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Abstract— This paper focuses on the state-periodic adaptive com-
pensation of cogging and Coulomb friction for permanent magnet
linear motors (PMLM) executing a task repeatedly. The cogging force
is considered as a position dependent disturbance and the considered
Coulomb friction is non-Lipschitz at zero velocity. The key idea of our
disturbance compensation method is to use one trajectory-period past
information along the state axis to update the current adaptation
law. The new method consists of three different steps: Firstly, in
the first repetitive trajectory, an adaptive compensator is designed
to guarantee the �2-stability of the overall system; secondly, from
the second repetitive trajectory and onwards, a trajectory-periodic
adaptive compensator is designed to stabilize the system; and finally,
to make use of the stored past state-dependent cogging information, a
search process is utilized for adapting the current cogging coefficient.
The validity of our adaptive cogging and friction compensator is
illustrated through a simulation example.

Index Terms— Cogging force, Coulomb friction force, state-
dependent disturbance, adaptive control, trajectory-periodic adapta-
tion.

I. INTRODUCTION

Permanent magnet (PM) motors are the most popularly used
electromechanical devices for accurate speed and position con-
trol of the linear system or rotary system. In parallel with the
popularity of PM motors, the nonlinear torques inherent to PM
motors have been addressed in numerous literatures [1], [2], [3].
In particular, in [4], load torques, friction effects, and cogging
torques are addressed as inherent torques of the permanent magnet
stepper motors; and in [5], [6], friction, cogging and reluctance
forces are modelled for iron-core permanent magnet linear motors.
As explained in [7], the cogging forces are due to the interaction
between the permanent magnets and the steel teeth of the primary
section; and the friction force is a velocity-dependent nonlinear
disturbance, which is inherent to most of the electromechanical
systems.

In permanent-magnet linear motors (PMLMs), nonlinear me-
chanical disturbances such as back-lash are greatly reduced; while
the cogging forces are considered as the main disturbance [3],
[5]. However, static friction force such as Coulomb friction is
still a dominant basic disturbance and should be compensated for
accurate speed and position control of PMLMs. Thus, in this paper,
we focus on the cogging force and the Coulomb friction. These
disturbances are compensated by the trajectory-periodic adaptation
based on Lyapunov stability analysis on the time-axis.

Cogging forces are position dependent periodic disturbances due
to the slotted nature of the primary core [3], [6], and generally it
is modelled as Fourier expansion [1], [2]. However, in control
strategies, it has been modelled as a simple sinusoidal signal such
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as:
Fcogging = A sin(ωx + ϕ) (1)

and the unknown parameters such as A, ω and ϕ have been
compensated by certain parameter adaptation scheme [4], [5], [8].
However, this approach does not represent high order terms in
the Fourier series, hence it cannot compensate the cogging force
completely. In this paper, we do not assume any model such as
(1); instead, it is considered that the cogging force could be any
kind of Fourier expansion such as:

Fcogging =

∞∑
i=1

Ai sin(ωix + ϕi) (2)

In order to compensate cogging force of (2), it is suggested to
make use of the periodicity of cogging disturbance on the repetitive
trajectory. Note that cogging force waveform is periodic over a
pole-pitch in PMLMs [2].

In control community, Coulomb friction force has been studied
widely in [9], [10]; and many efforts have been devoted in late
80′s and early 90′s to compensating friction force [11], [12],
[13], [14], [15]. After these early works, several adaptive friction
compensation controllers have been suggested [16], [17], [18],
[19]. We can see that the friction compensation is still considered
as a hot topic/

The paper is organized as follows: In Section II, a new adaptive
state-dependent cogging and friction compensator is designed
based on Lyapunov stability analysis. Simulation tests are per-
formed in Section III. Conclusions are given in Section IV.

II. STATE-DEPENDENT ADAPTIVE COGGING COMPENSATION

In this section, the state-dependent periodic adaptive cogging
and friction compensator is designed. The cogging force of (2) can
be written as: −a(x), where a(x) is the function of x. Coulomb
friction is modelled as:

Ffric = −bsgn(v), (3)

where friction is discontinuous at zero velocity. In this paper, to
present our ideas clearly, without loss of generality, the following
simplified servo control problem is considered:

ẋ(t) = v(t) (4)

v̇(t) = −a(x) − bsgn(v) + u, (5)

where x is the position; a(x) is the unknown position-dependent
cogging disturbance; b is the friction coefficient; v is the velocity;
and u is the control input.

First, before proceeding our main results, the following defini-
tions and assumptions are necessary.
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Definition 2.1: The total passed trajectory is given as:

s =

∫ t

0

|dx|
dτ

dτ =

∫ t

0

|v(τ)|dτ,

where x is the position, and v is the velocity. In [20], it was
defined as the curvilinear abscissa associated to the trajectory of
the relative motion. In our definition, since s is the summation of
absolute position increase along the time axis, s is a monotonous
growing signal. Physically, it is the total passed trajectory, hence
it has the following property:

s(t1) ≥ s(t2), iff t1 ≥ t2.

With notation s, the position corresponding to s(t) is denoted as
x(s) and the cogging force corresponding to s(t) is denoted as
a(s).

Definition 2.2: Since cogging force arises as a result of the
mutual attraction between the magnets and cores of the translator,
cogging force is periodic with respect to position [5]. So, based
on Definition 2.1, the following relationship is derived:

a(s) = a(s − sp), and x(s) = x(s − sp), (6)

where sp is the periodicity of the trajectory.
Definition 2.3: In Assumption 2.2, sp was defined as periodic

trajectory. So, x(t) − sp is one trajectory past point from x(t)
on the s axis. Let us denote the time corresponding to x(t) − sp

with Tt. Then, t− Tt is the time-elapse to complete one periodic
trajectory from the time Tt to time t. This time-elapse is called
“cycle”. Particularly, it is called “trajectory cycle” at time t and
denoted as Pt. So, Pt = t−Tt. It is called “the search process” to
find Pt at time instant t (note: the search process can be performed
by interpolation).

Furthermore, time is always monotonically increasing signal,
and in controller, the discrete time points are used. So, the mono-
tonically increasing time signal is denoted as: ti, i = 0, · · · ,∞,
where t0 is the initial time when the motor starts to move. Then,
the following relationship is immediate:

s(ti+1) ≥ s(ti).

From now on, for accurate notation, the position corresponding
to time ti is denoted as: x(ti) and its total passed trajectory by the
time ti is denoted as: s(ti). Henceforward, one trajectory past time
from the time instant ti is denoted as Tti , and its corresponding
cycle is denoted as Pti (i.e, Pti = ti − Tti ).

Assumption 2.1: Throughout the paper, it is assumed that the
current position and current time of PMLMs are measured. Let
us denote the current position as x(ti) at time ti, where x is the
position corresponding to ti. Then, Tti is always calculated, hence
Pti is calculated at time instant ti.

With the above definitions and assumption, the following prop-
erty is observed.

Property 2.1: The following relationship is derived:

x(ti) = s(ti) − msp, (7)

where m is the integer part of the quotient of s(ti)/sp.
Remark 2.1: As will be shown in the following theorem, the

actual state-dependent cogging force a(s(ti)) is not estimated on
the state axis. In our adaptation law, a(ti) is estimated on the time
axis. So, to find a(s(ti) − sp), the following formula is used:

a(s(ti) − sp) = a(ti − Pti) (8)

Here, Pti is calculated in Assumption 2.1 (recall that Pti can be
used to indicate exactly one-trajectory past position).

From (7) and (8), we also have the following property:
Property 2.2: The current cogging and friction forces are equal

to one-trajectory past cogging and friction forces. From the
relationship:

a(s(ti) − sp) = a(x(ti) + msp − sp)

= a(x(ti))

= a(ti − Pti) (9)

the following equality is derived: a(x(ti)) = a(ti − Pti).
Now, based on the above discussions, the following stability

analysis is performed. Our compensation approach is summarized
as follows:

• When s(ti) < sp, the system is controlled to be bounded
input bounded output (in �2-norm).

• When s(ti) ≥ sp, the system is stabilized to follow the
desired speed at the desired position. By trajectory periodic
adaptation, the unknown external disturbances (the summa-
tion of the cogging and friction forces) are estimated.

The following notations are used:

ex(ti) = x(ti) − x̂(ti); ev = v(ti) − vd(ti);

ea(s(ti)) = a(s(ti)) − â(s(ti)); eb(ti) = b − b̂(ti),

where â(s(ti)) = â(ti) (note: ti is the current time corresponding
to the current total passed trajectory s(ti)). Here, let us change
ea(s(ti)) = a(s(ti)) − â(s(ti)) into time domain such as:

ea(s(ti)) = a(s(ti)) − â(s(ti))

= a(ti) − â(ti)

= ea(ti). (10)

In the same way, the following relationships are true:

eb(s(ti)) = eb(ti); x(s(ti)) = x(ti); xd(s(ti)) = xd(ti);

vd(s(ti)) = v(s(ti)); v(s(ti)) = v(ti);

The control objective is to track or servo the given desired position
xd(ti) and the corresponding desired velocity vd(ti) with tracking
error as small as possible. In practice, it is reasonable to assume
that xd(ti), vd(ti) and v̇d(ti) are all bounded. From now on,
based on relationship: a(x(ti)) = a(ti − Pti) = a(ti), a(x(ti))
is equalized to a(ti) as done in (10); and let us omit subscript
i from ti and Pti . So, a(x) is replaced by a(t) in the following
theorems.

The feedback controller is designed as: When s ≥ sp,

u = â(t) + b̂sgn(v(t)) + v̇d(t) − αS(t) − λev(t), (11)

and when s < sp,

u = â(t) + v̇d(t) − ηex(t) − λev(t), (12)

with
S(t) := ev(t) + λex(t), (13)

where α and λ are positive gains; â(t) is an estimated cogging
force from an adaptation mechanism to be specified later; b̂ is the
estimated friction coefficient; v̇d(t) is the desired acceleration; and
ex(t) = x(t) − xd(t) is the position tracking error. Also remind
that ex(s(t)) = ex(t); and S(s(t)) = S(t)
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Our adaptation law is designed as follows:

â(t) =

{
â(t − Pt) − KS(t) if s ≥ sp

z − g(v) if s < sp
(14)

˙̂
b(t) =

{
−S(t)sgn(v) if s ≥ sp

0 if s < sp
(15)

where â(t − Pt) = â(ts − Pt) = â(s − sp) (note: Pt is the
trajectory cycle defined in Definition 2.3); P1 is the first trajectory
cycle specified in Definition 2.4; K is a positive design parameter
(it is called the periodic adaptation gain); z will be defined in the
following paragraph; and g(v) is a tuning function to be selected
later based on certain guidelines.

Definition 2.4: The first trajectory cycle P1 is the elapsed time
to complete the one repetitive trajectory from the initial starting
time t0. In other words, P1 is the time corresponding to the total
passed trajectory when s(ti) = sp.

In our analysis part, the following tuning function is required
for g(v):

0 < g′(v) < ∞, (16)

where g′(·) = ∂g(·)
∂· ; and the following tuning mechanism is

required for z:

ż = g′(v)[v̇d − ηex − λev] − ev (17)

Consider two cases: 1) when 0 ≤ t < P1 (0 ≤ s ≤ sp) and
2) when t ≥ P1 (s ≥ sp). The key idea is that, for case 1), it is
required to show the finite time boundedness of equilibrium points.
For case 2), it is necessary to show the stability or asymptotic
stability of equilibrium points in the sense of Lyapunov. Let us
investigate the case 2) first. Our major results are summarized in
the following theorems with Remark 2.2.

Remark 2.2: From the relationship (10), it can be said that if
ea(t) → 0 as t → ∞, then ea(s) → 0 as s → ∞. Thus, in what
follows, the stability analysis of a(x) is performed on the time
axis.

Theorem 2.1: When t ≥ P1 (s ≥ sp), the control law (11) and
the periodic adaptation law (14) and (15) guarantee the stability
of the equilibrium points ex(t), ev(t), ea(t), and eb(t) as t →
∞ (s → ∞).

Proof: Consider the following Lyapunov-like function at
s(t), whose corresponding time is t:

V (t) =
1

2
(eb(t)sgn(v))2 +

1

2
S2(t) +

1

2K

∫ t

t−Pt

e2
a(τ)dτ,

where Pt is calculated by the search process as commented in
Definition 2.3. Then, from (18), the difference of the positive
Lyapunov-like functions at two discrete time points (note: time
difference is Pt) can be calculated as:

�V (t) = V (t) − V (t − Pt)

=
1

2
(eb(t)sgn(v(t)))2

−1

2
(eb(t − Pt)sgn(v(t − Pt)))

2

+
1

2
S2(t) − 1

2
S2(t − Pt)

+
1

2K

∫ t

t−Pt

[e2
a(τ) − e2

a(τ − Pt)]dτ

=

∫ t

t−Pt

eb(τ)sgn(v(τ))ėb(τ)sgn(v(τ))

+S(t)Ṡ(t)dτ

+
1

2K

∫ t

t−Pt

[e2
a(τ) − e2

a(τ − Pt)]dτ

=

∫ t

t−Pt

eb(τ)ėb(τ) + S(t)Ṡ(τ)dτ

+
1

2K

∫ t

t−Pt

[e2
a(τ) − e2

a(τ − Pt)]dτ

(18)

To simplify our presentation, let the first integral term on the right-
hand side be denoted by A and the second integral term by B.
That is

A :=

∫ t

t−Pt

eb(τ)ėb(τ) + S(τ) ˙S(τ)dτ,

B :=
1

2K

∫ t

t−Pt

[e2
a(τ) − e2

a(τ − Pt)]dτ.

Here, from a(s − sp) = a(t − Pt) in Remark 2.1, the following
equalities are satisfied:

a(s − sp) = a(t − Pt) = a(t) = a(s)

Then, by several algebraic calculations and using a(t−Pt) = a(t),
B can be changed as

B =
1

2K

∫ t

t−Pt

{[a(τ) − â(τ)]2 − [a(τ − Pt)

−â(τ − Pt)]
2}dτ

=
1

2K

∫ t

t−Pt

[â(τ − Pt) − â(τ)][2{a(τ) − â(τ)}

+{â(τ) − â(τ − Pt)}]dτ

=
1

2K

∫ t

t−Pt

β(τ)[2{a(τ) − â(τ)} − β(τ)]dτ, (19)

where
β(τ) := â(τ − Pt) − â(τ).

Furthermore, using

ėx = ẋ − ẋd = ev,

ėv = v̇ − v̇d

= −a(t) − bsgn(v) + u − v̇d

= −a(t) − bsgn(v) + â(t) + b̂sgn(v) + v̇d − αS(t)

−λev(t) − v̇d

= −ea(t) − ebsgn(v) − αS(t) − λev(t), (20)

where (8), (9), and (10) were used to make ea(t) from ea(s), we
have

Ṡ = ėv + λėx(t)

= −ea(t) − ebsgn(v) − αS(t) − λev(t) + λev(t)

= −ea − ebsgn(v) − αS(t). (21)

Then, using

ėb = ḃ − ˙̂
b = − ˙̂

b (22)

A can be expressed as

A =

∫ t

t−Pt

−eb(τ)
˙̂
b+S(τ) (−ea(τ) − eb(τ)sgn(v) − αS(τ)) dτ

(23)
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Thus, �V becomes

�V = A + B

=

∫ t

t−Pt

−eb(τ)
˙̂
b + S(τ)(−ea(τ) − eb(τ)sgn(v)

−αS(τ))dτ +
1

2K

∫ t

t−Pt

β[2{a(τ) − â(τ)}

−β(τ)]dτ. (24)

Also, using ea(t) = a(t) − â(t) and β(t) = KS(t), A + B is
changed as:

A+B =

∫ t

t−Pt

−eb(τ)
˙̂
b−S(τ)eb(τ)sgn(v)−αS2 − 1

2K
β2dτ.

(25)
Then, using ˙̂

b = −S(t)sgn(v) from (15)

A + B =

∫ t

t−Pt

−αS2 − 1

2K
β2dτ

=

∫ t

t−Pt

−αS2 − 1

2
KS2dτ. (26)

Therefore, since ∆V (t) ≤ 0, the proof is completed.
The above theorem only guarantees the stability property in the
sense of Lyapunov. To explore the asymptotical stability, the
following notation and lemma are provided. The total external
disturbances including cogging force and friction force are denoted
as:

c(t) = a(t) + bsgn(v)

and its corresponding error is denoted as:

ec(t) = a(t) + bsgn(v) − â(t) − b̂sgn(v)

= ea(t) + ebsgn(v) (27)

Lemma 2.1: In the following equation with initial state x(0) =
x0 = 0

y = ẋ + τx, τ > 0,

y → 0 as t → ∞ if and only if x → 0 as t → ∞.
Proof: The sufficient condition is immediate because x = 0

makes y = 0. The necessary condition is proved easily by
calculating the solution. When y = 0, x(t) is calculated as:

x(t) = x0 + e−τt.

So, if x0 = 0, as t → ∞, x(t) → 0.
Now, let us consider the asymptotically stability condition of the
equilibrium points ex, ev , and ec in the following theorem.

Theorem 2.2: If the initial position (x0) is at the desired initial
position (xd(0)), i.e., ex(0) = 0, the control law (12) and the
periodic adaptation law (14) guarantee the asymptotically stability
of the equilibrium points: ex, ev , and ec as t → ∞ (t ≥
P1, or s ≥ sp).

Proof: Here, LaSalle’s invariant set theorem is used to prove
the asymptotical stability. From (26), only S = 0 makes �V = 0.
Using the definition S = ev + λex and relationship ev = ėx, we
have

S = ev + λex = ėx + λex. (28)

So, from Lemma 2.1, if ex(0) = 0, only ex = 0 makes S = 0.
Also, since ex = 0, we have ev = 0 from ev+λex = 0. Therefore,
ex and ev are asymptotically stable at equilibrium points. Now let

us think ec in what follows. From Ṡ = −ea − ebsgn(v) − αS =
−ec − αS, Ṡ = −ec because S = 0. Then, by showing that
Ṡ → 0 as S → 0, ec = 0 can be proved. Our approaches are as
follows. From the following definition

Ṡ = lim
∆t→0

S(t + ∆t) − S(t)

∆t
, (29)

we know that as t → ∞, S(t+∆t) → 0 and S(t) → 0. However,
from our original assumption of the periodicity such as ∆t = Pt,
if Pt is not zero, then ∆t �= 0, while S(t + ∆t) − S(t) → 0 as
t → ∞. Thus, in (29), Ṡ → 0 as t → ∞, hence if sgn(v) �= 0,
then −ec = 0. However, if −ec �= 0, Ṡ �= 0. Then S(t + ∆t) −
S(t) �= 0. This is a contradiction to S(t + ∆t) − S(t) = 0.
Therefore, it can be concluded that only −ec = 0 makes Ṡ = 0
and in the sequel, no trajectory can stay except ec = 0 when
S = 0. Since only ex = 0, ev = 0 and ec = 0 make S = 0, from
the invariant set theorem, the equilibrium points ex, ev , and ec are
asymptotically stable. This completes the proof of this theorem.

Remark 2.3: The asymptotical stability of ec does not guarantee
the asymptotical stability of ea and eb. In other words, even if the
suggested theorem guarantees the asymptotical stability of ex and
ev , it does not provide the asymptotical stability of ea and eb.
However, the cogging disturbance and friction disturbance will be
compensated altogether successfully by Theorem 2.2.

Now, let us consider the case 1) when t < P1 (s ≤ sp) and
the overall stability when t ≥ 0 (s ≥ 0).

Theorem 2.3: If |ȧ| and b are bounded, the equilibrium points
of ex, ev , ea, and eb are stable (or ec is asymptotically stable) as
t → ∞ (s → ∞).

Proof: In this case, let us consider the following Lyapunov
function:

V (t) =
η

2
e2

x(t) +
1

2
e2

v(t) +
1

2
e2

a(t) +
1

2
e2

b

(30)

Then, the derivative of V is expressed as:

V̇ (t) = ηexev + ev(−a(t) − bsgn(v) + u − v̇d)

+eaėa + ebėb (31)

From (11), (14), (15), and (17), using

ėb = ḃ − ˙̂
b = 0

u = â(t) + v̇d(t) − ηex(t) − λev(t)

ėa = ȧ − ˙̂a = ȧ − ż + g′(v)v̇

we have

V̇ (t) = ηexev + ev[−a(t) − bsgn(v) + â(t) + v̇d(t)

−ηex(t) − λev(t) − v̇d] + ea

[
ȧ − ż + g′(v)v̇

]
(32)

Now, rewriting v̇ such as:

v̇ = −a(x) − bsgn(v) + u

= −a(x) − bsgn(v) + â(t) + v̇d(t) − ηex(t) − λev(t)

= −ea − bsgn(v) + v̇d(t) − ηex(t) − λev(t) (33)

and from (17), using

ż = g′(v)[v̇d − ηex − λev] − ev
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(32) is changed as:

V̇ (t) = −λe2
v − bsgn(v)ev − eaev +

ea[ȧ + ev + g′(v)(−ea − bsgn(v))]

= −λe2
v − bsgn(v)ev

−e2
ag′(v) − eabg′(v)sgn(v) + eaȧ. (34)

Let us investigate −λe2
v − bsgn(v)ev of (34) and −e2

ag′(v) −
eabg′(v)sgn(v) + eaȧ of (34) separately. Then, the following
relationship is derived:

−λe2
v − bsgn(v)ev = −λ(e2

v +
bsgn(v)

λ
ev)

= −λ(ev +
bsgn(v)

2λ
)2 +

b2

4λ
(35)

and −e2
ag′(v) + (ȧ − bg′(v)sgn(v))ea is changed as

−g′(v)

(
ea +

ȧ − bg′(v)sgn(v)

2g′(v)

)2

+
(ȧ − bg′(v)sgn(v))2

4g′(v)
.

Hence, since

−λe2
v − bsgn(v)ev ≤ b2

4λ

and

−e2
ag′(v) + (ȧ − bg′(v)sgn(v))ea ≤ (ȧ − bg′(v)sgn(v))2

4g′(v)
,

the derivative of Lyapunov function is upper bounded such as:

V̇ (t) ≤ b2

4λ
+

(ȧ − bg′(v)sgn(v))2

4g′(v)

Thus, it concludes that V̇ is bounded when t < P1 (s < sp).
Consequently, when V is bounded at t < P1, ex, ev , ea, and
eb are also bounded in l2 vector norm topology at t < P1 (s <
sp). Furthermore, when t ≥ P1 (s ≥ sp), the equilibrium points
of ex, ev , ea, and eb are all (ec is asymptotically stable with
ex(0) = 0) stable from equation (26); so the system (4)-(5) can be
(asymptotically with ex(0) = 0) stabilized by the control law (11)-
(12) and the adaptation law (14)-(15) as t → ∞. This completes
the proof.

III. SIMULATION ILLUSTRATIONS

For simulation test, let us use the following reference position
and velocity signals:

xr(t) = sin(2πfst)

vr(t) = 2πfs cos(2πfst)

v̇r(t) = −(2πfs)
2 sin(2πfst) (36)

where fs = 1
Qs

, and Qs = 2 sec. The control gains in (11)-(12)
were selected as: α = 10, λ = 20 and η = 50; and g(v) was
designed as 10v to satisfy (16). In (14), the periodic adaptation
gain K was selected as 100. In simulation, the actual cogging
force was modelled as:

Fcogging = 4 sin(2πx) + 2 sin(2π2x) + 1 sin(2π3x)

+0.5 sin(2π4x) + 0.25 sin(2π5x) + 0.125 sin(2π6x)

(37)

and friction coefficient is b = 10. Figure 1 shows the tracking
performance. The top-left subplot is the position while the bottom-
left is the velocity. The two right subplots are the corresponding
errors of the left subplots. From the right subplots, after 2 seconds,

the tracking performance was significantly improved by periodic
adaptation. The two left subplots of Fig. 2 are the true and
estimated cogging and friction forces on the state axis (i.e., the true
forces: a(x)+bsgn(v), and the estimated forces: â(x)+ b̂sgn(v)).
From these two left subplots, we can find that the total passed
trajectory from s = 0 to s = 4 corresponds to the first repetitive
trajectory. As shown in the corresponding right subplots, after
s = 4, the cogging and friction forces were estimated much better
than the first repetitive trajectory. In the right subplots, the spikes
are due to the sign change of the friction force at zero velocity.
Figure 3 shows the control input on the time-axis (left subplot)
and on the state-axis (right subplot). From these results, it is found
that similar control inputs are required at each repetitive trajectory.
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Fig. 1. Top left: desired position and actual position. Bottom left: desired
velocity and actual velocity. Top right: position tracking error. Bottom
right: velocity tracking error.
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Fig. 2. Left: true/estimated cogging and friction forces on the state-
axis(total passed trajectory). Right: estimated cogging and friction force
error on the state-axis(total passed trajectory).
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Fig. 3. Left: control input on the time axis. Right: control input on the
state-axis.

IV. CONCLUSION REMARKS

In this paper, new cogging and friction force compensation
method was suggested for the permanent-magnet linear motors.
The key idea of our method was to use the periodicity of the
task and the cogging disturbance depending on the position. From
one trajectory past information, the current adaptation law was
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updated. Even though the stability analysis was performed on
the time axis, the position-dependent cogging disturbance can be
successfully compensated on the state-axis. It is believed that the
suggested method can be effectively used in many real applications
such as satellite, trail system, factory process control, and etc. We
have demonstrated that the state-dependent external disturbance
such as cogging can be successfully compensated by making use
of the trajectory periodicity of the state-dependent disturbance.
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