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Abstract

Machine learning promises methods that gener-

alize well from finite labeled data. However, the

brittleness of existing neural net approaches is

revealed by notable failures, such as the existence

of adversarial examples that are misclassified de-

spite being nearly identical to a training example,

or the inability of recurrent sequence-processing

nets to stay on track without teacher forcing. We

introduce a method, which we refer to as state

reification, that involves modeling the distribution

of hidden states over the training data and then

projecting hidden states observed during testing

toward this distribution. Our intuition is that if

the network can remain in a familiar manifold of

hidden space, subsequent layers of the net should

be well trained to respond appropriately. We show

that this state-reification method helps neural nets

to generalize better, especially when labeled data

are sparse, and also helps overcome the challenge

of achieving robust generalization with adversar-

ial training.

1. Introduction

The fundamental objective of machine learning is to build

models of complex data. By abstracting from the data,

models are typically more useful for domain understanding

and prediction than are the raw data. This substitution of a

model in place of the data is a form of reification. In this

article, we argue that reification of data has similar value

even when the data originate from within the model, i.e., its

latent states. We propose a recursive model-within-a-model

that reifies internal states in a neural network, leading to

robustness and improved generalization.
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Figure 1. (a) A distribution of hidden states, with class label in-

dicated by color. (b) State reification dynamics to map hidden

states toward regions of higher density. (c) A distribution of input

states, showing poorly separated classes, making it not suitable for

reification.

Our proposed method, which we call state reification, is

based on the idea that it is possible to model the distribution

of the hidden states over the training data, and then map

less likely states toward more likely states. Because the

network has experienced these latter states frequently during

training, we would expect to obtain better generalization

from them. To offer an intuition, consider a simple task:

training a recurrent net to output the parity of a stream

of binary digits. The ideal internal state for solving this

task is discrete, yet deep neural networks have continuous

activations. Consequently, when evaluated on long test

sequences, the continuous dynamics may cause the net to

wander from the ideal states. State reification will map these

rogue states back to the values observed during training,

leading to dramatically better generalization.

Our approach stems from the observation that latent states,

such as hidden representations, tend to lie on one or more

manifolds. Figure 1a depicts a hidden representation of a

training set in a classification task, with class label indicated

by color. States within the manifold are ‘familiar’ in the

sense that subsequent layers of the net have been tuned to

process them. However, states lying outside the manifold

are potentially problematic; they are not reached given the

distribution of training inputs, and therefore the model’s

extrapolatory response may be unreliable.

In this work, we explore an approach in which we construct

a model-within-a-model that implicitly encodes the distri-

bution of states in the latent space and then projects states
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from off-manifold regions back to the manifold, where the

network is likely to perform robustly (Figure 1b). We argue

that this projection operation serves as a useful inductive

bias during training that restricts the state space and induces

a clustering of states. Not only does it boost generalization

performance, but it also makes networks less sensitive to

adversarial input perturbations, which tend to throw the state

off the training manifold. Explicit detection of off-manifold

states has proven useful for adversarial robustness and de-

tecting out-of-distribution samples (Carrara et al., 2018; Lee

et al., 2017; 2018), as has incorporating losses to shape the

manifolds (Pang et al., 2018); we take this work further

by presenting a general method that can be applied to any

architecture, any layer of a network, and goes beyond iden-

tifying off-manifold states to projecting these states back to

the manifold.

One could in-principle reify off-manifold inputs rather than

off-manifold hidden states. A large body of literature exists

on this topic, from early work achieving noise robustness

via preprocessing stages that estimate and filter noise from

an input signal (Boll, 1979) to more recent work in ma-

chine learning involving loss functions to achieve invariance

to task-irrelevant perturbations in the input (Simard et al.,

1992; Zheng et al., 2016). However, there are two reasons

to prefer reification of hidden states. First, distinct semantic

classes are typically more intertwined in the input space

than in the hidden space (Figure 1c), and the manifolds are

therefore simpler and smoother in an abstract space with

simpler statistical structure. Second, state reification should

have particular value in recurrent nets in which steps off

manifold may compound as the hidden state evolves over a

sequence.

2. State Reification

To show the robustness of our underlying insight, we de-

scribe two distinct but related mechanisms for state reifica-

tion: denoising autoencoders and attractor networks.

2.1. Denoising Autoencoders

Denoising autoencoders (DAEs) are neural networks that

map a noise-corrupted version of vector x to a clean version

of x. This approach has been widely used for feature learn-

ing and generative modeling in deep learning (Bengio et al.,

2013). More formally, denoising autoencoders are trained to

minimize a reconstruction error or negative log-likelihood

of generating the clean x. For example, with Gaussian log-

likelihood of the clean vector given the corrupted vector, the

reconstruction loss for data set x = {x(1), . . . , x(N)} is

Lrec(x) =
1

N

N∑

n=1

(∥∥∥rθ
(
x(n) + a(n)

)
− x(n)

∥∥∥
2

2

)
, (1)

where rθ is the learned denoising function and

a(n) ∼ N(0, σ2
I) is a Gaussian noise vector.

Given loss Lrec and Gaussian corruption, a well-trained de-

noising autoencoder’s reconstruction vector is proportional

to the gradient of the log-density (Alain et al., 2012):

rσ(x)− x

σ2
→

∂ log p(x)

∂x
as σ → 0. (2)

The theory of Alain et al. (2012) establishes that the recon-

struction vectors from a well-trained denoising autoencoder

form a vector field which points in the direction of the data

manifold. However, this result is not guaranteed for points

distant from the manifold, as these points are rarely sam-

pled during training. In practice, denoising autoencoders

are trained with not just tiny noise levels but also with large

noise levels, which blurs the data distribution as seen by the

learner but makes the network learn a useful vector field

even far from the data.

2.2. Attractor Networks

DAEs can be applied iteratively by cycling the output back

to the input. A related but more principled approach is an

attractor network (AN), which is essentially a DAE with

recurrent connections within the hidden layer that results in

a discrete-time nonlinear dynamical system with attractor

manifolds, achieving trajectories like those shown in Fig-

ure 1b. Attractor nets have a long history starting with the

seminal work of (Hopfield, 1982) that was partly responsi-

ble for the 1980s wave of excitement in neural networks. We

adopt Koiran’s (1994) framework, which dovetails with the

standard deep learning assumption of synchronous updates

on continuous-valued neurons. Koiran shows that a hidden

layer with symmetric weights, nonnegative self-connections,

and a bounded nonlinearity that is continuous and strictly

increasing except at the extrema (e.g., tanh), the network

asymptotically converges over iterations to a fixed point or

limit cycle of length 2. Although the AN is recurrent, its

training barely suffers from vanishing gradients (Bengio

et al., 1994; Hochreiter, 1998) because the input projects to

the hidden layer at each iteration, acting as a type of skip

connection. Technical details are presented in the supple-

mentary materials.

2.3. Incorporating State Reification Into a Model

We incorporate state reification within a neural net’s internal

layers to transform the representation toward the training-

data manifold. For example, Figure 2a shows a feedforward

net that maps inputs to outputs through a hidden layer. Fig-

ure 2b shows a DAE with one internal layer, producing

a reified output. Figure 2c integrates the feedforward net

and DAE to reify the hidden state of the feedforward net.

Figure 2d shows a more elaborate architecture, with a re-
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Figure 2. (a) A network that performs some input-output mapping

task with one intervening hidden layer. (b) A DAE that produces a

reified output. (c) Integrating the two architectures to perform state

reification on the hidden state. (d) A recurrent sequence processing

architecture, unrolled in time horizontally, with an attractor net—

unrolled vertically—reifying the hidden state.

current sequence-processing net integrated with an attractor

net. Each column denotes a single time step with a corre-

sponding input and output. The hidden state is denoised

by an attractor net, unrolled vertically, yielding a reified

state which is combined with the next input to determine the

next hidden state. Intuitively, the method aims to regularize

the hidden representations by projecting activations to the

training-data manifold through the application of a DAE or

attractor net.

To train the simple integrated model (Figure 2c), training

data are processed in mini-batches, and the loss per (x, y)
example is:

L = Ltask(x, y) + λrec Lrec(h) (3)

is minimized, where Lrec (Equation 1) is applied to the hid-

den state, h, Ltask is a primary-task loss, and the coefficient

λrec > 0 controls the contribution of reification. This ap-

proach allows us in principle to reify multiple hidden layers

at once, each with its own Lrec loss. In the next sections, we

present results for two related applications: obtaining robust

generalization to out-of-sample cases in sequential tasks,

and obtaining robustness to standard adversarial attacks in

feedforward nets. We use slightly different training proce-

dures for each application, due to the different goals. For

improving test-set generalization, we train only the reifier

(DAE or AN) weights on Lrec, all weights on Ltask, and

we set the noise level, σ2 = 0, for evaluation. For adver-

sarial robustness, we train all weights on the joint loss, and

perform simulations with and without the noise during eval-

uation; we also incorporate additional adversarial loss terms

that are duals to Lrec and Ltask, to be described shortly.

3. Experiments

We demonstrate the effectiveness of state reification on

three classes of problems: sequence classification in a data-

limited training environment, generation of long sequences,

and adversarial perturbations in image processing.

3.1. Recurrent Networks for Sequence Classification

Our first experiments involve symbolic sequence-

classification tasks using recurrent networks like that in

Figure 2d, where state reification is performed with attractor

dynamics. We chose symbolic tasks—tasks with discrete

inputs, and input-output mappings that can be characterized

in terms of rules—because symbolic tasks have always

been a challenge for continuous neural networks (Craven

and Shavlik, 1993).

3.1.1. PARITY

We studied a streamed parity task in which 10 binary inputs

are presented in sequence and the target output following the

last sequence element is 1 if an odd number of 1s is present

in the input or 0 otherwise. The architecture has 10 hid-

den units, 20 attractor units, and a single input and a single

output. We experimented with both tanh and GRU hidden

units. We trained the attractor net with σ = .5 and ran it

for exactly 15 iterations (more than sufficient to converge).

Models were trained on 256 randomly selected binary se-

quences. Two distinct test sets were used to evaluate models:

one consisted of the held-out 768 binary sequences, and a

second test set consisted of three copies of each of the 256

training sequences with additive uniform [−0.1,+0.1] input

noise. We performed one hundred replications of a base-

line architecture (RNN), an architecture with the additional

layers to implement attractor dynamics but trained solely

on Ltask (RNN+, the ’+’ indicating the additional hardware),

and an architecture with state reification (RNN+SR). Other

details of this and subsequent simulations are presented in

the Supplementary Materials.

Figure 3a shows relative performance on the held-out se-

quences by the RNN, RNN+, and RNN+SR with a tanh hidden

layer. Figure 3b shows the same pattern of results for the

noisy test sequences. RNN+SR significantly outperforms

both the RNN and the RNN+: it generalizes better to novel

sequences and is better at ignoring additive noise in test

cases, although such noise was absent from training. Fig-

ures 3c,d show similar results for models with a GRU hidden

layer. Absolute performance improves for all three recur-

rent net variants with GRUs versus tanh hidden units, but

the relative pattern of performance is unchanged. Note that

the improvement due to denoising the hidden state (i.e.,

RNN+SR versus RNN for both tanh and GRU architectures)

is much larger than the improvement due to switching hid-

den unit type (i.e., RNN with GRU vs. tanh hidden), and that
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Figure 3. Parity simulations. Top row shows generalization perfor-

mance on novel binary sequences; bottom row shows performance

on trained sequences with additive noise. Unless otherwise noted,

the simulations of with state reification use σ = 0.5, 15 attractor

iterations, and L2 regularization (a.k.a. weight decay) 0.0. Er-

ror bars indicate ±1 SEM, based on a correction for confidence

intervals with matched comparisons (Masson and Loftus, 2003).

the use of GRUs—and the equivalent LSTM—is viewed as

a critical innovation in deep learning.

In principle, parity should be performed more robustly if a

system has a highly restricted state space. Ideally, the state

space would itself be binary, indicating whether the number

of inputs thus far is even or odd. Such a restricted represen-

tation should force better generalization. Indeed, quantizing

the hidden activation space for all sequence steps of the test

set, we obtain a lower entropy for the tanh RNN+SR (3.70,

standard error .06) than for the tanh RNN (4.03, standard

error .05). However, what is surprising about this simula-

tion is that gradient-based procedures could learn such a

restricted representation, especially when two orthogonal

losses compete with each other during training. The com-

peting goals are clearly beneficial, as RNN+ and RNN+SR

share the same architecture and differ only in the addition

of the denoising loss.

The noise being suppressed during training is neither input

noise nor label noise; it is noise in the internal state due to

weights that have not yet been adapted to the task. Nonethe-

less, denoising internal state during training appears to help

the model overcome input noise and generalize better.

3.1.2. MAJORITY TASK

We next studied a majority task in which the input is a

binary sequence and the target output is 1 if a majority of

inputs are 1, or 0 otherwise. We trained networks on 100

distinct randomly drawn fixed-length sequences, for length

l ∈ {11, 17, 23, 29, 35}. We performed 100 replications for

each l and each model. We ensured that runs of the various

models were matched using the same weight initialization
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(b) Majority: Noisy Seq.
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(d) Reber: Novel Seq.
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(c) Reber Grammar

Figure 4. Simulation results on majority task with (a) novel and

(b) noisy sequences. (c) Reber grammar. (d) Simulation results on

Reber grammar. Error bars indicate ±1 SEM, based on a correction

for confidence intervals with matched comparisons (Masson and

Loftus, 2003).

and the same training and test sets. All models had 10 tanh

hidden units, 20 attractor units, σ = .25.

We chose the majority task because, in contrast to the parity

task, we were uncertain if a restricted state representation

would facilitate task performance. For the majority task of

a given length l, the network needs to distinguish roughly

2l states. Collapsing them together is potentially dangerous:

if the net does not keep exact count of the input sequence

imbalance between 0’s and 1’s, it may fail.

As in the parity task, we tested both on novel binary se-

quences and training sequences with additive uniform noise.

Figures 4a,b show that neither the RNN nor RNN+ beats

RNN+SR for any sequence length on either test set. RNN+SR

seems superior to the baseline RNN for short novel se-

quences and long noisy sequences. For short noisy se-

quences, both architectures reach a ceiling. The only disap-

pointment in this simulation is the lack of a difference for

novel long sequences.

3.1.3. REBER GRAMMAR

The Reber grammar (Reber, 1967), shown in Figure 4c, has

long been a test case for artificial grammar learning (e.g.,

Hochreiter and Schmidhuber, 1997). The task involves

discriminating between strings that can and cannot be gen-

erated by the finite-state grammar. We generated positive

strings by sampling from the grammar with uniform tran-
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sition probabilities. Negative strings were generated from

positive strings by substituting a single symbol for another

symbol such that the resulting string is out-of-grammar. Ex-

amples of positive and negative strings are BTSSXXTTVPSE

and BPTVPXTSPSE, respectively. Our networks used a one-

hot encoding of the seven input symbols, m = 20 tanh

hidden units, n = 40 attractor units, and σ = 0.25. The

number of training examples was varied from 50 to 800,

always with 2000 test examples. Both the training and test

sets were balanced to have an equal number of positive to

negative strings. One hundred replications of each simula-

tion was run.

Figure 4d presents mean test set accuracy on the Reber

grammar as a function of the number of examples used for

training. As with previous data sets, RNN+SR outperforms

the baseline RNN, which in turn outperforms RNN+.

3.1.4. SYMMETRY TASK

The symmetry task involves detecting symmetry in fixed-

length symbol strings such as ACAFBBFACA. This task is

effectively a memory task for an RNN because the first half

of the sequence must be retained to compare against the

second half. We generated strings of length 2s+ f , where

s is the number of symbols in the left and right sides and

f is the number of intermediate fillers. For i ∈ {1, ..., s},

we generated symbols Si ∈ {A, B, ..., H}. We then formed

a string X whose elements are determined by S: Xi = Si

for i ∈ {1, ..., s}, Xi = ∅ for i ∈ {s + 1, ..., s + f}, and

Xi = S2s+f+1−i for i ∈ {s + f + 1, ..., 2s + f}. The

filler ∅ was simply a unique symbol. Negative cases were

generated from a randomly drawn positive case by either

exchanging two adjacent distinct non-null symbols, e.g.,

ACAFBBAFCA, or substituting a single symbol with another,

e.g., AHAFBBFACA. Our training and test sets had an equal

number of positive and negative examples, and the negative

examples were divided equally between the sequences with

exchanges and substitutions.

We trained on 5000 examples and tested on an additional

2000, with the half sequence having length s = 5 and with

an f = 1 or f = 10 slot filler. The longer filler makes

temporal credit assignment more challenging. As shown in

Figures 5, RNN+SR obtains as much as a 70% reduction in

test error over either RNN or RNN+.

3.2. Language Modeling

Turning to a second use of state reification, we explored

whether the technique could be used to detect when the

hidden state has wandered from the training manifold. Our

experiment was performed with an RNN language model

that generates word predictions as output. The model can

be run in generative mode by sampling from the output dis-

tribution and feeding it back to the input. This free-running
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Figure 5. (a) Symmetry task with f = 1 filler; (b) Symmetry task

with f = 10 filler. Error bars indicate ±1 SEM.

mode often produces wide divergences from training (Ben-

gio et al., 2015), because during training, teacher forcing

ensures that the model’s input sequence is a valid (observed)

word sequence. The divergence increases as the sequence

progresses.

Our experiment studies if state reification can detect when it

has been given outputs from its own model (sampling mode)

when trained using ground truth input sequences. We trained

a language model on the standard Text8 dataset, which

is derived from Wikipedia articles. We trained a single-

layer LSTM with 1000 units at the character-level, and

included DAE state-reification between the hidden states

and the output on each time step. In a given sequence,

following 50 sampling steps, the state reification layers had a

reconstruction error on average 103% of the teacher forcing

reconstruction error. Following 180 sampling steps, this

value increased to 112%. Following 300 sampling steps this

value increased even further to 134%. These results provide

clear evidence that the outputs move off of the manifold with

more sampling steps, and that this is effectively measured

by state reification.

3.3. Adversarial Training

In this section, we turn to a third application of state reifica-

tion: obtaining networks robust to adversarial attacks, which

consist of making small changes to input patterns that alter

the predicted class. For image processing, the modulations

of the input images can be small enough that they are unno-

ticeable to the human eye; the modulations can be so robust

that even when captured through a camera, they change the

predicted class with high probability (Brown et al., 2017).

Such adversarial examples (Goodfellow et al., 2014) can

be found via gradient-based methods (Szegedy et al., 2013;

Goodfellow et al., 2014).

Defenses proposed against adversarial examples include

feature squeezing (Xu et al., 2017), adapted encoding of the

input (Jacob Buckman, 2018), and distillation-related ap-

proaches (Papernot et al., 2015). Many have been shown to

be providing the illusion of defense by lowering the quality
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of the gradient signal, without actually providing improved

robustness (Athalye et al., 2018). One defense that is re-

silient to this obfuscated-gradient problem is adversarial

training (Madry et al., 2017). Adversarial training consists

of augmenting the dataset with adversarial examples and

training the model’s predictions to be unchanged by the

adversarial noise.

However, a major challenge of incorporating adversarial

training is that adversarial robustness is often dramatically

worse on test data as compared to train data, suggesting

difficulty in generalization (Schmidt et al., 2018). For this

reason we explored the possibility of improving the perfor-

mance of adversarial training by using state reification.

Adversarial training is a flexible procedure and can be used

with any adversarial attack. For our investigation, we looked

at the multi-step projected gradient descent (PGD) attack

(Madry et al., 2017). We used an l∞ attack with ε ranging

from 0.03 to 0.3 and number of iterations ranging from 7
to 200. The PGD attack (Madry et al., 2017), also referred

to as FGSMk, is a multi-step extension of the Fast Gradient

Sign Method (FGSM) (Goodfellow et al., 2014) attack. The

PGD attack is characterized as follows:

xt+1 = Πx+S

(
xt + α sgn(∇xLtask(x, y))

)
(4)

initialized with x0 as the clean input x and with the cor-

rupted input x̃ as the last step in the sequence. Π refers to

the projection operator, which in this context means pro-

jecting the adversarial example back onto the region within

an ε radius of the original data point after each step in the

adversarial attack.

To apply state reification to adversarial training, we modi-

fied our original state-reification training loss (Equation 3)

with the standard adversarial training loss to encourage the

network to not misclassify the adversarial example, yield-

ing a combined loss for a given example (x, y) with an

adversarial counterpart x̃:

L = Ltask(x, y) + Ltask(x̃, y) + λrec

∑

i∈S

Li
rec(hi)

where S is the set of one or more hidden layers to which

reification is applied, and the coefficient λrec ≥ 0 can be

tuned to control the degree of reification. Because we poten-

tially apply reification to multiple layers, we replaced the

AN of our earlier simulations with the simpler DAE.

We have discussed advantages to performing reification in

the hidden space instead of the input space, but the ques-

tion of where exactly reification should be performed in a

deep net remains unanswered: just the final hidden layer?

Every hidden layer? We outline two important consider-

ations regarding this issue. On the one hand, identifying

states that are off-manifold or close to the margin is easier

in the deeper hidden layers (see Figure 6, which we explain

shortly). On the other hand, the states in the deeper hidden

layers may already look non-adversarial due to the effect of

the adversarial perturbations in the shallower layers. While

we are not aware of any formal study of this phenomenon,

it is clearly possible. (Imagine, for example, state reifica-

tion performed on the output from the classifier softmax,

which could only identify unnatural combinations of class

probabilities.) Given these opposing concerns, we argue for

the inclusion of reification at multiple stages of the network,

very much analogous to the inclusion of reification at each

time step of the recurrent net in our previous simulations.

We collected experimental evidence that more directly sup-

ports our decision to perform state reification at many levels

of representation. We constructed FGSM adversarial exam-

ples (ε = 0.3) on small MNIST fully-connected networks

trained normally. As Figure 6 shows, we found that detect-

ing adversarial examples by reconstruction error is possible

both in input and hidden layers, but could be performed by

much smaller autoencoders via the hidden layers.

Tables 1 and 2 present results applying state reification on

CIFAR10 using non-ResNet and ResNet convolutional nets

(CNNs), respectively. Substantially better test-set adversar-

ial robustness is attained via adversarial training when done

in conjunction with state reification, evaluated on a wide

range of ε values (0.03 to 0.3) and number of attack steps

(7 to 200).

Athalye et al. (2018) suggest that models which introduce

components with noisy or unreliable gradients can reduce

the quality of gradient-based attacks. To test this hypothesis,

they introduced backward-pass differentiable approxima-

tion, where the attack treats the “reconstructor” (in our case,

the DAE) as the identity function when computing gradients

for the attack. Our results showed that bypassing the DAE

substantially reduced the strength of the attack, resulting in

an increase in PGD accuracy to 67.1% from 40.1% (higher

accuracy implies a weaker attack). Additionally, we ran a

noiseless attack in which the forward and backward passes

were performed without noise. This change strengthened

the attack: PGD accuracy rises to 40.1% from 38.2% (lower

accuracy implies a stronger attack), but we note that this is

much less than the overall gap between state reification and

the same-capacity baseline, suggesting that adding noise did

partially obfuscate gradients, but not to such a degree as to

nullify the improvements from state reification.

4. Related Work

State reification seems related to several recent papers with

a cognitive science focus. Andreas et al. (2017) proposed

a model that efficiently learns new concepts and control

policies by operating in a linguistically constrained repre-
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Figure 6. Direct experimental evidence that reification is easier in

hidden layers than the input: we added denoising autoencoders

with different capacities to MLPs trained on MNIST, and display

the value of the total reconstruction errors for adversarial examples

divided by the total reconstruction errors for clean examples. A

high value indicates success at detecting adversarial examples. Our

results support the central motivation for state reification: that off-

manifold points can much more easily be detected in the hidden

space (as seen by the relatively constant ratio for the autoencoder

in hidden space) and are much harder to detect in the input space

(as seen by this ratio rapidly falling to zero as the input-space

autoencoder’s capacity is reduced

sentational space. The space is obtained by pretraining on

a language task, and this pretraining imposes structure on

subsequent learning. One can view reification as imposing

similar structure, although the bias comes not from a sepa-

rate task or data set, but from representations already learned

for the primary task. Related to language, the conscious-

ness prior of Bengio (2017) suggests a potential role of

operating in a reduced or simplified representational space.

Bengio conjectures that the high dimensional state space of

the brain is unwieldy, and a restricted representation that

selects some information at the expense of other may facili-

tate rapid learning and efficient inference. For related ideas,

also see Hinton (1990).

On the subject of our experimental results on adversarial

robustness, the observation that adversarial examples often

consist of points off the data manifold and that deep net-

works may not generalize well to these points motivated

several authors to consider the use of the generative models

as a defense against adversarial attacks (Gu and Rigazio,

2014; Ilyas et al., 2017; Samangouei et al., 2018; Liao et al.,

2017). Ilyas et al. (2017); Gilmer et al. (2018) also showed

the existence of adversarial examples which lie on the data

manifold, and Ilyas et al. (2017) showed that training against

adversarial examples forced to lie on the manifold is an

effective defense. Our method shares a closely related mo-

tivation to these prior works, with a key difference being

that we propose to consider the manifold in the space of

learned representations, not the manifold directly in the

Table 1. CIFAR-10 PGD Results with (non-ResNet) CNNs. In

these experiment we apply state reification (with single hidden

layer convolutional autoencoders) following each convolutional

layer. Both experiments were run for 200 epochs and with all

hyperparameters and architecture kept the same with the exception

of state reification being added. We considered different types of

baselines: CNN means we simply remove state reification. CNN+

means that we added extra layers with the same number of units

to match the capacity added by state reification. The three blocks

of results use slightly different architectures for the CNNs and are

thus not directly comparable. All models reported were trained

with adversarial training with a PGD attack. Note that higher PGD

accuracy indicates a stronger defense.

Method Attack Type
PGD
Steps

Attack
Epsilon

PGD
Accuracy

CNN+SR Normal 7 0.03 43.3

CNN Normal 7 0.03 33.0

CNN Normal 50 0.03 31.6

CNN Normal 200 0.03 31.4

CNN+ Normal 7 0.03 34.2

CNN+ Normal 50 0.03 32.5

CNN+ Normal 200 0.03 32.2

CNN+SR Normal 7 0.03 45.0

CNN+SR Normal 50 0.03 42.1

CNN+SR Normal 200 0.03 41.5

CNN+ Normal 100 0.03 35.3

CNN+ Normal 100 0.04 24.8

CNN+ Normal 100 0.06 14.3

CNN+ Normal 100 0.08 12.0

CNN+ Normal 100 0.1 11.7

CNN+ Normal 100 0.2 10.2

CNN+ Normal 100 0.3 8.40

CNN+SR Normal 100 0.03 39.2

CNN+SR Normal 100 0.04 28.0

CNN+SR Normal 100 0.06 15.6

CNN+SR Normal 100 0.08 13.0

CNN+SR Normal 100 0.1 12.9

CNN+SR Normal 100 0.2 11.3

CNN+SR Normal 100 0.3 9.60

CNN+ Normal 100 0.03 33.4

CNN+SR Normal 100 0.03 40.1

CNN+SR
Noiseless

Attack
100 0.03 38.2

CNN+SR
BPDA,

Skip-DAE
100 0.03 67.1

visible space. One motivation for this is that the learned

representations have a simpler statistical structure (Bengio

et al., 2012), which makes the task of modeling this mani-

fold and detecting unnatural points much simpler. Learning

the distribution directly in the visible space is still very dif-

ficult (even state of the art models fall short of real data

on metrics like Inception Score) and requires a high capac-
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Table 2. CIFAR-10 PGD Results with two powerful ResNet archi-

tectures: PreActResNet18 (He et al., 2016) and WideResNet28-10

(Zagoruyko and Komodakis, 2016). In this experiment we used a

single state reification layer following the 2nd resblock, and the

baseline consists of the same network but with the state reification

removed. Both experiments were run for 200 epochs and with

all hyperparameters and architecture kept the same with the

exception of the state reification layer being added. ResNet-SR

refers to the ResNet with state reification and ResNet refers to

the baseline model. Note that higher PGD accuracy indicates a

stronger defense.

Model Method
PGD Accuracy

(20 steps)

PreActResNet18 ResNet 37.87

PreActResNet18 ResNet-SR 39.20

WideResNet28-10 ResNet 43.28

WideResNet28-10 ResNet-SR 44.06

ity model. Additionally, working in the space of learned

representations allows for the use of a relatively simple gen-

erative model, in our case a small denoising autoencoder.

Finally, another important difference is that we always use

state reification together with adversarial training.

Denoising Feature Matching (Warde-Farley and Bengio,

2017) proposed to train a denoising autoencoder in the hid-

den states of the discriminator in a generative adversarial

network. The generator’s parameters are then trained to

make the reconstruction error of this autoencoder small.

This has the effect of encouraging the generator to produce

points which are easy for the model to reconstruct, which

will include true data points. Both this and state reification

use a learned denoising autoencoder in the hidden states of

a network. A major difference is that the denoising feature

matching work focused on generative adversarial networks

and tried to minimize reconstruction error through a learned

generator network, whereas our approach targets the ad-

versarial examples problem. Additionally, our objective

encourages the output of the DAE to denoise adversarial

examples so as to point back to the hidden state of the orig-

inal example, which is different from the objective in the

denoising feature matching work, which encouraged recon-

struction error to be low on states from samples from the

generator network.

MagNet (Meng and Chen, 2017) also proposed a method

using autoencoders in the input space of a deep network to

detect adversarial examples and “reform” them back to the

input space. Their work differs from our approach in two

critical ways. First, our method uses denoising autoencoders

at several levels of representation, whereas MagNet (Meng

and Chen, 2017) only operated in the input space. Second,

our method is used together with adversarial training and

is motivated primarily from the perspective of improving

generalization in adversarial training. Many methods that

have used autoencoders by themselves as a defense against

adversarial examples are successful only when the autoen-

coder is ignored during the attack (Athalye et al., 2018);

however, with state reification, we are able to improve ro-

bustness even when the autoencoder is used for the attack.

In Table 1, we also present various alternative attacks that

skip the autoencoder or don’t inject noise, and found that

robustness was preserved in all cases.

Gilmer et al. (2018) studied the existence of adversarial

examples in the task of classifying between two hollow

concentric shells. Intriguingly, they prove and construct ad-

versarial examples which lie on the data manifold (although

Ilyas et al., 2017, also looked for such examples experi-

mentally using GANs). The existence of such on-manifold

adversarial examples demonstrates that a simplified version

of our model trained with only Lrec and not adversarial

training could not protect against all adversarial examples.

However, combined with adversarial training, state reifica-

tion may still help with on-manifold adversarial examples

as well by mapping the hidden state back to regions where

the model performs well.

5. Discussion

Noise robustness is a highly desirable property in neural

networks. When a neural net performs well, it naturally

exhibits a sort of noise suppression: activation in a layer is

relatively invariant to noise injected at lower layers (Arora

et al., 2018). We described a method, state reification, which

has the explicit objective of attaining robustness to unfamil-

iar variation, and we demonstrated that state reification helps

neural nets to generalize better, especially when labeled data

are sparse, and also helps overcome the challenge of achiev-

ing robust generalization with adversarial training. We also

described two different implementation substrates for state

reification, one using attractor nets and the other denoising

autoencoders. We suspect that other kinds of unsupervised

learning mechanisms that perform representation compres-

sion and density estimation will work as well if not better,

especially those with explicit probabilistic underpinnings.

Our aim has been to show that state reification is an idea

with breadth—over the quite disparate domains of symbolic

sequence recognition and generation tasks and adversarial

robustness. Although state reification appears to have some

practical uses, more basic research is needed to understand

how neural nets perform in regions of hidden state space

outside the training manifold. More broadly, state reification

addresses an issue that is often neglected in deep learning:

how to build robust models given that internal state spaces

are continuous, high dimensional, and often unbounded.

The human brain has solved this problem, and artificial

intelligence needs to do so as well.
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