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Abstract:

Many high dimensional optimization problems can be reformulated into the problems of finding the op-

timal path under an equivalent state space model setting. In this article, we present a general emulation

strategy for developing a state space model whose likelihood function (or posterior distribution) shares

the same general landscape as the original objective function. Then the solution of the optimization

problem is the same as the optimal state path that maximizes the likelihood function. To find such

an optimal path, we adapt a simulated annealing approach by inserting a temperature control into the

emulated dynamic system and propose a novel annealed Sequential Monte Carlo (SMC) method that

effectively generates Monte Carlo sample paths utilizing the samples obtained previously on a higher

temperature scale. Compared to the vanilla simulated annealing implementation, annealed SMC is

an iterative algorithm for state space model optimization that directly generates state paths from the

equilibrium distributions with a decreasing sequence of temperatures through sequential importance

sampling which does not require burn-in or mixing iterations to ensure quasi-equilibrium condition.

Emulation examples and the corresponding simulation results are demonstrated.

Key words and phrases: Emulation, State Space Model, Sequential Monte Carlo, Optimization, Simu-

lated Annealing
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1 INTRODUCTION

1. Introduction

High dimensional global optimization algorithms are being widely investigated since more

and more applications involve high dimensional complex data nowadays. The gradient de-

scent algorithm and its variations (Bertsekas, 1997) require the objective function to be

convex or uni-modal so that the found local optimal is global. Recent research in machine

learning involves many non-convex optimization problems (Anandkumar et al., 2014; Arora

et al., 2012; Netrapalli et al., 2014; Agarwal et al., 2014). However, many non-convex prob-

lems remain NP-hard and the theory is only available for their convex relaxations (Jain et al.,

2017). Deterministic optimization algorithms (for example, Hooke and Jeeves, 1961; Nelder

and Mead, 1965; Land and Doig, 1960) may result in certain types of exhaustive search,

which is computationally expensive in a high dimensional space. Stochastic optimization

algorithms utilize Monte Carlo simulations to explore the parameter space in a stochastic

and often more efficient way (Kiefer et al., 1952; Kirkpatrick et al., 1983; Mei et al., 2018).

In this article, we propose an emulation approach that reformulates a high dimensional

optimization problem into the problem of finding the most likely state path problem in a

state space model. The state space models is a class of models that describes the behav-

ior of a usually high-dimensional random variable in a form of dynamic evolution, with

wide applications in mathematics, physics and many other fields. Many high-dimensional

optimization problems can be transformed to finding the optimal state path under an equiv-

alent state space model, whose likelihood function shares the same general landscape as
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1 INTRODUCTION

the objective function of the original optimization problem. To be more specific, for a

high-dimensional optimization problem with the objective function f(x), we construct an

emulated state space model whose likelihood function is proportional to a Boltzmann-like

distribution exp(−κf(x)), where κ > 0 is the inverted temperature.

There are several existing heuristic approaches using the emulation idea. Cai et al. (2009)

transforms a regression variable selection problem with many predictors into an optimization

problem over the high dimensional binary space {0, 1}p, which can be further converted to

the most likely path problem in a state space model with binary-valued states indicating the

variable selection, even though the predictors have no chronological order in nature. Kolm

and Ritter (2015) reformulates a portfolio optimization problem to a state space model by

mapping the utility function to the log-likelihood function. The utility function is then

optimized through finding the most likely path in the corresponding state space model by

applying the Viterbi algorithm (Viterbi, 1967) over Monte Carlo samples. Similarly, Irie and

West (2016) relates the multi-period portfolio optimization problem to the log-likelihood

of a mixture of linear Gaussian dynamic systems and proposed an algorithm based on the

Kalman filter (Kalman, 1960) and EM algorithm (Dempster et al., 1977) to find the most

likely path. Iglesias et al. (2013) and Zhang et al. (2021) reformulated the inversion problems

to state space models by segmenting the observations into a sequence and optimizing the

hidden path through Kalman filter and ensemble Kalman filter.

These studies map high dimensional optimizations to problems under state space model

settings. However, it remains a challenging problem to find the most likely path analytically
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1 INTRODUCTION

and numerically. For example, the approach in Cai et al. (2009) is difficult to be generalized

to continuous spaces. The Viterbi algorithm used in Kolm and Ritter (2015) requires the

dynamic system to be Markovian and non-singular and it needs a large sample size in general

to achieve high accuracy. The combination of Kalman filter and EM algorithm proposed in

Irie and West (2016) works only when the underlying distribution can be well-represented

by the mixture of Gaussian distributions.

In this paper, we propose a new Sequential Monte Carlo (SMC) based simulated an-

nealing approach, named “annealed SMC”, to find the most likely path in a state space

model. The SMC algorithm is a class of Monte Carlo methods that draws samples from

the state space model systems in a sequential fashion. With the sequential importance

sampling and resampling (SISR) scheme, SMC is extremely powerful in sampling from com-

plex dynamic systems, especially for the state space models (Gordon et al., 1993; Kitagawa,

1996; Kong et al., 1994; Liu and Chen, 1995, 1998; Pitt and Shephard, 1999; Chen et al.,

2000; Doucet et al., 2001). Recall that the likelihood function of the emulated state space

model is designed to be proportional to exp(−κf(x)), where κ is the inverted temperature.

To mimic the (physical) annealing procedure in a non-interactive, non-quantum thermody-

namic system (Kirkpatrick et al., 1983), we choose a sequence of decreasing temperatures

κ0 < κ1 < · · · < κK , which corresponds to a sequence of emulated state space models.

We start from drawing sample paths from the base emulated state space model at a

high base temperature κ0. Samples from a low temperature (large κ) system are close to

the optimal sample path since the distribution is sharp at a low temperature, but drawing
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1 INTRODUCTION

from such a distribution directly is usually difficult. With annealed SMC, samples of a low

temperature system can be obtained by utilizing samples obtained at a higher temperature.

Eventually, all the SMC sample paths converge to the most likely one. The sequence of

temperatures κ0 < κ1 < · · · < κK provides a slow-changing path from the base emulated

state space model at κ0, which is easy to sample from but not very useful for optimization,

to the target emulated state space model at κK , which is difficult to sample but provides

solutions to the optimization problem.

The contribution of this paper involves two main components: reformulating the problem

into an emulated space space model and an annealed SMC algorithm to find the solution. In

the main content, two neat examples are provided where the emulated state space models are

natural, simple and illustrative. Two more examples are provided in the supplementary ma-

terial to demonstrate the flexibility of the proposed method in solving existing optimization

problems with some new applications.

The rest of the paper is organized as follows. Section 2 first briefly reviews state space

models then introduces the principles of state space emulation. Two illustrative emulation

examples are provided in Section 2.3. Section 3 introduces the framework of annealed SMC

designed to find the most likely path. Simulation results corresponding to the two examples

in Section 2.3 are shown in Section 4. Section 5 concludes. Two additional examples are

included in the supplementary material.
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2 STATE SPACE MODEL AND STATE SPACE EMULATION

2. State Space Model and State Space Emulation

2.1 State Space Model

State space model is a class of models for describing the mechanism of sequential observations

yT = (y1, . . . , yT ) with a sequence of latent variables xT = (x1, . . . , xT ). The latent variables

xT are assumed to follow a discrete-time stochastic process governed by the state equations

p(xt | xt−1) = pt(xt | xt−1), (2.1)

for t = 2, . . . , T , and x1 follows its marginal distribution p1(x1). When the distribution of

xt conditioned on xt−1 does not depend on xt−2 such that p(xt | xt−1) = p(xt | xt−1), the

system is Markovian. The observations yT are generated independently condition on the

latent variables through the observational equations

p(yt | xt) = gt(yt | xt), (2.2)

for t = 1, . . . , T . In inference problems, the formulas of the state equations pt(·) and the

observation equations gt(·) are usually known except for a set of unknown parameter of

interest θ. In this paper, we assume pt(·) and gt(·) are completely known, and we are

interested in inferring the latent states xT . Estimating xT from the observations yT under

the likelihood principle is known as the most likely path (MLP) problem in hidden Markov

models.

The state equations provide the prior information on xT

π(xT ) ∝ p1(x1)
T∏
t=2

pt(xt | xt−1), (2.3)
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2 STATE SPACE MODEL AND STATE SPACE EMULATION

and the observation equations serve as the likelihood functions

p(yT | xT ) =
T∏
t=1

gt(yt | xt). (2.4)

A maximum-a-posterior (MAP) estimator can be obtained by maximizing the posterior

function in (2.5).

π(xT |yT ) ∝ p1(x1)g1(y1 | x1)
T∏
t=2

pt(xt | xt−1)gt(yt | xt). (2.5)

When both pt(·) and gt(·) are Gaussian, the maximum of (2.5) can be obtained easily

using Kalman filter and smoother (Kalman, 1960). In general cases when the analytic

solution to optimize (2.5) is infeasible, the MAP estimator can be obtained by drawing

sample paths {(x(i)
1 , . . . , x

(i)
T )}i=1,...,n from the posterior distribution (2.5). We will discuss

details in estimating most likely path using Monte Carlo methods in Section 3.

2.2 State Space Emulation

We propose a state space emulation approach for solving high dimensional optimization

problems. The approach constructs a state space model so that the original optimization

problem is equivalent to finding the most likely state path under the state space model.

Let f : X d → R be the objective function to be minimized and ξ : R → [0,+∞)

be a monotone decreasing function. Then minimizing f(x) is equivalent to maximizing

ϕ(x) := ξ(f(x)) such that

argmin
x∈X d

f(x) = argmax
x∈X d

ϕ(x).
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2 STATE SPACE MODEL AND STATE SPACE EMULATION

Furthermore, if there exists a state space model whose posterior function (2.5) is proportional

to ϕ(x) such that π(xT | yT ) ∝ ϕ(xT ) = ξ(f(xT )), with artificially designed state equations

{pt(·)}t=1,...,T , observation equations {gt(·)}t=1,...,T and T = d, we call the state space model

an “emulated” state space model. The observations yT can be either certain observations

involving in the original optimization problem (e.g. the observed points in the smoothing

spline problem in Section 2.3.1) or artificially designed. Note that it is always possible to

rewrite any joint distribution function ϕ(xT ) in the form of (2.3) as ϕ(xT ) = ϕ(x1, . . . , xT ) =

ϕ1(x1)
∏T

t=2 ϕt(xt | xt−1), where ϕt(xt | xt−1) =
∫
XT−t ϕ(xT )dxt+1 . . . dT/

∫
XT−t+1 ϕ(xT )dxt . . . dT

and ϕ1(x1) =
∫
X t−1 ϕ(xT )dx2 . . . dxT . Often such a series of conditional distribution is diffi-

cult to sample from or to be evaluated.

However, in certain problems as our examples shown later, it is possible to reformulate

the conditional distribution to ϕt(xt | xt−1) = pt(xt | xt−1)gt(yt | xt), in which pt(xt | xt−1)

is easy to generate sample from and gt(yt | xt) is easy to be evaluated, for some designed

yt. In general, objective functions with local dependence between parameters can be easily

emulated by Markovian state space models as in the examples of smoothing splines, trend

filtering and the optimal trading path. Objective functions with more complex interactions

between parameters usually lead to non-Markovian emulated state space models, which need

more carefully designs. The lasso regression in the supplementary material is one such case.

Minimizing the objective function is then equivalent to finding the most likely path for

the emulated state space model. The emulated state and observation equations provide

guidance for further SMC implementation, even though they are artificial.
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2 STATE SPACE MODEL AND STATE SPACE EMULATION

A common choice for ξ(·) is the Boltzmann distribution function

ξ(s) = e−κs, (2.6)

where κ is a positive constant that relates to the temperature in statistical physics. In

statistics, the Boltzmann function in (2.6) links the least square method to the maximum

likelihood approach with i.i.d. Gaussian noise. With this choice of ξ(·), the system has a

physical interpretation: The objective function f(·) is regarded as the possible energy levels

in a non-quantum thermodynamic system. Assuming no interactions, the number of particles

at the energy f(x) follows the Boltzmann distribution under thermodynamic equilibrium.

The integrability of ϕ(x) ensures the existence of the canonical partition function such that

this physical canonical system is valid. The minimization of f(·) is now equivalent to finding

the base energy level, which inspires the use of simulated annealing of this thermodynamic

system. More details will be discussed in Section 3.

2.3 Examples

2.3.1 Cubic Smoothing Spline

Consider a nonparametric regression model yt = m(xt)+ ϵt with equally spaced xt. Without

loss of generality, let xt = t and treat them as time. The cubic smoothing spline method

(Green and Silverman, 1993) estimates a continuous function m(t) by minimizing

L(yT ) =
T∑
t=1

(yt −m(t))2 + λ

∫
[m′′(t)]

2
dt. (2.7)
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2 STATE SPACE MODEL AND STATE SPACE EMULATION

The first term in (2.7) is the total squared tracking errors at the observation times and

the second term is the penalty term on the smoothness of the latent function m(·), where λ

controls the regularization strength. Given the values of m(1), . . . ,m(T ), the minimizer of

the second term is a natural cubic spline that interpolates m(1), . . . ,m(T ) (see Green and

Silverman (1993)). Hence, the solution to minimize (2.7) is a natural cubic spline, which is

second-order continuously differentiable and is a cubic polynomial in all intervals [t, t + 1]

for t = 1, . . . , T − 1 and is linear outside [1, T ].

Define the derivatives of m(t) at each observation at time t as

at = m(t), bt = m′(t), ct = m′′(t)/2, dt = lim
s→t−

m′′′(s)/6.

The natural cubic spline solution to (2.7) is equivalent to an emulated state space model on

xt = (at, bt, ct) with a vector auto-regressive state equation
at

bt

ct

 =


1 1

√
3/3

0 1
√
3− 1

0 0 −(2−
√
3)




at−1

bt−1

ct−1

+


1/3

1

1

 ηt, (2.8)

with ηt ∼ N (0, σ2
b ), σ2

b = 3(2 −
√
3)/(4λκ). The corresponding observation equation is

yt = at+ ϵt, with εt ∼ N (0, σ2
y), σ2

y = 1/(2κ), and the initial values a1 ∼ N (y1, σ
2
y), b1 ∼ 1,

and c1 = 0. The derivation is postponed to the supplementary material.

2.3.2 Optimal Trading Path

In asset portfolio management, the optimal trading path problem is a class of optimization

problems which typically maximizes certain utility functions of the trading path (Markowitz,
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2 STATE SPACE MODEL AND STATE SPACE EMULATION

1959). Kolm and Ritter (2015) and Irie and West (2016) proposed to turn such an optimiza-

tion problem to an emulated state space model. To be more specific, let xT = (x0, . . . , xT )

be a trading path in which xt represents the position held at time t. Kolm and Ritter (2015)

propose to maximize the following utility function.

u(xT ) = −
T∑
t=1

ct(xt − xt−1)−
T∑
t=0

ht(yt − xt), (2.9)

where (y0, . . . , yT ) is a predetermined optimal trading path in an ideal world without trad-

ing costs, typically obtained by maximizing the risk-adjusted expected return under the

Markowitz mean-variance theory (Markowitz, 1959). Kolm and Ritter (2015) provides a

construction of (y0, . . . , yT ) based on the term structure of the underlying asset’s alpha (the

excess expected return relative to the market). Let ct(·) represent the transaction cost which

is often assumed to be a quadratic function of the absolute position change |xt − xt−1|.

Without loss of generality, we parametrize it as

ct(|xt − xt−1|) =
1

2σ2
x

(
|xt − xt−1|2 + 2α|xt − xt−1|+ α2

)
,

where α is a non-negative constant related to the volatility and liquidity of the asset (Kyle

and Obizhaeva, 2011). Let ht(·) be the utility loss due to the departure of the realized path

from the ideal path. We use the squared loss ht(yt−xt) = (yt−xt)
2/(2σ2

y). Then the objective

function is

e−κu(xT ) ∝
T∏
t=1

exp

(
−κ(|xt − xt−1|+ α)2

2σ2
x

) T∏
t=1

exp

(
−κ(yt − xt)

2

2σ2
y

)
.
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3 ANNEALED SEQUENTIAL MONTE CARLO

Taking the position constraint x0 = xT into consideration as discussed in Cai et al. (2018),

an emulated state space model can therefore be constructed as

pt(xt | xt−1) ∝ exp

(
−κ(|xt − xt−1|+ α)2

2σ2
x

)
, (2.10)

gt(yt | xt) ∝ exp

(
−κ(yt − xt)

2

2σ2
y

)
. (2.11)

With the state equation (2.10) and the observation equation (2.11), the state space model

has a likelihood function proportional to exp(−κu(xT )).

3. Annealed Sequential Monte Carlo

3.1 Sequential Monte Carlo (SMC)

The sequential Monte Carlo (SMC) method is a class of sampling methods designed for state

space models. It utilizes the sequential nature of state space models and draws samples in-

crementally with sequential importance sampling and resampling (SISR) schemes. A typical

SMC approach is demonstrated in Figure 1.

The function qt(·) in the propagation step in Figure 1 is the proposal distribution. As

discussed in Lin et al. (2013), the “perfect” choice for the proposal is the conditional distri-

bution with full information set such that qt(xt | xt−1) = p(xt | xt−1,yT ). However, in most

cases, this conditional probability is impossible to evaluate or to sample from at time t. The

priority score βt is the weight used in the resampling step, which quantifies the sampler’s

preference over different sample paths. The most common choice of βt is β
(i)
t ∝ w

(i)
t . Different

variations of the SMC algorithm choose different proposal distributions and different priority
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3 ANNEALED SEQUENTIAL MONTE CARLO

Figure 1: Sequential Monte Carlo (SMC) Algorithm

• Draw x
(i)
1 from p1(x1) and set weight w

(i)
0 = 1 for i = 1, . . . , n.

• For time t = 2, · · · , T :

– Propagation: For i = 1, · · · , n,

∗ Draw x
(i)
t from qt(xt | x(i)

t−1) and set x
(i)
t = (x

(i)
t−1, x

(i)
t ).

∗ Update weights by setting

w
(i)
t ← w

(i)
t−1 ·

pt(x
(i)
t | x

(i)
t−1)gt(yt | x

(i)
t )

qt(x
(i)
t | x

(i)
t−1)

.

– Resampling (optional):

∗ Assign a priority score β
(i)
t to each sample x

(i)
0:t.

∗ Draw samples {J1, . . . , Jn} from the set {1, . . . , n} with replacement, with

probabilities proportional to {β(i)
t }i=1,...,n.

∗ Let x
∗(i)
t = x

(Ji)
t and w

∗(i)
t = w

(Ji)
t /β

(Ji)
t .

∗ Set {(x(i)
t , w

(i)
t )}i=1,...,n ← {(x∗(i)

t , w
∗(i)
t )}i=1,...,n.

• Return the weighted sample set {(x(i)
T , w

(i)
T )}i=1,...,n.
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3 ANNEALED SEQUENTIAL MONTE CARLO

scores. The Bayesian particle filter (Gordon et al., 1993) sets qt(xt | xt−1) = pt(xt | xt−1).

It works well when the observations yT are relatively noisy compared with the state equa-

tion part. With accurate observations, the independent particle filter (Lin et al., 2005) uses

qt(xt | xt−1) ∝ gt(yt | xt). As an important (with certain additional cost) compromise over

the Bayesian particle filter and the independent particle filter, Kong et al. (1994) and Liu

and Chen (1998) suggests to adopt qt(xt | xt−1) ∝ pt(xt | xt−1)gt(yt | xt) to reduce variance.

Other sequential Monte Carlo methods focus on finding more appropriate priority scores in

resampling with the help of future information. The auxiliary particle filter (Pitt and Shep-

hard, 1999) conducts resampling with the priority score β
(i)
t = w

(i)
t p(yt+1 | xt). The delayed

sampling method (Chen et al., 2000; Lin et al., 2013) looks ahead ∆ steps further and uses

β
(i)
t = w

(i)
t p(yt+1, . . . , yt+∆ | xt).

In emulations for the optimizations, we are more interested in generating samples in

the high probability density region of π(xT ), hence our problem is essentially a smoothing

problem. Briers et al. (2010) proposed to use a generalization of two-filter smoothing formula

to sample approximately from the joint distribution π(xT ). Additional local MCMC moves

can be adopted to fight degeneracy (Gilks and Berzuini, 2001). Many other SMC smoothing

algorithm implementations are proposed to reduce the potential degeneracy in samples. See,

for example, Godsill et al. (2004); Del Moral et al. (2010); Briers et al. (2010); Guarniero

et al. (2017).

14
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3 ANNEALED SEQUENTIAL MONTE CARLO

3.2 Finding the Most Likely Path

With emulation, finding the optimum of f(x) is now equivalent to finding the mode, or the

most likely state path (MLP), of π(xT ),

x∗
T = argmax

xT∈XT

π(xT | yT ), (3.12)

with π(xT | yT ) defined in (2.5) and X being the common support for all latent variables.

By construction, the mode, which is the optimum of f(x), does not depend on κ used in

(2.6).

In this article, we focus on finding the MLP from Monte Carlo samples. A set of weighted

Monte Carlo samples from the distribution π(xT ) can be generated by Sequential Monte

Carlo (SMC) and its various implementation schemes. Let {(x(i)
T , w

(i)
T )}i=1,...,n be the samples

drawn from the emulated state space model using the SMC algorithm in Figure 1. A natural

and easy way is to use the empirical MAP path such that

x̂
(map)
T = argmax

xT∈{x(i)
T }i=1,...,n

π(xT | yT ). (3.13)

Although the empirical MAP involves the least computation given the Monte Carlo samples,

it usually requires a very large sample size to achieve high accuracy, especially when the

dimension T is large.

Note that the MLP is the same under different κ’s. However the distribution π(xT |

yT , κ) is more flat for small κ (high temperature) and is more concentrated around the MLP

for large κ. Hence the empirical MAP path tends to be more accurate if the Monte Carlo
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3 ANNEALED SEQUENTIAL MONTE CARLO

samples are generated from the target distribution with large κ. When κ is sufficiently large,

the average sample path is also a good estimate of the MAP. However, it is much more

difficult to generate Monte Carlo samples with large κ due to the tendency of being trapped

in local optimum. Simulated annealing gradually modifies the easily generated samples at

a higher temperature to obtain the samples from a lower temperature system with more

accurate estimates.

3.3 Annealed SMC

We propose a simulated annealing algorithm for sequential Monte Carlo on state space

models. The idea comes from the thermodynamics analogue discussed in the previous section.

When the function ξ(·) is chosen to be Boltzmann-like as in (2.6), the Monte Carlo samples

from the emulated state space model correspond to a random sample set from the non-

interacting particles in a thermodynamic equilibrium system as discussed in Section 2.2.

If the temperature cools down to 0 slowly enough such that the system is approximately

in thermodynamic equilibrium for any temperature in between, all particles will condense to

the base energy level. The idea of simulated annealing to analogize the physical system was

proposed and discussed in Kirkpatrick et al. (1983).

To mimic the thermodynamic procedure, we propose the following system to simulate

the annealing procedure for the SMC samples. Let 0 < κ0 < κ1 < · · · < κK be an increasing

sequence of inverse temperatures. Suppose at κ0, a base emulated state space model is
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3 ANNEALED SEQUENTIAL MONTE CARLO

constructed as

π(xT ;κ0) ∝ e−κ0f(xT ) ∝ p0(x0)
T∏
t=1

pt(xt | xt−1)gt(yt | xt). (3.14)

At a higher inverse temperature κk, an emulated state space model can be induced from

(3.14) such that

π(xT ;κk) ∝ e−κkf(xT ) ∝ p0(x0;κk)
T∏
t=1

pt(xt | xt−1;κk)gt(yt | xt;κk), (3.15)

where pt(xt | xt−1;κk) ∝ [pt(xt | xt−1)]
κk/κ0 and gt(yt | xt;κk) ∝ [gt(yt | xt)]

κk/κ0 are the

corresponding state equations and observation equations at κk. The starting inverse tem-

perature κ0 is usually chosen to be relatively small such that the function π(xT ;κ0) ∝

e−κ0f(xT ) is relatively flat and is easy to sample from by SMC. We start with κ0, draw

{(x(j)
0,T , w

(j)
0,T )}j=1,...,m from the base emulated state space model π(xT ;κ0). For k = 1, . . . , K,

new samples {(x(j)
k,T , w

(j)
k,T )}j=1,...,m are drawn with respect to the distribution π(xT ;κk) uti-

lizing samples {(x(j)
k−1,T , w

(j)
k−1,T )}j=1,...,m obtained at κk−1. The procedure is depicted in

Figure 2. The annealed sequential Monte Carlo uses the following proposal distribution at

temperature κk:

qk,t(xt | xt−1;κk) ∝ p̂k,t(xt | xt−1;κk−1), (3.16)

where the conditional distribution p̂k,t(xt | xt−1;κk−1) is an estimate of πT (xt | xt−1;κk−1)

and can be obtained from the Monte Carlo samples {(x(j)
k−1,T , w

(j)
k−1,T )}j=1,...,m under κk−1. We

will discuss how to obtain such an estimate later. Since κ increases slowly, πT (xt | xt−1;κk−1)

and πT (xt | xt−1;κk) are reasonably close. With a sufficiently large terminating κK , samples
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3 ANNEALED SEQUENTIAL MONTE CARLO

Figure 2: Annealed Sequential Monte Carlo Algorithm

• Draw {(x(j)
0,T , w

(j)
0,T )}j=1,...,m from π(xT ;κ0) with SMC in Figure 1, using a set of pro-

posal distributions q1,t(xt | xt−1;κ0).

• For k = 1, . . . , K, draw {(x(j)
k,T , w

(j)
k,T )}j=1,...,m from π(xT ;κk) with SMC in Figure 1

using the proposal distribution

qk,t(xt | xt−1;κk) ∝ p̂k,t(xt | x(j)
k,t−1),

where the right hand side is an estimate of πT (xt | xt−1;κk−1).

• Estimate the most likely path from {(x(j)
K,T , w

(j)
K,T )}j=1,...,m.

from the target distribution π(xT ;κK) are highly concentrated around the true optimal path

x∗
T and hence are useful in inferring the most likely path.

In summary, annealed SMC provides an iterative procedure to the difficult sampling

problem under κK by utilizing the samples obtained at a higher temperature. On the one

hand, annealed SMC provides a relatively “flat” and easy-sampling starting distribution

π(xT ;κ0) and designs a slow-changing path connecting π(xT ;κ0) to the desired “sharp” dis-

tribution π(xT ;κK). On the other hand, for each iteration k = 1, . . . , K, annealed SMC

adopts an optimal proposal distribution p(xt | xt−1,yT ;κk−1), which incorporates the full

information set yT and is usually difficult to evaluate in conventional SMC implementations.

In annealed SMC, the proposal distribution is estimated by sample paths from the previ-
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3 ANNEALED SEQUENTIAL MONTE CARLO

ous iteration. The details in estimating the proposal distribution will be discussed in the

supplementary material.

Our annealing framework falls into the general framework of simulated annealing. The

design of temperature sequences {κk}k=0,...,K is known as the “cooling schedule”. Kirkpatrick

et al. (1983) uses an exponential schedule such that κk = αkκ0 for some positive number α.

A more conservative schedule such that κk ∝ log(1+k) is suggest by Hajek (1988) and Aarts

and Korst (1989) to ensure convergence to global minimum. Ingber (1989) proposed a fast

adaptive cooling schedule that allows the temperature to increase (or κ to decrease) in order

to re-gain broadness of samples at certain point. The specific choice of cooling schedule

is beyond the scope of this manuscript. By default, we will choose the most aggressive

exponential schedule with a picked value of α for faster convergence in the example section

and the results are promising.

The conventional simulated annealing algorithm (Kirkpatrick et al., 1983) is a varia-

tion of Markov Chain Monte Carlo (MCMC), which adapts Metropolis-Hastings algorithm

(Metropolis et al., 1953; Hastings, 1970) with an extra temperature control. The conver-

gence of the conventional simulated annealing algorithm is given by Granville et al. (1994).

However, different from the conventional simulated annealing, annealed SMC does not re-

quire for a mixing condition as usually shown in MCMC algorithms. At each iteration at κk,

the samples are always properly weighted with respect to the target distribution π(xT ;κk)

because of the weight adjustments. The convergence of SMC is discussed in Crisan and

Doucet (2000).
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3 ANNEALED SEQUENTIAL MONTE CARLO

The terminology “annealed SMC” was also used in the literature of Ulker et al. (2011) and

Wang et al. (2019), which are different from our method. The method of Ulker et al. (2011)

and Wang et al. (2019) (we hereby refer it as “SMC annealing”) constructs an annealing

sequence of intermediate target distributions πt(x) indexed by t = 0, . . . , T with π0(x)

as the beginning distribution and πT (x) as the terminating distribution, with the goal of

generating a set of samples following the terminating distribution, by starting from samples

following a relatively flat beginning distribution. SMC techniques are used when translating

samples from the current distribution πt(x) to the next πt+1(x) by adopting a MCMC

move as the proposal distribution. Our method also constructs a sequential of annealed

target distributions πk(xT | κk), with the goal of optimization via Monte Carlo of a (near)

degenerated terminating distribution. In our method, within each temperature (κk), SMC

is utilized to sample the high dimensional xT under a dynamic system set-up. The sequence

of SMC proposal distributions within each temperature use the information contained in the

Monte Carlo samples from the previous temperature.

More specifically, there are three major differences between ours and the SMC annealing

method. First, the goal of SMC annealing is to draw samples from a target distribution

(usually the posterior) that is difficult to directly sample from. The goal of our algorithm is

to find the optimum such that the terminating distribution is proportional to the original one

raised to an arbitrarily high power. Second, our method solves the problem when x itself is

high-dimensional with a dynamic structure for which SMC is used to sequentially sample the

components of x, while SMC annealing deals with relatively lower dimensional x without
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3 ANNEALED SEQUENTIAL MONTE CARLO

the need of SMC sampling. Third, SMC annealing uses SMC on the sequence of annealing

distributions, while our method performs SMC within each annealing temperature and uses

samples from the last iteration for constructing the internal SMC propagation proposal step

in the subsequent temperature.

3.4 Path refinement with Viterbi algorithm

A more accurate estimate of the mode can be obtained by using Viterbi algorithm (Viterbi,

1967) on the discrete space consisting of the SMC samples. Viterbi algorithm is a dynamic

programming algorithm originally used to solve the MLP problem in hidden Markov models,

where the hidden states are finite. Let At = {a(j)t }j=1,...,m be the grid points for xt and

Ω = A1 × · · · × AT be the Cartesian product of the grid point sets. In state space models,

the Viterbi algorithm searches for the maximum over all possible combinations of the grid

points in Ω. Specifically, the MLP obtained by the Viterbi algorithm is

x̂T
(viterbi) = argmax

xT∈Ω
π(xT | yT ). (3.17)

The Viterbi algorithm for state space models based on the grid points {a(j)1 }j=1,...,m, . . . ,

{a(j)T }j=1,...,m is depicted in Figure 3.

Although, the original Viterbi algorithm is designed for discrete state spaces, we adopt it

to continuous state spaces by discretizing the state space to a set of selected finite grid points

at each time point. The performance depends on the “quality” of the selected grid points

(for example, how densely close to the underlying optimal path) and the number of grid

points used. Here we use the generated Monte Carlo samples as the discretizing grid points.
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Figure 3: Viterbi Algorithm for Markovian State Space Models

• Let At = {a(j)t }j=1,...,m be a set of grid points for xt for t = 1, . . . , T .

• At time 1, initialize ℓ
(j)
0 = 0 and x̂

(j)
1 = a

(j)
1 for j = 1, . . . ,m.

• At each time t = 2, . . . , T , for j = 1, . . . ,m, set

ℓ
(j)
t = max

k∈{1,...,m}
ℓ
(k)
t−1pt(a

(j)
t | x̂

(k)
t−1)gt(yt | a

(j)
t ), (3.18)

and set x̂
(i)
t = (x̂

(k∗j )

t−1 , a
(j)
t ), where j∗j is the optimal point of (3.18).

• Return x̂
(j∗)
T , where j∗ = argmaxj∈{1,...,m} ℓ

(j)
T .

As these samples follow the target distribution at low temperature, they should concentrate

in the important regions.

For example, one can setAt = {x(i)
t }i=1,...,m such that Ω = {x(i)

1 }i=1,...,m×· · ·×{x(i)
T }i=1,...,m

is the joint set of all SMC sample points. Running Viterbi algorithm through these samples

can only improve the result from the Monte Carlo samples, but will not obtain the underly-

ing optimal path in the continuous space. Therefore, we call this step “refinement” instead

of “optimization”.

One can also add and remove grids points to expand coverage with more details around

the more important state paths. For instance, in the lasso regression example in the supple-

ment material, a Viterbi refinement helps to shrink the estimate of the zero-coefficients to
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exactly 0.

The Viterbi algorithm explores all combination of sample points and results in a better

mode estimation compared with the empirical MAP in (3.13). However, it has its limitations

for implementation with state space models. One limitation is that the Viterbi algorithm

only works on Markovian state space models. In addition, it only works with a non-singular

state evolution in which the degree of freedom is the same as the state variable dimension.

Otherwise, state paths cannot be re-assembled as Viterbi algorithm tries to achieve. For

example, in the cubic spline problem, the state evolution is singular. Although one can

reduce the dimension of the state variable to make the evolution non-singular, the state

evolution then becomes non-Markovian. Another limitation is the requirement for Monte

Carlo sample size. The Monte Carlo samples induced Ω provide a discretization of the

support X for each time t. The accuracy of the Viterbi algorithm strongly dependents on

the discretization quality, especially when X is continuous. In general, the denser the Monte

Carlo samples are around the true MLP, the more accurate the Viterbi algorithm solution is.

As a result, it often requires a large Monte Carlo sample size to generate better discretization

and to achieve high accuracy. To reduce the path error ∥x̂(viterbi)
1:T − x∗

1:T∥ by half, the Monte

Carlo sample size m needs to be doubled, because the discretization size is reduced by half

on average with doubled sample size. On the other hand, the computational cost increases

quadratically with the sample size m. One possible way to improve is to apply Viterbi

algorithm iteratively by shrinking to the high value region of last iteration and regenerating

grid points there. Similar to iterative grid search, the iterative Viterbi algorithm may get a
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sub-optimal solution.

4. Simulation Results

In this section, we provide the simulated results of annealed SMC in finding the most likely

path for the two emulated state space modes from Section 2.3.

Note that, the smoothing spline problem has a close-form solution. Even in the emulated

state space model setting, Kalman filter can give the exact solution. It is used for illustration

purpose only. On the other hand, the optimal trading path problem is not trivial and is a real

application that the proposed method is ideally suitable, especially when non-linear solvers

usually give less accurate solutions.

Two more examples are demonstrated in the supplementary material. We aim to demon-

strate the flexibility of the proposed method in solving existing optimization problems with

some new applications, though our approach may not yield better performance than specially

designed optimization algorithms for general problems.

4.1 Cubic Smoothing Spline

In this simulation study, we consider the cubic smoothing spline problem in Section 2.3.1.

The observations are generated by yt = sin(9(t − 1)/100) + ζt, for t = 1, . . . , 50, with

ζt ∼ N (0, 1/16) and we fix λ = 10 in the objective function (2.7).

Since the dynamic system is linear and Gaussian, the most likely path is obtained by

Kalman Smoother (Kalman, 1960). We use it as the benchmark. We start from the initial
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inverse temperature κ = κ0 = 4. Figure 4 demonstrates m = 1000 samples (in grey) drawn

from the target distribution π(xT | yT ;κ0) ∝ [π(xT | yT )]
κ0 by the SMC algorithm described

in Figure 1 along with the observations yT (the solid line) and the true most likely path (the

dashed line).

Figure 4: Sample paths at κ0 = 4.

The proposal distribution qt(·) used at κ0 is chosen to be proportional to pt(xt | xt−1)gt(yt |

xt). At each time t, ηt is drawn from the proposal distribution qt(ηt | at−1, bt−1, ct−1, yt), which

is Gaussian. Resampling is conducted when the effective sample size (ESS) defined in (4.19)

is less than 0.3m.

ESS =
(
∑m

i=1 w
(i)
t )2∑m

i=1(w
(i)
t )2

. (4.19)

To find the most likely path stochastically and numerically, we apply the annealed SMC

approach in Figure 2 with a predetermined sequence of inverted temperatures κk = 1.5kκ0 for

k = 1, . . . , 16. The proposal distribution for the anneal SMC is estimated by the parametric
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approach (see the supplementary material). Specifically, since the innovation in the state

equation is of one dimension, at κk, we only need to generate proposal samples for ct. It is

drawn by first fitting {(c(j)k−1,t, a
(j)
k−1,t−1, b

(j)
k−1,t−1, c

(j)
k−1,t−1)}j=1,...,m with a multivariate Gaussian

distribution and then sampling from the conditional distribution. To prevent degeneracy,

resampling step is only conducted at the end of each annealed SMC iteration and after each

iteration, one step of post-MCMC move is conducted to regenerate sample states. The post-

MCMC move uses blocked Gibbs sampling (Jensen et al., 1995), due to the special structure

of the state dynamic. At each iteration of the Gibbs sampling, (xt, xt+1, xt+2) are updated

together.

Figure 5 shows the sample paths (after the post-MCMC step) at the end of different

annealed SMC iterations. When the temperature shrinks to zero as κ increases, the sample

paths move to a small neighborhood region around the true most likely path. Figure 6 shows

the value of the objective function at the weighted average path of the samples as for different

numbers of iterations. The true optimal value (the objective function value at the optimal

path) obtained by the Kalman smoother is plotted as the dashed horizontal line. As the

number of iteration increases, the objective function value at the averaged path decreases

stochastically and convergences at roughly the 7th iteration.

To compare the computational efficiency, we record the computing time needed for dif-

ferent approaches as follows. Kalman smoother takes 2.2ms, Scipy minimizer takes 129.6ms

and annealed SMC takes 232.9ms. The Scipy approach uses the nonlinear optimizer provided

by the python package Scipy (Jones et al., 2001), which implements the Broyden-Fletcher-
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Figure 5: Sample paths at different κ’s

Figure 6: Value of the objective function against the number of iterations
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Goldfarb-Shanno (BFGS) algorithm by default. The annealed SMC records the time until

convergence (the time when the value of objective function is not improved by further itera-

tion). Kalman Smoother is the fastest one due to its deterministic nature in finding the most

likely path for linear Gaussian models. Annealed SMC is slower than the nonlinear solver

program provided by Scipy, but achieves similar accuracy. We also note that this is a simple

convex optimization problem in which a straightforward optimization algorithm such as the

Scipy performs well. Our estimation approach is more flexible and this example serves as an

illustration of how the algorithm works.

4.2 Optimal Trading Path

In this simulation, we consider the optimal trading path problem in Section 2.3.2. Following

Cai et al. (2018), we set T = 20, σ2
x = 0.25, σ2

y = 1 and α = 0.5. The ideal trading path is

given by

yt = 25 exp{−(t+ 1)/8} − 40 exp{−(t+ 1)/4}.

We start from the initial temperature κ = κ0 = 1.0. The sample paths at κ0 are drawn

with the constrained SMC (Cai et al., 2018), where the resampling step is conducted with

priority scores βt(xt) ∝ p̂(yt+1, . . . , yT | xt). The priority scores are estimated from a set

of backward pilot samples (Cai et al., 2018). In this example, we use m∗ = 300 backward

pilot samples. The resulting m = 1000 (forward) sample paths are shown in Figure 7.

The observations y1, . . . , yT , which represent the ideal optimal trading strategy without the

trading cost, are plotted as the solid line. An estimated path (dashed line) is provided by
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the Scipy nonlinear optimization algorithm.

Figure 7: Sample paths at κ0

We use the following sequence of inverted temperatures for annealing: κk = 2kκ0 for

k = 1, . . . , 20. The proposal distribution in the annealed SMC is sampled with the parametric

approach by approximating the joint distribution of xk−1,t and xk−1,t−1 with a bivariate

normal distribution. The annealed m = 1000 sample paths are resampled at the end of

each iteration, and no post-MCMC step is conducted. Samples at several different inverted

temperatures are shown in Figure 8. We use the sample average as our estimator for the

most likely path. The value of the objective function at the sample average path decreases

stochastically as shown in Figure 9. It eventually converges at around the 11th iteration.

The optimal objective function value achieved by the annealed SMC is 89.459, while the one

obtained by the Scipy nonlinear optimizer is 89.462. The values of the objective function at
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the sample paths at the 20th iteration has an average of 89.459 and a standard deviation of

1.09 × 10−5. The annealed SMC gains some improvement in accuracy at the cost of extra

computation. The Scipy nonlinear optimizer takes 78ms while the annealed SMC costs 1.820

seconds for the initial emulated model (including the time of backward sampling) and costs

around 2ms for each subsequent iteration. Sampling from the base emulated model costs

much more than subsequent iteration for two reasons. First, it requires a large sample size

for the base model because of high degeneracy. Second, the end point constraint is imposed

and an additional backward pilot run is needed to reduce degeneracy.

Figure 8: Sample paths at different κ’s
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Figure 9: Value of the objective function against the number of iterations

5. Summary and Discussion

In this article, we propose a general framework of state space model emulation for high

dimensional optimization problems. The main idea of emulation is to change the goal from

optimization to sampling. We demonstrated that, by constructing a proper state space

model, many high dimensional optimization problems can be turned into the problem of

finding the optimal (most likely) path under the state space model. In order to reduce the

accuracy lose due to the sampling nature, we proposed the annealing steps with an extremely

sharp terminating distribution, where the samples, though random, are highly concentrated

around the optimum (the most likely path) We demonstrate the procedure of state space

model emulation with two conventional problems in the main content and additional two in

the supplementary material and show how they can be solved using the proposed annealed

SMC approach.
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The proposed annealed SMC approach shares some similar properties with traditional

simulated annealing methods. Both can optimize a wide range of objective functions in-

cluding non-convex functions and multi-modal functions, and both often require heavier

computation cost than the simpler standard optimization algorithms such as the gradient

descent algorithms. However, the annealed SMC approach for state space models is different

to the traditional simulated annealing methods in association with MCMC for stochastic

optimization in the following ways. First, emulating an optimization problem into a state

space model has its advantage in many problems, especially when the problem is of high di-

mensional and when the system is inherently dynamic (such as the trading path problem or

the ℓ1 trend filtering problem) or when the parameters to be estimated inherently play simi-

lar roles in the problem (such as the parameters in the regression problem). Second, SMC as

an alternative to MCMC has certain advantages in many fixed dimensional problems such

as in the problems when the “dependence” between the parameters in the emulated target

distribution is local and (locally) very strong. In these problems, MCMC encounters slow

mixing difficulties while SMC naturally takes advantage of such properties. Third, given any

temperature, SMC samples target the equilibrium distribution, while MCMC samples often

move towards the target distribution gradually. Hence annealed SMC may tolerate faster

cooling schedule. Fourth, the inherited parallel structure of SMC allows faster computation.

It also adapts to multi-modal problems better.

The state space model emulation and the annealed SMC provide an alternative way to

solve high-dimensional optimization problems. Of course, the approach may not be suitable
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for all problems, due to its high computational cost and its requirement of certain structures.

Nevertheless the approach adds to the high dimensional optimization toolbox a useful method

for a wide range of complex problems for which the more traditional method may have

difficulties to solve. Although the examples shown in this paper do not demonstrate great

improvement of the state space emulation approach over the traditional one, they have

effectively shown how the approach can be implemented and can be used for other problems.

Supplementary Materials

Discussion on technical details in the annealed SMC algorithm and two additional emulation

examples with simulation results are provided in the supplementary material.
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