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State Space Modeling of Dimensional Variation
Propagation in Multistage Machining Process

Using Differential Motion Vectors
Shiyu Zhou, Qiang Huang, and Jianjun Shi

Abstract—In this paper, a state space model is developed to de-
scribe the dimensional variation propagation of multistage ma-
chining processes. A complicated machining system usually con-
tains multiple stages. When the workpiece passes through mul-
tiple stages, machining errors at each stage will be accumulated
and transformed onto the workpiece. Differential motion vector, a
concept from the robotics field, is used in this model as the state
vector to represent the geometric deviation of the workpiece. The
deviation accumulation and transformation are quantitatively de-
scribed by the state transition in the state space model. A system-
atic procedure that builds the model is presented and an experi-
mental validation is also conducted. The validation result is satis-
factory. This model has great potential to be applied to fault di-
agnosis and process design evaluation for complicated machining
processes.

Index Terms—Differential motion vector, multistage machining
process, state space model, variation propagation.

NOMENCLATURE

FCS, FCS Nominal and actual fixture coordinate

system.

HTM Homogeneous transformation matrix.

, Actual and nominal HTM between RCS

and LCS .

Deviation HTM defined by and .

, by identity matrix and by zero

matrix, respectively.

LCS th local coordinate system.

, Total number of key features and ma-

chining stages, respectively.

RCS Reference coordinate system.

, Actual and nominal rotational matrix be-

tween RCS and LCS .

, Transformation matrices for datum-in-

duced error.

Transformation matrix for fixture error.
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VD&T Vectorial dimensioning and tolerancing.

, Position and orientation deviation of LCS

from nominal positions w.r.t. RCS.

, , Three elements of .

Stage index, .

Total number of newly generated feature at

stage .

, , Column vectors of a rotational matrix.

Skew symmetric matrix obtained from

vector .

Extension of a vector . .

Feature index for newly generated feature

at stage . .

Feature index for the primary datum

, secondary datum , and tertiary

datum of the th stage.

Feature index for the generated feature up

to stage (not include stage ). is an

integer from 1 to total number of generated

features up to stage .

, Actual and nominal vector of the origin of

LCS expressed in RCS.

, , Three elements of .

Differential motion vector representing the

deviation of LCS in RCS. It is a stack of

and and is expressed in LCS .

State vector.

Stack of differential motion vectors of

newly generated features at stage .

, Differential transformation matrix corre-

sponding to and .

, Actual and nominal Euler rotational angles

between RCS and LCS .

, , Three elements of .

th element of a vector in the bracket.

Cross product of two vectors.

I. INTRODUCTION

P
RODUCT variation reduction is an important engineering

objective in both design and manufacturing. For a mul-

tistage machining process, the product variation at certain

stages consists of two components: the variation brought by the

volumetric error of the current machine stage and the variation

brought by the datum feature error produced from previous

stages. The second component exists because we have to use
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part features produced by previous stages as the machining

datum in current operation. The variation from previous stages

will be accumulated onto current operation.

At each single stage, there are many types of volumetric

error sources, such as the geometric and kinematic errors,

thermal errors, cutting force induced errors, and fixturing

errors. A huge body of literature can be found on the error

modeling and compensation on a single machining stage. A

review of these papers can be found in Ramesh et al. [1], [2].

However, due to the complicated interactions between different

variation errors at different stages, very few attempts have been

made on the variation propagation analysis for a multistage

machining process. Mantripragada and Whitney [3] adopted

the concept of output controllability from control theory to

evaluate and improve the automotive body structure design.

Lawless et al. [4] and Agrawal et al. [5] investigated variation

transmission in both assembly and machining process by

using an AR(1) model. Jin and Shi [6] proposed a state space

model to depict the variation propagation in a multistage body

assembly process. Their approach cannot be applied directly

to machining processes. Huang et al. [7] proposed a variation

propagation model for multistage machining process. However,

that model is an implicit nonlinear model. Djurdjanovic and Ni

[8] extended Huang’s formulation to obtain a linear model. In

their derivation, a norm vector and a position vector are used

to represent the geometric error of the workpiece and Taylor

series expansion is used to linearize the model. Although the

final model is in linear form, the explicit expression of each

system matrix is not given. The physical insights we can obtain

are limited.

In this paper, an explicit analytical variation propagation

model is developed for a multistage machining process. This

model is in the state space form. Differential motion vector, a

concept widely used in robotics [9], is used as the state vector

to describe the workpiece geometric deviation. The theory of

homogeneous transformation is heavily used in the derivation

and explicit expressions for all the system matrices are given.

The process and production information are quantitatively

integrated together in the system matrices of this model. This

model can be used for process evaluation in design and root

cause identification in manufacturing for multistage machining

processes.

The terminologies, representations of part features, and as-

sumptions of this model are introduced in Section II. The model

itself is derived in Section III. Section IV presents the experi-

mental validation results for this model. Finally, the conclusions

and some discussion of the applications of this model are given

in Section V.

II. WORKPIECE GEOMETRIC DEVIATION REPRESENTATION AND

MODEL ASSUMPTIONS

A machining process is used to remove materials from the

workpiece to obtain higher dimensional accuracy, better surface

finishing, or a more complicated surface form which cannot be

obtained by other processes. A complicated machining process

is usually a “multistage” machining process, which refers to a

machining process where a part will be machined through dif-

ferent setups when it passes through this process. It is not neces-

sary that a multistage machining process contains multiple ma-

chining stations. If there are different setups on only one ma-

chining station, this machining process is still considered as a

multistage machining process.

When a workpiece passes through certain stage of a multi-

stage machining process, the machining error and fixturing error

of this stage will be accumulated on the workpiece. These errors

will again affect the machining accuracy of the following stages

if the datum used by following stage is produced at current stage.

Since the workpiece carries all the machining error information,

a representation of accuracy of a workpiece is required to study

the complicated interaction of errors among different stages.

A. Workpiece Geometric Deviation Representation

To regulate the deviations of part features, researchers have

developed standards for geometric dimensioning and toler-

ancing (ISO 1101 (1983) or ANSI Y14.5(1982)). However,

these conventional geometric tolerances are originated from

the hard gauging practice. They are not suitable for the working

principle of Coordinate Measurement Machine (CMM) that

is now a standard measurement equipment for machining

process. In addition, the representation of part feature in the

conventional geometric tolerances does not conform to the part

representations used in CAD/CAM systems.

Recently, some researchers [10] proposed a vectorial dimen-

sioning tolerancing (VD&T) strategy. The principle of VD&T

is based on the concept of substitute elements or substitute. A

substitute feature is an imaginary geometrical ideal feature (e.g.,

plane, circle, line) whose location, orientation, and size (if ap-

plicable) are calculated from the measurement data points of

the workpiece surface. Substitute features are represented by

the location vector, orientation vector, and size(s). The location

vector indicates the location of a specified point of the substitute

feature. The substitute orientation vector is a unit vector that is

normal to the substitute plane or parallel to the substitute axis

(cylinder, cone, etc). The size is available for some features. For

example, the diameter is the size of a circular hole. The VD&T

workpiece feature representation follows the working principle

of CMM and CAD/CAM systems. The measurement data from

CMM can be analyzed and compared with the design model di-

rectly. The difference between the true feature and the design re-

quirement can be fedback to the manufacturing process directly.

It is a better tolerancing method for manufacturing process con-

trol [11].

In this paper, we adopt a vectorial feature representation pro-

posed by Yau [12], [13]. The difference between his represen-

tation and the ordinary vectorial representation is in the orien-

tation representation. Instead of using a unit direction vector,

he used a vector that consists of three Euler rotating angles to

represent the orientation of the substitute feature. The represen-

tation of using unit direction vector makes it difficult to desig-

nate tolerance on the orientation for a general 3-D geometric

element. Moreover, the direction vector representation violates

certain functional requirements that VD&T intends to capture.

Another advantage of angular representation of orientation is

that there are many mathematical tools available in the fields
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Fig. 1. Illustration of feature representation.

of robotics and kinematics for this representation. Therefore, in

this paper, a location vector and a vector that consists of three

rotating Euler angles are used to represent a workpiece feature.

Since the size of a feature is usually formed at one machining

stage, it is not considered in the following derivation.

The part representation is illustrated in Fig. 1. O X Y Z

is the reference coordinate system (RCS). Plane 1 and Hole 2

are represented by the local coordinate systems (LCSs) that are

attached on them, respectively. The position and orientation of

Plane 1 can be represented by . is the location vector

that points to the origin of LCS . is a vector contains roll,

pitch, and yaw Euler rotating angles between coordinate system

LCS and RCS. is in Fig. 1. Similarly, Hole 2 can

be represented by . is in Fig. 1.

To describe the accuracy of a machined workpiece, we need

to study the relationships between different features. Since

LCS is used to represent each feature, the relationships among

different features can be described by the relationships of cor-

responding coordinate systems. Homogeneous transformation

matrix (HTM) as a mathematical tool is used to study the trans-

formation between different coordinate systems. Appendix I

listed the basic notation and results of HTM used in this paper.

If the feature index is , we denote the corresponding LCS as

LCS . The deviation of the feature is described by the deviation

of the corresponding actual LCS from the corresponding nom-

inal LCS. As shown in Appendix I, the deviation of a LCS can

be represented by a differential motion vector . If the

actual location vector for the th element is and the corre-

sponding nominal location vector is , then .

However, the orientation vector does not have this property, i.e.,

in general, . The reason is that the multiplica-

tion of rotating matrix does not commute in general cases.

In summary, a location vector and an orientation angular

vector are used in this paper to represent a feature in the RCS.

The relative position and orientation of a feature is described

as a homogenous transformation matrix. The deviation of a

feature from its nominal value is represented by a differential

motion vector. The rationale of this representation is that it

conforms with the working principles of CMM and CAD/CAM

models. Moreover, many mathematical tools are available for

analyzing this representation.

B. Model Assumptions

Based on the workpiece geometric deviation representation,

a multistage machining process can be described by Fig. 2.

The workpiece deviation before stage is represented by state

vector . is a stack of differential motion vectors of all

key features of the workpiece. If there are key features on a

workpiece, the dimension of vector will be by 1. Before

the feature is produced, the corresponding differential motion

vector is set to be zero. The initial value of state vector is

zero before the first stage. After the workpiece passes the first

stage, the differential motion vectors corresponding to the fea-

tures produced at the first stage are set to be nonzero values as

the dimensional deviations generated at the first stage. By this

way, state vector is generated. Similarly, the state vector

after the th stage can be generated. The workpiece de-

viation at stage comes from three sources: the datum-induced

deviation caused in previous stages, the machining inaccuracy

at the current stage, and unmodeled noise. The deviation propa-

gation can be written in the following linear discrete state space

format [14]:

(1)

where represents the deviations of previously ma-

chined features and the deviation of newly machined features

that is only contributed by the datum error, repre-

sents the workpiece deviation caused by the relative deviation

between the workpiece and the cutting tool (this deviation is

caused by the fixture error and the imperfection of the tool path),

is the measurement, is the unmodeled system noise,

and is the measurement noise. Two assumptions are im-

plied in this formulation: 1) machining error on single stage is

modeled as a tool path deviation from its nominal path and 2)

only position and orientation error are considered. Profile error

is not included.

The rationale of the first assumption is as follows. Many types

of machining error sources can affect the accuracy of the work-

piece on a single stage. According to Ramesh [1], they can

be categorized as quasistatic errors and dynamic errors. Quasi-

static errors are the static or slow varying errors between the

tool and the workpiece. They include the geometric and kine-

matic errors, thermal errors, cutting force induced errors, tool

wear induced error, fixturing error, etc. Quasi-static errors ac-

count for about 70% of overall machining errors. Dynamic er-

rors are caused by sources such as spindle error, machine struc-

ture vibration, controller error, etc. They are more dependent on

particular operating conditions of the machine. The state vector

of this model is the manifestation of all machining error sources

on the workpiece. It does not directly map to certain machining

error. Using the homogeneous transformation representation of

the feature deviation, all the position errors and orientation er-

rors can be included in this model. The detailed modeling of

certain machining errors for the whole working space of a ma-

chine stage is quite involved. For example, the geometric error

that forms one of the largest sources of machining inaccuracy

contains 21 interrelated error components for a three-axis ma-

chine. To simplify the problem, the machining error input to the

model is represented as a deviation of the tool path from

its nominal path. It is possible to map certain machining error

components to the tool path deviation.
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Fig. 2. Diagram of a multistage machining process.

Fig. 3. Transition of differential motion vector: case 1.

The rationale for the second assumption is that this model fo-

cuses on describing the machining variation propagation among

different stages. Since most the profile errors are generated on a

single stage and keep unchanged throughout the whole process,

it is not necessary to build a model describing its transforma-

tion and propagation. Therefore, profile errors are not included

in this model.

III. DERIVATION OF THE STATE SPACE MODEL FOR MULTISTAGE

MACHINING PROCESSES

To setup a state space model for the variation propagation

in a multistage machining process, we need to find a general

expression for the system matrices in (1). First, useful general

properties of differential motion vector are introduced.

A. Properties of Differential Motion Vectors

One common scenario of transition of differential motion

vectors is given in Fig. 3. In this case, we know the deviation

of feature 1 w.r.t. the reference and the deviation of feature 2

w.r.t. feature 1, we want to calculate the deviation of feature 2

w.r.t. the reference. This problem is solved by Corollary 1. The

proof is given in Appendix II.

Corollary 1: Consider a RCS and two features 1 and 2. Given

, and the deviation of feature 1 w.r.t. RCS, and the

deviation of feature 2 w.r.t. feature 1, , then

(2)

Another important transition of differential motion vectors is

shown in Fig. 4. In this transition, we know the deviation of

feature 1 w.r.t. reference and the deviation of feature 2 w.r.t.

reference, we want to calculate the deviation of feature 2 w.r.t.

feature 1. This problem is solved in Corollary 2. The proof is

also given in Appendix II.

Corollary 2: Consider a RCS and two features 1 and 2. Given

and the deviation of feature 1 w.r.t. RCS, and the

deviation of feature 2 w.r.t. RCS, , then

(3)

These two corollaries are very useful when the RCS switches

to another coordinate system.

Fig. 4. Transition of differential motion vector: case 2.

B. Model Derivation

For the sake of convenience, the definitions of the four coor-

dinate systems involved in the derivation are listed.

1) LCS represents the features of the workpiece.

2) RCS is the reference for the features of the workpiece.

The primary datum feature, which is explained in fol-

lowing section, is often selected as RCS. RCS is also

called “Part Coordinate System” in some literature.

3) Fixture Coordinate System (FCS) is determined by the

actual fixture setup.

4) Nominal Fixture Coordinate System FCS is deter-

mined by the ideal fixture setup. FCS is also called

“Machine Coordinate System” in some literature.

The state vector is defined as a stack of differential mo-

tion vectors corresponding to each feature w.r.t. RCS. It is clear

that the reference feature does not have any deviation by defini-

tion. There are three major components in :

1) Machining error, which is defined as the deviation of the

cutting tool from its nominal path w.r.t. FCS. Since the

LCS of the newly generated feature is determined by the

cutting tool path, the machining error can be represented

by the deviation of LCS with respect to FCS.

2) Fixturing error, which is caused by the imperfection of

the locators. It is represented by the deviation of FCS with

respect to FCS.

3) Datum error, which is the deviation of FCS with respect

to RCS.

The relationships among these coordinate systems and errors are

shown in Fig. 5.

The machining error is represented by a differential motion

vector that describes the deviation of LCS w.r.t. FCS. It can be

further decomposed into thermal, geometric error, and/or other

machining errors sources. To limit the scope of this article, this

part is not included here.

1) Analysis of Datum-Induced Error: The most commonly

used fixture scheme in practice is the 3-2-1 fixturing scheme. A

general 3-2-1 layout is shown in Fig. 6(a).

Surface ABCD defines the primary datum plane, which con-

strains two rotational and one translational motion. ADHE is the

secondary datum plane, which constrains one rotational and one

translational motion. CDHG is the tertiary datum plane, which

constrains the last translational motion. They are represented
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Fig. 5. Composition of overall feature deviation.

(a)

(b)

Fig. 6. 3-2-1 fixturing setup by a plane and three locators. (a) General 3-2-1
setup. (b) Variation of (a).

by LCS of O X Y Z , O X Y Z , and O X Y Z , respec-

tively. F , F , and F are the perpendicular projection points of

the locators P , P , and P on the primary datum. The fixture co-

ordinate system (FCS) is shown in Fig. 6 as O X Y Z . F F

is the Y axis of FCS, the line passing F and perpendicular to

F F is the X axis of FCS, Z axis is perpendicular to the pri-

mary datum plane. The LCS of the primary datum plane (sur-

face ABCD) is taken as the RCS. The secondary datum plane is

denoted as feature 2 and its deviation is represented as . The

tertiary datum plane is denoted as feature 3 and its deviation is

represented as . Given and , the deviation of FCS w.r.t.

RCS, , can be obtained by

(4)

where and are determined by the nominal positions of

feature 2, 3, and the fixture locating pins. and can be

obtained by the following general procedure.

Let and be the datum points touching the secondary

datum and be the datum point touching the tertiary datum.

The nominal coordinates of these three points in FCS are de-

noted as , , and . Denoting , we have

(5)

To guarantee that these points touch with the corresponding

part surface, the coordinates of these points in LCS are zeros

(the direction is defined as the normal direction of the sur-

face). Consider the first equation. Noting

and

, the left-hand side of the first equation

of (5) changes to

(6)

The third element of is zero to guarantee touching, therefore

(7)

Under nominal conditions, , , and should touch with

datum plane. Hence, . Equation (7) changes

to

(8)

Denoting

we have

(9)

and

(10)



ZHOU et al.: STATE SPACE MODELING OF DIMENSIONAL VARIATION PROPAGATION IN MULTISTAGE MACHINING PROCESS 301

Similarly, we can get other two equations for and . Fi-

nally, we have

(11)

Although there are six parameters in , only three of them

are unknown nonzero values. By solving the above equation

system, we can obtain the differential motion vector and

put it in the form of (4) by rearranging the terms. To guarantee

the inverse of the matrix exists, the line passing the two datum

points on the second datum plane cannot be perpendicular to the

primary datum plane. If so, the first and the second rows of the

coefficient matrix of in the left-hand side of (11) will be the

same.

The expression of and for a general 3-2-1 setup is very

complicated. However, if datum fixtures 1, 2, and 3 are orthog-

onal to each other, which is a very common case in practice,

and can be significantly simplified. Given the nominal posi-

tions for features 2 and 3 and locating pins in Fig. 6(a) as

, , and ,

the solution of (11) can be obtained as (4), where

A very common variation of the general 3-2-1 fixture setup is

shown in Fig. 6(b). The six degree of freedoms of the workpiece

are constrained by the plane ABCD (two rotational and one

translational motion), a circular short hole P and P (two trans-

lational motion), and a slot P (one rotational motion). Given

the nominal positions for features 2 and 3 and locating pins in

Fig. 6(b) as

, and , the solution

of (11) can be obtained as (4), where

and

The procedure presented in this section can be used to study

the datum-induced error for a general 3-2-1 fixture setup. Fol-

lowing the same deviation, similar results can be obtained for

other fixture setups, such as that used in turning operations.

2) Analysis of Fixture Errors: In a general 3-2-1 fixture

scheme as shown in Fig. 6(a), the workpiece position is

located by six locators P P P L L L . Assume that

the nominal coordinates of these six points in the nominal

fixture coordinate system FCS are , ,

, , , and ,

respectively. (Note that we assume that the coordinates of

P and P are the same to simplify the problem). If there are

small deviations on these six locators and

, where , the actual fixture

coordinate system FCS will deviate from its nominal FCS.

Cai et al. [15] gave an analytical infinitesimal error analysis

for a rigid body locating scheme with general six points.

The fixture error can be derived based on their results. In

Fig. 6, the surface norm vector for L , L , and L is (0, 0,

1), for P and P is ( 1, 0, 0), and for P is (0, 1, 0).

With the locators’ position vectors, [15, eq. (3.1.6)] can

be applied to obtain the deviation of FCS w.r.t. FCS as

, where

we have the equation shown at the bottom of the next page, and

.

We need to know as well. Note that is

an identity matrix,

. On the other hand,

. It is clear that

. From (A8), we have

(12)

For the fixture setup shown in Fig. 6(b), the nominal coordi-

nates of P , P , and P in FCS are (0, 0, 0), (0, , 0), and (0,

0, 0), respectively. Substituting these values into the expression

of , we can obtain another matrix for the particular setup

shown in Fig. 6(b) as

The fixture error analysis procedure for a general 3-2-1 fix-

ture scheme is presented in this section. For other fixture sys-

tems, the analysis can follow a very similar procedure.
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Fig. 7. Steps of the derivation of variation propagation model.

3) Procedures for Variation Propagation Modeling: Fig. 7

shows the steps of the derivation of the variation propagation

model. The first step is to re-locate the workpiece at current

stage . The second step calculates the datum-induced error,

which is caused by dimensional errors generated in previous

stages. The third and fouth steps calculate the contribution of

fixture error and machining error that are only related with cur-

rent stage. The fifth stage combines all errors together to ob-

tain the deviation of the newly generated features. Finally, at

the sixth step, the newly generated features are combined with

other features to form . The detailed derivations are as

follows.

S1. Using Corollary 2, transform from a stack of

to a stack of , . is the

feature index of the primary datum of stage . Let

be the stack of , then

(13)

where

...

...

...

...
...

...
...

...
...

...

...
...

...
...

...
...

...

...
...

...
...

...
...

...

...

...

...

where is an integer from 1 to the total number of features gen-

erated up to stage . In (13), ,

. If primary datum is not changed between stage

and stage , equals .

S2. Following the procedure of datum-induced error analysis

in Section III, find datum error as

(14)
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where . The dimension

of is 6 by .

S3. Denoting the fixture imperfection as , we can obtain

the fixture error following the procedure of fixture error analysis

in Section III, , as

(15)

where .

S4. Because the machine tool is calibrated based on FCS,

the tool path imperfection is often represented as a deviation

w.r.t. FCS. Denoting the machining error of newly generated

feature , is from 1 to , as and stack them up

as . Using Corollary 1, we can find . Denote

as a stack up of , , yields

(16)

where and

.

In (16), , ,

and .

S5. Based on from step 2 and from step 4, we

can use Corollary 1 again to obtain the deviations of the newly

generated features with respect to RCS, , .

In more detail, denoting as a stack of yields

(17)

Note that in (17) an approximation

(18)

is used because and are both small values. The

details are as follows. First note that

. Since

, ,

or see (19), shown at the bottom of the page. Hence

(20)

Substituting (20) into the right-hand side of (18) and neglecting

the second-order small values yields the approximation result of

(18).

S6. Adding the newly generated features with the others

yields as follows:

(21)

where A is a selector matrix in the form

...
...

...
...

...

...
...

...
...

...

...
...

...
...

...

...
...

...
...

...

Its dimension is by and it places the deviations

of the newly generated features on the corresponding location

when they are added to .

Considering (13)–(21), we can get the state transition equa-

tion for the state space model

(22)

The detailed derivation can be found in Appendix III. In

(1), ,

and .

The derivation of the observation equation in (1) is straight-

forward. The measurement stage can be viewed as a special ma-

chining stage. Assume that feature is used as the mea-

surement reference feature and denote as the stack of

, following the same derivation of Step 1, we can obtain

(23)

where has the same format as in (13) except that

is used in the place of . Hence, the observation

equation can be written as

(24)

where is a selector matrix that is similar to the format of

in (21). selects the measured features among all

the available features. Therefore, in (1), the observation equa-

tion is

(25)

The above model describes the deviation propagation among

a multistage machining process. An experimental validation of

this model is presented in Section IV.

(19)
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(a)

(b)

Fig. 8. Final product. (a) Joint face of the engine head. (b) Cover face of the
engine head.

IV. EXPERIMENTAL VALIDATION OF THE STATE SPACE

VARIATION PROPAGATION MODEL

The deviation propagation model is validated on a multistage

machining process developed at the NSF Engineering Research

Center for Reconfigurable Machining Systems. The process is

introduced as follows.

A. Experimental Machining Process

The product is a V-6 automotive engine head. Its key features

are shown in Fig. 8. H101 H108 are eight bolt holes on the joint

face. H101 and H104 are also called the locating holes B and C.

X , X , X , Y , Y , Z are the cast rough datum. H451 H458

are eight bolt holes on the cover face. S1 S12 are twelve screw

holes on the cover face.

There are three operations in this process. Each operation and

corresponding datum setup are shown in Figs. 9 and 10 and

Table I.

The major tolerances on these key features are shown in

Fig. 11 and Table II. In Fig. 11, surface D is defined by the

rough data X , X , and X .

B. State Space Modeling of the Process

A state space model that contents six features is developed

for this case study. Their nominal positions and orientations are

listed in Table III. These numbers in Table III are with respect

to the part reference coordinate system. The origin of the part

Fig. 9. Operation sequence.

Fig. 10. Fixture locating schemes in three stages.

reference coordinate is the intersection point between the center

line of hole B and the plane determined by rough datum X ,

X , and X , the y axis is the line connecting the centers of hole

B and hole C, the z axis coincides with the centerline of hole

B and points from the cover face to the joint face, the x axis

is determined by the right-hand principle. From Table III, it is

straightforward to obtain the nominal relationship between any

two features.

Following the procedure shown in Section III, a state space

model can be obtained for this three-stage machining process.

The state space model can be obtained as

(26)

(27)

The details of the system matrices are listed in Appendix IV.

C. Comparison Between the Real Measurement and the Model

Prediction

To validate the model, a workpiece is machined in this

testbed. In the machining, a fixture error is intentionally added

to the process at each stage. The inputs to the model that

corresponds to the fixture error are

The nonzero values in correspond to the magnitudes of

the fixture errors. All the inputs corresponding to the machining

error are set as zeros. The workpiece is measured on a

CMM after machining. The measurement results from CMM are

listed in Table IV. For a plane feature, the CMM measurement

gives the coordinates of a point on the surface and the norm

direction vector of the surface. For the cylinder (Hole B and

Hole C) feature, the CMM measurement gives the coordinate

of a point on the cylinder axis, the norm direction vector of the

axis, and the diameter. The diameters of the holes are not listed

in the table because they are not used in this study.

All the measurements are with respect to the global CMM

coordinate system. These data can easily be transformed to the
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TABLE I
DESCRIPTION OF THE OPERATIONS

Fig. 11. Major design specifications on the engine head.

same coordinate system used in the state space model. In the

state space model, the coefficient matrices , , and and

the input to the model are known. If we neglect the model

noise and measurement noise and set the initial state vector

as zero, we can iteratively calculate the state vectors at all the

stages by (1). In this way, the measurement value can be pre-

dicted. The comparison between the real measurement and the

model prediction is listed in Table V. For a plane feature, the rel-

evant parameter is its orientation and the distance from datum

plane. The deviation of the orientation of a plane is denoted

by and the deviation of the distance from the datum

plane is denoted by . is measured at the origin of LCS of

the plane with respect to the datum plane. For the cylinder fea-

ture (Hole B and Hole C), only the deviation in orientation is

considered.

Remarks:

• From the data presented in Table V, the discrepancies be-

tween the model predication and real measurement of joint

face, Hole B, and the slot are reasonably small. Since only

the dominant fixture errors are taken as the inputs to the

model in this case study, these discrepancies are due to other

machining errors such as machine geometric error, thermal

error, force induced error that are neglected in the input to the

model. The small discrepancies between the model predic-

tion and real measurement of these three features show that

this model captures the dominant fixture errors correctly.

• Relatively large discrepancies happen at the cover face and

Hole C. The large difference at the cover face is understand-

able because the reference datum feature is the rough datum

that contains large natural variation itself. The large differ-

ence at Hole C is an indication of large geometric error with

the machine. Since the joint face, Hole B, and Hole C are

machined at the same time under the same setup, they should

have the same orientation as the model predicts if only fix-

ture error presents. A difference in the orientation between

Hole C, Hole B, and the joint face indicates that the cutting

tool orientation is different at different machine configura-

tion, which is considered as a geometric error.

• Another point need to be pointed out is that the deviation pat-

terns (i.e., the sign of each deviation and their relative magni-

tude) are correctly predicted by the model. This is important

because we can conduct root cause identification by consid-

ering the error patterns in the measurement.

V. CONCLUSION

The complexity of a multistage machining process places

great difficulty on the root cause identification and process de-

sign evaluation. In this paper, an analytical linear model is de-

veloped to describe the propagation of workpiece geometric

deviation among multiple machining stages. This model has

a state space form. Using the state transitions among multiple

machining stages, this model describes the geometric error ac-

cumulation and transformation when the workpiece passes the

whole process. A systematic procedure is presented to model

the workpiece setup and machining cutting process.

This model has great potential to be applied in the following

fields. First, it can be used in the root cause identification for

the quality improvement purpose. For a complicated machining

process, it is often very difficult, if not impossible, to identify

the faulty stage if certain feature of the workpiece is out of

specification. With this model that integrates the process and

product information, model based fault diagnosis can be de-

veloped to quickly identify the faults. Second, based on the

diagnosis study, this model can also be used to conduct the

sensor placement optimization. How to place sensors in a com-

plicated manufacturing line to minimize the cost and maximize

the amount of information obtained is a challenging issue. In this

model, the sensor placement information is integrated in the ob-
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TABLE II
DESCRIPTION OF TOLERANCE REQUIREMENT

TABLE III
NOMINAL POSITIONS AND ORIENTATIONS OF KEY FEATURES

TABLE IV
CMM MEASUREMENT RESULTS

TABLE V
COMPARISON BETWEEN THE MEASUREMENT AND THE MODEL PREDICTION

servation matrix . Using this analytical state space model,

one can apply some classical concepts from control theory, such

as the “observability,” to study the sensor placement problem.

Third, this model can also be used for variation simulation of

multistage machining process. Using the developed analytical

state space model, the variation simulation can be conducted

with given initial conditions. This kind of simulation is valuable

for process design evaluation. Using the simulation result, we

can make selection among several design alternatives regarding

their robustness to variation propagation. Fourth, this model can

be used for fixture design and optimization. This model provides

a quantitative relationship between the fixture locator errors and

the final workpiece geometric error. By considering this rela-

tionship, the fixture locator design can be evaluated and opti-

mized. All these potential works will be pursued and reported

in the future.

APPENDIX I

Given the location vector and the roll, pitch, and yaw angles,

LCS can be expressed in RCS by a 4 4 HTM . The right

superscript refers to RCS and the right subscript refers to
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the index of LCS. represents the nominal HTM between

the RCS and the LCS. A HTM can be written as

is the location vector of the origin of LCS expressed in RCS

and is the rotational matrix. Some useful properties of HTM

are listed as follows (see [9] and [16]).

• A point expressed in LCS can be transformed into RCS,

i.e., , where the superscript shows in which

coordinate system the point is expressed.

• A rotational matrix is a special orthogonal matrix.

and .

• and it can be obtained as

.

A small deviation of LCS from its nominal position and ori-

entation can be described by a differential motion vector

(A1)

where and are a

small position deviation and a small orientation deviation, re-

spectively. If we define

and

then the actual HTM and the nominal HTM between the refer-

ence and local coordinate systems can be related by

(A2)

is defined as . Hence,

(A3)

can be written as

(A4)

where is called differential transformation matrix (DTM).

If a skew symmetric matrix associated with a vector is defined

as , the DTM can be written as

(A5)

We have

(A6)

One very useful fact can be obtained if we use small motion

assumption, i.e.,

(A7)

If we let and , then

(A8)

APPENDIX II

Proof of Corollary 1: Notice

and , we have

. Since

the deviations are small, we can neglect the second-order small

values,

). Noting that ,

we have

(A9)

Denoting the differential motion vector associated with

as , then the differential motion vector associated with

is

as in [9]. Combining this result with (A9), yields (2).

Proof of Corollary 2: Noting , we have

. Then,

. Considering (A4) and (A8) yields

(A10)

Therefore,

(A11)

This equation can be further simplified by neglecting the

second-order small values

(A12)

(A13)

By (A13) and using the result from [9] again, we can get the

result in (3).
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APPENDIX III

Derivation of (22): Substituting (13) and (17) into (21), we

have

(A14)

Substituting (14) and (16) into the above equation, we further

have

(A15)

Finally, (22) can be obtained by substituting (13) and (15) into

the above equation.

APPENDIX IV

The system matrices for the state space model used in Sec-

tion IV:
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In the model for experimental validation, the measurement

starts from . The observation matrices , , and

are all selector matrices that only contents zeros and

ones. The explicit expression of these observation matrices are

omitted here.
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