstruction approach with matching - -pursuit algorithm
He 2018 [45] SVD BFM Error (max) Error (min) 221 0
Sai 2016 [106] Shannon wavelet transform, All error (mm) <11

TR focusing model Average Error (mm) 7.3
Dris 2020 [28] CWT, an EKF algorithm Percentage error (%) 0.02–2.43
Kossel 2005 [60] ICA Average mean error (%) <30

Maximum error (%) <50
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Ing et al. [51] proposed an efficient concept called
time reversal (TR) as a localization technique for acoustic
emission sources in inhomogeneous objects irrespective
of their shape. Ribay et al. [100] conducted numerical
tests and observations to explain the mechanics of wave
propagation. Owing to A0 being dominant, a rise in
temperature was expected to contribute to a stretching or
compression of the impulse responses. Ernst and Dual [35]
worked on the dispersive nature of flexural waves mode
where the extraction of time-of-arrival (TOA) information
is challenging. Li et al. [70] implemented it on steel plate.
Apart from localizing, the orientation of the source was
also identified through signal focusing. Park et al. [93]
further extended it for complex isotropic or anisotropic
structures. Additionally, the training process and the time-
reversal based correlation calculations were convenient and
straightforward. This approach was validated successfully
on real wings of composite aircrafts. To locate and identify
the damages in complex structures, Jiang et al. [54]
integrated the concepts of tomography and simultaneous
algebraic reconstruction technique (SART). Two artificially
created damages verified the efficacy of this method on the
Q235B steel plate. The proposed method produced a three-
dimensional (3D) image that contained information about
the location of the damage. Furthermore, an improvement
in localization was observed after comparing the assessment
indexes of Adaptive Medifilt2 and the Medifilt2 iterative
mean, and the SART was conducted. Kocur [59] successfully
suggested a deconvolution based approach that involves
testing on small concrete and aluminum slabs effectively.
They applied the convolution scheme to all the recorded
waveforms. This approach suffers from practical drawbacks
such as practical dispersion, stability, and high computational
costs. Table 5 include the papers related to ANN and TR
based localization methods. To find the leak source in
cylindrical shell structures, Wang et al. [124] employed
virtual time reversal (VTR) technique. The instantaneous
abrupt characteristic of the signals were built by extracting
WT coefficient of AE signal at specific frequency for further
processing using VTR focusing image technique. They also
provided an algorithm for determining the shortest path
between the AE source and the sensor. The localization
performance of the proposed method in circumferential
direction was 30◦.

One of the limitations of the ANN is that it needs large
training sets. Producing large experimental training sets
is very difficult and highly time-consuming. Alternatively,
using a numerical model for the structure can generate
training samples. Furthermore, if the ANN-based models
are evaluated with a different dataset than the one that is
generated, the performance may drop significantly [84].

E. MULTIPLE SOURCES LOCALIZATION
The triangulation approach requires the separation of
multiple AE events to be separated and isolated in time.
It means that individual events are localized individually.

This scenario may work well where it is possible to isolate
multiple events; however, in some scenarios it is not possible
to distinguish the events in time. This kind of possibility may
arise from corrosion and cracking. The main issue in the
analysis of multiple events is the separation and identification
of signal components, especially where the signal comes
from a variety of unknown sources.

Kyoung-Sik Choi [115] proposed a reliable and cost-
saving method to estimate the positions of multiple acoustic
emission sources using acoustic beating envelopes. The
longer wavelength of a beating signal compared to those
of the original signals made it convenient to localize
multiple acoustic emission sources. This method was based
on the sparse reconstruction approach. Dubuc et al. [29]
used sparse reconstruction approach for multiple acoustic
emission sources within large diameter thin-walled pipelines.
The technique is suitable for sources which are closely
related in time. Both the matching pursuit algorithm and
basis pursuit denoising approach were analyzed as potential
numerical tools for the proposed method. He et al. [45]
analyzed AE sources of varying frequencies and magnitudes
using singular value decomposition (SVD) for preprocessing
the signal, in order to solve the issues that result in a mislead
estimation of the location. They implemented the proposed
method for two sources in isotropic materials. However, in
case of anisotropic materials it can be more challenging.
Sai et al. [106] implemented the time reversal focusing
imaging technique for installing a network of fiber Bragg
grating sensors. Shannon wavelet transform was used to
extract a narrow band signal at a specific frequency and to
calculate the modulus value. However, this method requires
fair characteristics of propagating waves. The sensors should
be capable of covering the entire monitoring area, which
may not be feasible in most of the engineering practices.
A probabilistic approach was implemented by Dris et
al. [28], where CWT was used to estimate the time
of arrival. The lamb wave’s group velocity at a specific
frequency and the extended Kalman filter (EKF) were
simultaneously used to estimate the AE sources’ location.
Even though this study produces significant results, it ignores
the uncertainties associated with material properties. Kosel
et al. [60] used independent component analysis (ICA)
for the localization situations where the traditional TDOA
based method failed. They first separated the signals of two
synchronous AE sources and then used TDOA for individual
sources. However, these methods lack strategy about the
grouping of signals obtained in ICA. The literature about the
localization of multiple acoustic emission sources is enlisted
in Table 6.

The sparse reconstruction approach is suitable for
structures with simple geometry and material properties.
However, for geometrically complex structures, it is suitable
to create a measurement-based dictionary [54].
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TABLE 7. COMPARATIVE ANALYSIS OF AVAILABLE APPROACHES FOR AE SOURCE LOCALIZATION

Method Basic Principle Key strengths Limitations
Modal Acoustic Symmetrical (S0), the flexural (A0) These methods require a reduced Huge amount of baseline is required.
emission minimum order antisymmetric (Sh) number of sensors. AE signal can be These methods are computationally

modes of the AE waves. separated in different modes to intensive and requires the knowledge of
reveal more hidden information. wave mechanics.

Beamforming It is a signal processing technique Precise P-wave arrival time These methods rely on the comparison of
which uses an array of sensors for information is not required to the shape of signals, which makes it
directional signal transmission or implement beamforming. Sampling crucial that all the sensors in the array
reception. rates can be reduced by utilizing the have identical phase and amplitude.

band-limited nature of the AE Relatively large aperture causes spatial
signals. No need to timely aliasing.
synchronize spatially distance
sensors is required.

Time Reversal TRM compares the recording phase and TR method gives enhanced signal to TR requires identical conditions for
approach the transmission phase to focus noise ratio. It does not require the forward & backward propagation.

optimally on the wave back to the known wave velocity. It eliminates Limitations present on the upper limit in
source. the problems with wave dispersion, the associated signal length and

attenuation, and reflections in a sampling rate. Boundary reflections affect
relatively simple way. accuracy.

ANN ANN is composed of several artificial They are suitable for highly ANN is labor intensive. It requires plenty
neurons which mimic the biological anisotropic media. Wave velocity is of training data. Repeated training is time
neurons in human brain. not a necessary input parameter. consuming. Transferability of training data

to any other object is not possible.
Triangulation Iterative methods begin with an These methods generally tolerate a Iterative methods require setting of
Methods approximate solution, and then the higher noise level and perform certain parameters and an initial
(Iterative components of approximation are better in small scale laboratory configuration. It is not recommended for
methods) updated one or more times in a environments. real life situations. These methods are

certified order before convergence is highly dependent on the TDOA value. They
reached. have high computational cost and face

divergence and global convergence issues.
Triangulation Closed-form methods are those They are non-iterative in nature and The location error increases manyfold
Methods methods in which the final expressions are computationally more attractive. with an increase in noise level. These
(Closed-form are expressed using a finite number of They do not face local minima and methods depend on the TDOA value. It is
methods) standard operations. divergence problems. not recommended for real life situations.

IV. DISCUSSION

The AE localization algorithms are based on the distance
traveled by the emitted waves. Their value can be achieved
by multiplying arrival time to the propagation speed in the
specific medium. The speed of the P-wave in a structure
is closely related to the travel path. This paper includes a
discussion of numerous localization techniques, improving
the localization accuracy, where it is assumed that the P-
wave travels in a straight line. This fact is valid for the
monitoring environment in some isotropic propagation media
having simple geometrical structures. For actual complex
engineering structures, the trajectory of a real P-wave may
not be simply straight. It is greatly affected by multiple
propagation media and the geometry of the structure. It is
assumed that if the P-wave travel paths are indicated by
curves, multisegmented lines, and the combination of curves
and multisegmented lines, the accuracy can be improved.
This would be a slight variation of the measured travel
path from the real one. Time reversal technique and the
artificial neural network have been used in the literature for
the AE localization problem. Various reliable and advanced
strategies based on pattern recognition and neural networks
have been developed for the analysis of AE and seismic
data. These conventional methods work on a set of signal
features extracted from the time or frequency domain. Time-

frequency provides a broader range of time and frequency
features simultaneously. The advantages of these techniques
are that they do not require the knowledge of the wave
velocity or the structural geometry and can estimate the
intensity of the source and its location. However, the
repeated training process of ANN is labor-intensive and
computationally demanding. For covering a large structure,
the training process may be conducted by manual impacts or
by employing robotic devices. The beamforming technique
has been discussed in the literature. An acoustic source
could be localized in an anisotropic plate with the help
of at least two arrays of sensors, each containing three
sensors. This technique does not require the knowledge about
direction-dependent velocity profile in the plate, nor does it
require the solving of a system of nonlinear equations. For
source localization in isotropic materials, a smaller number
of sensors are required. The beamforming technique does
not require the exact time of arrival of a specific wave mode,
making it possible for it to handle noisy signals if the noise is
Gaussian white noise. This approach has some limitations.
One of the limitations is that the material properties must
be known for the theoretical analysis beforehand. For an
isotropic plate, it might not be a problem; however, getting
all material properties accurately is very difficult for an
anisotropic plate. Another restriction of this technique is
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that the mechanics’ problem of wave propagation in a plate
satisfying appropriate governing equations and boundary
conditions must be solved first. Due to the nonlinear and non-
convex nature of TDOA based localization problems, finding
the AE sources’ location is not a trivial task. Moreover,
the non-linear hyperbolic equations become inconsistent if
noises corrupt the TDOA measurements. Several methods
based on TDOA positioning are available in the literature.
These approaches can be divided into two categories. The
first category includes iterative methods that require iteration
to estimate an accurate location. The second category is
of closed-form solutions that provide explicit solutions
in AE source localization. Iterative approaches generally
tolerate a higher noise level. However, they have certain
limitations. These algorithms require certain parameters
and an initial setup, which has a strong impact on the
convergence of the algorithms. Convergence is not provided
by the Newton–Raphson method at some points, which
causes a deviation from the accurate solution with a
high computational time. Closed-form methods are of non-
iterative nature. They are generally more computationally
attractive and do not have local minima and divergence
problems, as compared to the iterative techniques. A brief
comparison of these methods is presented in Table 7. The
reliability in the AE source localization can be enhanced
by combining these two kinds of methods. For example,
the closed-form method’s solution can be used as the initial
guess of the iterative method, to avoid local convergence
and achieve a higher level of noise tolerance before the
thresholding effect occurs. The comparison is presented
in Table 7. All the localization techniques possess some
associated uncertainties in predicting the location of the
damage because of errors in time of flight and the strain
value. We propose a deep learning-based beamforming
technique for the localizing of the acoustic emission sources
on the surface of a cylindrical pipe, based on the assessment
of different acoustic emission source localization techniques.
It is important to concentrate on a decrease in the number
of sensors used to incorporate sensor array-based monitoring
methods. No prior information is required about acoustic
emission velocity distribution in the structure. Compared
to other traditional methods, the circular sensor cluster-
based approach has a higher potential of in situ detection of
acoustic emission sources in cylindrical pressure vessels and
containers. Deep learning is a data-driven approach which
does not require the manually designed and application
specific features from data. Deep learning architecture is
directly applied to data such as signals and images, because
it automatically learns and extracts representative features
from data. In this way, deep learning also achieves a better
performance than the traditional feature-based algorithms.

V. CONCLUSIONS AND FUTURE DIRECTIONS
The following points are worth noting for the future research
directions.

• Analytical techniques for AE source localization are

challenging to apply in real-life structures that are
complex. However, optimization techniques have been
used to resolve source localization and characterization
in complex structures.

• AE signals include noise. Sufficient expertise in signal
processing is required to analyze the excellent quality of
recorded AE signals for damage localization. However,
in the absence of such expertise, the AE signals may
wrongly be interpreted as original signals, resulting in
incorrect localization results.

• Soft computing techniques like ANN have a tremendous
potential for acoustic emission source localization.
However, the considerable amount of training sets
required for ANN makes it infeasible for large
structures.

This study mostly contains the application of the source
localization method to artificial sources. The localization is
highly affected by the nature of the defect. The performance
of the localization methods can be improved by investigating
the effect of impact energy, impactor size, and material on
the performance of network. The application of advanced
deep learning algorithms such as deep belief networks and
convolutional neural networks can bring a revolution in the
field of acoustic emission source localization.
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