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Abstract

This paper is concerned with infinite-horizon growth rates of quadratic-exponential functionals (QEFs) for linear
quantum stochastic systems driven by multichannel bosonic fields. Such risk-sensitive performance criteria impose
an exponential penalty on the integral of a quadratic function of the system variables, and their minimization im-
proves robustness properties of the system with respect to quantum statistical uncertainties and makes its behaviour
more conservative in terms of tail distributions. We use a frequency-domain representation of the QEF growth rate
for the invariant Gaussian quantum state of the system with vacuum input fields in order to compute it in state
space. The QEF rate is related to a similar functional for a classical stationary Gaussian random process generated
by an infinite cascade of linear systems. A truncation of this shaping filter allows the QEF rate to be computed with
any accuracy by solving a recurrent sequence of algebraic Lyapunov equations together with an algebraic Riccati
equation. The state-space computation of the QEF rate and its comparison with the frequency-domain results are
demonstrated by a numerical example for an open quantum harmonic oscillator.
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Abbreviations

ALE algebraic Lyapunov equation
ARE algebraic Riccati equation
CCR canonical commutation relation
LCTI linear continuous time invariant
LQG linear-quadratic-Gaussian
ODE ordinary differential equation
OQHO open quantum harmonic oscillator
PDE partial differential equation
QEF quadratic-exponential functional
QSDE quantum stochastic differential equation
SDE stochastic differential equation

1. Introduction

Linear quantum stochastic systems, or open quantum harmonic oscillators (OQHOs), provide an important
class of tractable models of open quantum dynamics which is concerned with the interaction of quantum mechan-
ical systems with their environment. The latter may include other quantum or classical systems (for example,
measuring devices) and quantum fields. In the framework of the Hudson-Parthasarathy calculus [22, 39, 40], these
models are equipped with noncommuting continuous dynamic variables (such as the quantum mechanical positions
and momenta [45]) whose time evolution is governed by linear quantum stochastic differential equations (QSDEs)
driven by quantum analogues of the standard Wiener process [30]. The OQHOs are employed as building blocks
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in linear quantum systems theory [36, 43] which develops methods for performance analysis and synthesis of such
systems with certain dynamic properties. These developments give rise to control and filtering settings for inter-
connections of systems [19, 27], consisting, for example, of a quantum plant and a quantum or classical feedback
controller or observer with direct or field-mediated coupling [65].

By analogy with linear-quadratic-Gaussian (LQG) control for classical linear stochastic systems [2], the per-
formance of quantum networks is often described using mean square optimality criteria in the form of quadratic
cost functionals to be minimised [16, 35, 63]. In particular, as in the Kolmogorov-Wiener-Hopf-Kalman filtering
theory, the quadratic criteria serve to quantify and improve the quality of observers in quantum filtering prob-
lems in terms of the mean square value of the estimation error, that is, the discrepancy between the quantum
plant variables and their estimates [32]. Similarly to their classical predecessors, the mean square optimality cri-
teria for linear quantum stochastic systems are a limiting case of appropriate quantum mechanical counterparts
[10, 25, 26, 48] of quadratic-exponential cost functionals, which originate from classical risk-sensitive control
[7, 24, 60, 61]. One of these extensions underlies the original quantum risk-sensitive control formulation [25, 26]
and employs time-ordered exponentials, which differ from (though have links [51] with) the usual ones because of
the noncommutativity of the system variables.

The general structure of the classical risk-sensitive performance criteria is retained by the quadratic-exponential
functional [48] (QEF) which is the averaged exponential of the integral of a quadratic function of the quantum
system variables over a finite time horizon. In contrast to the mean square criteria, the QEF is organised as a
higher-order mixed moment of the quantum variables at different times. Due to this specific structure, the QEF
yields upper bounds [49] on the worst-case mean square costs in the presence of quantum statistical uncertainty
described in terms of quantum relative entropy [37, 38, 64] of the actual system-field state with respect to its
nominal model. This role of the QEF is similar to the connections between the classical risk-sensitive criteria and
minimax LQG control [15, 42, 44]. The QEF also provides exponential upper bounds on the tail distributions
for quadratic functions of the quantum system trajectories [48], which corresponds to the large deviations theory
for classical random processes [14, 47]. These bounds depend on the QEF monotonically, so that its minimisation
secures a more conservative and robust dynamic behaviour of the open quantum system. The robustness properties,
including reduced sensitivity to unmodelled dynamics (such as nonlinearities), and controlled isolation of the
quantum system from its surroundings are relevant, for example, to applications in quantum optics and quantum
information processing [13, 34, 58].

Since, in the noncommutative quantum case, the QEF differs both from the classical predecessors and its
time-ordered exponential counterpart [25, 26], the performance analysis and optimal control synthesis with QEF
criteria demand methods for computing and minimising such functionals. In addition to their primary relevance to
quantum risk-sensitive control, such methods are also of interest on a broader scale of quantum probabilistic and
algebraic connections with the moment-generating and partition functions for quadratic Hamiltonians in quantum
statistical mechanics [9, 41, 45], the operator exponential structures in the context of operator algebras [1], and
quantum mechanical extensions of the Lévy area [11, 23].

Resulting from recent publications on a parametric randomization technique [50], quantum Karhunen-Loeve
expansions [52, 53] and Girsanov type representations [54] for computing the QEF over a bounded time interval,
a frequency-domain formula has been established in [55] for the infinite-horizon asymptotic growth rate of the
logarithm of the QEF for invariant Gaussian states of stable OQHOs with vacuum input bosonic fields [39]. This
relation, which has subsequently been extended to more general stationary Gaussian quantum processes [57], ex-
presses the QEF growth rate in terms of the Fourier transforms of the real and imaginary parts of the invariant
quantum covariance function of the system variables. These matrix-valued spectral functions enter the QEF rate
through their compositions with trigonometric functions and the log-determinant, thus destroying the meromorphic
structures which play a role in tractability of the H∞-entropy integral [3, 33] for the classical QEF rate. Never-
theless, the quantum QEF rate lends itself to numerical computation in the frequency domain using a homotopy
algorithm [55, 57] similar to that for solving parameter dependent algebraic equations [31]. However, each step of
this algorithm involves a time-consuming high-resolution numerical integration over the frequency range, which
decreases its practicality. At the same time, these frequency-domain methods have already found a preliminary
application to optimality conditions for measurement-based feedback control with QEF criteria [56].

The present paper builds on the frequency-domain representation of the QEF rate in [55, 57] for the invariant
Gaussian state of an OQHO, driven by vacuum quantum fields, and develops an approach to its computation in
state space. For this purpose, we relate the QEF rate through a nonrational spectral density to a similar functional
for an auxiliary classical stationary Gaussian random process. The latter is produced from a standard Wiener
process by an infinite cascade of linear systems whose state-space matrices are computed through a recurrent
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sequence of algebraic Lyapunov equations (ALEs). The complicated infinite dimensional structure of this shaping
filter comes from the trigonometric functions in the frequency-domain representation of the QEF rate mentioned
above. This key element of the QEF rate computation in state space is based on a novel spectral factorisation using
a “system transposition” technique for rearranging mixed products of classical linear systems with their duals,
which resembles the Wick ordering [59] for quantum mechanical annihilation and creation operators. A truncation
of this shaping filter, combined with an additional algebraic Riccati equation (ARE), allows the QEF rate to be
computed with any accuracy. The state-space computation of the QEF rate with different truncation orders and its
comparison with the frequency-domain results are demonstrated by a numerical example for a two-mode OQHO.

The paper is organised as follows. Section 2 describes the class of linear quantum stochastic systems being
considered and their invariant Gaussian states. Section 3 specifies the QEF for such a system and revisits the
frequency-domain formula for its growth rate. Section 4 provides a spectral density representation for the QEF
growth rate. Section 5 develops an infinite cascade factorisation of this spectral density involving a recurrent se-
quence of ALEs. Section 6 relates the quantum QEF rate to a similar functional for a classical Gaussian process
with an infinite-dimensional shaping filter. Section 7 computes the classical QEF rate using a truncation of the
filter together with an ARE. Section 8 discusses a square root polynomial approximation for the entire function as-
sociated with the infinite cascade. Section 9 provides an illustrative numerical example of state-space computation
of the QEF rate for an OQHO. Section 10 makes concluding remarks and outlines further directions of research.

2. Open quantum harmonic oscillators

We consider an open quantum harmonic oscillator (OQHO) with an even number n of dynamic variables
X1, . . . ,Xn, which are time-varying self-adjoint operators on a complex separable Hilbert space H, satisfying at
every moment of time the canonical commutation relations (CCRs)

[X ,XT] = 2iΘ, X :=

X1
...

Xn

 (1)

with a nonsingular matrix Θ = −ΘT ∈ Rn×n. Here, the matrix transpose (·)T is applied to vectors of operators
as if they consisted of scalars (vectors are organised as columns unless indicated otherwise), and the commutator
[α,β ] := αβ −βα of linear operators is extended to vectors ξ := (ξ j)16 j6a and η := (ηk)16k6b of operators as
[ξ ,ηT] := ([ξ j,ηk])16 j6a,16k6b. The system also has an even number m of self-adjoint output quantum variables
Y1, . . . ,Ym on H, assembled into a vector

Y :=

Y1
...

Ym

 ,
and is governed by linear QSDEs [36, 43]

dX = AXdt +BdW, (2)
dY =CXdt +dW, (3)

with constant coefficients comprising the matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n which are described below.
These QSDEs are driven by the vector

W :=

W1
...

Wm


of self-adjoint quantum Wiener processes W1, . . . ,Wm on a symmetric Fock space F [39] with the Ito table

dWdW T = Ωdt, Ω := Im + iJ, (4)

where

J := J⊗ Im/2 =

[
0 Im/2
−Im/2 0

]
. (5)
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Here, ⊗ is the Kronecker product of matrices, Ir is the identity matrix of order r, and the matrix

J :=
[

0 1
−1 0

]
(6)

spans the one-dimensional subspace of antisymmetric matrices of order 2. In accordance with (4), the matrix J in
(5) specifies the commutation structure of W as

[W (s),W (t)T] = 2imin(s, t)J, s, t > 0. (7)

The matrices
A = 2Θ(R+MTJM), B = 2ΘMT, C = 2JM (8)

in (2), (3) are parameterised by the energy and coupling matrices R = RT ∈ Rn×n, M ∈ Rm×n specifying the
system Hamiltonian 1

2 XTRX and the vector MX of m system-field coupling operators, which describe the energetics
of the quantum system and its interaction with the external fields. For any nonsingular matrix σ ∈ Rn×n, the
transformation

X 7→ σX (9)

of the system variables leads to another OQHO with appropriately modified CCR, energy and coupling matrices:

(Θ,R,M) 7→ (σΘσ
T,σ−TRσ

−1,Mσ
−1), (10)

where (·)−T := ((·)−1)T. The state-space matrices (8) are transformed similarly to those of classical linear systems:

(A,B,C) 7→ (σAσ
−1,σB,Cσ

−1). (11)

However, their special structure is of quantum nature and imposes the physical realizability (PR) constraints [28]

AΘ+ΘAT +f= 0, (12)

ΘCT +BJ = 0, (13)

where
f := BJBT =−fT (14)

is an auxiliary real matrix of order n, which inherits its antisymmetry from the CCR matrix J of the quantum
Wiener process W in (5). The PR conditions (12), (13) are closely related to the preservation of the CCRs (1)
together with the commutativity

[X(t),Y (s)T] = 0, t > s> 0.

In turn, this nondemolition property [5, 6] is related to the fact that the output field Y of the system has the same
commutation structure as the quantum Wiener process W in (7):

[Y (s),Y (t)T] = 2imin(s, t)J, s, t > 0.

Also note that the CCRs (1) for the system variables are part of their two-point CCRs [48]

[X(s),X(t)T] = 2iΛ(s− t), s, t > 0, (15)

with

Λ(τ) :=
{

eτAΘ if τ > 0
Θe−τAT

if τ < 0
=−Λ(−τ)T, τ ∈ R, (16)

from which (1) follows since
Λ(0) = Θ. (17)

The CCRs (15) and their one-point case (1) are a consequence of the commutation structure of the system variables,
as well as the external quantum fields, and hold regardless of a particular quantum state. The latter is described
by a positive semi-definite self-adjoint density operator ρ of unit trace (that is, ρ = ρ† < 0 and Trρ = 1, with (·)†

the operator adjoint) on the system-field space H := H0⊗F, where H0 is the initial system space for the action of
X1(0), . . . ,Xn(0). The quantum state specifies the expectation

Eζ := Tr(ρζ ) (18)
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for quantum variables ζ on H. We will be concerned with the tensor-product states

ρ = ρ0⊗υ , (19)

where ρ0 is the initial quantum state of the system on H0, and υ is the vacuum state for the quantum Wiener process
W on F with the quasi-characteristic functional (QCF) [12, 22, 39]

Eei
∫ T

0 f (t)TdW (t) = e−
1
2
∫ T

0 | f (t)|2dt , f ∈ L2([0,T ],Rm), T > 0,

where the averaging (18) reduces to that over the vacuum field state υ , since Eη = Tr(υη) for any quantum
variable on the Fock space F. In this case (of vacuum input fields, statistically independent of the initial system
variables in view of (19)), and assuming that the matrix A in (8) is Hurwitz, the system variables of the OQHO
have a unique invariant multi-point Gaussian quantum state [48]. The latter is specified by the zero mean EX = 0
and the two-point quantum covariance function

E(X(s)X(t)T) = P(s− t)+ iΛ(s− t), s, t > 0, (20)

in the sense of the QCF

Eei
∫ T

0 f (t)TX(t)dt = e−
1
2
∫
[0,T ]2 f (s)TP(s−t) f (t)dsdt

, f ∈ L2([0,T ],Rn), T > 0.

The imaginary part of (20) is given by (16) regardless of the quantum state, while its real part in the invariant
Gaussian state is

P(τ) :=
{

eτAΓ if τ > 0
Γe−τAT

if τ < 0
= P(−τ)T, τ ∈ R, (21)

where
Γ := LA(BBT) (22)

is the controllability Gramian of the pair (A,B) in (8) satisfying the algebraic Lyapunov equation (ALE)

AΓ+ΓAT +BBT = 0. (23)

In (22), use is made of a linear operator LA on Cn×n, associated with the Hurwitz matrix A as

LA(V ) :=
∫
R+

etAV etAT
dt, V ∈ Cn×n. (24)

In comparison with the classical case, the real covariance kernel P in (21) satisfies a stronger property of positive
semi-definiteness of the quantum covariance kernel P+ iΛ in (20). In particular, at any moment of time t > 0, the
one-point quantum covariance matrix of the system variables satisfies

E(X(t)X(t)T) = Γ+ iΘ = LA(BΩBT)< 0

as the solution of the ALE
A(Γ+ iΘ)+(Γ+ iΘ)AT +BΩBT = 0,

which can be obtained by combining (23) with the PR condition (12) and using the quantum Ito matrix Ω< 0 from
(4).

3. Quadratic-exponential functional growth rate in frequency domain

Assuming that the matrix A in (8) is Hurwitz, the input fields are in the vacuum state, and the OQHO (2), (3) is
in the invariant Gaussian quantum state, we are concerned with the infinite-horizon growth rate

ϒ(θ) := lim
T→+∞

( 1
T

lnΞθ ,T

)
(25)

(whose existence was established in [48]) for the quadratic-exponential functional (QEF)

Ξθ ,T := Ee
θ
2
∫ T

0 X(t)TX(t)dt , (26)
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where θ > 0 is a risk sensitivity parameter. In particular, at θ = 0, the QEF reduces to Ξ0,T = 1, and hence,

ϒ(0) = 0. (27)

For positive values of θ , the QEF (26) imposes an exponential penalty on the system variables, so that the min-
imisation of Ξθ ,T (at finite time horizons T ) or its growth rate ϒ(θ) secures useful robustness properties for the
quantum system with respect to statistical uncertainties [49] and makes its behaviour more conservative in terms
of upper bounds on the tail distributions of system variables [48].

Instead of XTX = ∑
n
k=1 X2

k , the integrand in (26) can be organised as a more complicated quadratic form
XTV X , specified by a real positive definite symmetric weighting matrix V of order n, which quantifies the relative
importance of the system variables. However, this can be achieved by applying (26) to the OQHO resulting from
the transformation (9)–(11) with σ :=

√
V . Furthermore, although the discussion can also be extended to singular

weighting matrices V < 0 as limit cases, we will not consider them for simplicity.
The limit value (25) lends itself to computation in frequency domain. More precisely, under the additional

constraint
detf 6= 0, (28)

on the matrix f in (14), which implies that B is of full row rank, or equivalently,

BBT � 0 (29)

(and hence, n 6 m with necessity), it was found [55, Theorem 1] (see also [57]) that the QEF growth rate admits
the frequency-domain representation

ϒ(θ) =− 1
4π

∫
R

lndetDθ (λ )dλ . (30)

Here,
Dθ (λ ) := cθ (λ )−Φ(λ )Ψ(λ )−1sθ (λ ) (31)

is a Cn×n-valued function on R involving

cθ (λ ) := cos(θΨ(λ )), sθ (λ ) := sin(θΨ(λ )) (32)

along with the Fourier transforms of the invariant two-point real covariance and commutator kernels P, Λ of the
system variables in (20), (21), (16):

Φ(λ ) :=
∫
R

e−iλ tP(t)dt

= F(iλ )F(iλ )∗ = E(iλ )BBTE(iλ )∗, (33)

Ψ(λ ) :=
∫
R

e−iλ t
Λ(t)dt

= F(iλ )JF(iλ )∗ = E(iλ )fE(iλ )∗, λ ∈ R, (34)

where (·)∗ := (·)T
is the complex conjugate transpose, and f is the matrix from (14). The functions Φ, Ψ are

related to the Cn×m-valued real-rational transfer function

F(s) := E(s)B, s ∈ C, (35)

from the incremented input quantum Wiener process W of the OQHO (2), (3) to the process X . Here, use is made
of an auxiliary Cn×n-valued transfer function

E(s) := (sIn−A)−1, (36)

which is well defined on the imaginary axis iR since A is Hurwitz. Its state-space realisation

E =

[
A In
In 0

]
(37)
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is identified with a classical strictly proper linear continuous time invariant (LCTI) system. The conjugate system
has the state-space realisation

E∼ =

[
−AT In
−In 0

]
(38)

and the transfer function
E∼(s) =−(sIn +AT)−1. (39)

In view of (4), (33), (34), the Fourier transform of the two-point quantum covariance kernel (20) of the system
variables of the OQHO in the invariant Gaussian quantum state takes the form

Φ(λ )+ iΨ(λ ) =
∫
R

e−iλ t(P(t)+ iΛ(t))dt

= F(iλ )F(iλ )∗+ iF(iλ )JF(iλ )∗

= F(iλ )ΩF(iλ )∗ = E(iλ )BΩBTE(iλ )∗, λ ∈ R, (40)

with values in the set H+
n of complex positive semi-definite Hermitian matrices of order n, and plays the role of a

quantum spectral density for the process X .
The representation (30) for the QEF growth rate is valid for sufficiently small values of θ in the sense that

θ sup
λ∈R

λmax(Φ(λ )tanc(θΨ(λ )))< 1 (41)

(where λmax(·) is the largest eigenvalue of a matrix with a real spectrum) with the threshold value

θ∗ := sup{θ > 0 : (41) is satisfied} (42)

(at which (41) becomes an equality) being different from its classical counterpart

θ0 := 1
/

sup
λ∈R

λmax(Φ(λ )) =
1
‖F‖2

∞

(43)

using the H∞-norm ‖F‖∞ of (35). As can be seen from [55, Proof of Theorem 1] (see also [57]), the significance
of (41) for well-posedness of the integrand in (30) is clarified by

Dθ =
√

cθ D̃θ

√
cθ , (44)

D̃θ := c−1/2
θ

√
Φ D̂θ Φ

−1/2√cθ , (45)

D̂θ := In−θ
√

Φ tanc(θΨ)
√

Φ (46)

(the dependence on λ is omitted for brevity), where the matrix D̃θ (λ ) is similar to the Hermitian matrix D̂θ (λ )
which is positive definite for any λ ∈ R under the condition (41). Here, use is made of positive definiteness of the
matrices cθ (λ ) from (32) and Φ(λ ) from (33) ensured by (29) and A being Hurwitz (recall that the latter makes
the function E in (36) well defined on the imaginary axis). Therefore, in view of the invariance of the determinant
of a matrix under similarity transformations, (44)–(46) lead to

lndetDθ (λ ) = lndetcθ (λ )+ lndet D̂θ (λ ),

which is well-defined for any λ ∈R under the condition (41). Furthermore, as established in [55, Theorem 2] (see
also [57]), the function (31) satisfies the second-order linear ODE

Dθ (λ )
′′+Dθ (λ )Ψ(λ )2 = 0, λ ∈ R, (47)

with the initial conditions
D0 = In, D′0 =−Φ,

where the derivatives (·)′ := ∂θ (·) and (·)′′ := ∂ 2
θ
(·) are with respect to the risk sensitivity parameter θ . Also, it

was obtained there (for a homotopy [31] algorithm of computing ϒ) that

ϒ
′(θ) =

1
4π

∫
R

TrUθ (λ )dλ ,
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with the initial condition (27), where

Uθ (λ ) :=−Dθ (λ )
−1Dθ (λ )

′

=(cθ (λ )−Φ(λ )Ψ(λ )−1sθ (λ ))
−1

× (Φ(λ )cθ (λ )+Ψ(λ )sθ (λ )) (48)

is the negative “logarithmic derivative” of Dθ (λ ) with respect to θ satisfying a Riccati ODE

Uθ (λ )
′ = Ψ(λ )2 +Uθ (λ )

2, λ ∈ R, (49)

with the initial condition
U0 = Φ.

The quadratic nonlinearity on the right-hand side of (49) has a bearing on the trigonometric identities for the cos
and sin functions which are present in (31), (48). These functions, evaluated in (32) at the matrix-valued function
θΨ, are related by the Euler identity

cθ (λ )± isθ (λ ) = e±iθΨ(λ ) � 0 (50)

to two one-parameter matrix groups {e±iθΨ : θ ∈ R} which underlie the general solution C+eiθΨ(λ )+C−e−iθΨ(λ )

of the ODE (47) with arbitrary constant matrices C± ∈ Cn×n. The Hermitian property and positive definiteness of
the right-hand side of (50) follows from the matrix Ψ(λ ) in (34) being skew Hermitian for any λ ∈ R.

4. A spectral density representation of the QEF growth rate

Under the condition (28), the matrix (31) can be expressed in terms of the matrix exponentials e±iθΨ from (50)
as

Dθ :=
1
2
(eiθΨ + e−iθΨ)−ΦΨ

−1 1
2i
(eiθΨ− e−iθΨ)

=
1
2
(In + iΦΨ

−1)eiθΨ +
1
2
(In− iΦΨ

−1)e−iθΨ

=
(

In +
1
2
(In + iΦΨ

−1)(e2iθΨ− In)
)

e−iθΨ

=
(

In−
1
2i
(Φ− iΨ)Ψ−1(e2iθΨ− In)

)
e−iθΨ

= (In−θ(Φ− iΨ)φ(2iθΨ))e−iθΨ, (51)

where

φ(u) :=
{

1 if u = 0
eu−1

u if u 6= 0
=

+∞

∑
k=0

φkuk, u ∈ C, (52)

is an entire function with positive values on the real line (φ(R)⊂ (0,+∞)) and the coefficients

φk :=
1

(k+1)!
, k = 0,1,2, . . . . (53)

In (51), the function φ is evaluated [20] at the Hermitian matrix 2iθΨ and maps it to a positive definite Hermitian
matrix:

φ(2iθΨ(λ ))� 0, λ ∈ R. (54)

Now, similarly to (40),
Φ− iΨ = FΩ

TF∗ = EBΩ
TBTE∗, (55)

where the transfer matrices F(s), E(s) from (35), (36) are evaluated at s := iλ , with λ ∈ R, and use is made of

Ω
T = Ω = Im− iJ < 0 (56)

due to the structure of the quantum Ito matrix Ω in (4). Hence, the matrix BΩTBT has a square root

S :=
√

BΩTBT ∈H+
n (57)
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and can be replaced with S2. Since detE(iλ ) 6= 0 at any frequency λ , then, in view of (55), the matrix

(Φ− iΨ)φ(2iθΨ) = ES2E∗φ(2iθΨ) = ES2
Σθ E−1 (58)

is related by a similarity transformation (and hence, is isospectral) to S2Σθ , where

Σθ := E∗φ(2iθΨ)E = E∗
+∞

∑
k=0

φk(2iθEfE∗)kE � 0 (59)

is a complex positive definite Hermitian matrix for any λ ∈R. For what follows, we associate with (59) a function
∆θ : R→H+

n by
∆θ (λ ) := SΣθ (λ )S, λ ∈ R, (60)

which has all the properties of the spectral density of a Cn-valued random process. Indeed, the Hermitian property
and positive semi-definiteness of the matrix ∆θ (λ ) at any frequency λ are inherited from Σθ (λ ) in (59) and the
Hermitian property of S in (57). Also, due to the transfer function E (and hence, Ψ in (34)) being strictly proper,
and φ(0) = 1, whereby ‖∆θ (λ )‖= o(1/λ 2) as λ → ∞, the function ∆θ is absolutely integrable:∫

R
‖∆θ (λ )‖dλ <+∞

(this property holds regardless of a particular choice of the matrix norm ‖ · ‖). The role of ∆θ for computing the
QEF growth rate (30) is clarified by the following lemma.

Lemma 1. Under the condition (28), for any θ > 0 subject to (41), the QEF growth rate (30) can be represented
as

ϒ(θ) =− 1
4π

∫
R

lndet(In−θ∆θ (λ ))dλ (61)

in terms of (60). �

Proof. From the representation (51) of the function Dθ in (31), it follows that∫
R

lndetDθ (λ )dλ =
∫
R

lndet(In−θ(Φ(λ )− iΨ(λ ))φ(2iθΨ(λ )))dλ

+
∫
R

lndete−iθΨ(λ )dλ

=
∫
R

lndet(In−θE(iλ )S2
Σθ (λ )E(iλ )−1)dλ

=
∫
R

lndet(In−θS2
Σθ (λ ))dλ . (62)

Here, use is made of the relation (58) (along with the isospectrality mentioned in regard to it) and∫
R

lndete−iθΨ(λ )dλ =−iθ
∫
R

TrΨ(λ )dλ =−2πiθTrΛ(0) = 0.

The last equality is obtained by taking the trace of the inverse Fourier transform applied to (34) as

TrΛ(τ) =
1

2π

∫
R

eiλτ TrΨ(λ )dλ , τ ∈ R,

and using (17) together with the antisymmetry of the CCR matrix Θ (which makes it traceless: TrΘ = 0). Since
the matrix S2Σθ (λ ) is isospectral to ∆θ (λ ) in (60), then

det(In−θS2
Σθ (λ )) = det(In−θ∆θ (λ )). (63)

In view of (44)–(46), the condition (41) is equivalent to θ∆θ (λ ) ≺ In for all λ ∈ R, thus making the logarithm
well-defined in application to (63). Substitution of (63) into (62) leads to the representation (61) for the QEF
growth rate (30). �

The representation (61) will be used in Sections 5, 6 in order to relate the quantum QEF growth rate to a similar
functional for a classical Gaussian random process.
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5. Infinite cascade spectral factorization

The state-space realisations (37), (38) of the systems E, E∼ allow Ψ in (34) (as a function of iλ rather than λ ,
with a slight abuse of notation) to be identified with the transfer function of the LCTI system

Ψ = EfE∼ =

 −AT 0 In
−f A 0
0 In 0

 , (64)

where the matrix f is given by (14). The dynamics matrix of this state-space realisation can be block diagonalised
by the similarity transformation[

In 0
Θ In

][
−AT 0
−f A

][
In 0
−Θ In

]
=

[
−AT 0

−ΘAT−f A

][
In 0
−Θ In

]
=

[
−AT 0
AΘ A

][
In 0
−Θ In

]
=

[
−AT 0

0 A

]
, (65)

which uses the CCR matrix Θ from (1) along with the PR condition (12) and the identity[
In 0
α In

][
In 0
β In

]
=

[
In 0

α +β In

]
, α,β ∈ Cn×n

(a homomorphism between the multiplicative group of block lower triangular matrices with identity diagonal
blocks and Cn×n as an additive group). Therefore, (64) admits an equivalent state-space realisation:

Ψ =

[
a b
c 0

]
, a :=

[
−AT 0

0 A

]
, b :=

[
In
Θ

]
, c :=

[
−Θ In

]
. (66)

With Ψ being interpreted as the transfer function of a finite-dimensional LCTI system with the strictly proper
state-space realisation (64) (or (66)), the matrix φ(2iθΨ(λ )) in (54) corresponds to the transfer function for an
infinite cascade of such systems shown in Fig. 1. The resulting LCTI system has an infinite dimensional state and

φ(2iθΨ)

Ψ Ψ Ψ� �� �

???

iθ− 2
3 θ 2− i

3 θ 3

??? ��������� ���� +++

· · ·

· · ·

ω

ζ

Figure 1: An infinite cascade of identical LCTI systems with the state-space realization of Ψ in (64), (66) and an external input ω . The sum of
their outputs, weighted by (2iθ)k/(k+1)! in accordance with the coefficients (53) of the entire function φ from (52), forms the output ζ of the
LCTI system φ(2iθΨ) in (54).

the state-space realisation

φ(zΨ) =


a 0 0 . . . b
bc a 0 . . . 0
0 bc a . . . 0
. . . . . . . . . . . . . . .

φ1zc φ2z2c φ3z3c · · · φ0In

 , z := 2iθ , (67)

where a, b, c are the state-space matrices of Ψ in (66). In accordance with the cascade structure of these systems,
(67) has a block two-diagonal lower triangular dynamics matrix. It will be shown below that the spectral densities
Σθ , ∆θ in (59), (60), which involve (67), admit an inner-outer factorization (see, for example, [62]) with a similar
infinite cascade structure. To this end, we will need the following two lemmas and a theorem, which develop a
“system transposition” technique.
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Lemma 2. Let U ∈ Rn×n be an arbitrary matrix such that the solution V of the ALE

AV +VAT +U = 0, (68)

associated with the Hurwitz matrix A from (8), is nonsingular. Then the transfer function E in (36) and its system
conjugate E∼ in (39) satisfy

E(s)UE∼(s) =V E∼(s)V−1UV−1E(s)V (69)

for any s ∈ C not belonging to the spectra of ±A. �

Proof. By using the ALE (68) and omitting the argument s ∈ C (with values beyond the spectra of ±A) of the
transfer functions E, E∼ for brevity, it follows that

EUE∼ =−E(AV +VAT)E∼

=−E((A− sIn)V +V (AT + sIn))E∼

=V E∼+EV

=V E∼(V−1E−1 +(E∼)−1V−1)EV

=V E∼(V−1(sIn−A)− (sIn +AT)V−1)EV

=−V E∼(V−1A+ATV−1)EV

=V E∼V−1UV−1EV, (70)

which establishes (69). The last equality in (70) employs the fact that, under the condition detV 6= 0, the ALE (68)
is equivalent to an algebraic Riccati equation (ARE)

V−1A+ATV−1 +V−1UV−1 = 0

obtained by the left and right multiplication of (68) by V−1. �

The relation (69) is equivalent to

V−1EUE∼V−1−E∼V−1UV−1E = 0,

which can be interpreted as commutativity of V−1E and E∼V−1 “through” the matrix U . Also, an alternative way
to obtain (69) is to use the property that the dynamics matrix of

EUE∼ =

 −AT 0 In
−U A 0

0 In 0


is block diagonalisable as[

In 0
V In

][
−AT 0
−U A

][
In 0
−V In

]
=

[
−AT 0

−VAT−U A

][
In 0
−V In

]
=

[
−AT 0
AV A

][
In 0
−V In

]
=

[
−AT 0

0 A

]
similarly to (65), and hence,

EUE∼ =

 −AT 0 In
0 A V
−V In 0

=

 A 0 V
0 −AT In
In −V 0

 ,
where the second equality is obtained by swapping the decoupled subsystems (A,V, In) and (−AT, In,−V ) (without
affecting their sum as linear operators with a common input), which leads to the right-hand side of (69).

In application of Lemma 2 to the matrix U :=f from (14), the ALE (68) coincides with the PR condition (12)
and yields the CCR matrix V := Θ in (1) which is assumed to be nonsingular. In this case, the relation (69) allows
the factors in (64) to be rearranged as

EfE∼ = ΘE∼Θ
−1fΘ

−1EΘ. (71)
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In the representation (69) and its particular case (71), the factors E are moved to the right, while their duals E∼

are moved to the left. This resembles the Wick ordering [59] (see also [29, pp. 209–210]) for mixed products of
quantum mechanical annihilation and creation operators. Theorem 1 below extends (71) to arbitrary positive inte-
ger powers of EfE∼. Its formulation employs three sequences of matrices α j,β j,γ j ∈Rn×n computed recursively
as

α j+1 = γ jβ j, β j+1 = γ
−1
j α jγ j−1γ

−1
j , γ j = LA(α jγ j−1), j > 1 (72)

(where the operator LA is given by (24)) with the initial conditions

α1 = γ0 = LA(f) = Θ, β1 = Θ
−1fΘ

−1. (73)

It is convenient to extend the first equality in (72) to j = 0 as α1 = γ0β0 by letting

β0 := γ
−1
0 α1 = In, (74)

in accordance with the first equality from (73). Also, it is assumed that the matrices γ j in (72) are nonsingular:

detγ j 6= 0, j > 1. (75)

The following lemma provides relevant properties of these matrices which will be used in the proof of Theorem 1.

Lemma 3. The matrices β j, γ j, defined by (72)–(74) subject to (75), have the opposite symmetric properties:

β
T
j = (−1) j

β j, γ
T
j =−(−1) j

γ j, j > 0. (76)

Furthermore, the matrices β j with even j have an alternating definiteness in the sense that

(−1)r
β2r � 0, r > 0. (77)

�

Proof. From the recurrence relations (72), it follows that

β j+1 = γ
−1
j γ j−1β j−1γ j−1γ

−1
j , γ j = LA(γ j−1β j−1γ j−1), j > 1, (78)

which, in view of the initial conditions (73), (74), implies by induction that the matrices β2r, γ2r+1 are symmetric,
while β2r+1, γ2r are antisymmetric for all r = 0,1,2, . . ., thus establishing (76). Here, use is made of the commu-
tativity between the operator LA and the matrix transpose (LA(β

T) = LA(β )
T for any β ∈ Rn×n), whereby the

subspaces Sn, An of real symmetric and real antisymmetric matrices of order n are invariant under LA in (24):

LA(Sn)⊂ Sn, LA(An)⊂ An. (79)

Now, the validity of (77) at r = 0 is secured by (74). From the second relation in (76), it follows that (γ−1
j γ j−1)

T =

−γ j−1γ
−1
j for any j, whereby (78) implies that

(−1)r+1
β2r+2 = γ

−1
2r+1γ2r(−1)r

β2r(γ
−1
2r+1γ2r)

T � 0,

provided (77) is already proved for some r > 0. Hence, by induction, (77) holds for any r > 0. �

Note that (77) is closely related to the “propagation” of nonsingularity (75) over odd values of j. More pre-
cisely, in view of (76), by applying the second equality from (78) to j = 2r+ 1, it follows that a combination of
(77) with detγ2r 6= 0 leads to

−(−1)r
γ2r+1 = LA(γ2r(−1)r

β2rγ
T
2r)� 0, (80)

and hence, detγ2r+1 6= 0. Here, use is also made of the inclusion (due to A being Hurwitz)

LA(Pn)⊂ Pn, (81)

which complements (79), with Pn the set of real positive definite symmetric matrices of order n. However, the
inequality (80), which is based on the definiteness argument using (81), does not extend to even values of j, thus
explaining the need in the assumption (75).

Theorem 1. The system E in (37) and its dual E∼ in (38), associated with the Hurwitz matrix A, satisfy

(EfE∼)k = (−1)k
k−→

∏
j=1

(αT
j E∼)βk

k←−
∏
j=1

(Eα j), k > 1, (82)

where f is the matrix from (14), and
−→
∏(·),←−∏(·) are the rightwards and leftwards ordered products, respectively.

Here, the matrices α j,β j ∈ Rn×n are given by (72), (73) subject to the condition (75). �
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Proof. We will use a nested induction over k> 1 (the outer layer of induction) and j = 1, . . . ,k−1 (the inner layer,
which is inactive at k = 1). The validity of (82) at k = 1, that is,

EfE∼ =−α
T
1 E∼β1Eα1 = γ0E∼β1Eα1 (83)

with the matrices α1, β1 given by (73), follows from (71) in view of the antisymmetry and nonsingularity of the
CCR matrix Θ from (1). In order to demonstrate the structure of the induction steps, consider the left-hand side of
(82) for k = 2:

(EfE∼)2 = EfE∼EfE∼

=−α
T
1 E∼β1Eα1EfE∼

=−α
T
1 E∼β1Eα1γ0E∼β1Eα1

=−α
T
1 E∼β1γ1︸︷︷︸

−αT
2

E∼ γ
−1
1 α1γ0γ

−1
1︸ ︷︷ ︸

β2

E γ1β1︸︷︷︸
α2

Eα1, (84)

where (72) is used for j = 1 along with (73), (83), the antisymmetry of β1 and symmetry of

γ1 = LA(α1γ0) = LA(Θ
2).

The last two equalities in (84) involve repeated application of (69) from Lemma 2. This allows the rightmost E∼

factor to be “pulled” through the product of the E factors (and constant matrices between them) until the E∼ factor
is to the left of all the E factors. The last equality in (84) also uses the symmetric properties (76) and establishes
(82) for k = 2. Now, suppose the representation (82) is already proved for some k > 2. Then the next power of the
matrix EfE∼ takes the form

(EfE∼)k+1 = (−1)k
k−→

∏
j=1

(αT
j E∼)βk

k←−
∏
j=1

(Eα j)EfE∼, (85)

where the rightmost E∼ factor is the only E∼ factor which is to the right of the E factors. We will now use the
pulling procedure, demonstrated in (84), and prove that

βk

k←−
∏
j=1

(Eα j)EfE∼ = βk

k←−
∏
j=r

(Eα j)γr−1E∼βr

r←−
∏
j=1

(Eα j) (86)

by induction over r = 1, . . . ,k. The fulfillment of (86) for r = 1 is verified by applying (71) and using (73):

βk

k←−
∏
j=1

(Eα j)EfE∼ = βk

k←−
∏
j=1

(Eα j)EfE∼

= βk

k←−
∏
j=1

(Eα j)ΘE∼Θ
−1fΘ

−1EΘ

= βk

k←−
∏
j=1

(Eα j)γ0E∼β1Eα1.

Now, suppose (86) is already proved for some r = 1, . . . ,k−1. Then its validity for the next value r+1 is established
by using (69) of Lemma 2 in combination with (72) as

βk

k←−
∏
j=1

(Eα j)EfE∼ = βk

k←−
∏

j=r+1
(Eα j)Eαrγr−1E∼βr

r←−
∏
j=1

(Eα j)

= βk

k←−
∏

j=r+1
(Eα j)γrE∼ γ

−1
r αrγr−1γ

−1
r︸ ︷︷ ︸

βr+1

E γrβr︸︷︷︸
αr+1

r←−
∏
j=1

(Eα j)

= βk

k←−
∏

j=r+1
(Eα j)γrE∼βr+1

r+1←−
∏
j=1

(Eα j).
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Therefore, (86) holds for any r = 1, . . . ,k, thus completing the inner layer of induction. In particular, at r = k, this
relation takes the form

βk

k←−
∏
j=1

(Eα j)EfE∼ = βkEαkγk−1E∼βk

k←−
∏
j=1

(Eα j)

= βkγk︸︷︷︸
−αT

k+1

E∼ γ
−1
k αkγk−1γ

−1
k︸ ︷︷ ︸

βk+1

E γkβk︸︷︷︸
αk+1

k←−
∏
j=1

(Eα j)

=−α
T
k+1E∼βk+1

k+1←−
∏
j=1

(Eα j), (87)

where (69) of Lemma 2 and (72) are used again along with αT
k+1 = β T

k γT
k =−βkγk in view of (76). Now, substitution

of (87) into (85) leads to

(EfE∼)k+1 =−(−1)k
k−→

∏
j=1

(αT
j E∼)αT

k+1E∼βk+1

k+1←−
∏
j=1

(Eα j)

= (−1)k+1
k+1−→
∏
j=1

(αT
j E∼)βk+1

k+1←−
∏
j=1

(Eα j),

which completes the outer layer of induction, thus proving (82) for any k > 1. �

For any σ1,σ2,σ3, . . . ∈ R\{0}, the factorisation (82) is invariant under the transformation

αk 7→
1
σk

αk, βk 7→ βk

k

∏
j=1

σ
2
j , k > 1,

which can be used for balancing the state-space realisations discussed below. The following theorem employs an
extension of Theorem 1 from monomials to entire functions of EfE∼ along with the duality

k−→
∏
j=1

(αT
j E∼) =

( k←−
∏
j=1

(Eα j)
)∼

. (88)

To this end, the system E and the sequence of matrices αk give rise to strictly proper LCTI systems

Gk :=
k←−

∏
j=1

(Eα j)E =

k←−
∏
j=0

(Eα j), k = 0,1,2, . . . (89)

(with the second equality using the convention that α0 = In), which are assembled into

G :=


G0
G1
G2
...

=


E

Eα1E
Eα2Eα1E

...

=



A 0 0 . . . In
α1 A 0 . . . 0
0 α2 A . . . 0
. . . . . . . . . . . . . . .
In 0 0 . . . 0
0 In 0 . . . 0
0 0 In . . . 0
. . . . . . . . . . . . . . .


, (90)

provided the condition (75) is satisfied. The system G has real state-space matrices (its output matrix is the infinite
identity matrix I∞), an Rn-valued input and an R∞-valued output which coincides with the internal state. This
system is organised as an infinite cascade of LCTI systems shown in Fig. 2. We will also use an infinite block-
diagonal complex Hermitian matrix

Hθ := diag
k>0

((−2iθ)k
φkβk), (91)

defined in terms of the coefficients φk in (53) and the matrices βk from Lemma 3.
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G

Eα1Eα2E ������· · ·

· · · ???

Figure 2: An infinite cascade of copies of the LCTI system E from (37) (with the matrices αk from (72), (73) as intermediate factors) forming
the system G with the state-space realization (90).

Theorem 2. Under the condition (75), the spectral density ∆θ in (60) can be factorised in terms of the transfer
function of the system G from (90), the matrix Hθ in (91) and the square root S in (57) as

∆θ (λ ) = SG(iλ )∗Hθ G(iλ )S, λ ∈ R. (92)

�

Proof. By considering (82) on the imaginary axis iR and substituting it into (59), it follows that

Σθ (λ ) = E(iλ )∗
+∞

∑
k=0

(−2iθ)k
φk

k−→
∏
j=1

(αT
j E(iλ )∗)βk

k←−
∏
j=1

(E(iλ )α j)E(iλ )

=
+∞

∑
k=0

(−2iθ)k
φkGk(iλ )∗βkGk(iλ )

= G(iλ )∗Hθ G(iλ ), λ ∈ R, (93)

where use is made of (88)–(91). The factorisation (92) is now obtained by combining (93) with (60). �

The spectral factorisation (92) involves the infinite cascade of classical linear systems forming the system G,
which will be used in a shaping filter for an auxiliary Gaussian process.

6. QEF growth rate representation in terms of classical Gaussian processes

We will now relate the quantum QEF growth rate (61) to a similar functional for stationary R∞-valued zero-
mean Gaussian random processes ξ , η produced from independent standard Wiener processes ω1, ω2 in Rn by an
infinite-dimensional shaping filter (in operator form)

ζ :=
[

ξ

η

]
= (I2⊗G)R(S)dω, ω :=

[
ω1
ω2

]
. (94)

Here, the system G in (90) is used (under the condition (75)) along with the following representation of the square
root S from (57):

R(S) :=
[

ReS −ImS
ImS ReS

]
= I2⊗ReS−J⊗ ImS, (95)

where the matrix J is given by (6); see Fig. 3. Since (14), (56), (57) imply that R(S) is a real symmetric matrix
satisfying

R(S)2 = R(BΩ
TBT) = R(BBT− if) =

[
BBT f
−f BBT

]
, (96)

the spectral density of the process ζ in (94) is factorised by the transfer function of the system G as

(I2⊗G(iλ ))
[

BBT f
−f BBT

]
(I2⊗G(iλ )∗), λ ∈ R. (97)
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G

Figure 3: An infinite-dimensional shaping filter which produces R∞-valued stationary Gaussian random processes ξ , η from independent
standard Wiener processes ω1, ω2 in Rn and uses the square root S from (57) and the system G from (90).

In accordance with the structure of the system G in (90), the processes ξ , η are split into Rn-valued subvectors as

ξ :=


ξ0
ξ1
ξ2
...

 , η :=


η0
η1
η2
...

 (98)

and are governed by an infinite cascade of classical Ito SDEs [30] driven by ω:

d
[

ξ0
η0

]
= (I2⊗A)

[
ξ0
η0

]
dt +R(S)dω, (99)

d
[

ξk
ηk

]
=
(
(I2⊗A)

[
ξk
ηk

]
+(I2⊗αk)

[
ξk−1
ηk−1

])
dt, k > 1 (100)

(the time arguments are omitted for brevity). Due to the absence of diffusion terms in (100), ξk, ηk have continu-
ously differentiable sample paths for all k> 1. The initial state (ξ (0),η(0)) is independent of the standard Wiener
process ω and is distributed according to the unique invariant Gaussian measure for these SDEs (which is well
defined since the matrix A is Hurwitz). Associated with the subvectors of ξ , η in (98) are the following R4n-valued
stationary zero-mean Gaussian processes:

ζk :=


ξ2k
η2k

ξ2k+1
η2k+1

 , k = 0,1,2, . . . . (101)

We will also use the real and imaginary parts of the matrix Hθ in (91) which are also block diagonal matrices:

ReHθ = diag( f0(θ),0, f1(θ),0, f2(θ),0, . . .), (102)
ImHθ = diag(0,g0(θ), 0,g1(θ), 0,g2(θ), . . .). (103)

In view of Lemma 3, the nontrivial diagonal blocks of ReHθ are real positive definite symmetric matrices

fk(θ) := (−2iθ)2k
φ2kβ2k = (−4θ

2)k
φ2kβ2k � 0, (104)

whereas the nontrivial diagonal blocks of ImHθ are real antisymmetric matrices:

gk(θ) :=
1
i
(−2iθ)2k+1

φ2k+1β2k+1 =−2θ(−4θ
2)k

φ2k+1β2k+1 (105)
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for all k = 0,1,2, . . .. We assemble (104), (105) into real symmetric matrices of order 4n:

hk(θ) :=
[

I2⊗ fk(θ) 0
0 −J⊗gk(θ)

]
, k = 0,1,2, . . . , (106)

where the matrix J from (6) is used. In view of (102)–(105), a combination of the processes (101) with the matrices
(106) leads to the identity

Qθ := ζ
TR(Hθ )ζ

= ξ
TReHθ ξ +η

TReHθ η−2ξ
TImHθ η

=
+∞

∑
k=0

(ξ T
2k fk(θ)ξ2k +η

T
2k fk(θ)η2k−2ξ

T
2k+1gk(θ)η2k+1)

=
+∞

∑
k=0

ζ
T
k hk(θ)ζk, (107)

with the map R from (95) being applied to the matrix Hθ in (91). The almost sure convergence of the random
series on the right-hand side of (107) can be established by using the structure of the matrices (106) along with the
invariant zero-mean Gaussian measure for the process ζ whose covariance matrix

P := M(ζ ζ
T) = (M(ζ jζ

T
k )) j,k>0 ∈ S+∞ (108)

(with M(·) the classical expectation) satisfies the ALE

A P +PA T +BBT = 0. (109)

Here,

A :=


I2⊗A 0 0 . . . . . .
I2⊗α1 I2⊗A 0 . . . . . .

0 I2⊗α2 I2⊗A . . . . . .
. . . . . . . . . . . . . . .

 , B :=


R(S)

0
0
...

 (110)

are infinite-dimensional matrices formed from the state-space matrices of the SDEs (99), (100). Therefore, (107)
defines a strictly stationary real-valued random process Qθ whose expectation

MQθ =
1

2π

∫
R

TrΠθ (λ )dλ (111)

(at any moment of time) is expressed in terms of another spectral function Πθ : R→H2n given by

Πθ (λ ) := R(S)(I2⊗G(iλ )∗)R(Hθ )(I2⊗G(iλ ))R(S), λ ∈ R, (112)

in accordance with the spectral density (97) of the process ζ in (94). The following lemma provides a link between
Πθ and the spectral density ∆θ in (60).

Lemma 4. Under the condition (75), the function Πθ in (112) is related to the spectral density ∆θ in (60) by

Πθ (λ ) = N
[

∆θ (λ ) 0
0 ∆θ (−λ )T

]
N∗, λ ∈ R, (113)

where

N :=
1√
2

[
1 1
−i i

]
⊗ In (114)

is a unitary matrix. In particular, Πθ takes values in H+
2n. �
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Proof. From (95), (114), it follows that the matrix N secures the unitary equivalence

R(c) = N
[

c 0
0 c

]
N∗, c ∈ Cn×n. (115)

Also, both N and N∗, due to their Kronecker product structure, commute with I2⊗ c:

[N, I2⊗ c] = 0, [N∗, I2⊗ c] = 0, c ∈ Cn×n. (116)

Repeated application of (115), (116) to (112) leads to

Πθ (λ ) = N
[

S 0
0 S

]
N∗(I2⊗G(iλ )∗)R(Hθ )(I2⊗G(iλ ))N

[
S 0
0 S

]
N∗

= N
[

S 0
0 S

]
(I2⊗G(iλ )∗)N∗R(Hθ )N(I2⊗G(iλ ))

[
S 0
0 S

]
N∗

= N
[

S 0
0 S

]
(I2⊗G(iλ )∗)

[
Hθ 0
0 Hθ

]
(I2⊗G(iλ ))

[
S 0
0 S

]
N∗

= N
[

SG(iλ )∗Hθ G(iλ )S 0
0 SG(iλ )∗Hθ G(iλ )S

]
N∗

= N
[

∆θ (λ ) 0
0 SG(iλ )∗Hθ G(iλ )S

]
N∗, λ ∈ R, (117)

where the last equality also uses the factorisation (92). Since the matrices S, Hθ in (57), (91) are Hermitian, then
(92) implies that

∆θ (−λ )T = (SG(−iλ )∗Hθ G(−iλ )S)T

= STG(−iλ )THT
θ G(−iλ )ST

= SG(iλ )∗Hθ G(iλ )S, λ ∈ R, (118)

where use is also made of the relation G(iλ )∗ = G(−iλ )T in view of the system G in (90) having real state-
space matrices. Substitution of (118) into (117) establishes (113). The latter implies that Πθ (λ ) < 0 since
∆θ (λ ),∆θ (−λ )T < 0 for any λ ∈ R. �

The unitary equivalence (113) allows the relation (111) to be represented in terms of the spectral density ∆θ as

MQθ =
1

2π

∫
R

Tr(∆θ (λ )+∆θ (−λ ))dλ =
1
π

∫
R

Tr∆θ (λ )dλ .

The following theorem exploits a similar connection for the exponential-of-integral moments of the process Qθ .

Theorem 3. Under the condition (75), for any θ > 0 satisfying (41), the QEF growth rate (30) is related by

ϒ(θ) =
1
2

lim
T→+∞

( 1
T

lnMe
θ
2
∫ T

0 Qθ (t)dt
)

(119)

to the process Qθ in (107). �

Proof. The process Qθ in (107) is a quadratic form, with the matrix (91), in the Gaussian random process ζ from
(94) with the spectral density (97). By using its truncation

Qθ ,r :=
r

∑
k=0

ζ
T
k hk(θ)ζk, (120)

applying the Fredholm determinant formula [46, Theorem 3.10 on p. 36] (see also [18]) along with the asymptotic
infinite-horizon behaviour of spectra of Toeplitz operators, and passing to the limit as r→+∞ in (120) combined
with a uniform integrability argument, it follows that the classical QEF rate for ζ on the right-hand side of (119) is
related to the function Πθ in (112) as

lim
T→+∞

( 1
T

lnMe
θ
2
∫ T

0 Qθ (t)dt
)
=− 1

4π

∫
R

lndet(I2n−θΠθ (λ ))dλ . (121)
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The unitarity of the matrix N in (114) and the relation (113) imply the unitary equivalence

I2n−θΠθ (λ ) = N
[

In−θ∆θ (λ ) 0
0 In−θ∆θ (−λ )T

]
N∗,

whereby
det(I2n−θΠθ (λ )) = det(In−θ∆θ (λ ))det(In−θ∆θ (−λ )),

and hence, ∫
R

lndet(I2n−θΠθ (λ ))dλ =
∫
R
(lndet(In−θ∆θ (λ ))+ lndet(In−θ∆θ (−λ )))dλ

= 2
∫
R

lndet(In−θ∆θ (λ ))dλ . (122)

Substitution of (122) into (121) leads to

lim
T→+∞

( 1
T

lnMe
θ
2
∫ T

0 Qθ (t)dt
)
=− 1

2π

∫
R

lndet(In−θ∆θ (λ ))dλ . (123)

The representation (119) for the quantum QEF rate ϒ(θ) is now obtained by comparing (61) of Lemma 1 with
(123). �

Theorem 3 reduces the computation of the QEF growth rate to that for the infinite-dimensional Gaussian
process ζ . The classical QEF rate on the right-hand side of (119) can be found with arbitrary accuracy by using
the truncation (120). In view of (104)–(106), this corresponds to retaining only the first 2r+2 terms in the Taylor
series expansion of φ in (52) as

φ(u)≈
2r+1

∑
k=0

φkuk. (124)

Instead of φ0, . . . ,φ2r+1 in (104), (105), alternative coefficients can also be used in order for the resulting approxi-
mation to retain qualitative properties of the function φ (such as positiveness) in addition to φ(0) = 1, which will
be discussed in Section 8.

7. Approximate QEF rate computation using a truncated Gaussian process

Theorem 3 can be practically used by computing the classical QEF rate for an Rν -valued Gaussian diffusion
process

Zr :=

ζ0
...

ζr

 (125)

of dimension
ν := 4(r+1)n, (126)

where the parameter r = 0,1,2, . . . controls the quality of approximating the exact value of the quantum QEF rate
in (119). The process Zr consists of ζ0, . . . ,ζr from (101), in terms of which the truncation (120) of the process Qθ

in (107) is represented as
Qθ ,r := ZT

r Hθ ,rZr, (127)

where
Hθ ,r := diag

06k6r
hk(θ) ∈ Sν (128)

is the corresponding submatrix of the matrix R(Hθ ) associated with (91), (106). In view of the SDEs (99), (100),
the process Zr in (125) is produced from the R2n-valued standard Wiener process ω by a finite-dimensional shaping
filter with the state-space realisation [

Ar Br
Iν 0

]
, (129)
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where Ar ∈ Rν×ν , Br ∈ Rν×2n are submatrices of A , B from (110) given by

Ar :=


I2⊗A 0 0 . . . . . . 0
I2⊗α1 I2⊗A 0 . . . . . . 0

0 I2⊗α2 I2⊗A . . . . . . 0
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . I2⊗A 0
. . . . . . . . . . . . I2⊗α2r+1 I2⊗A

 , Br :=


R(S)

0
...
0

 , (130)

with Ar inheriting the Hurwitz property from A. Note that the matrices Ar and Hθ ,r in (128) involve the matrices
α1, . . . ,α2r+1 and β0, . . . ,β2r+1 from (72)–(74). In order for these matrices (and hence, the related processes Zr,
Qθ ,r in (127), (125)) to be well-defined, the condition (75) can be replaced with its weaker version

detγ j 6= 0, j = 0, . . . ,2r, (131)

where detγ0 6= 0 holds in view of (73) due to the nonsingularity of the CCR matrix Θ. The following theorem (its
proof is outlined below for completeness) applies the results of [33, Proposition 6.3.1 and its proof on pp. 66–68]
(see also [7]) to computing the QEF rate for the truncated processes. The slight modification here is that, in contrast
to the standard risk-sensitive settings, the matrix Hθ ,r in (128) is indefinite.

Theorem 4. For a given r > 0, suppose (131) holds for the matrices γ0, . . . ,γ2r in (72), (73). Also, suppose the
risk sensitivity parameter θ > 0 and the matrix Hθ ,r in (128) satisfy

θ sup
λ∈R

λmax( fr(iλ )∗Hθ ,r fr(iλ ))< 1, fr(s) := (sIν −Ar)
−1Br, (132)

where fr is the transfer function of the shaping filter (129) of the stationary Gaussian diffusion process Zr with the
matrices (130). Then the process Qθ ,r in (120), associated with Zr by (127), satisfies

lim
T→+∞

( 1
T

lnMe
θ
2
∫ T

0 Qθ ,r(t)dt
)
=

1
2

Tr(BrB
T
r aθ ,r), (133)

where aθ ,r ∈ Sν is the unique stabilising solution of the ARE

A T
r aθ ,r +aθ ,rAr +θHθ ,r +aθ ,rBrB

T
r aθ ,r = 0 (134)

in the sense that the matrix Ar +BrBT
r aθ ,r is Hurwitz. �

Proof. As mentioned above, (131) makes the processes Zr in (125) and Qθ ,r in (127) well-defined. Omitting the
subscripts θ , r for brevity, the Gaussian diffusion process Z is governed by the SDE

dZ = A Zdt +Bdω, (135)

which describes the shaping filter (129) driven by the standard Wiener process ω in R2n, with the matrices A , B
from (130). Assuming the risk sensitivity parameter θ to be fixed, the conditional QEF

KT (z) := M
(
e

θ
2
∫ T

0 Z(t)THZ(t)dt ∣∣Z(0) = z
)
> 0, T > 0, z ∈ Rν , (136)

for the process Z over a finite time horizon T satisfies the integro-differential equation

KT+τ(z) = M
(
KT (Z(τ))e

θ
2
∫

τ
0 Z(t)THZ(t)dt ∣∣Z(0) = z

)
, τ > 0, (137)

with the initial condition
K0 = 1. (138)

This follows from the homogeneous Markov property of Z and the tower property of iterated conditional expecta-
tions. By letting τ → 0+ and using the Ito lemma [30], (137) gives rise to the PDE

∂T KT = G (KT )+
θ

2
zTHzKT , (139)
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where G is the infinitesimal generator of the diffusion process Z in (135) acting on a twice continuously differen-
tiable function ϕ : Rν → R with the gradient vector ϕ ′ and the Hessian matrix ϕ ′′ as

G (ϕ)(z) = zTA T
ϕ
′(z)+

1
2

Tr(BBT
ϕ
′′(z)), z ∈ Rν .

Since 1
ϕ
G (ϕ) = G (lnϕ) + 1

2 |B
T(lnϕ)′|2 for positive functions ϕ in accordance with the Fleming logarithmic

transformation [17] (see also [4, Eq. (81) on p. 201]), then (139) takes the form

∂T lnKT (z) = G (lnKT )(z)+
1
2
|BT(lnKT )

′(z)|2 + θ

2
zTHz, (140)

which admits a quadratic ansatz

lnKT (z) =
1
2

zTaT z+ cT , (141)

where aT , cT are continuously differentiable functions of T with values in Sν , R, respectively, and zero initial
conditions

a0 = 0, c0 = 0 (142)

in view of (138). By substituting (141) into (140) and equating the corresponding coefficients of the quadratic
functions in

zTȧT z+2ċT = 2zTA TaT z+Tr(BBTaT )+ |BTaT z|2 +θzTHz

(where ˙( ) := ∂T (·) is the time derivative), it follows that

ȧT = A TaT +aT A +θH +aT BBTaT , (143)

ċT =
1
2

Tr(BBTaT ). (144)

The solution of the Riccati ODE (143) with the zero initial condition in (142) has a limit

a∞ := lim
T→+∞

aT (145)

which is the unique stabilising (in the sense that A +BBTa∞ is Hurwitz) solution of the ARE

A Ta∞ +a∞A +θH +a∞BBTa∞ = 0

in (134). Therefore, integration of (144) with the zero initial condition from (142) yields

lim
T→+∞

cT

T
=

1
2

Tr
(
BBT lim

T→+∞

( 1
T

∫ T

0
atdt

))
=

1
2

Tr(BBTa∞) (146)

since the Cesaro mean inherits the limit value (145). It now remains to note that

Me
θ
2
∫ T

0 Z(t)THZ(t)dt = MKT (Z(0)) = ecT Me
1
2 Z(0)TaT Z(0) (147)

in view of (136), (141), where the rightmost expectation is over the invariant zero-mean Gaussian distribution of
the process Z with an appropriate submatrix P of the covariance matrix in (108), (109). The condition (132)
implies that λmax(a∞P)< 1, which secures a finite limit for the rightmost expectation in (147):

lim
T→+∞

Me
1
2 Z(0)TaT Z(0) =

1√
det(Iν −a∞P)

<+∞.

Hence, (146) implies that

lim
T→+∞

( 1
T

lnMe
θ
2
∫ T

0 Z(t)THZ(t)dt
)
= lim

T→+∞

cT

T
=

1
2

Tr(BBTa∞),

thus establishing (133). �
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A combination of Theorems 3, 4 allows the quantum QEF growth rate (30) to be computed as the limit

ϒ(θ) = lim
r→+∞

ϒr(θ), ϒr(θ) :=
1
4

Tr(BrB
T
r aθ ,r) (148)

in terms of the “truncated” classical QEF rates (133). A practical application of (148) consists in using the “pre-
limit” value ϒr(θ) at a finite r large enough for the convergence to manifest itself. In this regard, of interest is the
question of exploiting the special structure of the matrices Ar, Br in (130) and Hθ ,r in (128) for computing the
truncated QEF rate (133) recursively in r. To this end, we note that the sparsity of Br in (130) leads to

BrB
T
r =

[
R(S)2 0

0 0

]
=

[
R(BΩTBT) 0

0 0

]
, (149)

where the block R(S)2 is computed in (96). Hence, only the first diagonal block (aθ ,r)11 ∈ S2n of the matrix aθ ,r
enters the trace in (133):

Tr(BrB
T
r aθ ,r) = Tr(R(BΩ

TBT)(aθ ,r)11). (150)

Also, due to (149), the ARE (134) has a “low-rank” nonlinearity in the sense that its quadratic term depends only
on the first block-column (aθ ,r)•1 ∈ Rν×2n of the matrix aθ ,r:

aθ ,rBrB
T
r aθ ,r = (aθ ,r)•1R(BΩ

TBT)(aθ ,r)
T
•1. (151)

Another relevant observation is that the solution aθ ,r of (134) satisfies the ARE

Ara−1
θ ,r +a−1

θ ,rA
T

r +BrB
T
r +θa−1

θ ,rHθ ,ra−1
θ ,r = 0 (152)

(provided detaθ ,r 6= 0) whose analysis can benefit from the block lower triangular structure of the matrix Ar in
(130), similarly to that of A in the ALE (109). This can also be combined with the Schur complement relations [21]
between the blocks of aθ ,r and a−1

θ ,r in (150)–(152). On the other hand, the factorially fast decay of the coefficients
(53) leads to a rapid convergence in (148), so that already the initial approximation ϒ0(θ) of the QEF rate appears
to be satisfactory for moderate values of θ , at least as the numerical example in Section 9 demonstrates. In view
of (150), this approximation is described by

ϒ0(θ) =
1
4

Tr(R(BΩ
TBT)(aθ ,0)11) (153)

in terms of the stabilising solution aθ ,0 of the ARE (134) of order ν = 4n in (126) at r = 0:

A T
0 aθ ,0 +aθ ,0A0 +θh0(θ)+aθ ,0B0B

T
0 aθ ,0 = 0. (154)

Here,

A0 =

[
I2⊗A 0
I2⊗Θ I2⊗A

]
, B0 =

[
R(S)

0

]
(155)

in view of (130), (73), and

h0(θ) =

[
I2n 0
0 θJ⊗ (Θ−1fΘ−1)

]
(156)

in accordance with (53), (74), (104)–(106). This approximation does not involve the ALEs (72) and reduces to
solving the ARE (154).

8. Square root polynomial approximation of the function φ

The function φ from (52) enters the truncated QEF rate (133) through its coefficients φ0, . . . ,φ2r+1 which
participate in the matrix Hθ ,r in (128) in view of (104)–(106). This corresponds to the approximation of φ by the
appropriately truncated Taylor series in (124). In contrast to φ , the resulting polynomial of degree 2r + 1 takes
both positive and negative values. The following alternative approximation is nonnegative everywhere on the real
axis, thus better reflecting the positiveness of the original function. Consider the Taylor series expansion for the
square root of φ in (52). Denote its regular branch, with positive values on the real axis, by

ψ(u) :=
√

φ(u) =
+∞

∑
k=0

ψkuk, u ∈ C, (157)
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where ψk ∈ R are coefficients. The squaring of (157) relates the coefficients (53) of (52) to ψ0,ψ1,ψ2, . . . by the
convolutions

φk =
k

∑
j=0

ψ jψk− j, k = 0,1,2, . . . . (158)

Since φ0 = 1, the relation (158) leads to a recurrence equation for the coefficients of (157):

ψ0 = 1, ψk =
1
2

(
φk−

k−1

∑
j=1

ψ jψk− j

)
, k = 1,2,3, . . . . (159)

In particular,

ψ1 =
1
4
, ψ2 =

5
96

, ψ3 =
1

128
, ψ4 = 8.5720×10−4.

The numerical computation of the subsequent coefficients shows that they form a fast decaying sequence; see
Fig. 4. Therefore, the function φ in (52) admits a “square root polynomial” approximation (resembling the Choleski

Figure 4: The first nine coefficients φk from (53) (red line) and ψk from (159) (blue line) on the logarithmic scale.

factorization [21] or the square root form of the Kalman filter [8]),

φ(u)≈
( r

∑
k=0

ψkuk
)2

=
r

∑
k=0

φkuk +
2r

∑
k=r+1

r

∑
j=k−r

ψ jψk− juk, (160)

with a reliable accuracy already for moderate values of the truncation parameter r, and, in contrast to (124), being
nonnegative on the real axis u ∈ R. The right-hand side of (160) reproduces the first r + 1 terms of the Taylor
series expansion of φ in (52), while the coefficients φk, with r < k 6 2r, are replaced with ∑

r
j=k−r ψ jψk− j, and the

remainder ∑k>2r φkuk of the series is discarded. These approximations are shown in Fig. 5.

9. A numerical example of computing the QEF rate in state space

Two-mode OQHOs considered below, with n = 4 system variables consisting of two position-momentum pairs
[45] and the CCR matrix Θ = 1

2 J⊗ I2 in (1), can result as closed-loop systems from coherent (measurement-free)
quantum feedback connections of two cavities modelled by one-mode OQHOs. Mean-square optimal control
settings for such systems, including applications to quantum optics, can be found, for example, in [35]. The
weighting of the system variables as in (9) (which yields linear combinations of the positions and momenta in
this case), accompanied by the transformations (10), (11), can lead to a more complicated CCR matrix Θ. For
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Figure 5: The square root polynomial approximations (160), with r = 1, . . . ,8 (blue lines) for the function (52) (red line) on the logarithmic
scale. The troughs correspond to the real zeros of the polynomials ∑

r
k=0 ψkuk for odd values of r. The largest of these roots is −4 and pertains

to the polynomial 1+ 1
4 u with r = 1.

numerical illustration purposes, we will use the matrices

Θ :=

[ 0 0.8697 −0.2444 0.4872
−0.8697 0.0000 0.2612 −2.0179
0.2444 −0.2612 −0.0000 1.1388
−0.4872 2.0179 −1.1388 −0.0000

]
,

A :=

[ 5.1304 5.7928 8.7655 −1.5445
−9.0634 −9.0965 −14.7367 0.6865
0.6371 0.1820 −0.6069 0.4491
13.5996 5.4816 5.8039 −3.6400

]
,

B :=

[ 3.0301 0.1179 1.9804 −0.8723 0.9541 0.9578
−2.1858 −2.0488 −2.0902 1.0467 1.7361 −0.2561
−1.8423 0.7662 −0.4926 0.1977 −0.6104 −0.6082
−3.3994 −3.6233 −2.0884 −1.5410 3.6763 −0.3150

]
,

related by the PR condition (12) and corresponding to the case of a three-mode (m = 6) input quantum field with
J = J⊗ I3 in accordance with (5). The matrix A is Hurwitz, and its spectrum is {−1.3480± 3.3108i,−2.7584±
1.1650i}. Both Θ and f in (14) are nonsingular. The threshold value (42) of the risk sensitivity parameter θ and its
classical counterpart (43) are θ∗= 0.0792 and θ0 = 0.0788. The results of numerical state-space computation of the
QEF growth rate approximations ϒr, based on the corollary (148) of Theorems 3, 4, are shown for r = 0,1,2,3 in
Fig. 6 in comparison with those obtained through the homotopy algorithm of [55, 57] in the frequency domain. No
violation of the condition (131) was observed. The initial approximation ϒ0, computed according to (153)–(156), is
satisfactory over the overwhelming part of the interval [0,θ∗), while the subsequent approximations ϒ1,ϒ2,ϒ3 are
practically indistinguishable from the frequency-domain result over the whole range. The deviation of the graphs
is noticeable only in the vicinity of the threshold value θ∗. The four approximations ϒ0(θ), . . . ,ϒ3(θ) are fairly
close to each other even at a near-critical value of θ given in Tab. 1. Fig. 7 visualises the alternative versions of the

Table 1: The values of the four QEF rate approximations at θ = 0.9999θ∗ = 0.0792.

r 0 1 2 3
ϒr(θ) 1.6260 1.8427 1.8542 1.8543

QEF growth rate approximations, which are computed using the square root polynomial approximation (160) and
appear to be of similar quality.

10. Conclusion

A method has been developed for the state-space computation of the QEF growth rate for stable open quan-
tum harmonic oscillators driven by vacuum input fields. This has been achieved by relating the frequency-domain
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Figure 6: The blue curves are the graphs of the QEF growth rate approximations ϒr(θ) (as functions of the risk sensitivity parameter 06 θ < θ∗)
from (148) computed using Theorem 4 for r = 0,1,2,3 (the lower curve corresponds to ϒ0 in (153)–(156)). The red curve is the outcome of
the homotopy algorithm in the frequency domain [55, 57].

Figure 7: The red curve is the same as in Fig. 6. The black curves represent the QEF growth rate approximations ϒr from (148) via Theorem 4
for r = 0,1,2,3 with the alternative coefficients corresponding to the square root polynomial approximation (160) (the lower curve corresponds
to ϒ0).
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representation of the quantum QEF rate to a similar functional for a stationary Gaussian random process produced
by an infinite cascade of linear systems. The infinite-dimensional shaping filter has resulted from a spectral fac-
torization of a special entire function evaluated at a rational transfer matrix and is found by solving a sequence of
ALEs. The latter have been obtained by using a system transposition technique for rearranging a mixed product of
linear systems and their duals similarly to the Wick ordering of annihilation and creation operators. A truncation
of the ALE sequence is complemented by an ARE, which allows the QEF rate to be computed with any accuracy.
Despite the rapid convergence due to the presence of factorially fast decaying coefficients, a circle of ideas has also
been discussed towards a recursive solution of the Riccati equation with respect to the order of truncation and also
for a square root polynomial approximation of the entire function. The state-space computation of the QEF rate
can be applied to the large deviations bounds on tail distributions for quantum system variables [48] and for guar-
anteed upper bounds on LQG costs in the case of quantum statistical uncertainties with a von Neumann relative
entropy description [49] in robust performance analysis problems. These state-space methods are also applicable
to risk-sensitive quantum control problems for OQHOs with QEF optimality criteria [56].
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