State space modelling and mllivariable
STOCHASTIC CONTROL OF A PILOT PLANT PACKEO-GED REACTOR

state space modelling amo multivariable stochastic conikol of a pilot plant packed-bed reactor

By
ARTHUR JUTAN, B.Sc. (Eng.), M.Eng.

A Thesis
Submitted to the Faculty of Graduate Studies in Partial Fulfilment of the Requirments for the Degree Doctor of Philosopiy

```
Mcmaster University
    October, 1976
```TITLE: State Space Modelling and Multivariable StochasticControl of a Pilot Plant. Packed-Bed Reactor
AUTHOR: Arthur Jutan B.Sc. (Eng.) (University of Witwatersrand)
 M.Eng. (McMaster Univeristy)
SUPERVISORS: Dr. J.F. MacGregor, Dr. J.D. Wright
NUMBER OF PAGES: xvi, 243

\section*{ABSTRACT}

This study is concerned with the multivariable stochastic regulatory control of a pilot plant fixed bed reactor which is interfaced to a minicomputer. The reactor is non-adiabatic with a highly exothermic, gaseous catalytic reaction, involving several independent species. A low order state space model for the reactor is developed starting from the partial differential equations describing the system. A parameter estimation method is developed to fit the model to experimental data. Noise disturbances present in the system are identified using two methods, and two alternative dynamic-stochastic state space models are obtained. Multivariable stochastic feedback control algorithms are derived from these models and are implemented on the reactor in a series of DOC control studies. The control algorithms are compared with each other and with a single loop controller. The best of the multivariable controi algorithms is used to regulate the exit concentrations of the various species from the reactor and the results are compared to data.

\section*{ACKNOH:EDGEMENTS}

The author wishes to thank all those who contributed to this work.

He is particularly indebted to:
His research directors, Drs. U.F. MacGregor and J.D. Wright for their encouragement and moral support throughout the course of this work.

His research colleague, Mr. J.P. Tremblay for his support on the experimental aspects of this work, as well as his help on the many minicomputer real time programing problems encountered.

All members of the Control Group at MoMaster for their lively discussions and happy faces.

Mrs. Lillian Mogensen for her care and patience in typing this thesis.

McMaster University for providing financial assistance.

Cheryll Rose
- My Best Friend
- My Lover
- My Wife

\section*{TABLE OF CONTENTS}
PAGE
ABSTRACT iii
ACKNOMLEDGEMENTS iv
CHAPTER 1: OBJECTIVES OF THIS STUDY 1
CHAPTER 2: INTRODUCTION AND LITEPATURE REVIEN
2.1 Control of Chemical Processes 3
2.2 Modelling of Fixed Bed Reactors 12
2.2.1 Steady State llode1s 12
2.2.2 Dynamic Models 17
2.2.3 Orthogonal Collocation in Chemical Reactor Theory 20
2.3 Process Reactor Control Studies 23
CHAPTER 3: A MATHEMATICAL YODEL FOR THE FIXED BED REACTOR
3.1 Introduction 28
3.2 Process Description 28
3.2.1 Process Control Configuration 30
3.3 Reaction Kinetics 35
3.4 Reactor Model Equations 37
CHAPTER 4: STATE SPACE REACTOR HODEL
4.1 Introduction 45
4.2 Chronological Development of the State Space Model. 47
Part A: Preliminary Simulation Study and Development of a High Urder State Space Model 50
4.3 Adaptation of Collocation Formulae to Reactor System 50
4.4 Radiai Collocation 50
4.4.1 Application to Reactor Differential Equations 51
4.5 State Space Fomulation 57
4.6 A State Space Mocel Reduction Vethod 59
4.G.1 Application tu frersged Concontastions 60
4.7 Simulation Studies 64
4.7.1 Steady State Behaviour 65
4.7.2 Parametric Sensitivity 68
4.7.3 Dynamic Behaviour 69
Part B: Development of a Low Order State Space Model for Process Control 82
4.8 Quasi-Steady State Approximation 82
4.9 Axial Collocation 83
4.9.1 Application to Reactor Equations 85
4.10 Discrece State Space Model 88
4.10.1 Concentration as a Function of Temperature 90
4.11 Simulation Studies 91
4.11.1 Steady State Behaviour 91
4.11.2 Dynamic Behavicur 92
CHAPTER 5: FITTING THE REACTOR MODEL TO EXPERIMENTAL DATA
5.1 Introduction 96
5.1.1 Measurements 96
5.1.2 Catalyst Activity 100
5.2 Data Collection Under Closed Loop 102
5.3 Parameter Estimation and Mode? Fitting 104
5.3.1 Multiresponse Estimetion 106
5.3.2 A Method for Parameter Estimation in a State Space Model 107
5.3.3 Application to Reactor Data 112
5.4 Building a Noise Model 129
5.4.1 A Dynamic Stochastic State Space Model 132
5.4.2 Parameter Estimation 136
5.5 Dimensionality Reduction for the Noise Model 140
5.5.1 Canonica? Analysis of the Noise Mode? 141
5.5.2 Application to Reactor Data 147
CHAPTER 6: COHTROL STUDIES
6.1 Introduction 153
6.2. Direct Digitai Control (DDC) Configuration 154
6.3 Optina? Stochastic Control Theory 155
6.3.1 Linear Quadratic Stochestic Feedback Control 155
6.3.2 The Kaimar Filter 158
6.4 Control Synthesis Using a Hodel with Approximate Noise Characteristics 151
6.4.1 Determination of the Covariance Matrix Rw 161
6.4.2 Determination of Input Constraint 163
6.5 Control Syrthesis using a Model with Identified Noise Charactemistics 764
6.5.1 Augmented State Equation 164
6.5.2 Augmented Objective Function 167
6.6 DDC Conirol of the Reactor 170
6.6.1 Catalyst Deactivation 171
6.6.2 Control using the 7 th Order State Model 171
6.6.3 Control using the Augmented loth Order State Model 174
6.6.4 Robustness of the Controllers 176
6.6.5 Single Loop Control 178
6.6.6 A Control Run with Concentration Data ! 81
CHAPTER 7: CONCLUSIONS AND FUTURE WORK 185
REFERENCES: 189
APPENDICES:
1. Butane Hydrogenolysis Kinetics 197
2. A Summary of Orthogonal Collocation Theory 203
3. Estimation Routine, Data and State Space Matrices 211

\section*{LIST OF FIGURES}
(1) Process Flow Sheet for Reactor Gas Flow System. 33
(2) Process Flow Sheet for Reactor 0 il flow System. 34
(3) Reactor Control Configuration. 35
(4) Typical Steady State Central Axis Temperature Profiles in the Reactor (Simulation). 73
(5) Comparison of Steady State Temperature Data with Simulation Profiles. Influence of \(D_{e r}\). 74
(5a) Parametric Sensitivity to Thermal Conductivity \(\lambda_{\text {er }}\). 75
(6) Radiāl Reactor Temperature Profiles (Steady State Simulation). 76(7) Radial Reactor Concentration Profile for Butane (Steady StateSimulation).77
(8) Steady State (Averaged) Concentration Profiles Along the Reactor (Butane Conversion 49\%) (Simulation). 78
(9) Exit (Averaged) Concentration of Propane in Response to a \(10 \%\) Step Down in \(\mathrm{H}_{2}\) Flow (\(80^{\text {th }}\) order Simulation).79
(10) Dynamic Response of the Ceritral Axis Temperature Profile to a Down Pulse in the \(\mathrm{H}_{2}\) Fiow (\(80^{\text {th }}\) Order Simulation). 80
(11) Hot Spot Temperature Dynamics in Response to a \(40 \%\) Pulse in \(\mathrm{H}_{2}\) Flow. (80 \({ }^{\text {th }}\) Order simulation).81
(12) Typical Dynamic Temperature Profiles in Response to a \(+3 \%\) Stepin \(\mathrm{H}_{2}\) Flow. (\(7^{\text {th }}\) Order Simulation).94
(13) Typical Dynamic Temperature Frofiles in Response to a \(+10 \%\) Pulsein \(\mathrm{H}_{2}\) Flow. (7 \({ }^{\text {th }}\) order simulation).95
(14) Closed Loop Data Collection Configuration. Temperature Meassure- ments only.
(15) Flow Chart for Parameter Estimation Aigorithm. 111
(16) Time Average Operating Profile (26 May Data). 118
(17) Axial Temperature Profiles, Model vs. Data (Linearisation about Average Profile in Figure 16). (26 May Data). 119
(18) Axial Temperature Profiles, Model vs. Data (Linearisation about Steady State Profile). (26 May Data). 120
(19) Radial Temperature Profiles at \(t=41\) minutes (for Different Axial Positions, z), Model vs. Data (26 May Data, Figure 17). 121
(20) Axial Temperature Profiles, Model vs. Data (Linearisation about Average Profile). (23 September Data). 126
(21) Reactor Exit Mole Fractions, Nodel vs. Data (23 September Data). 127
(22) Reactor Control Run using \(7^{\text {th }}\) Order Control Algorithm. 173
(23) Reactor Control Run using \(10^{\text {th }}\) Order Control Algorithm. 175
(24) Single Loop PI Control Run. 180
(25) Reactor Exit Mole Fractions Under Control, Model vs. Data. 183
(A-1) Reaction Mechanism for Hydrogenolysis of \(n\)-Butane (see Appendix 1). 198

\section*{LIST OF TABLES.}
TABLE PAGE
(1) Dynamic Response Comparison of \(80^{\text {th }}\) and \(140^{\text {th }}\) Order Siate Space Models 72
(1a) Reactor Parameters for Simulation Studies 66
(2) Variance-Covariance Matrices for Dynamic and Dynamic- Stochastic Models (26 May Data) 139
(3) Auto-Covariance Matrices and \(\phi\) Matrix for Reactor Data (26 May) 149
(4) Significance Test for Generalised Eigenvalues 150
a
\(A_{i . j}(n)\)
\(a_{i}(z, t)\)
A
\(\underset{-}{a}(t)\)
a()
\(B_{i}\)
\(B_{i j}^{(n)}\)
\(\bar{B}_{i j}\)
B

B
ex
heat transfer area for catalyst, \(\mathrm{cm}^{2} / \mathrm{g}\) catalyst
collocation weights for 1 st derivative
collocation trial function coefficents
nxn dynamic state matrix (5-20)
white noise sequence (\(5-34\))
canonical white noise sequence (5-43)
Biot number \(\left(\frac{h^{R}}{\lambda_{e r}}\right)\)
collocation weights for Laplacian
derived collocation weights
backward shift operator (5-16)
control matrix (5-20)
concentration of species i,g moles/cc
radial average concentration of species \(i, g\) moles/cc
concentration of species \(i\) at radial collocation point \(j\)
specific heat of solid, cal/ (\(\left.\sigma^{\circ} \mathrm{K}\right)\)
specific heat of gas, cal/ \(\left(g^{\circ} \mathrm{K}\right)\)
specific heat term \(\left[C_{p} \rho_{B}+C_{P_{g}} \rho_{g} \varepsilon\right]\), Equation (3-6) effective radial diffusivity (based on empty reactor volume), \(\mathrm{cm}^{2} / \mathrm{s}\)

Catalyst particie diameter, cill
collocation weights, Equation \((4-45)\)
reaction activation energy, cal/9 mole
subscript-exit conditions for reactor
\(E[\cdot]\)
expectation operator (5-73)

F matrix for discrete state space model, Equation (4-56)
\(G_{m}\)
\(G_{0}\)
G
h

L
\(L_{\infty}\)
\({ }^{N} \mathrm{Pe}_{m, r}\)
\(\mathrm{N}_{\mathrm{Pe}}^{\mathrm{m}, \mathrm{z}}\)
\(N_{\mathrm{Pe}_{\mathrm{h}, \mathrm{r}}}\)
\(\mathrm{N}_{\mathrm{Re}}\)
(n), n
n.
\(N(t) \quad\) residual noise vector (5-6)
\(\dot{N}(t)\)
\(\hat{\hat{N}}(t, 1)\)
control matrix, Equation (4-56) \(m \times n\) measurement matrix (\(5-20\)) \(m^{\text {th }}\) order unity matrix
steady state Kalman gain matrix (6-14)
discrete time lag
reactor length, cm
(Section 5.5.1)

Peclet number for radial mass transfer \(\left(\frac{G_{m}{ }^{d} p}{D_{\mathrm{er}}}\right)\)
Peclet number for axial mass transfer \(\left(\frac{G_{m}{ }^{d} p}{\rho D_{e z}}\right)\)

Reynolds number for particles \(\left(\frac{G_{m}}{\mu}{ }_{\mu}\right.\))
order of collocation approximation
canonical noise vector (5-43) mass flow rate based on area of empty reactor, \(\mathrm{g} /\left(\mathrm{cm}^{2} \cdot \mathrm{~s}\right)\) superficial gas velocity, \(\mathrm{cm}^{3}\) gas/(\(\mathrm{cm}^{2}\) reactor.s)
heat transfer coefficient particle to fluid, \(\mathrm{cal} /\left(\mathrm{cm}^{2} \mathrm{O} \mathrm{K}\right.\) s) heat transfer coefficient at reactor wall, \(\mathrm{cal} /\left(\mathrm{cm}^{2}{ }^{\circ} \mathrm{K} \mathrm{s}\right)\)
subscript-most commonly used for species number
mxm matrix for canonical non-singular transformation
optimal steady state feedback gain matrix (\(6-8\))

Peclet number for radial neat transfer \(\left(\frac{G_{m} C_{P} d_{P}}{\lambda_{e r}}\right)\)
order of state space model, \(\left(n^{*}=n+i\right)(4-51)\)
one step ahead forecast for canonical noise vector (5-37)
\begin{tabular}{|c|c|}
\hline 0 & subscript indicating centre axial conditions \\
\hline \(P_{i}\left(r^{2}\right)\) & orthogonal polynomial symmetric in \(r\) \\
\hline \(P(\cdot)\) & conditional covariance matrix (\(6-15\)) \\
\hline \(r\) & radial distance in reactor (normalised) \\
\hline \(r_{j}\) & radial collocation point \(j\) \\
\hline R & radjus of reactor bed, cm \\
\hline \(R^{i}\) & net reaction rate for species \(i\), moles i/(g catalyst s) \\
\hline \(\mathrm{R}_{\mathrm{i}}\) & reaction rate for reaction \(i\), moles \(i /(g\) catalyst \(s\)) \\
\hline Rw & variance covariance matrix for w(t) (5-13) \\
\hline Rv & variance covariance matrix for \(\underline{v}(\mathrm{t})(5-13)\) \\
\hline \(\underline{s}(t)\) & state variabie (5-21) \\
\hline T & homogeneous gas/solid temperature, Equation (3-5), \({ }^{\circ} \mathrm{K}\) \\
\hline \(T_{j}\) & temperature at radial collocation point \(\mathrm{j}^{\circ} \mathrm{K}\) \\
\hline \(T_{0}\) & temperature along centre axis of reactor, \({ }^{\circ} \mathrm{K}\) \\
\hline Tw & temperature of reactor wall, \({ }^{\circ} \mathrm{K}\) \\
\hline \(\mathrm{T}_{9}\) & gas temperature, Equation (\(3-3\)) , \({ }^{\circ} \mathrm{K}\) \\
\hline Ts & solid (catalyst) temperature, Equation (3-4) , \({ }^{\circ} \mathrm{K}\) \\
\hline t & time: continuous (sec); discrete (minutes) \\
\hline \(\underline{4}\) & vector of manipulated yariables \\
\hline \({ }^{V_{T}}\) & thermal wave velocity \(\frac{G_{0} C_{P_{g}}{ }^{\rho}}{L \bar{C}}, \mathrm{~cm} /(\mathrm{s} . \mathrm{cm})\) \\
\hline \({ }^{\mathrm{V}} \mathrm{C}\) & concentration wave velocity \(\frac{0}{\varepsilon L}, \mathrm{~cm} /(\mathrm{s} . \mathrm{cm})\) \\
\hline \(\underline{v}(\mathrm{t})\) & white measurement noise sequence (5-12) \\
\hline \(\mathrm{V}[\cdot]\) & Variance operator (5-37) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \(w_{i}(n)\) & collocation quadrature weights \\
\hline \(w(t)\) & white generating noise sequence (5-11) \\
\hline \(\underline{x}(\mathrm{t})\) & state vector at sample time t \\
\hline \(\dot{\underline{x}}\) & time derivative of state vector (continuous) \\
\hline \(\hat{\underline{x}}(t / t)\) & state estimate (simultaneous) of \(\underline{x}\) \\
\hline \(\underline{y}\) & vector of output variables \\
\hline z & axial distance along reactor (normalised) \\
\hline \(\lambda_{\text {er }}\) & effective radial thermal conductivity, cal/ \(\mathrm{cm}^{\circ} \mathrm{K}\) s) \\
\hline \({ }^{\rho}\) B & bulk density of catalyst,g/cc \\
\hline \({ }^{\rho} \mathrm{g}\) & gas density, g/cc \\
\hline \(\Delta h_{i}\) & heat of reaction for reaction \(i, \mathrm{cal} / \mathrm{g}\) mole \\
\hline \(\varepsilon\) & void fraction, \(\mathrm{cm}^{3}\) gas in voids \(/ \mathrm{cm}^{3}\) empty reactor \\
\hline \(\nabla^{2}\) & Laplacian operator \\
\hline \[
{ }^{\beta}{ }_{i, j}
\] & derived collocation weichts \\
\hline \(\beta\) & parameter vector \\
\hline \(\triangle\) & prefix for deviation variable about steady state or operating point. example, \(\Delta C_{0}=C_{0}-C_{0}\) (steady state) \\
\hline \(\nabla^{\text {d }}\) & \(d^{\text {th }}\) difference operator \\
\hline \(\phi\) & mxm autoregressive matrix of parameters (5-19) \\
\hline \(\Sigma\) & mxm variance-covariance matrix of a \((\mathrm{t})(5-27)\) \\
\hline T \({ }^{(k)}\) & auto covariance matrix at lag \(k\) (\(5-28\)) \\
\hline \(r_{x}(0)\) & auto covarinace of \(x\) at lag 0 \\
\hline \(\lambda\) & generalised eigenvalue (\(5-38\)) \\
\hline \(\mu\) & generalised eigenvalue (\(5-39\)) \\
\hline 1 & ratio of gereralised variances (5-48) \\
\hline
\end{tabular}
```

x 2}2
\sigma}\quad\mathrm{ standard deviation
\infty
subscript infinity refers to steady steady value
denotes transpose of matrix or vector, e.g., a'(
denotes vector, e.g., N(t)
denotes estimate, e.g., }\hat{D}(\beta
denotes derivative with respect to time, e.g., }x\mathrm{ ; denotes
canonical variate, e.g., N

```

\section*{CHAPTER I}

\section*{OBJECTIVES OF THIS STUDY}

There are very few reported practical implementations of modern multivariable control theory to complex chemical processes. Most studies appear to be confined to systems such as distillation columns, evaporators, boilers, paper machines, etc., which are generally easily modelled. Applications to tubular reactors have been largely by-passed due to modelling complexities, particularly because these reactors often require partial differential equations to ardequately describe their dynanics. Indeed, to this author's knowledge, no experimental appications of mutithvariable control theory to these reactors have been published. Because of a lack of practical application stedies, a large gap exists between modern control theory and its use in the complex control problems of ten found in industry. The objective of this study is to narrow this gap, by developing and implemerting a multivariable stochastic control scheme on a pilot plant, nor-adiabatic, packed-bed catailytic reactor, A 100 order state space model suitable for on-line control of the reactor is developed. This model is then fitted to experimental dynanic data using a paranieter estimation method. Stochastic feedback controliers are derived from the fitted model and implemented on the reactor in a series of direct digital control (DCD) studies using a miniccmputer.
The reaction (hydnogenolysis of butane nyer a hickel cotalyst)
is a complex series-parallel type, involving several species and is highly exothermic. The equations describing the dynamics of the reactor are highly non-linear and represent a considerable challenge in developing a model suitable for control.

In Chapter 2, some of the overall gaps in the application of modern control theory to chemical processes are discussed with reference to leading workers in the field. A review of the present state of the art in the modelling of fixed bed reactors is given.

In Chapter 3, a mathematical model for the fixed bed reactor is developed. This forms the basis for the simpler models that are eventually used for on-line control.

In Chapter 4, the mathematical model is simplified in two stages. First, a high order state space model for simulation studies is developed, followed by a low order state space model, suitable for on-line DOC studies.

In Chapter 5, we discuss the problems of fitting this iow order state model to dynamic data, obtained from the reactor.

In Chapter 6, multivariable stochastic control algorithms are derived from the state model. These algorithms are implemented on the reactor in a series of control studies.

Chapter 7 discusses the significance of this work and possible extensions of it.

This study is intended to provide the ground work for a series of future application studies on the reactor with a viey to encourage the application of modern control theory to industrial recstow control probiens.

\section*{CHAPTER 2}

\section*{INTRODUCTION AND LITERATURE REVIEL}

\subsection*{2.1 Control of Chemical Processes}

Many workers in the area of process control readily acknowledge that there is a wide gap between the theory of process control and its application to the chemical industry. Some contend that the theoreticians are far ahead of those who apply the theories and it is simply a question of catching up.

Recently there have been some strong comments on the state of modern control theory. Two leading groups of workers in the field wore seiected for their especially enlightening remarks and their suggestions for new directions in modern control theory.
(1) Foss
(2) Weekman and Lee.

\section*{(1) Foss}

Foss (FB) in a critique of chemical process control theory presents a strong case against modern control theory and contends that it still has some rugged terrain to cover before it can be of some use in solving the complex controi problems often found in the chemical process industry.

Foss begins by emphasising the complex non-linear interactions present in a typical reachion systelif. Often it is not possible on
economical to measure all the relevant variables of the system and even if we could, all measurements vould be subject to random and systematic errors. The crucial step, Foss proposes, is the design of a control configuration. From our complex interacting system, we should determine what inputs should be manipulated, which variables should be measured and what connection should be made between these two sets of variables a difficult problem, which has been tackled almost wholly qualitatively in the past with heavy reliance on previously successful configurations.

Information needed for design of a control system concerns both static and dynamic characieristics of the systen. Some control systems have been designed using only static information; however, for rational design, dynamic characteristics are required. The problem occurs in the quantitative characterisation of chemical process dynamics. This is often extremely difficult and time consuming. It is also true that for the purposes of control, a detailed description of the dynamics is impractical and unnecessary and only the dominant dynamic characteristics need be included in process control models. What foss fails to emphasise though, is the fact that it is almost impossible, a priori, to decide what constitutes "dominant dynamics". Obviously we require the "bare bones" equations that constitute our simple model, but then we begin the process of adding terins to our model; terms which we feel describe or give rise to significant dynamic effects. Even for a particular process, there are no guidelines as to whether the inclusion of an extra dynamic effect (if this can be done without overly complicating the model) will, in fact, sionticantiy improve the quality of control.

In other words, the question: "can we imorove the ouality of control by improving our models?" remains unanswered.

Foss proceeds to discuss briefly the success (or lack of it) of various control theories in the process control industry. In spite of all the research effort put into militivariable control theory over the past decade or so, most processes today are still controlled by more or less isolated single loops and occasionally cascade loops even though the systems are inherently multivariable.

Single loop methods are nevertheless inadequate for the treatment of dynamically interacting multivariable systens. A theory of non interacting control (Gould (GI)) was proposed; it attempted to reduce the multivariable control problem to a set of single loop controls Here inputs are manipulated in such a way as to affect only one output at a time. This technique, borrowed from the aerospace literature has seen limited success. If the system under control is weakly interacting in nature (as in the control of an aircraft) then this technique has some success. However, most chemical processes are highly interactive and it is, in a sense, unnatural to force the control model to be noninteractives simply because it is difficult to design interactive contro? schemes. Rather than eliminating interaction, it should be exploited to achieve better control.

A method which does exploit interactions is the method of Modai Control introduced by Rosenbrock (RT) more than a decade ago. He proposed that the rate of response of the natural modes (eigenvectoreigenvalue pairs of the state matrix) could be controlled by chocsing
a suitable feedback gain matrix which, in effect, shifted the poles of the system. In theory, this idea can provide rapid and stable control but in practice, the ability to measure only a few of the states results in confounded estimates of modal dynamics causing the control to degenerate rapidiy.

The theory of optimal control, although it held many promises, led to many disappointments when it came to applying the techniques in industry. Engineers soon realised that the word "optimal" carried no global significance, and a performance index that is optimal for one process may be totally without merit for another. Hence, the choice of an "Objective Function" to be optimised is of the utmost importarce in the design of a controller. The widely used quadratic performance criterion was chosen primarily because it simplified the mathematics of the optimal control problem.

A more serious problem of this theory is that it assumes one has perfect knowledge of both the process mode? and its parameters, and that there is no "noise" in the system. This fact was sufficient to explain why so many computer control simulations work well, while the same control when implenented on the actual process has limited success.

There have been attempts to inciude noise in mathematical models and to take account of measurement errors and lack of measurement of all states through the use of Luenberger Observers and Kalman-Bucy state estitators and this will be discussed later.

Foss concludes by stating quite clearly that chemical engineers have been working on the wrong problems and only a dent has been made into the significant fundamental problems of chemical process control.

Foss enumerates some central problems to be solved:
(1) Theory for determination of a control system structure: what and how many variables should be measured, with how much accuracy; what inputs should be manipulated; how should the inputs be connected to the outputs?
(2) A practical way of formulating low order models of large multivariable systems.
(3) Parameter estimation in control models.
(4) Development of adaptive strategies to account for changing process variables.
(5) More meaningful formulation of control objective functions.
(6) The study of more comp?ex chemical systems and a break away from the past trend to confine studies to "text book" cases borrowed from the aerospace industry.

A few other areas of endeavour may be pinpointed:
(7) Studies concerning the ralation between complexity of a model and the quality of control that is derived from these nodels.
(8) Problems associated with applying present day multivariable control theory (which applies mainly to systems described by sets of ordinary differential equations) to systems describec by partial differential equations.

This last point, the author believes, was a great shortcoming when state space control theory was "borrowed" by chemical engineers from the aerospace industries, and then applied to chemical processes, which are often only adequately (even for the purposes of control) described by partial differential equations.

\section*{(2) Weekman and Lee}

Weekiman and Lee (LT), in a recent pubicication, present some boid statements conceming advanced control practice in the chemical process industry.

Firstly their topic is refreshing, in that their emphasis is on the control of reactors and this represents a break away from the emphasis on the control of distillation, evaporation, or adsorption columns so prevalent in the literature, Fisher (F9), Shinsky (S2).

Weekman (LT) agrees readily with the views expressed by Kestenbaum et al. (K1) and Foss (F8) on the shortcomings of advanced control theory; however, he goes a lot further by giving sone economic perspective to the type of problems being solved by academics versus the actual proclens that confront the practitioners in the petrociemical industries.

Wockman supports his arguments using an example of a catalytic cracking plant which includes a coupled reactor-regenerator system. The conventional control of this system had been arrived at by distilled experience of many years of operation. After a theoretical study by Kurihara (K3) using simple processes models, it, was demonstrated that the reactor could he well contmilled by controling the recenerator.

This novel scheme was later implemented and patented by Mobil Research. Weekmian points to the lack of good process models. He maintains though, that a complete and perfect model is not only impossible but not even necessary. He advocates the "Principle of Optimum Sloppiness" suggested by Prater: "Obtain a reasonably good model that accounts for major process variable effects and dominant dynamics". He does, however, strongly believe that the current state of the art in model building for the process industry has room for considerable improvement [Weekman (WI)]. Simplified models of complex processes are frequently inadequate and lead to erroneous process control design. This comment appears to address itself to one of the questions posed by the author while discussing Foss's (F8) critique above. Namely, does an improved process madel lead to better control?

Weekman presents some rather disturbing revelations (at least for the petroleum industry) concerning the economic incentives to process control which he divides into three categories:
(1) Major benefits result from moving the steady state operation to a better operating point.
(2) Additional benefits (but significantly less than (1) above) result from improving the tightness of regulatony control about a set point.
(3) Minor benefits obtained by controllers which concentrate on fast response to set point changes with minimum excursion from some change-over profile.

Although Weekman does not use the tern specifically, he implies that the petroleum industry has much more use for servo controllers than regulators. He continues to emphasise the need for better process models and this is understandable since during servo operation (start-up, shut-down or simply changing to new operating conditions) the process is operating over a wide range of conditions. This implies that any model which purports to describe the process must be valid over this same wide range.

Many complex processes are non-linear and for the application of most of modern control theory, models are usually linearised about a single operating point. Thus, their validity is restricted to within some area around this operating point. Any servo control schene woild therefore have to use the non-linear model for control design - a formidable theoretical problem for single variable control problems, let alone a multivariable servo control scheme. It is no wonder that most (if not all) start-ups and shut-downs are conducted manually in the process industry. The demands on a process model to cover such a wide range of operating conditions are for the moment very difficult to meet, nevertheless, this does point to the directions of greatest challenge.

Some of Heckman's remarks are, however, confined to the analysis of prob?ems typical of the oil industry where specifications on product compositions may not be as critical as in other industries.

In the polymer and paper making industries, there are well documented examp?es (Aström (A2)) where improved quality of regulatory' contro! has had a considerable effert on profitability. In these
processes, regulatory control is of primary importance. Other examples include any situation where operation close to a economic or safety constraint is required.

Heekman presents an interesting discussion on some difficulties of implementing a control scheme:
(1) The control scheme although designed for an isolated unit should take into account the rest of the plant as well.
(2) The control scheme should take into account the actions of a human operator and safety considerations, since it is unlikely that a control scheme will be completely automated.
(3) The control should have the ability to be gradually integrated invo the existing scheme and allow a smooth change from automatic to manual operation.

Weekman points to some new directions:
(1) Closer co-operation between the control theoreticians and process operators.
(2) Integration of the process design and process control configurations: Many control problems would be eliminated if proper design was carried out.
(3) A hioh priority for new techmiques to aid modelling for the control of chemical processes.
(4) A systenatic approach to difficulties encountered in implementation of advanced control to replace an existing control scheme.

\subsection*{2.2 Modelling of Fixed Eed reactors}

The chemical reactor, in particuiar, the fixed bed chemical reactor, represents one of the more complicated processes to model in chamical engineering. of course, uppemost in one's mind when deriving a model for a reactor (or any other process for that matter) must be the purpose for which the nodel is to be used. Here, the purpose is to develop a model satisfactory for use in on line regulatory control of the reacior. This necessitates large simplifications to the current reactor models that are proposed in the literature. Most of the literature on reactor modelling is based on the assumption that the model is to be used for simulation or design (most of these models are usually steady state also). As a result, the models tend to be soncuhat complex and in general, unsuitable for control. Nevertheless by examining the formulation of those complex models, one gains some insight into the important effects occurring in reactors and one is led to ideas for simplifying the models for the purposes of control.

\subsection*{2.2.1 Steady State Hodels}

Beek (B1) provides excellent insight into the factors surrounding a complex model of a packed bed reactor. He begins by laying out his assumptions which may be summarised as
(1) Properties of the packed bed are homogeneous and vary smoothly over the bed.
(2) Under conditions in comercial practice, axial diffusion tems in hat and mass tranfer are nogligible in comparison to bulk flow terms.
(3) Heat transfer at the wall may be lumped to express conditions at the wall as
\[
\frac{\partial T}{\partial r}=E i\left(T_{W}-T\right) \quad \text { at } r=1
\]
(4) Eddy diffusion is cominant as long as the Reynolds number is not too low.

Beek discusses some of the difficulties associated with estimation of transport properties in packed bed reactors. The essence of his observations may be sumarised as:
(1) The velocity profite in the radial direction is essentially flat except for a region close to the wall, where the profile can show a maximum.

(2) The Peclet number for radial mass diffusion, \(\mathrm{N}_{\mathrm{Pe}}^{\mathrm{m}, \mathrm{r}}\) is fairly constant at a value of 10 , especially for Reynolds numbers greater than 80.
(3) The effective thermal conductivity (\(\lambda_{\mathrm{er}}\)) is particularly difficult to estimate due to several maasurement difficulties. The behaviour of the reactor is very sensitive to this paraneter. Most correlations do not take into account a reaction system and apply only for reasonably large Reynoids numbers (> 40).
(4) The rate of heat transfer at thie wall as characterised by the Biot mumer bi, is verv difficut to estmate Correlations are hampered by the necessity of obtaining measurements
which rely on extropolation of temperature profiles to the wall.

Finally, Beek discusses by means of an example, the numerical solution of his two-dimensional partial differential equations. It should be emphasised that Beek's treatment applies to a steady state analysis only.

Fronent (FI) presents a comprehensive analysis and review of the field of fixed bed catalytic reactors. He classifies the current models in the literature into two basic types:
(a) Pseudo homogeneous models
(b) Heterogeneous models
where, in the heterogeneous models, the conditions of the solid are distinguished (and accounted for separately) from conditions in the fluid. Within each category, Froment considens steady state models of increasing complexity from a basic one-dimensional model, to a complex two-dimensional model which includes radial effects.

Froment (F2) addresses himself to the problems associated with the estimation of transport properties in fixed bed catalytic reactors. He notes that in spite of the complexity of the system, certain simplify ing statements can be made for practical applications, namely: (1) the effective radial diffusivity (\(D_{e r}\)) is relatively fixed by the observed fact that the radial mass Peclet number (\(N_{P_{m}}\)) for all practical purposes lies between 8 and 11. (2) in industrial applications, the axial heat conduction may be neglected compared to overall flow. Using an example of hydrocarbon oxidation, Froment looks at paramatric sensitivity and concludes that profiles
in the reactor are insensitive to the mass transfer parameters but extrenely sensitive to the heat transfer paraneters; so sensitive, in fact, that the degree of precision in measurements required for current correlations is seldom achieved, and thus any predictions based on these correlations may have large errors.

In a more recent article, Froment (F3) reviews current findings in the literature and provides comments on a series of still unanswered questions in the modelling of reactors:
(1) If axial dispersion of heat and mass transfer were to significantly influence reactor profiles, extreme variations of temperature and concentration would have to occur over a few centimeters within a catalyst bed - a situation urlikely to occur in industrial situations.
(2) Because of high velocities encountered in industrial situations, differencesbetween solid and gas temperatures have been found to be small \(<5^{\circ} \mathrm{C}\). He does however, coment that no studies are available for transient conditions and the effect may be more important here.
(3) The existence of non-isothermal catalyst particies is inlikely.
(4) The possibility of multiple steady states have been excluded from a number of industrial reactors.

Hlavacek. (HI) provides an excellent extension of Beek's (Bi) work and points out some of the persisting problems associated with parmeter estimates; especially for the heat transfer parametars. in particular, he comments that heat (and mass) transfer characteristics
are always obtained in the absence of chemical reaction and therefore correlations in the literature have limited validity when applied to reaction systems. Scatter in the prediction of heat transfer coefficients is still very high.

Hlavacek also considers some problems associated with the numerical integration of the reactor equations. He includes a discussion on non-linear least square estimation of kinetic and transport parameters where he taiks about problems of parametric sensitivity and problems associated with temperature and concentration measurements.

A comprehensive work on the subject of parametric sensitivity in fixed bed reactors is presented by Carberry (Cl). He studied the steady state behaviour of naphthalene oxidation and demonstrates the effect on predicted profiles of varying certain parameters in the reactor model. His main findings were that:
(1) The assumption of iso-thermal catalyst peliets is reasorable.
(2) Both radial and axial temperature profiles are sensitive to radial Peclet number for heat transfer \(\left(\mathbb{N}_{\mathrm{Pe}_{h_{,}}}\right)\)when it is varied within expected limits.
(3) Conversely, conversion and yield of product predicted by the model is insensitive to values of radial mass peclet number (ifeem).
(4) Both conversion and temperature profiles are drastically altered by relatively small variations in wall heat transfer coefficient, and coolant temperature. This fact will cause considerabie dificolty when trying to match model predictions to actual data.

Indeed, Carberry cautions against too much confidence in situlation studies due to problems of parameter estimation and sensitivity.

Butt and Weekman (B2) present a review of procedures for testing the relative effects of various transport phenomena occurring in heterogeneous packed bed systems. They divide these criteria into three groups, namely: Intraparticle effects, Interphase effects and Intrareactor effects.

Most (if not all) the criteria appear to apply to steady state effects and are limited to single reaction systems of a specific order. Also certain criteria require the estimation of parameters which thenselves are hard to come by, thus causing them to be of limited useful.ness.

\subsection*{2.2.2 Dynamic Models}

All the above literature is concerned with steady state analysis and nodelling of chemical reactors. There are a limited number of studies concerned with transient effects in packed tubular reactors. All the transient studies seen by the author neglect radial gradients. Inclusion of both axial and radial gradients for temperature and composition in a transient system would give rise to a set of three-dimensional particl differential equations which presents a very difficult computational problem.

In an interesting paper, Sinai and Foss (S1) consider an adiabatic packed bed reactor in which a non catalysed reaction occurs in the liquid phase of a solid liquid system. In their system, the
thermal and concentration wave velocities are of the same order of magnitude.

They vary the concentration and temperature inputs in a sinusoidal manner in such a way as to produce interference patterns between the concentration and thermal waves, producing constructive and destructive wave patterns which significantly influence the profiles within the reactors. This phenomena is probably limited to liquidsolid systems where the concentration and temperature wave velocities are of the same order of magnitude. In their paper the ratio of concentration to temperature wave velocity is about 0.5 .

These phenomena are not expected to occur in reactors considered in the present work, where the wave velocity ratio is of the order of 1000.

Crider and Foss (C2) attempt to isolate the important factors affecting the dynamics of packed bed reactors. They conclude that the phenomena most important in transient studies are
(1) Thermal capacity of the packing which slows down the temperature wave.
(2) Resistance to heat flow between solid and fluid.
(3) Coupling of temperature and concentration effects due to reaction.

Unfortunately, ail aspects of their results cannot be generalized to other systems in that they specifically studied a non catalytic liquidsolid system with small radial gradients, which they neglect in their analyois.

Crider and Foss (C3) use this same reactor under adiabatic conditions, where, by ignoring radial gradients and axial and radial diffusion, they obtain an analytical solution for a single first order reaction system.

Ferguson and Finiayson (F10) make an attempt to analyse the validity of the quasi steady state assumption often used in modeling dynamics of fixed bed reactors. By a judicious survey of models in the literature, they arrive at a set of criteria which they recommend to be used to test the validity of the quasi-steady state approximation. [The quasisstatic approximation used for a gas-solid reactor system, may be described as follows: The response of the concentration profiles to say, a step input in fiow, is very rapid. The temperature profiles respond much more slowly and their dynamics persist long after the rapid concentration dynamics have ended. The essential dynamics of the system thus appear to be governed by a slowly changing temperature profile coupled with concentration profiles which are always at steady state with these temperature profiles. Thus the concentration dynamics are ignored in comparison with the more enduring temperature dynamics]. An important criterion for fixed bed reactors, is the ratio of the heat to the mass veve volocities. Hansen (H2, H3) uses this ratio as a basis for neglecting the mass accumulation term.

They quote examples in the literature which show that the extra computationai effort involved in solving the full dynamic equations (quasi-steady state not assumed) is anywhere between 60 to 100 times greater. This is due mamly to the fact that when the ratio of wave
veiocities are very different from unity (\(\sim 1400\), in this study), the resulting differential equations are very stiff, thus requiring small time steps when being integrated.

\subsection*{2.2.3 Orthogonal Collocation in Chemical Reactor Theory}

Since some of the original papers on orthogonal collocation applications to boundary value problems were published [Villadsen (V1)], there has been a tremendous interest in the application of collocation methods to the modelling of chemical reactors. One of the drawbacks of the complex reactor models being formulated today is the often intractable computational problems that result. The ability of collocation methods to provide workable approxinate solutions to complex partial differential equations is seen as a great advantage by many workers.

Finlayson (F4) uses collocation to solve a set of partial differential equations (PDE's) describing radial temperature and concentration gradients in a reactor. He also shows how collocation may be used to express the PDE's as an approximate lumped set of ordinary differential equations. He shows how the equivalent lumped modei is quite adequate for small Biot numbers (<3.5). Larger Biot numbers imply that most of the resistance to heat transfer is in the bed itself (as opposed to being lumped at the wall) and a distributed nodel is required to adequately describe radial variations. This in turn, implies that higher order collocation approximations are required.

Finlayson (F5) presents a comprehensive sumary of the applicacion of collocation to chemical reaction engineering. This excelleat
work first presents a summary of the general features of the method of collocation and then applies these techriques to a sulphur dioxide oxidation reactor and an anmonia reactor with counter-current cooling. Included in this paper is a detailed analysis of the importance of varicus transport phenomena effects in the modelling of packed tad reactors. The following is a summary of his analysis:
(1) The importance of Radial Dispersion of heat can be evaluated in terms of the Biot number for heat transfer at the wall. For large Biot number dispersion effects are marked (uniess heat of reaction is very small).
(2) Axial Dispersion of heat is usually of relatively minor importance for fast flow reactors with small catalyst. particles.

Finlayson uses Young and Finlayson's criterion (Vi) to determine whether axial dispersion of heat may be neglected. Mears (MI) criticises this criterion, pointing out that its derivation does not take into account radial temperature gradients.
(3) Finlayson quotes Mears \({ }^{2}\) criteria (see Butt (B2)) for deciding whether the assumption of equal solid and fluid temperatures is reasonable. He criticises the criterion because it is based on reactor inlet conditions and instead suggests using an effectiveness factor obtained by solving the full set of reactor equations. The effectiveness factor, \(n\), is defined as
\[
\left.n=\frac{R(s o l i d)}{R(f i t h}\right)
\]
where \(R\) is the rate of reaction. \(n\) should be between \(0.9<r_{1}<1.1\) to justify neglecting any temperature differences between solid and fluid. In practice, it would only be practical to compute \(n\) for simple systems.
(4) Internal resistance in catalysi pellet: If rate of diffusion is slow, significant concentration gradients can exist in the catalyst particle.

Ferguson (F6) uses collocation to reduce the computational burden for solving the transient equations that account for the diffus.. ion of mass and energy within catalyst particles.

In his book, Finlayson (F7) devotes an entire chapter to the application of collocation to chemical reactors. Hansen (H2) uses collocation to integrate the transient equations of a packed bed gassolid catalytic reactor. He considers a single reaction, no radial gradients and makes the quasi-steady state approximation only after the first 3 seconds. This allows him to integrate the initial concentration dynamics for the first 3 seconds using the full equations, after which time the slower temperature dynamics are integrated, using quasisteady state equations.

A sumary of the basic theory of orthogonal collocation is given in Appendix 2.

\subsection*{2.3 Process Reactor Control Studies}

Control of present day reactors in the process industry appears to be still somewhat of an art [Lee (LI)], except perhaps for control studies on simple CSTR or batch reactors [Marroquin (M3)]. Multivariable control of plug flow reactors, however, appears to be confined to the literature as an academic excercise, [Dyring (D1), Seinfeld (S3), Chang (c4)] and the literature is extremely sparse when it comes to application of control techniques to actual processes or pilot piant reactors. An interesting paper, far ahead of its time [Tinkler (Tl) (1965)] recognised this gap when it attempted to use frequency donain techniques to develop a feed-forward control algorithm for an actual fixed bed chemical reactor.

Multivariable control studies in the chemical engineering litm erature have concentrated almosi entirely on distiliation columas, adsorbers and evaporators (F9, S2). The lack of control studies on the fixed bed reactor appears to be directly attributable to modelling complexities. The processes described above (distillation, etc.) are often quite adequately described by sets of ordinary differential equations and hence are amenable to relatively direct application of state space control theory. Many fixed bed reactors, in particular, the catalytic fixed bed reactor considered in this study, require a set of partial differential equations (PDE's) to fully describe their complex dymamics. The first problem then consists of representing this set of PDE's by a set of ordinary differential equations (often linearised) so that the multivariable state space control and estimation theory
may be applied. This is not a trivial task.
A first attempt at this problem was made by Foss and his associates [Michelsen, et al. (M2)]. Foss considered an example of a fixed bed adiabatic reactor in which an exothermic non-catalytic reaction occurs in a liquid phase. He considered a single, first order reaction and neglected radial gradients in temperature and concentration, as well as axial diffusion, and intra particle resistances. He also found it necessary to account for differences between temperatures in the liquid phase and solid phase to adequately describe the dynamics (C2).

The system of hyperbolic PDE's describing Foss's system is conveniently transformed to characteristic time and the method of orthogonal Collocation [F4, F5, F6, F7, V1] is effectively used to approximate the PDE's by a small set of ordinary differential equations.

Foss's system included an extra dynamic equation for the particle temperature. By using a single characteristic (the other characteristic direction coinciding with one of the original co-ordinate axes), he was able to rewrite all his equations in terms of characteristic time \(\tau\) and true distance \(z\). Derivatives with respect to characteristic time appeared only in the single equation describing particle temperature. This, in effect, eliminated the explicit time dependence of the remaining equations and since the size of state space model is a function only of the number of equations with explicit time derivates, the model size was considerably reduced. Problems may occur when the state space equations are witten in terms of characteristic time r (a function of
\(z\) too) instead of real tine, \(t\), when real time measurements are matched to a characteristic time model. With a single characteristic, one can circumvent this problem but it remains an inconvenience. In general though, for hyperbolic systems, one has two characteristics and then there is no simple procedure for matching either the boundary conditions or the measurements (in \(z\) and \(t\)) to characteristic time and distance in the model. Also, since characteristic distance, say \(x\), is a function of time as well, it is unbounded and the question of using the orthogonal collocation formulae (which are based on normalised, hence bounded variables) is in doubt. In the Section 4.4. it is seen that by the "elimination" of the radial derivative terms among the partial derivatives, we obtain an equivalent set of hyperbolic equations with two characteristics and we are thus unable to take advantage of Foss's method (M2). The availability of the aralytical solution for the transfer function of his system allows Foss to test out the accuracy of the approximation by examining the ability of the approximate system to correctly predict the position of the dominant zeroes of the system (those close to, and in, the positive half plane of the frequency domain). He uses six collocation points co obtain a satisfactory representation of his reactor profiles, but comments that though in theory, an increase in the number of collocation points will increase accuracy. the resulting equations are prone to numerical ill-conditioning. He shows how the accuracy of the collocation approximation depends on the specific dynamics of the particular process. In Foss'sreactor for examie, if the perameter associated with heat cransfer between liquid
and solid is increased, a large increase occurs in the numbers of collocation points necessary for an adequate approximation of the reactor dynamics. In this paper then, foss develops an effective method for representing fixed bed reactor dymanics in a state space form (that is, in a set of linearised ordinary differential cquations).

In a following paper, Foss and his associates [Vakil et al. (V2)] use this state space model to investigate the design of a feed forward control scheme for their fixed bed reactor. The control design is carried out through simulation of the reactor and various conifgurations are evaluated numerically. Due to the problems associated with concentration measurements, the system was assumed to have temperature measurements only, and concentration measurements are inferred from these through a model. The reactor simulation system is subjected io random feed disturbonces in temperature and concentration and random measurement error was added. The manipulated variables consist of a concentration or temperature "injection" (using a secondary feed of different temperature) at some point a along the length of the reactor.

From the simulations, Foss concludes that temperature injection is the preferred manipulated variable and he compares this with the variance of the controlled variable using concentration injection as a manipulated variable. It is not clear why he does not consider the simultaneous manipulation of concentration and temperature for the
control of this multivariable system. For this study, the temperature measurements are restricted to the first section of the reactor (below injection point) and the objective is to maintain the reactor operating as close to steady state as possible. Foss makes use of a Kalman filter (to be discussed later) to estimate the states of his system. Under his measurement configuration, he found that state estimation became a severe problem and the level of his noise input (which is genorated) had to be lovered considerabiy, before the state estimation routine could produce maningful results. He concludes that measurements along the full length of the reactor are necessery.

An all too common finding in this paper, is that, when the sophisticated multivariable stochastic controller was compared to a firstorder transfer function form of controller, the performance index of the simple controller was only \(1 \%\) higher than that of the optimal stochastic: controller.

Foss points to possible extensions of this work and they include investigation of:
(1) Gas solid systems where fluid residence time is small compared to thermal wave transit time.
(2) Complex reaction systems.
(3) Catalytic reactions.
(4) Non-adiabatic reactors.
(5) Use of wall heat flux and reactant flow rate as manipulated variables.

The present study attonpts to investigato all of the above problems.

\section*{CHAPTER 3}

\section*{A MATHEMATICAL MODEL FOR THE FIXED BED REACTOR}

\section*{3.1 introduction}

We require a process control model of the reactor, suitable for on-1ine process control studies (see Sections 2.1 and 2.2). In Chapter 3, the mass and energy equations for the reactor are developed. This leads to a set of four coupled partial differential equations in three dimensions. These equations are far too complex to be lised as a procass control model, but nevertheless form the starting point for a series of simplifications (see Chapter 4) which reduces the soutions to a form suitable for process controi.

\subsection*{3.2 Process Description}

The reaction considered here is the hydrogenolysis of butane. The reaction is carried out over a nickel on silica gel catalyst in a fixed bed, non-adiabatic tubular reactor. The process flow sheets are presented in figures \(i\) and 2. The reactor consists of a \(\operatorname{single} 2.045 \mathrm{~cm}\) radius tube, \(28^{\circ} \mathrm{cm}\) long, packed with finely divided (average dianeter of particle is 0.1 cm) catalyst particles. The flow rates of the two feed streams, hydrogen and butane, are controlled using a minicomputar. These feed stream flows are to be manipulated according to an algorithm, so as to maintain control of the exit concentrations. In the absence of control, these concentrations wuld deviate from target due
to internal or external disturbances (e.g., catalyst activity fluctuations or wall temperature fluctuations) of a stochastic or deterministic nature. The inlet gases are preheated to wall temperature by passing through a tube filled with silica gel particles, heated by an electrical resistance heater. The wail temperature of the reactor tube is controlled by flowing counter-currently, heat transfer oil (Sun 0il, No. 21) through the annulus of a cooling jacket. This heat transfer oil is continuously circulated by a Sihi (Model ZLLE 4017/1550) centrifugal pump equipped with high temperature gland and gasket materials. Heating of the oil is provided by up to 5 electrical resistance heaters with an overall rating of about 5.8 kW . The reactor wall temperature is equal to the oil temperature and for all practical purposes, indepen \(\cdots\) dent of length along the reactor. Oil temperature is controlled by heat exchange with air at 100 psig, Oil flows through the tuba side of an American Standard (Model 200-8) singie pass, heat exchanger. The control algorithm for air flow is a simple on-off type, and air flow to the shell side is computer controlled by a solenoid valve (ASCO Model 8210 D2).

Nine chermocouples (chronei-alumel) are positioned iaside the reactor at equispaced points along the central axis. Several offcentre thermocouples are provided as well.

Two further thermocoyples (chromel-alunel) are provided:
One located in the gas preheat reactor entrance region and the other in the exit gas stream.

Tempergtures of all other relevant pocess variabies are monitored
as indicated (See Figures 1 and 2).
Exit concentration measurements are obtained using an on-line process gas chromatograph (Beckman, Model 6700). Pressure in the reactor is usually set between 1 to 2 atmospheres and pressure drop experienced by the gases flowing through the reactor is less than 0.2 a tmospheres.

All data coliection and process control is accomplished using a Data General 32 K Nova 2/10 minicomputer to which the reactor process has been interfaced. A Control Software Package [Tremblay (T5)] handles all the data logging arid control implementation for the system. A control configuration layout is presented in Figure 3.

For details of the reactor design, control software packace and process computer interfacing, the reader is referred to [Trentiay (T4)]. He designed and built the pilot plant reactor and interfaced it to the minicomputer, thus opening the possibilities of several future combined experimental and theoretical studies of which this work in conjunction with Tremblay's is the first.

\subsection*{3.2.1 Process Control Configuration}

The necessity of setting up a sensible control configuration was elaborated on by Foss (F3) as discussed in Section 2.1. Every control configuration is specific to one's application and a good starting point is to compile a list of all possibie manipulated or controi variabies and a list of possibie response or measured variabies:

\section*{Possible Manipulated Variables}
(1) Hydrogen flow.
(2) Butane flow.
(3) 0 il coolant or wall temperature.
(4) Inlet gas temperature.

\section*{Possible Measured Variables}
(1) Temperature measurements along the central axis of the reactor.
(2) Exit concentraiions of the various species.

\section*{The Objective Function}

In the present study, a realistic objective is to maintain the selectivity of a product, say, propane (defined here as the change in the number of moles of the product, relative to the amount of the key reactant (butane) used up), or conversions of several of the products at some prespecified levei. This level is chosen arbitrarily here, but would be based on economic considerations in an industrial situation.

In this study, the manipulated variahles were selected as the butane flow and hydrogen flow. These have an advantage over the other variables in that the systefi responds extrenciy rapidiy to any changes in these flows, due to the rapid concentration wave velocity. Flow control is also easy to implement and not costly. Wall temperature is often used in industry as a control variobie. However, in the
present study, use of this variable for control is complicated by the faci that it has non-linear dymamics of its own, due to the configuration of the cooling system (the oil can be cooled rapidly but heating can take several minutes). The cooling does have a large effect on the reaction and at present, the wall temperature is befry used as a safety variable for rapid quenching of the reaction in case of temperature runaway. The inlet gas temperature control would involve extra equipment and it has not been pursued.

Temperature measurements are more easily obtained from our process than concentration measurements and in general, this is always true. Nevertheless, a realistic objective function is expressed in terms of concentrations. Ideally then, we would prefer to measure temperatures and control concentrations. We require, however, a mode? which relates temperature to concentration and this is developed in Section 4.10.1.

Concentration measurements can be obtained using the process gas chromatograph (see Section 3.2). The chromatographic analysis used in this study required 361.3 seconds to produce concentration measurew ments of all 5 species. A fairiy crude mechanical muitiplexer (see Section 5.1) allowd new temperature readings to be obtanod every 12 seconds (an electrontc multiplexer would allow almost instantaneous temperature readings).

This study will rely primarily on temperature measurements and will use concontration measurenents to check and correct for any concentration level bias found in the modet.

Figure 1: Process Flow Sheet for Reactor - Gas Flow System.

Figure 2: Process Flow Sheet for Reactor - Dil Flow System.

Figure 3: Reactor Control Configuration.

\subsection*{3.3 Reaction Kinetics}

The butane hydrogenolysis reaction has been studied previously by Orlikas [01, 02] and Shaw [S4, S5]. It is a highly exothermic seriesparallel reaction that is catalysed by nickel.

A representation of the overall reaction mechanism is prosented in Figure AT. The mechanism is based on the assumptions that:
(1) Butane and propane are adsorbed on the catalyst surface before a reaction takes place.
(2) The reaction products from these reactions may react further or be desorbed.
(3) Because of the low probability of breaking, two or three carbon bonds simultaneously, reactions converting butare or propane directily to methane are assumed not to occur.

The hydrogenolysis reactions may then be represented by the following four (three independent) reactions:
(1) \(\mathrm{C}_{4} \mathrm{H}_{10}+\mathrm{H}_{2} \rightarrow \mathrm{C}_{3} \mathrm{H}_{8}+\mathrm{CH}_{4}\)
(2) \(\mathrm{C}_{4} \mathrm{H}_{10}+\mathrm{H}_{2} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{6}\)
(3) \(\mathrm{C}_{3} \mathrm{H}_{8}+\mathrm{H}_{2}+\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{CH}_{4}\)
(1) \(\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{H}_{2} \rightarrow 2 \mathrm{CH}_{4}\)

The reaction rate models associated with these reactions are given in Appendix 1.

\subsection*{3.4 Reactor Model Equations}

An extensive analysis of the problems associated with the modelling of fixed bed reactors has been presented in Section 2.2. A discussion of the various assumptions surrounding the reactor model developed here will be presented. The reader is referred to the references enumerated and discussed in Section 2.2 to supplement this section.

In the present study, we are dealing with a non-adiabatic, fixed bed catalytic reactor. The reaction is the nickel catalysed hydrogenolysis of butane. Mass balances for the three independent species (see Section 3.3) as well as a single energy balance are required. Certain assumptions which are necessary for the development of a process control reactor model are discussed under several headings.

\section*{Catalyst Particle}

In this reactor we have the rapid flow of gases over soild, porous, catalyst particles. The catalyst is prepared on silica gel porous particles [Tremblay (T2)]. The reaction is highiy exothermic and occurs on and within the small, (average dianeter 0.1 cm) approximately spherical catalyst particles. This reaction scherme has been studied by orlikas (01) and Shaw (SA). They detormined that there are no interperticle or intraparticle mass transfe: Imitations.

They also concluded that the effect of pore diffusion on intraparticle concentration profiles is minor and hences that concentration within the catalyst particle is uniform [Levenspiel, (L2)].
under most conditions encountered industrially, catalyct particies
remain nearly isothermal [F1, F3, C1] even for exothermic reactions. This is especially true for the small (0.1 cm diam) catalyst particles considered here. Shaw, in his thesis (S4) provided evidence that this assumption is valid.

The presence of uniform concentration and temperature profiles within the catalysit make the probability of multiple steady states within the particle small. Industrially, this is of ten the case (F1, F3) and a. unique steady state will be assumed here.

In situations where it is not possible to assume uniform catalyst particie profiles, the resulting complications to the model would make it unusable for control; another approach to the problem would have to de sought. We assume that the packed bed may be treated as a continum in so far as changes occur continuously and smoothly throughout the bed. The ratio of bed diameter to catalyst diancter is about 200 and under these conditions (Hlavacek (HI)) this assumption is valid.

\section*{Gas Phase}
(1) The reactor operates at low pressure and we assune the cases obey the ideal gas law.
(2) There is a minor pressure drop across the reactor (Section 3.2) and because the reaction is equimolar, we assume (provided temperature rise is not too excessive) that the yas fiow may be represented as a movement of a plug down the reactor with constant average velocity, independent of radial position [(P1), see also Beek (B1)].
(3) Axial diffusion of mass and temperature has been neqlected
in comparison with bulk flow or convective terms [81, 54, 01, F3]. Shaw (S4) presents an analysis which shows that mass diffusion can certainly be neglected. There is recent evidence [M1, F3] that some error may result if temperature diffusion terms are neglected. No evidence is presented to suggest that this term would sigrificantly alter the major dynamic effects within the reactor. Furthermore, by examining the criteria [M1, F3, see also Section 2.2.3] the effect of axial dispersion is mirimal for fast flowing gases over small catalyst particles. The reactor here operates under these conditions and we neglect both heat and mass diffusion terms. From a control pcint of view, this assumption is mandatory since inclusion of these terms, apart from making the equations computationally unfeasible would force us to deal with
(a) multiple steady states in gas phase,
(b) solution of a two point boundary value problem, both of which clearly could not be considered for a control model.
(a) For fast flowing gas-solid systems such as the one considered here, the difference between gas and solid catalyst temperatures may be considered regligible. Industrial experience appears to support this [F3, G1] and criteria in the literature for testing the validity of this assumption are not reliatle (soe section 2.2.3;. Hence, it appears at this stage,
to be safer to rely on reports and experience gathered from industrial situations [F3, G1]. Shaw (S4) presents an analysis to show that there is ample driving force to remove the heat generated by reaction and that essentially no temperature difference existed between catalyst pellet and gas at steady state.

From a control point of view, there is a further problem of measurement. Although theoretically, it is possible to measure separately the gas and solid temperature, in practice it is difficult. In cases where catalyst particles are sufficiently large, some workers have tried embedaing the thermocouple inside the particle. To measure gas temperature only, the thermocouple may be surrounded by a meshed cage. These practices can seriously disrupt flow patterns and are not common industrial practice. There s also the question of measurenent error. The difference between gas and solid temperature (\(<5^{\circ} \mathrm{K}\)) is of the order of error associated with the thermocouple (see Section 5.1.1).

\section*{Heat Radiation Between Sulid and Gas}

Heat transfer by radiation from the solid catalyst to the gas can have a significant effect on the temperature dynamics in the reactor, especially at the high temperatures attainable by highly exothermic catalysed reactions. According to Hlavacek (HT), heat transfer by radiation need only be considered for operating temperature in excess of \(673^{\circ} \mathrm{K}\left(400^{\circ} \mathrm{C}\right)\) and since our operating temperatures should remân between \(520.570^{\circ} \mathrm{K}\), radiation should rat be excessive. However, if radiation becane significant, it would have the effect of eriarging
the corvective heat transfer parameter [see Equations (3-3) and (3-4) below] and hence, this parameter should properly be considered to be an overall heat transfer coefficient. Beek (BT) also inciudes a radiation term in his correlation for effective radial conductivity \(\lambda_{\mathrm{er}}\) - this procedure is used in Section 5.3.1 under paranteter estinidtion.

\section*{Radial Gradients}

In this reactor, extensive cooiing is provided at the reactor wall to ensure that temperature runaways can be prevented. This cooling can cause steep radial gradients and temperature drops of up to \(100^{\circ} \mathrm{F}\) have been observed across the radius (2 cm) of the reactor [Tremblay (T2), this stucy].

Radial gradients are almost alkays ignored in any unsteady state analysis of reactor systems, partly because of the resulting complications to the model. In any industrial situation where wall cooling is required for safety or control, radial gradients will exist. No-where, to our knowledge, has an attempt been made to include these gradients in any cymamic model, and the majority of dymanic studies avoid systems which exhibit appreciable radial gradients. Our reactor unavoidably, has significant radiai gradients and these are accounted for in the mocel.

\section*{The Reactor Model}

For clarity, we first distinguish between the gas temperature \(T_{g}\) and the solid temperature, \(T_{s}\). This allows us to write tho energy balances along with the mass balances for each of the three independent species. The following normalised equations result:

> Mass Balance
\[
\begin{equation*}
\frac{-G_{0}}{\varepsilon L} \frac{\partial C^{i}}{\partial z}+\frac{D_{C r}}{\varepsilon R^{2} r} \frac{\partial}{\partial r}\left(r \frac{\partial C^{i}}{\partial r}\right)-\frac{\rho_{B} R^{i}}{\varepsilon}=\frac{\partial C^{i}}{\partial t} \tag{3-2}
\end{equation*}
\]
where \(i=1,2,3\) is the component number.

\section*{Energy Balance: Gas}
\[
\begin{equation*}
\frac{-G_{0} C_{P_{g}} g}{L} \frac{\partial T_{g}}{\partial Z}+\frac{\lambda_{e r}}{R^{2}} \frac{\partial}{\partial r}\left(r \frac{\partial T_{g}}{\partial r}\right)+\operatorname{hap}_{B}\left(T_{S}-T_{g}\right)=C_{P} \rho_{g} \varepsilon \frac{\partial T_{g}}{\partial t} \tag{3-3}
\end{equation*}
\]

\section*{Energy' Balance: Solid}
\[
\begin{equation*}
-\operatorname{hap}_{B}\left(T_{s}-T_{g}\right)+\sum_{i=1}^{3} \Delta h_{i} R_{i}\left(T_{s}\right) \rho_{B}=C_{P_{s}} \rho_{B} \frac{\partial T_{s}}{\partial t} \tag{3-4}
\end{equation*}
\]

Ne may combine the two energy balances by eliminating the tern between them which describes heat transfer between solid and gas, hap \({ }_{p}\left(T_{s}-T_{g}\right)\). If we then make the assumption of equal solid and gas temperatures and we designate the homogeneous gas/solid temperature as \(T\), Equations (3-3) and (3-4) become

\section*{Energy Balance: Solidigas}
\[
\begin{equation*}
\frac{-G_{0} C_{P_{g}} g_{g}}{1 . \bar{C}} \frac{\partial T}{\partial Z}+\frac{\lambda_{e r}}{R^{2} C_{r}} \frac{\partial}{\partial r}\left(r \frac{\partial T}{\partial r}\right)+\frac{\sum_{i}^{3} \Delta h_{i} R_{i} \rho_{B}}{\bar{C}}=\frac{\partial T}{\partial t} \tag{3-5}
\end{equation*}
\]
where
\[
\begin{equation*}
\bar{c}=\left[C_{P_{S}} \rho_{B}+c_{P_{g} P_{g}}\right] \tag{3-6}
\end{equation*}
\]
is a gas/solid heot capacity term and T represents a homogeneous gas; solic temperature.

Boundany Sorditions
\[
\begin{gather*}
r=0 \quad \frac{\partial C^{i}}{\partial r}=\frac{\partial T}{\partial r}=0 \text { (Symetry) } \\
r=1 \quad \frac{\partial C^{i}}{\partial r^{i}}=0 ; \frac{\partial T}{\partial r^{2}}=B_{i}\left(T_{W}-T\right) \tag{3-7}\\
z=0 \quad T=T_{W} \text { for all } r \\
 \tag{3-8}\\
C^{i}=C^{i}(\text { inlet }) \text { for all } r, i=1,2,3 \\
t=0 \quad T=T(\text { initial) }(r, z) \tag{3-9}\\
\\
\quad C^{i}=C_{i}^{i}(\text { initial) }(r, z) ;=i, 2,3
\end{gather*}
\]

The expressions for the rate equations \(R^{i}\) are given in Appendix 1. We can also identify [G1], the thermal \(\left(v_{T}\right)\) and concentration \(\left(v_{C}\right)\) wave velocities as
\[
\begin{align*}
& v_{T}=\frac{G_{0} C_{P_{g}{ }_{g}}}{L \bar{C}} \tag{3-10}\\
& v_{C}=\frac{G_{0}}{\varepsilon L} . \tag{3-11}
\end{align*}
\]

Equations (3-2) and (3-5), represent four coupled, three-dimensionat, non-Tinear partial differential equations. In their present form, a. solution (even numerically) is not feasible and we thus have to seek some approximation to these equations that will recuce then to a fom: sultable for use for on-1ine control. The method of Orthogonal collocation (discussed in Chapter 4 and Appendix 2) is used.

\section*{CHAPTER 4}

STATE SPACE REACTOR MODEL

\subsection*{4.1 Introduction}

In Section 3.4, we developed a set of partial differential equations which describe the dynamics of the concentration and temperature profiles in our fixed bed reactor. In this section, these equa. tions are broken down and simnlified so as to fit into the framework of modern multivariable control theory which most often requires a model for the process to be expressed as a set of linear(ised) first order ordinary differential equations in the (state space) form
\[
\begin{equation*}
\underline{\underline{x}}=A \underline{x}+B \underline{u} \tag{4.7}
\end{equation*}
\]
or using a discrete model, (\(t=\) sampling intervâ? \()\)
\[
\begin{equation*}
\underline{x}(t)=A x(t-1)+B u(t-1) \tag{4-2}
\end{equation*}
\]

There is also an output or measurement equation associated with the dynamic equation and it is uslally of the form
\[
\begin{equation*}
\underline{y}(t)=H \underline{x}(t) \tag{4-3}
\end{equation*}
\]
or more generaily,
\[
y(t)=H x(t)+C u(t-1)
\]

The set of variables contained in the \(x\) vector are known as the states. or internal variables of the system. \(\underline{u}\) is a vector of control variables. \(\underline{y}\) vector is a set of output or measured variables. Matrices \(A, B\), and \(H\) are constant or time-varying matrices of the system.

Once the dynamic equations for the system have been expressed in the standard form of Equation (4-1), that is, in state space form, much of the current multivariable control theory may be used to design one or more multivariable control schemes. When dealing with real processes, it will generally not be possible to describe the system exactly in tems of the deteministic state Equations (4-1) and (4-3) and one can account for noise in the system, modelling errors and measurement errors by identifying and by adding a stochastic noise term to these equations. This will be discussed later in Chapters 5 and 6 .

The first step then, is to express the set of non-linear partial differential Equations (3-2) and (3-5) in the state space form given by (4-7). Because we are going from partial differential equations (PDE's) to ondinary differential equations (ODE's) sone fom of discretisation of the spatial variables \(r\) and \(z\) is necessary, so as to produce an ODE in time at each grid point in the \(2, i r\) domain. In genera?, these equations will be non-linear (since the PDE's were nonlinear) and it is necessary to linearise about some operating profile in the \(z, r\) donain. This operating profile could be obtained first by solvine the steady state versions of the original pot's, or by choosing a profilo from nisterica! rocords. The discretisation problem appears to be relatively straightfomard, but this is not so as may be illustrated
by the following example. Assume that 5 grid points are adequate for discretising the radial direction \(r\), and 20 grid points for axiai direction z. This would define a mesh of 100 grid points. At each grid point we have four \(O D E\) 's in time, one for each of the three concentrations and une for the temperature. Hence, the total number of ordinary difforential equations necessary to describe our system would be 400 - this is much too large a model for control.

Also, any discretisation or lumping procedure in the axial direction would probably have to take into account the position of the hot spot (and discretise more finely here). This would mean that the discretisation would have to change for different operating conditions. This is a great disadvantage. The method of Orthogonal collocation has been very successfully applied to simplify reactor equations [ed, F5: F6, F7] and provides a powerfut method for transforming PDE's to ODE's. Some of the basic aspects of this theory are discussed in Appendix 2.

\subsection*{4.2 Chronological Development of the State Space Model}

At the onset of this work, very little experimental data was available for the reactor. An carlier version of this reactor had been built (Tremblay (Te)) and some limited steady state dato were available. Intially, in order to keep the development as general as possible, in the face of limited experience with this reactor, the number of simplifying assumptions and approximations was kept to a minimum. At first, collocation approximation was used only in the radial direction: \(r\), since the expected profiles in this direction were not severe and
low order approximations would be adequate. The reactor equations were quite general with no specific reference to the reaction emvenment. (catalytic gas/solid here). This led to a set of 140 ordinary differential equations, i.e., a state space model of order 140. Somewhat less than an order of 400 referred to in Section 4.1, but still roo large for cuntrul. A state space model reduction technique was developed to reduce the model order. We obtained an equivalent \(80^{\text {th }}\) order model whose dynamics, it was shown, closely matched the original \(140^{\text {th }}\) order model. Current techniques (see Section 4.6) for reducing state space model order were inadequate and no further reduction seemed possibie.

Several simulation studies were performed with this \(80^{\text {th }}\) order state model in order to develop an understanding of the dymamics of the reactor system. It was also possible, using the limited steady state data, to test out some of the collocation approximations used. This high order state model thus proved very useful as à preliminary simulation model to study the reactor system.

From further dynamic studies with this high order state model, it was soon realised, that for the time intervals of interest the quasi-steady state approxination for the concentration dynamics would be quite adequate. After making use of this assumption, our reactor model became more specific, but still described most gas/solid systems. A relatively low order collocation approximation (\(6^{\text {th }}\) order) was then introduced for the axial direction. There was not strong physical fustification that a \(6^{\text {th }}\) ordor approximation mould adequetely approximate all possible axiai profiles (even though Michelsen (M2) made this
approximation). Nevertheless, a collocation approximation to the axial derivative was easy to implement and is not tied to a grid structure based on a particular temperature profile, the way a usual discretisation or lumping method may be (see Section 4.1). A further motivation for using axial collocation is that the size of the state space model is greatly reduced and is equal to the order of the collocation approximation plus one (a \(7^{\text {th }}\) order model was obtained). Subsequent simulation studies with this \(7^{\text {th }}\) order model and somewhat higher orders (up to \(11^{\text {th }}\) order revealed that the dynamic features were still intact and that indeed, a low order state model for the reactor was feasibie. This ion order state model would be fitted to dynamic data when it became available and then used to develop an on-line control scheme for the reacio:.

It is advantageous to divide up Chapter 4 into two parts: Part A. which covers material presented in Sections 4.3 to 4.7 ; is concemed primarily with the development of the high order state models and represents a preliminary simulation study. Fart \(B\), presented in sections 4.8 to 4.11 , is concerned with the development of a low order state model suitable for process control. The reader, if he is familiar with the ideas of colfocation and interested primarily in control hay wish to skip Fart \(A\) and froceed directly with Part B, using Part A as a reference.

Part A: Preliminary Simulation Study and Development of a High Order State Space Model

\subsection*{4.3 Adaptation of Collocation Formulae to Reactor System}

Although collocation has been primarily used as a numerical tool to aid the integration of non-linear difforential equations, it will be used here as a method of approximating derivative terms in the partial differential equations (3-2) and (3-5). Reforming to the formulae developed in Appendix 2 for derivatives, \((A-20)\) and (A-21), it is easy to extond these fomulae to pantial derivatives by simply collocating with respect to a single independent variable. For exmple, the partial derivatives of temperature with respect to \(r\) at collocation point \(r_{i}\) is given by:
\[
\begin{array}{ll}
r=r_{i} & \frac{\partial T}{\partial r} \\
 \tag{4-5}\\
r=r_{i} & =\sum_{j=1}^{n+1} A_{i j}^{(n)} T_{j}(n)(z, t) \\
r & \frac{\partial}{\partial r}\left(r \frac{\partial T}{\partial r}^{(n)}\right)=\sum_{j=1}^{n+1} B_{i j}^{(n)} T_{j}^{(n)}(z, t)
\end{array}
\]
where \(T_{j}(z, t)\) is written for \(T\left(r_{j}, z, t\right)\), a function of \(z\) and \(t\). Villadsen (V1) and Finlayson (F7) have tabulated values for the collocation weights \(A_{i j}(n)\) and \(B_{i j}{ }^{(n)}\).

\subsection*{4.4 Radial Collocation}

The order of collocation approximation (n) in (4-4) and (4-5) necessary to approximete a fonction is not knom beforehand and remains
very much a matter of judgement. Experimental measurements [Tremblay (T2)] and an examination of typical temperature and concentration radial profiles in the literature [Finlayson (FA)] indicate that often, radial gradients in temperature may be well represented by a quadratic and the corresponding radial concentration profiles by a quartic (see iater).

For the symmetric radial profiles in the reactor, a suitable triâl function (see (A-19)) is given by (VI)
\[
\begin{equation*}
T^{(n)}(r, z, t)=T(1, z, t)+\left(1-r^{2}\right) \sum_{k=0}^{n-1} \partial_{k}^{(n)}(z, t) P_{k}\left(r^{2}\right) \tag{4-6}
\end{equation*}
\]
where the \(a_{k}{ }^{(n)}\) are unknown coefficients and \(P_{k}\) are Jacobi polynomials.

\subsection*{4.4.1 Application to Reactor Differentiol Equations}

The technique involved here is to write the three-dimensional differential equations as an enlarged set of two-dinansional equations at the collocation points in \(r\). We then make extensive use of the boundary conditions to demive relations between the dependent variables at the collocation points and hence eliminate sone of them, reducing in turn, the number of equations.

As illustrated in Figure 3, the axial temperature profile of the reactor is measured by a set of themocouples located along the reactor bed centre (\(r=0\)). These axial temperatures provide sone indication of the overall behaviour of the reactor.

\section*{Temperature Equation}

At \(r=0\), the energy balance equation (3-5) becomes:
\[
\begin{equation*}
\cdots v_{T} \frac{\partial T}{\partial Z}+\frac{\lambda_{0}}{\partial Z}\left[\frac{1}{R^{2} \bar{C}}\left[\frac{\partial}{r} \frac{\partial}{\partial r}\left(r \frac{\partial T}{\partial r}\right)\right]_{0}+\left.\frac{\sum_{i=1}^{3} \Delta h_{i} R_{i} \rho_{B}}{\bar{C}}\right|_{0}=\frac{\partial T_{0}}{\partial t}\right. \tag{4-7}
\end{equation*}
\]
using L'Hopital's Rule
\[
\begin{equation*}
\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial T}{\partial r}\right)\right]_{0}=\left[2 \frac{\partial^{2} T}{\partial r^{2}}\right]_{0} \tag{4-8}
\end{equation*}
\]

We now make use of orthogonal collocation to obtain an expression for Equation (4-8) in terms of \(T_{0}\) and the known wall temperature \(T_{w}\). Using Jacobi polynomials for the approximation function and using the first collocation approximation (which results in a quadratic temperature profile), we obtain two collacation points \(r=0.577, r=1.0\). The centre point is not a collocation point and in order to obtain an expression for the temperature at \(r=0\), we write (4-6) in an alternative form (F4), T symmetric with respect to \(r\)).
\[
\begin{equation*}
T_{j}^{(n)}=\sum_{i=1}^{n+1} d_{i} r_{j}^{2 i-2} j=1, n+1 \tag{4-9}
\end{equation*}
\]

Evaluating the coefficients \(d_{i}\) in terms of the temperatures at the collocation pointis, for a first collocation approximation \(((n)=1)\), we obtain an extrapolation to the centre point temperature \(T_{0}\). Dropping the collocation superscript \((n)=1\) here, we write the extrapolation formuia as
\[
\begin{equation*}
T_{0}(z, t)=\frac{3}{2} T_{1}(z, t)-\frac{1}{2} T_{2}(z, t) \tag{4-10}
\end{equation*}
\]
where
\[
T_{j}(z, t)=T\left(r_{j}, z, t\right)
\]

The boundary condition at the wall has been characterized by Beek (B1) in terms of a Biot number \(B_{i}\) (see Equation (3-7)),
\[
\begin{equation*}
\left.\frac{\partial T}{\partial r}\right|_{r=r_{2}}=B_{i}\left(T_{W}-T\right) \tag{4-11}
\end{equation*}
\]

Using the first collocation approximation from Equation (4-4) (omitting the collocation superscript \((n)=1\), here) we have an expression for the first derivative in \(r\), at the edge of the bed.
\[
\begin{equation*}
\left.\frac{\partial T}{\partial r}\right|_{r=r_{2}}=A_{21} T_{1}+A_{22} T_{2} \tag{4-12}
\end{equation*}
\]

Similarly an expression for the second derivative may be derived from Equation (4-5), (4-10) and then (4-8) to give
\[
\begin{equation*}
\left.\frac{\partial^{2} T}{\partial r^{2}}\right|_{r=0}=\bar{B}_{01} T_{1}: \bar{B}_{02} T_{2} \tag{4-13}
\end{equation*}
\]
where the \(\bar{B}_{0_{v} i^{\prime} s}\) are functions of the collocation parameters \(A_{i j}\) and \(B_{i j}\). Equating Equations (4-11) and (4-12) and using (4-10), we may eliminate all the temperatures except \(T_{0}\) and \(T_{W}\). By further substituting the numerical values for the collocation constants \(A_{i j}\) and \(\bar{B}_{i j}\) we obtain:
\[
\begin{equation*}
\left.\frac{\partial^{2} T}{\partial r^{2}}\right|_{0}=\frac{-2 B_{i}}{\left(B_{i}+2\right)}\left[T_{0}-T_{W}\right] \tag{4-14}
\end{equation*}
\]
and
\[
\begin{equation*}
T_{2}=T(r=1)=\left(\frac{2}{B_{i}+2}\right) T_{0}+\left(\frac{B_{i}}{E_{i}+2}\right) T_{W} \tag{4-15}
\end{equation*}
\]

Equation (4-7) then becomes
\[
\begin{equation*}
-v_{T} \frac{\partial T_{0}}{\partial Z}+\frac{\lambda e r^{4 B_{i}}}{R^{2} \bar{C}\left(B_{i}+2\right)}\left[T_{W^{\prime}}-T_{0}\right]+\left.\frac{\sum_{i=1}^{3} \Delta h_{i} R_{i} \rho_{B}}{C}\right|_{0}=\frac{\partial T_{0}}{\partial t} \tag{4-16}
\end{equation*}
\]

The temperature equation has now been reduced from a three-dimensional equation in variabies (\(r, z, t\)) to a two-dimensional equation in variables \((z, t)\). This reduced equation is a function of the axial temperature \(T_{o}\) only but includes radial information via the wall temperature and Biot number. Radial tenperature profiles can be obtained from the collocation Equation (4-9) or (4-10) (for typical steady state profiles, see Figures 6 and 7).

\section*{Concentration Equation}

For the radial concentration profiles, standard boundary conditions require a zero first derivative at the reactor centre \(r=0\), and the reactor wall, \(r=1\) (3-7). A suitable poiynomial satisfying these requirements is a quartic and this requires a second collocation approximation and three collocation points
\[
r_{1}=0.3938 \quad r_{2}=0.8031 \quad r_{3}=1.0
\]

Again the axial point is not a collocation point. Notice also that collocation point \(r_{3}=1.0\), for the second collocation approximation coincides with collocation point \(r_{2}=1.0\) for the first collocation approximation used in temperature. Writing the concentration equations at points \(r_{0}=0\) and \(r_{3}=1.0\), we obtain:
\[
\begin{align*}
& r=r_{3}=1.0-v_{C} \frac{\partial C^{i}}{\partial z}+\frac{D_{e r}}{R_{\varepsilon}^{2}}\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial C}{\partial r}\right)\right]_{r=r}-\left.\frac{R^{i} \rho_{B}}{\varepsilon}\right|_{r=r_{3}}=\frac{\partial C_{3}^{i}}{\partial t} \tag{4-17}\\
& r=0-v_{C} \frac{\partial C_{0}^{i}}{\partial z}+\frac{D_{e r}}{R_{\varepsilon}^{2}}\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial C^{i}}{\partial r}\right)\right]_{r=0}-\left.\frac{R_{\rho}^{i} \rho_{B}}{\varepsilon}\right|_{r=0}=\frac{\partial C_{0}^{i}}{\partial t} \tag{4-18}\\
& i=1,2,3
\end{align*}
\]

Proceeding in a similar manner to that followed for the temperature equation, the corresponding concentration equations (for second collocation approxmation) are:
\[
\begin{equation*}
c_{0}^{i}=1.5572 c_{1}^{i}-0.8922 c_{2}^{i}+0.3350 c_{3}^{i} \tag{4-19}
\end{equation*}
\]
and from (3-7) and using the form (4-4) we obtain
\[
\begin{equation*}
\left.\frac{\partial C^{i}}{\partial r}\right|_{r=r_{3}}=A_{31} C_{1}^{i}+A_{32} C_{2}^{i}+A_{33} C_{3}^{i}=0 \tag{4-20}
\end{equation*}
\]
where \(\boldsymbol{i}=1,2,3\) is the component number. The information that the first derivative is zero at \(r=0\) has already been included by the assumption of the quartic racial profile from which Equation (4-19) is obtained. For example, from Equation \((4-9)\) with collocation approxination order \((n)=2\),
\[
c_{j}=d_{1}+d_{2} r_{j}^{2}+d_{3} r_{j}^{4}
\]
which provides for symmetry in \(r\) and a zero first derivative at \(r=0\), as did the temperature equation. Thus for the concentration equation, we have onily two Equations (4-19), (4-20) between the concentration at the four radial points, \(r_{0}, r_{1}, r_{2}, r_{3}\), and we may express the parifial derivative in \(r\) in terms of \(C_{0}\) at \(r_{0}\) and \(C_{3}\) at \(r_{3}\).
\[
\begin{align*}
& {\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial C^{i}}{\partial r}\right)\right]_{r=r_{3}}=B_{31} C_{1}^{i}+B_{32} C_{2}^{i}+B_{33} C_{3}^{i}=\beta_{31} c_{0}^{i}+\beta_{32} c_{3}^{i}} \tag{4-21}\\
& {\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial C^{i}}{\partial r}\right)\right]_{r=0}=\bar{B}_{01} c_{1}^{i}+\bar{B}_{02} c_{2}^{i}+\bar{B}_{03} c_{3}^{i}=\beta_{01} c_{0}^{i}+\beta_{02} c_{3}^{i}}
\end{align*}
\]

Substituting Equations (4-21) into (4-17), (4-18), we obtain the set of differential equations
\[
\begin{align*}
& -v_{C} \frac{\partial C_{3}^{i}}{\partial z}+\frac{D_{e r}}{R^{2} \varepsilon}\left[\beta_{3} C_{0}^{i}+\beta_{32} C_{3}^{i}\right]-\left.\frac{R^{i} \rho_{B}}{\varepsilon}\right|_{r=r_{3}}=\frac{\partial C_{3}^{i}}{\partial t} \tag{4-22}\\
& -v_{C} \frac{\partial C_{0}^{i}}{\partial z}+\frac{D_{e r}}{R^{2}}\left[\beta_{01} C_{0}^{i}+\beta_{02} C_{3}^{i}\right]-\left.\frac{R^{i} \rho_{B}}{\varepsilon}\right|_{r=0}=\frac{\partial C_{0}^{i}}{\partial t} \tag{4-2.3}
\end{align*}
\]
\[
\text { compenent number } i=1,2 \text {, or } 3
\]
which together with the temperature Equations (4-15), (4-16) provide the complete collocation model
\[
\begin{align*}
& -v_{T} \frac{\partial T_{0}}{\partial Z}+\frac{\lambda_{e r} 4 B_{i}}{R^{2} \bar{C}\left(B_{i}+2\right)}\left[T_{W}-T_{0}\right]+\left.\frac{\sum_{i=1}^{3} \Delta h_{i} R_{i} B}{\bar{C}}\right|_{r=0}=\frac{\partial T_{0}}{\partial t} \tag{4-24}\\
& T_{3}=T(r=1)=\left(\frac{2}{B_{i}+2}\right) T_{0}+\left(\frac{B_{i}}{B_{i}+2}\right) T_{w} \tag{4-25}
\end{align*}
\]

In the above equations, subscript o indicates conditions at the reactor centre \(r=0\) and subscript 3 denotes conditions at the outer radius of the bed \(r=1\).

We have now reduced the system to seven, two-dimensional, differ. ential equations; six in concentration and one in tenperature, including an algebraic equation for temperatures at ral. These may now be reformulated to obtain a state space model representation (see Equation (4-1)) for the reactor).

\subsection*{4.5 State Space Formulation}

Reducing the set of Equations \((4-22),(4-23),(4-24)\) to the state space form given in Equation (4-1) requires linearisation about some prespecified steady or operating condition, about which regulatory control is desired. Details of the steady state solution of the above equations are provided in a later section.

In order to obtain a state space danamic reactor model, the partial derivatives of \(T\) and \(C\) with respect to 2 (in Equations (4-22), (4-23) and (4-24) must be approximated in some way. There are at least two methods available: we could use orthogonal collocation approximation in the axial direction \(z\) using formulae similar to (4.4). Hovever, at this stage, we were not shre of how large a coliccation approvimation
order (\(n\)) would be required. Other authors (Michel sen (M2)) have reported numerical ill-conditioning problems of collocation orders become too large. It thus appeared safer at this stage to search for an alternative method. Nevertheless at a later stage (see Part B) axial collocation was used with great success.

Another method of approximating the a derivative is to set up a finite difference along the \(z\) axis. Since the steady state profiles are already known and we expect only small perturbations about this steady state, the grid points may be optimally spaced, for integration accuracy, according to the slopes of the profiles in \(z\). If we choose 20 grid pothts along \(z\) and linearise the 7 partial differential equations, we obtain 140 simultaneous ordinary differertial equations to be solved. (cf the 400 simuitareous equations obtained if a finite difference technique were to be employed in the \(r\) direction as well; see also Section 4.1). The resulting state space formulation becones:
\[
\begin{aligned}
\dot{x}= & A \underline{x}+B \underline{u} \\
\underline{x}= & 140 \times 1 \text { vector of deviations from steady state in temperature, } \\
& \Delta T_{0} \text { and concentrations } \Delta C_{0}, \Delta C_{3} \\
\underline{u}= & 2 \times 1 \text { vector of deviation feed flow rates (hydrogen and } \\
& \text { butane). } \\
A= & 140 \times 740 \text { matrix of constants } \\
B= & 140 \times 2 \text { matrix of constants }
\end{aligned}
\]

\subsection*{4.6 A State Space Model Reduction Method}

It is now of interest to try to further reduce the number of simultaneous equations (140) without sacrificing the essential dynamic behaviour of the model obtained thus far. To accomplish this, an idea based on the concept of aggregation in state space dynamics (AT) is employed. Given an \(n\)-dimensional state space system:
\[
\begin{equation*}
\underline{\dot{x}}=A \underline{x}+B \underline{u} \tag{4-27}
\end{equation*}
\]
a reduction in the dimensionality of the system to an e-dimensional system
\[
\begin{equation*}
\underline{S}=F \underline{s}+G \underline{u} \tag{4-28}
\end{equation*}
\]
is considered using the (exn) linear matrix transformation
\[
\begin{equation*}
\underline{s}=Z \underline{x} \tag{4-20}
\end{equation*}
\]
where rank \((Z)=\ell\). The statement that \(S\) satisfies \((4-28)\) is equivalent to the condition that \(F\) and \(G\) are related to \(A\) and \(B\) by
\[
\begin{align*}
F Z & =Z A \tag{4-30}\\
G & =Z B \tag{4-31}
\end{align*}
\]

No: Equation \((4-30)\) is not of full rank, for \(\&<n\) and has, in general. no exact solution. In the event that \(A\) and \(Z\) satisfy the matrix equation
\[
\begin{equation*}
Z A=Z A Z^{\prime}\left(Z Z^{1}\right)^{-1} Z \tag{4-32}
\end{equation*}
\]
then (4-30) has an exact solution for \(F\) and is given by
\[
\begin{equation*}
F=Z A Z^{\prime}\left(Z Z^{\prime}\right)^{-1} \tag{4-33}
\end{equation*}
\]

Nevertheless, even if (4-32) is not satisfied, (4-33) represents the best solution (in the least squares sense) to (4-30) and is often adequate for control purposes. Other methods have been suggested for reducing the system order of a state space model (Davison (D3)) using the techniques of Modal analysis, originally presented by Rosenbrock (Rl). However, these methods rely on being able to calculate the eigenvalues of the \(A\) matrix. Even for our simplified system, \(A\) is of order 140 and has no special structure otner than being sparse. Eigenvalue calculations on so large a scape would cause many problens.

\subsection*{4.6.1 Application to Averaged Concertration}

In our system, strong motivation exists to transform the theoretical concentration at the centre point \(C_{0}\) and at the wall \(C_{3}\), into a more meaningful averaged or mixed concentration which can be measured. It is not possible to measure point concentrations and the model in its present form (4-27) cannot be used for control, where measured values of mixed concentrations at the outlet and axial temperatures are to be compared with predictions by the model.

According to Viliadsen and Stewart (V), collocation principles can be applied directly to integrals and they present a formula (see (A-22),
\[
\begin{equation*}
\int_{0}^{1} f(x) x^{a-1} d x=\sum_{i=1}^{n+1} W_{i}(n)_{f}\left(x_{i}\right) \tag{4-34}
\end{equation*}
\]
where the \(w_{i}\) are quadrature weights, \(a\) is a geometry factor (\(=2\) here) The averaged or mixed concentration across a radial section is given by
\[
\begin{equation*}
\bar{c}^{i}(z, t)=2 \int_{0}^{T} c^{i}(z, t, r) r d r \tag{4-35}
\end{equation*}
\]

Applying (4-34) to the radial concentration and using Equations (4-19), (4-20) to eiminate \(C_{1}\) and \(C_{2}\) in terms of \(C_{0}\) and \(C_{3}\) we can obtain
\[
\begin{equation*}
\bar{c}=w_{7} c_{0}+w_{2} c_{3} \tag{4-36}
\end{equation*}
\]

These integrals are highly accurate and even this low order approximationt is exact if the radial concentration profiles can be represented by a polynomial of order no greater than eight.

The 140 dimensional linearised state variable Equation (4-26) contains an \(A\) matrix and \(x\) vector of the form
where all block matrices, \(E, F, H, G^{T}, K, O\) are banded and sparse. Applying Equation (4-36) to each set of concentrations in the vector \(x\).
we obtain a relation between \(s\) and \(x\) of the for (\(4-29\)) remembering that temperatures are not transformed
\[
\begin{equation*}
\underline{s}=Z \underline{x} \tag{4-29}
\end{equation*}
\]
where
\[
z=60\left[\begin{array}{c:c}
120 & 20 \\
z_{1} & \\
\hdashline & z_{2} \\
\hdashline & z_{2}
\end{array}\right]
\]
and
\[
\begin{aligned}
& Z_{1}=\left[w_{1} I_{60}: w_{2} I_{60}\right] \\
& Z_{2}=I_{20}
\end{aligned}
\]
where \(I_{n}\) denotes tho uni matrix of order \(n\).
Using Equation \((4-33)\) we obtain an expression for \(F\) by multiplying out the matrix blocks to obtain
\[
\left.F=\begin{array}{c:c}
60 & 60 \\
20
\end{array} \begin{array}{c:c}
F_{11} & F_{12} \\
\hdashline F_{21} & F_{22}
\end{array}\right]
\]
where
\[
F_{11}=\left(w_{1}^{2} E_{0}+w_{1} w_{2}\left(F_{0}+F_{3}\right)+w_{2}^{2} E_{3}\right) / w^{2}
\]
\[
\begin{equation*}
F_{12}=\left(w_{7} H_{0}+w_{2} H_{3}\right) / w^{2} \tag{4-38}
\end{equation*}
\]
\[
F_{21}=\left(w_{2} G^{\prime}\right) / w^{2}
\]
\[
F_{22}=K
\]
\[
\text { where } w^{2}=w_{1}^{2}+w_{2}^{2}
\]

The matrix \(G\) is obtained diractiy from Equation (4-37).

We now have a reduced set of equations
\[
\begin{equation*}
\underline{s}=F \underline{s}+G \underline{u} \tag{4-39}
\end{equation*}
\]

Which is a system of order 80 and the state vector \(s\) consists of deviation variables of axial temperatures and averaged concentrations at each of the 20 locations in the \(z\) direction. The model is now suitabie for simulation studies and comparison with experimental measurements obtained from the reactor.

It is instructive to point out at this stage, that if a reduction from the 140 equations via an aggregation matrix is intended, then the order of the resultilig aggregated system (4.39) is independert of the order of the collocation approximation used in the \(r\) direction. So if: for example, one decided that it was necessary to approximate both temperature and concentration radial profiles by \(10^{\text {th }}\) order polynomiais: say, extrapolation to centre temperatures and application of quadrature for mixed concentration as above, would again reduce the system to one of onder 80 , for 20 grid points in the \(z\) direction. On the other hand. reduction of the number of grid points along \(z\) directly reduces the order of the system by 4 for each grid point.

A series of simulation studies was performed in order to gain insight into various aspects of the reactor dymanics and steady state characteristics. Firstly, using the available steady state data (Tremblay (T2)) we can determine how well the mode? Equations (3-2) and (3-5) can predict the steady state profiles measured in the reactor. Secondly,
we can perform some parametric sensitivity studies: most workers agree (H1, B1, C1) that reactor behaviour is very sensitive to heat transfer parameters but not to mass transfer parameters. Some may err in concluding that mass transfer terms may be entrely omitted; that this is not so, will be demonstrated by using radial mass diffusivity as an example.

Thirdly, using the two state space models, \(140^{\text {th }}\) order and \(80^{\text {th }}\) order, an evaluation of the effectiveness of the model reduction method presented in Section 4.6 can be made. Due to computational limitations, only the initial dynamics can be compared but in fact, it is this eariy dynamics that is the most revealing in terms of the quasi-steady state that is rapidly approached by the concentration dynamics. This happens before the slower (by a factor of ~ 1400) temperature dynamics hizve had a chance to respond.

The detaits of these simulation studies are presented be?om.

\subsection*{4.7 Simulation Studies}

Using a limited amount of steady state data from a previous study, Tremblay (T2), in which a reacior very similar to the one used for this study was built, and a series of simulation studies were performed. Due to the similarity, between the previous reactor design and the present one, the data were considered adequate to judge the effectiveness of the collocation methods and niatrix averaging techniques described above. Paraneter estimates were obtained using the previous data (\((T 2),(T 3)\)) and from correlations in the literature (Beek (BT)). Values of the key parameters were:
\[
B_{i}=43.5, D_{e r}=0.316 \mathrm{~cm}^{2} / \mathrm{s}, \lambda_{\mathrm{er}}=0.0018 \mathrm{cal} /\left(\mathrm{cm}^{\circ} \mathrm{K} \mathrm{~s}\right)
\]

Other pertinent reactor data is presented in Table la.

\subsection*{4.7.1 Steady State Behaviour}

One of the modifications to the original reactor was to enlarge the gas feed stream preheat section. Previousiy (T2) the inlet gas entering the catalyst bed was beiow the wall temperature. In the new design, the assumption that the inlet gas is at wall temperature should be valid. Apart from this difference, we expect similar profiles in the two reactors. A Feed preheat section was also added later.

In order to compare the steady state temperature profile data with profiles from the collocation model, the steady state versions of Equations (4-22), (4-23) and (4-24) were solved. Because the highly exo-. themic nature of the reactions resultea in steep temperature gradients around the hot spot temperature along the \(z\) axis, a variable step size integration procedure, Hanming's Modified Predictor-Corrector, was used. Computation time on a CDC 640 C was about 20 CPU seconds. Typical profites are shown in Figure 4. By comparison, a \(4^{\text {th }}\) order Runge-Kutta method required about 45 CPU seconds for comparable accuracy.

Figure 5 compares the axial temperature profite predicted by the model equations with that obtained experimentally for the previous reactor. Apart from the dirterence in entering gas temperatures, these profiles are in good agreenent (\(\mathrm{D}_{\mathrm{er}}=0.316\)). No point concentration measurements are available. Nevertheless, the o\%erall predicted conversion of butane (77\%)

\section*{TABLE 1 a}

\section*{Reactor Parameters for Simulation Studies}
(Kinetic Parameters are given separately in Appendix 1)
\begin{tabular}{ll}
\(T_{W}\) & \(=520^{\circ} \mathrm{K}\) \\
\(B_{i}\) & \(=43.5\) \\
\(G_{0}\left(H_{2}\right)\) & \(=60 \mathrm{~cm}^{3} / \mathrm{s}\) at STP \\
\(G_{0}\left(C_{4} H_{70}\right)\) & \(=5 \mathrm{~cm}^{3} / \mathrm{s}\) at STP \\
\(R\) & \(=2.045 \mathrm{~cm}\)
\end{tabular}

Reactor Pressure \(=1.0 \mathrm{Atm}\)
Catatyst Activity= 2.35
\(\begin{array}{ll}\mathrm{L} & =20.0 \mathrm{~cm} \\ \varepsilon & =0.4 \\ D_{\mathrm{er}} & =0.376 \mathrm{~cm}^{2} / \mathrm{s} \\ C_{\mathrm{P}_{\mathrm{S}}} & =0.22 \mathrm{cal} /\left(\mathrm{g}^{\circ} \mathrm{K}\right) \\ \rho_{\mathrm{B}} & =0.72 \mathrm{~g} / \mathrm{cm}^{3} \\ d_{\mathrm{P}} & =0.9 \mathrm{~cm} \\ \lambda_{\mathrm{er}} & =0.0018 \mathrm{cal} /\left(\mathrm{cm}^{\circ} \mathrm{K} \mathrm{s}\right)\end{array}\)
Inlet con.
centrations \(=\) pure Butane and Hydrogen
inied Terp-
erature \(\quad=T_{w}(5200 \mathrm{~K})\)
Heats of peaction (Inear approxation? for 4 reactions given in Section 3.5 (Units: cal/9 mole)
\(\Delta h_{j} \quad=-12.560-5.9(7-298)\)
\(\Delta h_{2} \quad=-10.322-6.3(T-208)\)

\section*{TABLE Ta (continued) \\ Reactor Parameters for Simulation Studies}
\[
\begin{array}{ll}
\Delta h_{3} & =-13,305-3.28(T-298) \\
\Delta h_{4} & =-15,542-2.52(T-292)
\end{array}
\]

Radial Collocation Points
\(r_{1}=0.577 \quad r_{2}=1.0\) Ref. Villadsen (V1)
Axial Collocation Points (Section 4.9) \(((n)=6)\)
\begin{tabular}{ll}
\(z_{0}\) & \(=0.0\) \\
\(z_{1}\) & \(=0.03377\) \\
\(z_{2}\) & \(=0.16940\) \\
\(z_{3}\) & \(=0.38069\) \\
\(z_{4}\) & \(=0.61931\) \\
\(z_{5}\) & \(=0.83060\) \\
\(z_{6}\) & \(=0.96623\) \\
\(z_{7}\) & \(=1.0\)
\end{tabular}
agrees well with the actual value obtained experimentally (76\%). In addition, the model is able to predict variations in hot spot locations and butane conversions observed experimentally (Trembaly (T2)). Although these tests are by no means exhaustive, they do provide some confidence in the collocation methods used here.

Typical axial concentration profiles, radially averaged for the four hydrocarbon species are shown in Figure 8. These correspond to temperature profite (2) in Figure 4 , where a \(49 \%\) conversion of butane \(\left(C_{4}\right)\) and a \(52 \%\) selectivity to propane \(\left(C_{3}\right)\) is achieved. The existence of appreciable radial gradients in temperature (confirming experinental measurements) and concentration profiles are illustrated in Figures ó and 7.

\subsection*{4.7.2 Parametric Sensitivity}

Parametric sensitivity has been studied in some detail in the Titerature for the steady state fixed bed reactor (Froment, \(F(1), F(2)\), \(F(3)\), Carberry (C1), for details, see Section 2.2.1 above). This section is concerned in particular, with the influence of Der. Radial variations in temperature and concentrations have been characterized by the peclet numbers for effective radial heat \(N_{p e} h_{h}\) r and mass \(N_{p e}\) m, tharisfer. Equivalently, the effective radial themal conductivity, \({ }^{\text {a }}\) er, and effactive radia? mass diffusivity, 0er, may be used. For all practical purposes \(N_{\text {Pe }} \mathrm{m}_{3}\) r takes on values between 8 and 11 for most reactor systens (F2). A general result energing from these sudies shows that simulation
profiles are insensitive to the actual value assumed for \(N_{P e}\) within this range. A precise estimate of it is therefore not required. In contrast, the profiles are highly sensitive to the corresponding peclet number for effective radial heat transfer. It is important not to interpret "insensitive" as implying "unimportant", since the latter interpretation would impiy that the term \(\frac{\mathrm{Der}^{2}}{\varepsilon R^{2} r} \frac{\partial}{\partial r}\left(\frac{\partial C}{\partial r}\right)\) in Equation (3-2) may be negiected altogether. The result of forcing \(D_{\text {er }}\) to a small value \(\left(D_{e r}=0.05, N_{P_{m, r}} \pm 60\right)\) in our simulation is shown in Figure 5 . The result is a \(20 \%\) drop in the conversion as predicted by the nodel as well as an alteration of both the hotspot temperature and its location. For parametric sensitivity to \(\lambda_{\text {er }}\), see Figure \(5 a\) and Section 5.5.1.

\subsection*{4.7.3 Dynamic Behaviour}

The dynamic characteristics of the reactor are best viewed in terms of the concentration and temperature wave velocities, \(v_{C}\) and \(v_{T}\) respectively. Since \({ }^{V_{C}}\) is of the order of \(1400 \times v_{T}\) in this sytem, two distinct phases of the response are observable. The rapid response as the concentration wave passes through the reactor occurs under the influence of an afmost constant temporature profile. The concentration profiles rapidly reach a pseudo steady state which then gradually change as the slower temperature wave passes through the reactor. These dynamics are typical of Quasi-Steady State Systems.

Unsteady state solutions for the reactor for step and puise changes in hydrogen flow rate were obtained by integrating both the reduced \(80 x\) 80 systom (Equetion (4-39)) and the \(140 \times 140\) system (Equation (4-26)).

Because of the very large ratio of wave velocittes, a variable step size integration method was used (Hanming's modified predictor corrector). Integration times on a CDC 6400 were about 4 seconds and 2 seconds CPU time par second of reaction tine for the full and reduced models, respectively. it should be remarked at this stage, that dymamic equatrons of this type, with a very large ratio of wave velocities, are sciff differential equations. This in turn implies that one requires a sman time step to properly integrate the system and hence the computational burden is greatly increased. In particular, the rapid initial concentration dymamics required especiully small integration time steps, which may be gradualiy increased as concentrations reached their quasi-steady state. Hence, a variable step size integration was well suited to this problen.

Recall that the concentration variables in the reduced \(80 \times 00\) model are redially averaged. After integration of the full \(140 \times 140\) model, radial point concentrations are available which can then be averaged for comparison with the results of the reduced system. The con.parison should indicate any loss of information caused by the matrix aggregation techrique. As menticned above, the concentration dyriamics respond rapidly. Table 1 compares the dyamic profiles obtained fron the two systems for a \(10 \%\) step decrease in the frow of hydrogen. Responses are cummarized for one feed \(\left(\mathrm{H}_{2}\right)\) and one intermediate \(\left(\mathrm{C}_{3}\right)\). Note that the agreement between the two profiles is good to at least three sishificant figures. A quasi-steady state is reached within 3 secunds and profiles at 6 seconds show litile change. The quasi-steady state nature of the concentration dyamics is illustrated in Figure \(\theta\). Temparature
profiles respond only marginally in this short time period. The agreement between the profiles of the \(140 \times 140\) and \(80 \times 80\) models, indicates that the aggregation technique applied here is able to reduce the model order while retaining the dynamic behaviour of the system.

In order to examine the siower dynamics of the temperature profile, a much larger step change was made in hydrogen fiow. From an examination of the reaction kinetics (Section 3.3) and the corresponding rates (see Appendix 1), it can be determined that a decrease in the hydrogen flow tends to increase the reaction rate and raise the temperature. Frevious studies (Tremblay (T2)) and Tremblay and Wright (T3) have shown that the temperature transients may persist from 3 to more than 20 minutes for perturbations in inlet flow races. The simulatien model is consistent with these observations. Figure 10 illustrates the dynamic behaviour of the temperatu:e profiles resulting from a \(40 \%\) down ward stepped pulse in hydrogen fiow site lasting for 40 seconds. The entire profile rises initially (curve (2)) and continues to rise for some time after the input has been restored to its initia? value. Only after about five minutes does it begin to return to the initial steady state (see the initial section of curve 3).

The hotspot location moves from about \(z=.59\) to \(z=0.61\) during this change. The temperature transient at the hotspot is potentially the most sensitive measurement which can readily be used for control purposes. The dynamic response of the hot spot temperature is shown in Figure 11.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{10}{|c|}{Concentrations} \\
\hline \begin{tabular}{l}
Axiall \\
Dist-
\end{tabular} & \multicolumn{2}{|l|}{\[
\begin{gathered}
t=0^{-} \\
\text {(steady state) }
\end{gathered}
\]} & \multicolumn{4}{|c|}{\(t=3\) seconds} & \multicolumn{4}{|c|}{\(t=6\) seconds} \\
\hline lance & \(140 \times 140\) & \(\times 80 \times 80\) & \multicolumn{2}{|l|}{\(140 \times 140\)} & \multicolumn{2}{|c|}{\(80 \times 80\)} & \multicolumn{2}{|l|}{\(140 \times 140\)} & \multicolumn{2}{|c|}{\(80 \times 30\)} \\
\hline 2. & \(\mathrm{H}_{2}\) & C3 & \(\mathrm{H}_{2}\) & \(C_{3}\) & \(\mathrm{H}_{2}\) & \(C_{3}\) & \(\mathrm{H}_{2}\) & \(C_{3}\) & \(\mathrm{H}_{2}\) & \(c_{3}\) \\
\hline 0 & . 2163 & 0 & . 2145 & 0 & . 2145 & 0 & . 2145 & 0 & . 2145 & 0 \\
\hline . 1 & . 2152 & . 4830 & . 2733 & . 5072 & . 2133 & . 5070 & . 2133 & . 5072 & . 2133 & . 5071 \\
\hline . 2 & . 2138 & 1.001 & . 2119 & 1.023 & . 2119 & 7.028 & . 2119 & 1.028 & . 2119 & 1.028 \\
\hline . 3 & . 2122 & 1.541 & . 2103 & 7,569 & . 2703 & 1.569 & . 2703 & 1.570 & . 2103 & 1.569 \\
\hline . 4 & . 2104 & 2.090 & . 2085 & 2.179 & . 2085 & 2.119 & . 2085 & 2.113 & . 2085 & 2.119 \\
\hline . 5 & . 2086 & 2.530 & . 2066 & 2.667 & . 2065 & 2.661 & . 2066 & 2.651 & . 2065 & 2.651 \\
\hline . 5 & . 2067 & 3.142 & . 2047 & 3.171 & . 2047 & 3.171 & . 2047 & 3.171 & . 2047 & 3.172 \\
\hline . 7 & . 2.049 & 3.600 & . 2029 & 3.628 & . 2030 & 3.628 & . 2030 & 3.628 & . 2030 & 3.628 \\
\hline . 8 & . 2033 & 3.994 & . 2013 & 4.079 & . 2014 & 4.019 & . 2074 & 4.019 & . 2014 & 4.019 \\
\hline . 9 & . 2020 & 4.329 & . 2000 & 4.351 & . 2001 & 4.352 & . 2001 & 4.351 & . 2001 & 4.352 \\
\hline 1.0 & . 2008 & 4.613 & . 1989 & 4.638 & . 1989 & 4.639 & . 1989 & 4.638 & . 1989 & 4.639 \\
\hline
\end{tabular}

\section*{TABEE I}

Dynamic Response of \(80 \times 80\) and \(740 \times 140\) systems to a \(10 \%\) step decrease in Hydrogen Radially averaged concentretions of Hydrogen \(H_{2} \times 10^{-4}\) moles/cc and propane \(C_{3} \times 10^{-7}\) moles/ce. \(z=\) normalized axial distance.

Figure 4: Typical Steady-State Central fxis Temperature Profiles in the Reactor (simulation).
\[
1-\frac{1}{0}
\]
AXIA DIGTAME

Figure 5: Comparison of Steady-State Temperature Data with Stimuation

Figure 5a: Paranetric Sensitivity to Thermal Conductivity. \(\lambda_{e r}\).

Figure 6: Radial Reactor Temperature Profiles (Steady State Simulation).

Figure 7: Radial Reactor Concentration Profile for Butane (Steady State Simulation).

Figure 3: Steady State (averaged) Concentration Profiles Along the Reactor (Butane Conversion \(49 \%\)) (Simulation).

Figure 9: Exit (averaged) Concentration of Propane in Response to à \(10 \%\) Step Down in \(\mathrm{H}_{2} \mathrm{Flow}\) (\(80^{\text {th }}\) Order Simulation).

Figure 10: Dynamic Response of the Centrol Axis Temperature Profile to a Down Pulse in the \(\mathrm{H}_{2}\) Flow. (\(80^{\text {th }}\) Order stmulation).

Figure 11: Hot Spot Temperature Dynamics in Response to a \(40 \%\) Puise in \(\mathrm{H}_{2}\) Flow. (\(80^{\text {th }}\) order Simulation).

\section*{Part B: Development of a Lor Order State Spoce Model for Process Control}

\subsection*{4.8 Quasi-Steady Stote Aporoximation}

Up until this point, the development has been perfectly general in the serise that no specific raction scheme or reactant properties has been assumed in the development of the mathenatical model in Chapter 3. However in the present reactor, as with most solid catalysed gas reactions, the ratio of the concentration wave velocity \(v_{c}\) to the thermal wave velocity \(v_{T}\) (see Equations (3-10) and (3-11)) is very large (2 1400, here). This in effect, implies that the concentration proftes reach a ous:steady state rapidly in response to some shock to the system (see Section 4.7.3, Figure 3) and this quasi-steady state then follows the slowly changing tomperatere profice. The olestrsteady state dymemic charaacter of the reactor was discusced in sections 2.2.2 and 4.2, where it is mentioned that, although the quasi-steady state approximation is often used, it is selcom verified for a specific system. In this respect, the \(80^{\text {th }}\) order and \(740^{\text {th }}\) order nodels were helpful and indicated thot within about 3 seconds, the concentration dynamics had steadied out (Section 4.7.3, Figure 9). Since vo are interested in sampling intervals of the order of 60 seconds (so that we can follow the temperature dymans), the quasi-steady state approximation is quite adequate for our system (and indeed, for most gas/solid fixed bed reactor systems (see Section 2.2.2)).

The quasi-steady state approximation allows us to set the concentration time derivatives approximately to zero: in Equations (4-22) and (4-23) we can thus write
\[
\begin{equation*}
\frac{\partial C^{i}}{\partial t} \simeq 0 \tag{4-40}
\end{equation*}
\]

Note that (4-40) does not imply that concentrations are not a function of time, since concentrations are coupled to temperatures via (4-41) (previously (4-24))
\[
\begin{equation*}
-v_{T} \frac{\partial T_{0}}{\partial z}+\frac{\lambda e r^{4 B_{i}}}{R^{2} \bar{C}\left(B_{i}+2\right)}\left[T_{W}-T_{0}\right]+\left.\frac{\sum_{i=1}^{3} \Delta h_{i} R_{i} \rho_{B}}{\bar{C}}\right|_{r=0}=\frac{\partial T_{0}}{\partial t} \tag{4-41}
\end{equation*}
\]
where reaction rates \(R_{i}\) are a function of concentrations, and temperatures obviously change with time according to (4-41). Incorporating the quasi-steady state assumption, the concentration Equations (4-22) and (4-23) become:
\[
\begin{align*}
& \frac{\partial C_{o}^{i}}{\partial z}=\frac{D_{e r}}{\varepsilon R^{2} v_{C}}\left[\beta_{31} C_{0}^{i}+\beta_{32} C_{3}^{i}\right]-\left.\frac{R_{p_{B}}^{i}}{\varepsilon v_{C}}\right|_{r=r_{3}} \tag{4-42}\\
& \frac{\partial C_{3}^{i}}{\partial \bar{z}}=\frac{D_{e r}}{\varepsilon R^{2} v_{C}}\left[\beta_{01} C_{0}^{i}+\beta_{02} C_{3}^{i}\right]-\left.\frac{R_{\rho_{B}}^{i}}{\varepsilon v_{C}}\right|_{r=0} \tag{4-43}
\end{align*}
\]

\subsection*{4.8 Axial Collocation}

Typical concentration profiles along the length of the reactor, obtained from steady state simulations (Figure 8) indicate that these profiles can be approximated by relatively low order polynomials. However, certain temperature profiles (curve 7, Figure 4) may need a much higher
order. Wichelsen (i2) used axial collocation for his reactor and was able to adoquately represent the dyamic behaviour of his reactor using 6 collocation points. Although nore collowation points can reduce approximation error, nuwaich ill-conditioning induced by the collocation weights begins to swarp the error.

One of the problems of fitting high order polymomials to process curves is that the polynomials, if of sufficienty high order, may begin to ripple along the curve and since ve are usirg these collocation fomulae to approximate derivatives, the dangers are apparent. The order of the collocation aproxtmotion muse be chosen with these facts in mira. It is seen in the next section that tho order (\(n\) ') of the state space model becomes equal to the order of the collocation approximation (\(n\)), plus 1 (see also discussion fir Soction 4.1 and 4.2). A \(6^{\text {th }}\) order
 7 collocation points, excluding \(z_{0}=0\), where we have constant inlet conditions over a sample period). The corresponding \(7^{\text {th }}\) order model together With other models of differont size was smulated and copared. A nonsymetric function is required and Fintayson (77) suggested one of the form
\[
\begin{equation*}
T^{(n)}=T(z=0) \div z_{i=1}^{m} \bar{a}_{i}(n)_{P_{i-T}}(z) \tag{4-44}
\end{equation*}
\]
where \(a_{i}(n)\) are coefficients to be datermined and \(F_{i}\) are Legendre polynomials, \((n)\) is the order of approximation and \(T^{(i i)}\) is a polynomial of order \(n+1\). An analagous axpossion for the first derivetive (see 4-4) is obtandad for coliocation point \(z_{i}\) at \(z=z_{i}\) :
\(z=z_{i} \frac{\partial T}{\partial z}^{(n)}=\sum_{i=1}^{n+1} D_{i j}(n) T_{j}^{(n)}(z, t)\)

A corresponding expression for the concentration derivative may be written. The \(D_{i j}(n)\) weight may be calculated according to Finlayson (F7), Chapter 5.

\subsection*{4.9.1 Application to Reactor Equations}

Rewriting Equations \((4-41),(4-42),(4-43))\) using (4-45) to approximate the axial \(z\) derivative, one obtains a set of (\(n+1\)) ODE's from the temperature Equation (4-41), at \(n+1\) (\(=7\) here) different axial collocation points \(z_{i}\). Two sets of algebraic equations are obtained from the concentration Equations (4-42) and (4-43). The temperature differential equations are obtained as
\[
\begin{aligned}
& z=z_{i} \quad \frac{d T_{0}(i)}{d t}=-\left.v_{T} \frac{\partial T_{0}}{\partial z}\right|_{z_{i}}+\frac{\lambda_{e r} 4 B_{i}}{R^{2} \bar{c}\left(B_{i}+2\right)}\left[T_{w}-T_{0}(i)\right] \\
&+\left.\frac{\sum_{i=1}^{3} \Delta h_{i} R_{i} \rho_{B}}{\bar{c}}\right|_{\substack{r=0 \\
z=z_{i}}} \\
& \quad i=1,2, \ldots n^{*} \text { where } n=n+1
\end{aligned}
\]

When we subsitute Equation \((4-45)\) for the axial derivatives where they appear, we obtain two sets of algebraic equations from Equations (4-42), (4-43) and a set of \(n+1\) ordinary differential equations from Equation \((4.46)\).

All equations at this stage are non-linear and to obtain the standard state space equation (sce Equation (4-39) we must linearise the algebraic and differential equations about some operoting profile. An operating profile can be calculated from the non-linear steady state versions of Equations (4-41), (4-42), (4-43) with (4-25)), by simply setting all time derivatives to zero and integrating the resulting set of ron-linear ordinary differential equations in \(z\). If we express the radial temperature at the edge of the bed, \(\mathrm{T}_{3}\), in tems of the temperature along the central axis, \(T_{0}\), using Equation (4-25) we can linearise the two sets of algebraic equations and the set of ordinary differentiai equations in terms of the deviation variables \(\Delta C_{0}, \Delta C_{3}, \Delta T_{0}\), together with two controls \(\Delta u_{1}, \Delta u_{2}\) representing the flou rates of the two reactants. The following equations are obtained:
\[
\begin{align*}
& A_{1} \Delta C_{0}=A_{2} \Delta T_{0}+A_{3} \Delta C_{-}+A_{4} \Delta U \tag{4-47}\\
& B_{1} \Delta C_{-}=B_{2} \Delta T_{0}+B_{3} \Delta C_{0}+B_{4} \Delta U \tag{4-48}\\
& \frac{d \Delta T_{0}}{d t}=E_{1} \Delta T_{0}+E_{2} \Delta C_{0}+E_{3} \Delta U \tag{4-49}
\end{align*}
\]
calling the state spoce model order \(n^{-}=n+1\), we then have:
\[
\begin{aligned}
& 3 n \hat{x}^{3} \\
& \Delta C_{0}=\left[\Delta C_{0}^{1}\left(z_{1}\right) \Delta C_{0}^{1}\left(z_{2}\right) \ldots \Delta C_{0}^{1}\left(z_{n}\right), \ldots \Delta C_{0}^{3}\left(z_{1}\right) \ldots \Delta C_{0}^{3}\left(z_{n}\right)\right]^{\prime} \\
& n^{\cdot} \times 1 \\
& \Delta T_{0}^{1}=\left[\Delta T_{0}\left(z_{1}\right) \Delta T_{0}\left(z_{2}\right) \ldots \Delta T_{0}\left(z_{n}\right)\right]^{\prime}
\end{aligned}
\]
\[
\frac{2 \times 1}{\Delta u}=\left[\Delta u_{1} \Delta u_{2}\right]^{\prime}
\]
and \(A_{j}, B_{j}, E_{j}, j=1,2,3,(4)\) are matrices of constants representing the partial derivatives of the various terms in Equations (4-41), (4-42), and (4-43) evaluated at a given operating profite.

It is possible using Equations (4-47) to (4-49) to elimiriate concentration to obtain a self consistent set of ordinary differential equations in temperature alone.

From (4-47) and (4-48)
\[
\begin{equation*}
\Delta C_{0}=X_{1} \Delta T_{0}+X_{2} \Delta u \tag{4-50}
\end{equation*}
\]
substituting into (4-49) gives
\[
\begin{align*}
& \begin{array}{l}
n \times 1 \\
d \Delta T_{0} \\
\frac{1}{d t}
\end{array} n^{\cdot} \times n^{0} \quad \bar{A} \Delta T_{0}+\bar{B} \Delta u
\end{align*}
\]
where
\[
\begin{aligned}
& x_{1}=\left(A_{1}-A_{3} B_{1}^{-1} B_{3}\right)^{-1}\left(A_{2}+A_{3} B_{1}^{-1} B_{2}\right) \\
& x_{2}=\left(A_{1}-A_{3} B_{1}^{-1} B_{3}\right)^{-1}\left(A_{4}+A_{3} B_{1}^{-1} B_{4}\right) \\
& \bar{A}=E_{1}+E_{2} X_{1} \\
& \bar{E}=E_{3}+E_{2} x_{2}
\end{aligned}
\]

Equation (4-51) is a self consistent set of \(n^{*}\) linear state
equations in temperature where \(n^{*}=n+1\) and \(n\) is the order of the collocation approximation in (4-45). In our case, a value of \(n=7\) was tentatively assumed to be adequate after simulation with higher orders (up to \(n=11\)) resulted in essentially identical profiles. Lower values of \(n^{*}(<5)\) began showing differences in the profiles.

\subsection*{4.10 Discrete State Space Model}

The state space model \((4-51)\) is now in the standard form of Equation (4-53) and can be used to formulate optimal control schemes.
\[
\begin{align*}
& \underline{\dot{x}}=A \underline{x}+B \underline{u} \tag{4-53}\\
& \underline{y}=H \underline{x} \tag{4-53a}
\end{align*}
\]

However, since the reactor is to be controlled directly by a digital computer, it will be more conveniont to have it in the corresponding discrete form.

The formal discrete solution to Equation (4-53) is well krown and may be expressed as (Noton (N1)):
\[
\begin{equation*}
\underline{x}(t+1)=\exp [A t] x(t)+\int_{0}^{t} \exp [A(t-s)] B u(s) d s \tag{4-54}
\end{equation*}
\]
where \(t\) is the sampling interval and \(\exp []\) represents the exponential matrix.

Assuming that control is implemented in a step-wise manner at the sampling instants and the control variables held constant over the inter val, \(s\), that is
\[
\begin{align*}
& u(s)=u(t) \\
& t \leqslant s<t+1
\end{align*}
\]

Noton (N1) provides a simple and effective method for expressing Equation (4-54) in the form
\[
\begin{equation*}
\underline{x}(t+1)=F \underline{x}(t)+G \underline{u}(t) \tag{4-56}
\end{equation*}
\]

This indirect method for evaluating the exponential matrix involves integrating the continuous form (4-53), up until time \(t\) with the initial conditions given by
\[
\underline{x}(0)=\left[\begin{array}{llll}
1 & 0 & 0 & --0
\end{array}\right]^{\prime}, \underline{u}(0)=\left[\begin{array}{ll}
0 & 0
\end{array}\right]^{\prime}
\]

The solution at \(\underline{x}(t)\) is seen from \((t-54)\) to be the first column of exp[At]. By proceeding in this manner until each element of \(\underline{x}(0)\) and \(\underline{u}(0)\) has in turn been set to unity (the others remaining at zero), we can obtain all the columns of the discrete form matrices \(F\) and \(G\) in Equation (4-56).

In the state Equation \((4-51)\), the 7 state variables (\(n^{*}=7\)) are the deviation temperatures (about the operating profile) at the \(n\) collocation points along the central axis of the reactor. In the actual reactor, temperature measurements will be available at 9 equally spaced points along the central axis. These 9 axial temperatures will have to be expressed in terms of the 7 states, \(\underline{x}_{i}\), in order to obtain a measurement equation of the form (see (4-3))
\[
\begin{equation*}
\underline{y}(t)=H \underline{x}(t) \tag{4-57}
\end{equation*}
\]

This problem will be discussed in Section 5.1.1. The concentrations may also be expressed as a function of the 7 states, \(\underline{x}_{7}\); this is discussed in the next section.

\subsection*{4.10.1 Concentration as a Function of Temperature}

The measurement equation given in (4-3a) is general erough to accommodate the form suggested by Equation (4-50) for concentration as a function of temperature. Since we are more interested in mixed fram ially averaged) concentrations at the reactor exit, Equation (4,50) has to be modified for averaged concentrations.

Following Villadsen (Vi), the radially averaged concentrations throughout the reactor may be obtained using the collocation integration formulae (see Equation (4-3)) and Section 4.6.1).
\[
\begin{equation*}
\bar{C}^{i}(z, t)=2 \int_{0}^{1} C^{i}(z, t, r) r d r=\sum_{j=1}^{n+1} w_{j}(n) C^{i}\left(z, t, r_{j}\right) \tag{4-58}
\end{equation*}
\]
where \(w_{j}^{(n)}\) are \(n^{\text {th }}\) order collocation integration weights. Assuming a quartic radial profile for concentration, we obtain (see Section 4.6.1)
\[
\begin{equation*}
\bar{C}^{i}=w_{1} C_{0}^{i}+w_{2} C_{3}^{i}, \quad i=1,2,3 \tag{4-59}
\end{equation*}
\]
and in terms of deviation variables
\[
\begin{equation*}
\Delta 0^{i}=U_{1} \Delta C_{0}^{i}+w_{2} \hat{C}_{3}^{i}, \quad i=7,2,3 \tag{4-60}
\end{equation*}
\]

The expression for \(\Delta C_{0}{ }^{i}\) in Equation (4-50) together with an analogous one for \(\Delta C_{3}{ }^{i}\) may be substituted into (4-60) to obtain an expression for the vector of radially averaged (deviation) concentrations \(\Delta \bar{C}\) as a function of (deviation) temperatures and (deviation) manipulated variables at the previous time interval in the form
\[
\begin{equation*}
\Delta \overline{\mathrm{C}}(\mathrm{t})=x_{3} \Delta T_{0}(t)+x_{4} \Delta u(t-i) \tag{4-61}
\end{equation*}
\]

The mixed exit concentration vector \(\Delta \bar{C}_{\text {ex }}\) (at \(z=1.0\)) can be obtained by selecting that row of matrices \(X_{3}\) and \(X_{4}\) which correspond to exit conditions for each of the three species. Thus the three element vector of radially averaged exit concentrations can be expressed in tems of the terperatures and flows as
\[
\begin{align*}
& 3 \times 1 \quad 3 \times 7 \quad 3 \times 2 \\
& \Delta \bar{G}_{E X}(t)=M \Delta T_{0}(t)+N \underline{u}(t-1) \tag{4-62}
\end{align*}
\]
4.11 Simulation Studies

\subsection*{4.11.1 Steady State Behaviour}

The steady states of the quasi-steady state model Equations (4-41) to (4-43) and the full dynamic Equations (4-22) to (4-25) are i.dentical and have been studied in Section 4.7.1.

\subsection*{4.11.2 Dynamic Behaviour}

In the absence of sufficient dynamic data at this stage, no detailed comparison of the dynamic behaviour of the \(7^{\text {th }}\) order state space model could be made. Nevertheless, general trends and approximate values of time constants available from the previous experimental study (Tremblay (T2) indicated realistic dynamic behaviour of the model.

In Figure 12 some results of a dynamic simulation using this model (Equation (4-51)), are shown. Starting at the initial steady state curve (1) a \(3 \%\) increase in the hydrogen flow was made. Curve (2) represents the dymamic response after 10 minutes and curve (3) represents the final steedy state as predicted from the linearised state space model. Computations were performed using a Bulirsch-Stoer (B10) integration method and required 1 second of CDC 6400 computation time for 250 seconds of reactor time. A considerable improvement on the previous model (Section 4.7.3).

To investigate the effects of axial collocation and of linearising the model about its original steady state (1), the new steady-state profile (at a \(3 \%\) increase in hydrogen flow) was also computed using Equations (4-41), to (4-43) which contain none of the above approximations. This proftite is shown as curve (4). The combined effect of non-linearities and axial collocation are obviously quite strong and presumably the success of a control scheme based on the linearised state space model (4-51) will depend on the magnitude of the disturbances present and upon the severity and stability of the operating profile about which control is to be attempted.

The response of the linearised model (4-57) to a pulse (\(+10 \%\)) in hydrogen flow rate lasting for 120 seconds is shown in Figure 13. The most noteworthy observations are that the hotspot location shifts significantly during the transient. The final steady state profile agrees with the initial one arter about 50 ninutes. These responses will have to be evaluated in light of the actual reactor data but in the meantime give some indication of the reactor model performance.

In the next section, the model is fitted to experimental dynamic data. This places us in a much better position to evaluate the mode? performance.

9
Figire 12: Typical Dynamic Temperature Profiles in Response to a \(+3 \%\) Step in \(\mathrm{H}_{2}\) Flow (7 th Order Simulation).

Figure 13: Typical bynomic Teriperature profiles in Response to a \(+70 \%\) Pulse in \(\mathrm{H}_{2}\) Flow, Length of pulse 120 sec (\(7^{\text {th }}\) oraer Simiation).

\section*{CHAPTER 5}

\section*{FITTIMG THE REACTOR VODEL TO EXPESTENTAL DATA}

\subsection*{5.1 Introduction}

A process description has been given in Section 3.2. In this section, we describe how the reactor was configured for the purpose of data collection. These data were used in estimating the parameters in the state space model prior to its use for on-line control of the reactor. We describe here what measurenents were taken, hoa the data were collected and the technicues used, first, to fit the dynanic motiel, and then the dynamic-stochastic state space model.

\subsection*{5.1.1 Measurenems}

In Section 3.2.1, the advantage of measuring temperatures instead of concentrations for a reactor system was presented. In Section 4.10.1, an expression was derived relating the exit concentrations to the axial temperatures and inlet flows (controls). Initially, we rely on temperature measurements and any concentration information is obiained from Equation (\(\because-62\)).

Temperatures in the reactor are obtained sequentially using a mechanical multiplexer activated once a second by a relay in the minicomputer. The multipiexer connects each themocouple in turn to an amplifier/transmitter which transmits tho sional to the computer. Each themocoupie is read unce every 12 secondr. A completely dicital
multiplex system, together with individual amplification for each themocouple signal, would have permitted more rapid scanning of the temperatures, and measurement noise levels would have been reduced. Noise level on the thermocouples was estimated by setting the reactor temperature to some constant value and then taking temperature readings for several minutes. The data indicated two things:
(i) \(\pm 2 \sigma\) limits for temperature measurements were of the order of \(\pm 4^{\circ} \mathrm{C}\).
(ii) a level bias was detected for certain thermocouples. In particular, the second thermocouple from the entrance had a bias of \(-4.5^{\circ} \mathrm{C}\). Other themocouples (usuaily only one or two) developed smaller biases, and furthermore, thess biases were not constant for each experimental run. The exact reason for these biases could not be determined, but was probably due to contact resistances in the themocouple welds. See Figure 16.

It was mentioned in Section 3.2 and 4.10 that axial temperature measurem ments are available at rine positions along the length of the reactor. However, the \(7^{\text {th }}\) order state model for control is given in terms of (deviation) tmperatures at the 7 collocation points in \(z\) (see Section 4.9.1). The normalised distances at which 9 temperature measurements were available are compared with the 7 collocation points.

Measurements

\section*{0.0}
.034
.158
.282
.407
.531
.655
.779
.904
1.0

The 9 measured temperatures were "converted" to 7 temperatures at the collocation points by:
(1) selecting the measurement temperature ciosest to a colloca. tion point;
(2) chocsing the two measurement temperatures on either side of this centre temperature;
(3) using quadratic interpolation. An alternative method would have been to express the 9 measured temperatures as a finction of the 7 collocation point temperatures through a poly nomial model but this was considered less reliable.

With the 7 interpolated collocation temperatures, the measurement equation (see 4-53a) becomes
\[
y(t)=I_{7 x}(t)
\]
where \(I_{7}\) is the \(7^{\text {th }}\) order unit matrix
Input fiow measurements of the two reactants, Hydrogen and Bu.tane, were obtained by measuring pressure drop across lengths (162 and 19 cm , respectively) of stainless steel needle tubing (I.D.'s 0.137 and 0.0338 cm respectively). This pressure drop is converted to a voltage by a differential pressure (DP) transmiter which transmits the voltage signal to the minicomputer.

From the reaction scheme (Section 3.3), the stochiometric ratio of Hydrogen to Butane is 3.0 . If the feed ratio becomes less thar this. carbon is deposited on the catalyst causing it to deactivate, thus leading to a shutdow of the reactor. The minimum hydrogen flow rate was set at 3.5 times the butane flow rate for process operation.

Flow rates of the reactants were maintained at their set points through single loop PI flow controllers. The flow controller for the hydrogen flow had a fairly damped, smooth response. The butane flow control was more erratic and tended to oscillate somewhat in response to a step change in set point. This was due to the fact that the lower flows of butane caused a smaller pressure drop signal to be sent to the DP transmitter (which has a noise level of its own). Thus the feedback. signals for the butane flow control loop had a lower signai to noise ratio than those for the hydrogen flow control. The time constants for both flow controi loops were nevertheless no more than 1-2 seconds, and since the intended sampling interval for the system was 60 seconds, the dynamics of these loops could be reglected, relative to the sampling interva?.

Although the length of the reatotor is given as 28.0 cm , only 25.6 cm was used; the last few on were filled with inactive catalyst. The catalyst bed is supported by a sintered stainless steel disk (Type H, pore size: 5 microns). This disk (due to the mechanical configuration) is at the reactor wall temperature, ard caused the downstream end of temperature profile to be dragged down to the wall temperature. This in effect would require an extra boundary condition on the reactor energy equation. The inactive catalyst minimised the effect of the sintered disk.

\subsection*{5.1.2 Catalyst Activity}

One of the most important parameters as far as reactor performance is concerned, is the catalyst activity. This paraneter comot be directly measured and must be estimated, a posterioni, in conjuction with several other parameters.

From the reactor model equations (Ssction 3.4) and the reaction rate equations (Appendix 1), one can see that no provision is made fon a time varying catalyst activity. Certainly, from experience gatned With this catalyst in provious years (OH, S4), no significant loss of activity was expected during the period of an experimenta run (v 10 hours). This fact was confimed in our own experimental work. However: after a rum, the sactor is shut down and the catalyst is stored inside the reactor under a blanket of hyorogen or carbon dioxide. Some loss of activity was evident after a period of several doys (especially under hydrogen blanket storage). This is detected by the fact that a
higher wall temperature is necessary to achieve the same hot spot templeratures that were obtained previously with a lower wall temperatura. The loss of activity may of course, be due to either the shutdown or startup procedure since no catalyst deactiviation was observed during an experimenta? run.

Nevertheless, this presented a problem for parancter estimation. The parameter estimation was done off-line and usually took several days. For this period, the reactor was shut down. The parameter estimates obtained, would then no longer be välid for the next rum. This problem is somewhat due to the Taboratory nature of the experiments. An industrial process reactor is not often shut down (unless there is a failure or production considerations demand it) and if catalyst activity is constant during operation, the off-line parameter estimates would be valid and could be implemented several days later in an on-lithe switchover to the upciated control model.

An alternative solution is to simply start up the reactor with fresh catalyst every time. However, preparation of two batches of catalyst to an exact specification was very difficult (see Tremblay (\(T a\))) .

Another alternative that was used successfully in a previous study on an isothermal packed-bed reactor (01, 54), was to recondition the catalyst in the reactor at temperatures \(150^{\circ} \mathrm{K}\) or more above operating conditions prior to a run. This was tried by Tremblay in his earlier reactor (T 2) but led to severe leakages of hot smoking oil. For the reactor used in this study, catalyst was conditioned externally
and tronsferred under blanket \(\mathrm{CO}_{2}\) to the racior. Even so, prior to a run in this study, the hot spot was permitied to rise vell above operating conditions for several minutes before cooling and conmencement of a run. For a rapidly changing catalyst activity, one would have to specifically take accout of the activity change by modelling it, or using an adaptive strategy for upditing the control model online (see Tremblay (TA)).

\subsection*{5.2. Data Collection Uncer Closed Loop}

In classical lineer system identrication trohniques (freatency response and pulsa testing rathods), data are collected under open loop as required by the theory. Hower, in thts situation, we have a ronlinear model of the reastor hith is limombed abot some operating profile and thes is valid ony in thas rogom. Response data must thus be collected within a restricted region arond the operating profile. Therefore, some type of feedback control, implemented sither by an operator or computer, is necessary while the data are being collected. Care must be exercised in anaiysing this closed loop data [(B3), (BA) and (Se)]. Box and laceregon sho: (B3) that if standard statistical model identificacion tecimases (using cross and auto-correlation analysis) are applied to closed loop data from a linear process, under a linear feedback control las, the controliter transfer function, rather than the syster transier function, will be fientified. They show how the addition of a deliberately added rondon component, i.e., a "dither" signa, to the ferdack lop (hhe cousing sum loss in the quality
of control) allows one to properly identify the process transfer function.

Parameter estimation with closed loop data is discussed by Box and MacGregor (B4). They show that it may not be possible to estimate all parameters of a given linear dynamic-stochastic model separately, and that under certain conditions, the covariance matrix of the model parameters becomes singular. They derive the necessary and sufficient conditions for a singular estimation problem. The addition of a dither signal to the feedback loop while collecting data, breaks the estimation singularity and dramatically improves the estimation problem. Thus, just to ensure identifiability, "dither" signals were added to the reactor control signals during data collection. A white noise signal was added to the hydrogen flow cortrol loop and an autoregressive signal to the butane flow which wes left under open loop. The system is shown schematically in Figure 14.

The proportional-integral (PI) controller for the hydrogen flow rate used a function of the temperatures measured along the central axis of the reactor as an effective controlled variable. This function of temperatures was chosen to include information about both the height of the hot spot temperature and its axial position along the bed. Varinus linear and non-linear functions of the temperatures were tried, none of which appeared significantly superior to the rest. A controlled variable of the form (\(5-1\)) appeared to be the most adap table:
\[
\begin{equation*}
T_{\text {eff }}=\sum_{i=1}^{n} \alpha_{i} T_{i} \tag{5-1}
\end{equation*}
\]
where the \(\alpha_{i}\) are position weights and were selected to suit a particular temperature profile about which data was collected. For mary profiles, this type of function gave adequate control and variations of the temperature profiles about a given operating profile were suitably restricted. Unfortunately, the expression in (5-1) was not adequate for all operating temperature profiles, particularly for profiles where the hot spot was well centered but not too high. In fact, this central position was difficult to control and experimentally appeared very much to behave as though it was on unstable steady state. Any slight change in the flou controls would cause the hot spot to soar uparns by 100 to \(200^{\circ} \mathrm{C}\). An opposite change in flows could fust as eastly cause a sudden quenching of the reaction. The severity of the control problem was thus very deperdent on the chosen operating temperature profile about which control was desired. Data were collected about a suitable profile over several hours with a discrete sampling interval of 60 seconds. Usually about 100 data points were selected for the parameter estmation stage.

Dyamio duta for the experfmentar runs is given in Appendix 3.

\subsection*{5.3 Parameter Estimation and Model Fittina}

The reactor partial differential equations contain several parameters which must be estinated from mutiresponse data. In this section we discues briefly, muturesponse ostmation theory and show

\(D_{t}\left(C_{4}\right)\) dither signal for butane (Autoregressive (l) \(\phi=0.6\))
\(D_{t}\left(\mathrm{H}_{2}\right)\) dither signal for hydrogen (White noise)
\(\mathrm{u}_{\mathrm{Q}} \quad\) Butane flow
\(\mathrm{u}_{\mathrm{H}_{2}} \quad\) Hydrogen flow

Figure 14: Closed Loop Data Collection Comfiguration (Temperature Measurements oniy).
how it is applied when fitting the state space model to the reactor data.

\subsection*{5.3.1 Multiresponse Estination}

Least squares parameter estimation in systems where a single response is measured is a well known procedure. Justification for this method relies on the assumption that the measurement errors are independent normally distributed random variables, with zero mean and constant variance. The least squares criterion for single response systems can be derived using a Bayestan approach. Box and Draper (B5) have used a Bayesian approach to obtain a multivariate criterion to be minimised, when estimating common parameters in multiresponse systems. Using a multivariate Bayesian posterior denstty function they first obtain the marginal distribution of the parameters and then show how one can maximise this by minimising the deteminant, \(J\) :
\[
J=\left|\sum_{i=1}^{N} \varepsilon_{i}(\underline{\beta})_{\varepsilon_{i}}^{\prime}(\underline{\beta})\right|
\]
where \(B\) vector of the unknown parameters.
\(\varepsilon_{i}\) vector of residuals for the \(i^{\text {th }}\) data set

The \(\varepsilon_{i}\) are the residuals obtained when the model predictions are subtracted from the measured responses. Equation (5-2) represents the multivariate generalisation of the single response least squares criteria.

The deteminant \(J\) may be minimised by several of the available optimisation techniques (gradient, direct search, simplex, etc. (see Hhmelblau (H4)).

An iterative approach to obtaining the parameter estimates is given by Wilson (h2), who first obtains a condtional estimate of the dispersion matrix, \(D\) :
\[
\begin{equation*}
\hat{D}(\hat{\underline{E}})=\frac{1}{N-m-T} \sum_{i=1}^{N} \varepsilon_{i}(\hat{B}) \varepsilon_{i}^{i}(\underline{\beta}) \tag{5-3}
\end{equation*}
\]
where ~ indicates "estimate". and m is the number of responses. He then obtains a conditional estimate of the parameter vector \(\underline{2}\), conditionai on D, and by iterating between these two conditional astimates, he shows now the unconditional estimate of the parmeters is obtained. A sumary of his method and an algorithm is given by Jutan (JI).

\subsection*{5.3.2 A Method for Parameter Estiration in a State Space fodel}

In Section 4.10.1, we derived a \(7^{\text {th }}\) order discrete state space
mode1. If all temperatures along the length of the reactor are measured, the output vector 417 be \(7 \times 1\) and the measurement mistrix, \(7 \times 7\) :
\[
\begin{array}{cc}
7 \times 1 \\
y= & 7 \times 7 \tag{5-4}\\
y & 7 \times 7
\end{array}
\]

For our state model we have (see \((4-56)\))
\[
\begin{align*}
& 7 \times 1 \tag{5-5}\\
& \underline{x}(t+1)=\underset{A x}{7 x}(t)+\begin{array}{c}
7 \times 2 \\
B u(t) \\
2 \times!
\end{array}
\end{align*}
\]

One conmon method for fitting a state space model is to simply guess the order of the state model, corisider the elements of matrices, \(A, B, H\) to be parameters, and fit these parameters to the data by a Teast squares method. However, the number of parameters (126 if A, \(B\) and \(H\) are full) would be prohibitive even if a sparse canonical representation were used. Clearly a different approach is required.

An examination of the differential equations for the reactor (Section 3.4) shows that there are only a few parameters or groups of parameters which require estimation. One can identify four such parameters:
(1) \(D_{\text {er }} \quad\) (effective radial diffusivity)
(2) (\(k / k_{0}\)) (catalyst activity, see Appendix 1)
(3) \(\mathrm{B}_{\boldsymbol{i}}\) (Biot number)
(4) \(\lambda_{\text {er }}\) (effective radial thermal conductivity)

There are of course, a whole series of paraneters associated with the kinetics of the reaction system. For the present, these parameters ore considered "known" and a further discussion is given in Section 5.3.3.

In Section 4.7.2, the reactor temperature profiles were show to be insensitive to Der and a precise estimate was not required. In Section 2.2, estimation of the Biot number \(B_{i}\) is discussed. Large
values of \(B_{i}\) imply that most of the resistance to heat transfer is in the bed itself rather than being ?umped at the wall (Section 2.2.3). However, once \(B_{i}\) is larger than about 20 , the precise value of \(B_{i}\) becomes less important as seen by Equation (4-16) where \(B_{i}\) occurs in a term of the form
\[
\frac{\lambda_{e r^{4}}}{R^{2} \bar{C}} \cdot \frac{B_{i}}{\left(B_{i}+2\right)}
\]

The Biot number for our reactor was estimated from the literature (B1) to be 43.5, and simulation studies showed quite ciearly that any value of this order of magnitude produced essentially identical profiles.

Therefore, the primary estimation problem was reduced to two important parameters \(\left(k / k_{0}\right)\) and \(\lambda_{\text {er. }}\). In Chapter 4, it was shom that beginning with the partial differential equations, ore could cotain a state model by the following stages:
(1) Apply collocation in radial direction,
(2) Solve steady state equations to obtain an operating profile,
(3) Apply collocation in axial direction,
(4) Linearise the collocated equations about an operating profile,
(5) Eliminate the concentration variables to obtain a continuous state model in the temperatures,
(6) Integrate the continuous model to obtain a discrete state space model of the form
\[
\underline{x}(t+1)=A \underline{x}(t)+B \underline{u}(t)
\]

The equation relating concentrations to temperatures (\(4-62\)) follows stage (6), and is witten in the form
\[
\underline{C}(t)=H \underline{X}(t)+G \underline{U}(t-1) .
\]

The overall algorithm may thus be viewed as a "mapping" of a few physical parameters into the state matrices, A, B, H and G.

In stage (2) above, one of two approaches could be taken. The operating temperature profile was in fact the steady state profile obtained by solving the steady state versions of all 7 PDE's: 6 concentration and 1 temperature (4-22) to (4-24). Alternatively, the operating temperature profile was obtained by averaging the temperature data in time to obtain an average operating temperature profile. The concentration profiles corresponding to this, were obtained by solving the steady states of the remaining 6 concentration Equations (4-22) to (4-23).

Once the state mode? is in the discrete form, the residuals may be obtained by iteratively solving for the states \(x(t)\) at \(t=\) \(0,1,2, \ldots\) etc. . and then using the measurement equation to obtain the predicted output temperatures from \(y(t)=H \underline{x}(t)\), where (from Section 5.1.1) \(H=I_{7}\), the \(7^{\text {th }}\) order untit matrix. The residuals \(N(t)\) are calculated as
\[
\begin{equation*}
N(t)=\underset{\text { Observed }}{ }-\underline{y}(t) \tag{5-6}
\end{equation*}
\]

Figure 15: Flow Chart for Parameter Estimation Algorithm.

The residuals are fed to a multivariate parameter estimation routine which updates the initial parameter guesses in accordance with minimisation of the determinant \(J\) in (5-2). A flow sheet of the estimation algorithm is presented in Figure 15.

\subsection*{5.3.3 Application to Reactor Data}

Several difficulties were encountered when the estimation algorithm in Figure 15 was applied to the reactor data.
(1) The estimation surface was very rough and many of the mimi.. misation routines simply converged on any one of the many local minima that were encountered.
(2) Extreme parameiric sensitivity existed for the two important parameters, \(k / k_{0}\) and \(\lambda_{e r}\). Examination of the energy differentiat equation showed that these parameters featured prominentiy in the subtraction of two large, almost equal numbers. This can be demonstrated by writing the steady state energy balance equation as (see (4-24)),
\[
\begin{equation*}
\frac{d T}{d z}=\frac{\lambda e r(\text { heat removal })-\left(k / k_{0}\right)(\text { heat generation })}{v_{T}} \tag{5-7}
\end{equation*}
\]

The smail temperature wave velocity \(v_{T}\left(=\sim 10^{-4}\right)\) (prevalent in gas solid systems) magnifies the sensitivity of the derivative to the parameters \(\lambda_{\text {er }}\) and \(k / k_{0}\). Often changes in the \(3^{\text {rd }}\) or \(4^{\text {th }}\) significant figure could cause dramatic changes in the reactor profiles. This situation was aggravated by the highly exothermic nature of the heat generation tems. The parametric sensitivity of the steady state temperature profile
to small changes in \(\lambda_{\text {er }}\) is illustrated in Figure \(5 a\).
In order to obtain a sturdier control of the sensitivity of these two parameters, a third parameter was introduced by expanding the thermal conductivity parameter into effectively two parameters
\[
\begin{equation*}
\lambda_{e r}=\lambda_{0}+\alpha\left(T^{4}-T_{w}^{4}\right) \tag{5-8}
\end{equation*}
\]

The extra parameter \(\alpha\) allowed for fine tuning of \(\lambda_{e r}\). This particular form was chosen to \(i\) dentify the a parameter with a radiation effect, that would cause additional heat removal at high temperatures. See Section 3.4.
(3) High positive correlation existed among the parameters especially between \(\lambda_{0}\) and \(\left(k / k_{0}\right)\). This is again due to the form of Equation (5-7) where these parameters govern almost equal but opposite effects. Correlations of up to 0.998 were quite common and caused severe convergence difficulties. See Appendix 3.
(4) A large computationiai effort was involved in fitting these state models. It is evident from Figure 15, that a once through calculation to obtain the residuals involves a great deal of numerical computation(\(16-25\) secs CPU time on a \(\operatorname{CDC} 6400\)). It was thus important to use a highly efficient minimisation routine that required a minimum number of function evaluations to obtain an acceptable model fit. Marquardt's method (M4) proved to be superior to other methods used (Simplex, Poweil. stecpest descent, sce (HI)).
(b) There existed, in effect, a disconcinuity in the estimation
surface, This occurred when a particular set of parameter estimates gave rise to a dynamic A matrix for which the discrete state model had one or more eigenvalues outside the unit circle. The model is then dynamicaliy unstable and the states increase in time without bound. The residuals become infinite and the response surface exhibits a discontinuity. Thess discontinuities were scattered across the response surface and appeared suddenty, for what seemed to be quite reasonable sets of parameters.
(6) All elements of the multivariate residual (noise) vector \(N(t)\) as praviously incicated, represent the noise content of axial temp-eratures measured in the reactor. It is almost cortain that, since we are dealing with notse content of related temperatures along a reactor profile, some of the elements of the noise vector \(N(t)\) are linearly dependent. It is reasonable to expect that any underiying notse on disturbance, affects the profile in such a way that certain cemperatures would always tend to move in the same direction and mamer as others. This implies that there are only a few fundmental distarbances which make up the 7 noise sequences in \(\mathbb{N}(t)\) and that in fact, the \(\mathbb{N}(t)\) vector is not fully 7 -dimensional. This problem is dealt with in Section 5.4. Nevertheless, this linear dependence amongst elements of \(\mathbb{N}(t)\), implies that the determinant criterion \(d\) in (5-2) will be nearly singular irrespective of how close we are to a minimum. This ied to momerica? instability and caused many of the minimisation routines to fail. A more stable objective function was simply the sum of the sum of somares of the residuals which does however, imply, for statistica? Wistiffation, that thene is no correlation between the elemants of \(\mathrm{N}(t)\)
and that all the variances are equal (B5). This, in fact, was not true, but the procedure can be justified simply as a minimisation of a closeness of fit criterion to obtain reasonable estimates for the dynamic parameters. When a proper characterisation of the noise was added (see Section 5.4 ; more statistical justification was possible.

\section*{Further Observations on Estimation Difficulties}

In Section 5.3.2, four important parameters were identified. This assumed that all the kinetic parameters (except catalyst activity) are known (from a previous study (01, S4), see Appendix 1). It is common practice to perform kinetic studies on one reactor (for experinental convenience) and then use the kinetic estimates obtained on this reactor when dealing with the same reaction in what may be a completely different reactor (size, type). However, it is true to say that the kinetfoparameters estimated by studies on one reactor may not be valid for a new reactor. In fact, the parameters obtained should be treated as prior information and re-estimated along with the new parameters (H5). In our problem unfortunately, the introduction of 10 or 12 more kinetic parameters would make our estimation problem computationally unfeasible.

It may however be possible to undate these kinetic paraneters in a conditional fashion as desoribed by Wilson (W2) (see section 5.3.1). From the fitted models (see later), it appeared that the kinetic parameters obtained from the previous study (01, S4) were adequate, and did not require re-estimation.
(A) Time average the dynamic data from the reactor. This provided an average operating profile. It also showed up any thermocouple biases that existed (see Section 5.1.1 and also Figure 16) and these were corrected for by providing a counter bias so that the data point lay on a smooth curve passing through the remaining temperatures.
(B) Use the steady state version of the partial differential Equations ((4-22) to (4-24)), to set up a steady state grid search with the objective as the sum of squares of deviations from the given operating profile from step (A). This provided a feasible initial estimate for the parameter vector.
(c) Using a non-linear least squares routine based on farquardt's method (M4), fit the steady state version or the reactor equations (see step (B)) to the operating profile. This provided reasonable initial estimates for the final dynamic data fit.
(D) Proceed with the dyamic model fit using estimates from step (C). Several iterations (B) to (D) were usually required.

\section*{Results}

It was mentioned previously (Section 5.3.2) that for the dynamic fit, two alternative procedures were adopted: linearisation about the steady state temperature profile of the model, or linearisation about an average operating profile dotained from reactor data records. Uaialiy,
these two profiles were similar, but in general, the average profile (see step (A)), was better centred in the data. In fact, there is no special motivation for Iinearising about a steady state in the vicinity of the operating profile and, as mentioned previously (Section 5.2), the experiments showed that the steady state in the vicinity of the operating profile appeared to be unstable, and any slight change in the flow controils caused large changes in the reactor temperature profile. It was thus not possible to obtain the steady state experimentally under open loop.

Resuits of the fitting process are illustrated in figures 16. 17, 18 and 19 for a particular run 26 May, 1976 and the state space model obtained is given in Appendix 3. Figure 16 shows the opereting profile obtained by averaging the dynamic data in time. Biases on themocouples 2 and 7 are clearly shown and counter biases are added to make all data points lie on a smooth curve.

Figure 17 shows the operating profile as well as how well the dynamic model (which is linearised about this operating profile) predicts the dynamic data. In this figure, the profiles at \(t=4\) and \(t=11\) minutes are shown as well as the 2 o limits for the themocouple measurement error, calculated by taking the average variance of the \(\mathbb{N}(t)\) vector. The predicted profiles are well within these \(2 \sigma\) limits indicating a good fit. An overall measure of the fit for all time is given by the Sum of the variances of \(\mathbb{N}(t)\) : for Figure 17 , this vaiue is 48.5 indicating a good fit. Total sum of squares of residuals was 2867. The dyamic data, the estimation program used and the state space model obtaimod are

Figure 16: Time Average Operating Profile (26 May Data).

Figure 17: Axial Temperature Profiles. Model vs. Data (Linearisation about Average Profile in Figure 16) (26 My nota).

Figure 13: Axial Temperature Profiles. Model vs. Data (Linearisation about Steady State Profile) (26 May Data).

Figure 19: Radial Temperature Profile at \(t=41\) minutes (for Different Axial Positions, z) Model vs. Data (26 May Data, Figure 17).
given in Appendix 3.
In Figure 18, the dynamic model was fitted by linearising about a steady state (close to the operating profile) obtained from the model (see Section 5.3.2). The model predictions are again compared with the data at \(t=47\) minutes and \(t=11\) minutes. The \(2 \sigma\) limits for the data point (near the hot spot) is shown. All the model predictions lie within these \(2 \sigma\) limits but the overall fit for all time is not quite as good as that shown in Figure 17 as verified by an increase in sum of variance value to 55.6. Total sum of squares was 3282 .

Thermocouples were placed at the radial collocation points \(r\) a 0.577 (see Section 4.4.1), at three different axial positions. In Figure 19, the three radial profiles predicted by the model at \(t=41\) minutes are compared with the data. The good fit obtained implies that the model assumption of quadratic radial temperature profics (Section 4.4) was quite adequate and that radial gradients were significant.

\section*{Concentration Data}

All the above nodel fitting used only temperature data. Towards the end of this study, the gas chronatograph (see Section 3.2) wes successfully intarfaced by Tremlay (TA) making concentration data available. The chronategraph required 361.3 seconds to complete an analysis of all five mole fractions on the product \(\left(H_{2}, C_{4}, C_{3}, C_{2}, C_{1}\right)\). At the end of an andysis, the computer is signalled to coliect the relevant data. The chromatograph thus controls the times at which concertration data dre ayababin and it was not possibie to properiy
synchronise the temperature data (which is controiled by the computer) with the concentration data.

Nevertheless, a major value of the concentration data was to eliminate any level biases in the model predictions that were evident in the mole fractions and in the overall conversion. For the purposes of a model fit, using both temperature and concentration data (mole fractions (MF)), the mole fractions were approximately matched up to correspond to every sixth 1 minute sampling interval for the temperatures.

A simple sum of squares criteria was used to fit the concentration and temperature simultaneously
\[
\begin{aligned}
J & =\sum_{t=0}^{N} \sum_{j=1}^{7}\left[T_{j t}(\text { data })-T_{j t}(\text { model })\right]^{2} \\
& \left.+\lambda \sum_{t=0}^{N / 6} \sum_{j=1}^{4} W_{j}\left[M F_{j t}(\text { data })-M F_{j t}(\text { mode })\right]\right]^{2}
\end{aligned}
\]
where \(\lambda, w_{j}\) are weighting factors. The fitted state space matrices are given in Appendix 3, 23 September data.

Resuits
\[
\text { Initianly, the same set of parameters } \lambda_{0} \text {, a and } k / k_{0} \text { (see }(5-8)
\] and Scction 5.3.2) were used to fit the model to both the concentration and temperature data. In order to improve the concentration fit, an extra parameter \(D_{\text {er }}\) was introduced. A change in \(D_{\text {er }}\) did not affect the
temperature profile much, but significantly improved the concentration fit. In order to keep the tota? number of parameters to a minimum, parameter a was fixed at a previously estimated value. It was mentioned previously that \(\lambda_{0}\) and \(k / k_{0}\) were highly correlated, when fitting the temperature data alone. The sum of squares estimation surface would be a long cigar shape. Typical correlation matrices for 26 May and 23 September data are given in Appendix 3. A pair of values for \(\lambda_{0}\) and \(k / k_{0}\) lying anywhere along this ridge

gave similar sums of squares of residuals, for the temperatures. The inclusion of the concentration data effectively positioned the pair (\(\lambda_{0}, k / k_{0}\)) along this ridge so as to match up the concentration data, while maintaining a good temperature fit.

The temperature profile fit is compared with data in Figure 20. The axial temperature profile are shown at two times (\(t=36, t=82\) minutes). The ? a thermocouple error band on the data points is given, showing that the model predictions are well within this band, and that the temperature dyantics have been well matched. The sum of the variances for the 7 temperatures, \(\sum \sigma_{N_{i}}{ }^{2}\), was 39.8 indicating that the overall temperature dynamics too, were well matched.

The mole fraction data was approximately synchronised to the model predictions at every sixth one minute sampling interval. Teling this into account, the model mole fraction predictions were compared and the data is presented in Figure 21. This figure indicates that both the level and the dynanic trends in mole fractions of the various species have been well matched by the model. The conversion of butane is aiso plotted. The mole fraction of the fourth component \(C_{2}\) was too small to be detected by the gas chromatograph and the data showed zero for this value, (the model predicted an average of . 006).

In spite of this relatively crude synchronisation of temperature and concentration data, the model appears to predict the oyerall mole fraction trends and levels well, while at the same tine, maintainang a good fit on the temperatures. We have thus been able to obtain adequate fits of the state model to both temperature and concentration dynamic data lising the algorithm described in Section 5.3.2.

We can compare this with the method of fitting an empiricaliy chosen model (canonical state variable or transfer function form) directly to the data by estimating the large number of parameters occuraing in these foms. In this latter case, a minimum of prior infomation about the physical reactor is used. The starting point for the method used here is the PDE's describing the dynamics of the reactor and in a sense, maximum prior information is used. Some of the advantages and disadvantages of the method used here are given below.

Figure 20: Mxial Temerature Pofiles, Model vs. Dota (Linearisation about Average Profile) (23 September Data).

Figure 21: Reactor Exit Mole Fractions, Model vs. Data (23 September).

\section*{Adventages}
(i) A small number of parameters can be used to fit the data; all have physical meaning and can often be estimated from the literature.
(ii) The number of parameters to be estimated does not increase with the order of the state model. So, if in fact we required a \(10^{\text {th }}\) order state model to adequately describe the dynamics, we would still have only two or three parameters and these would be "mapped" into a \(10^{\text {th }}\) order model using the algorithm in 5.3 .2 with relatively minor increase in computation time.
(iii) Extensive infomation is provided through the model: axia] concentration profiles may be calculated from the states of the model; radial profiles of both concentation and temperature are obtained as a function of the states of the model.

\section*{Disadvantages}
(i) The partial differential equations of the reactor model are difficult to work with and many simplification stages are required.
(ii) Computational time may be excessive.
(iii) Ill-conditioning may be induced into the estimation surface by ait the numerical steps required in the estimation procedure
(iv) A large effort must be expended to obtain a usable mode? for this system - a point which may curtail the interest of industry. Nevertheless, the model fitted here does provide an adequate description of all the complex temp-erature-concentration dynamics in both the radial and axial direction as well as extremely useful relations which allow prediction of concentrations from temperature.

So far, we have dealt with a description and modelling, only of the deterministic dynamics of the reactor. In order to fully des.. cribe the true dynomic-stochastic nature of the system, the stochastic noise characteristics of the system must be modelied.

\subsection*{5.4 Buidina a Noise More!}

The represontacion of the deterministic dynamics of a system in the state space form has been discussed. From (a-2) the state equation is
\[
\begin{equation*}
x(t+1)=A x(t)+B u(t) \tag{5-9}
\end{equation*}
\]
with a measuremont equation
\[
\begin{equation*}
y(t)=\| x(t) \tag{5-10}
\end{equation*}
\]

This model provides a description for only that part of the output (\(y(t)\)) variations caused by changes made in the nanipulated variables y(t). Equation (5-9) does nut decomil for deterministic ioad disturbances.

These could be accounted for by adding an additional term. The model is deterministic in that it allows for no model error, no measurenent error nor any random process disturbances. Obviously these effects are important or else there would be no regulatory control problem. This noise or disturbance part of the system that cannot be explained by the deteministic model \((5-9)\) and \((5-10)\) must be accounted for by a stochastic model.

There are basically two approaches to modelling these stochastic components. The first makes the assumption that all the disturbances can be represented by introducing adicive white noise vectors to the stace equation and the measurement equation. The combined dynamic sto. chastic model then takes the form
\[
\begin{align*}
& \underline{x}(t+1)=A \underline{x}(t)+B u(t)+w(t) \tag{5-11}\\
& \underline{y}(t)=H \underline{x}(t)+v(t) \tag{5-12}
\end{align*}
\]
where \(w(t)\) and \(v(t)\) are independent white noise vectors with covariance matrices
\[
\begin{align*}
& E\left[\underline{w}(t) w^{\prime}(t+k)\right]=R w \\
& E\left[w^{\prime}(t) \underline{v}^{\prime}(t+k)\right]=0 \quad \text { for all } k \\
& E\left(\underline{w}(t) \underline{w}^{\prime}(t+k)\right]=R V
\end{align*}
\]
\(W(t)\) is usually thought of as representing the process noise or disturbances and nodelling error, and \(v(t)\) represents the measurement noise.

It is in general, not possible to uniquely identily these two noise sources from input-output data, nor is it necessary from a control standpoint (M5). The stochastic parameters to be estimated in the model (5-11), (5-12) are the elements of the covariance matrices Rw and Rv. Since unique estimation of full Rw and Rv matrices is not in general possible from input-output data, some simplification in the ir structure (i.e., restriction to diagonal fom) is often made (16), and the reatuced number of parameters adjusted in some maner to best fit the data or give the best control when the stochastic control algorithm, derived from \((5-11)\) and \((5-12)\) is implemented.

One problem with such a crude representation of the stochastic part of the model is that all the noise is assumed to enter into the process like an input and pass through the process. The time dependenco of the notse is thus govemed solely by the dynamic chamacteristics of the deterministic model. In practice, since many types of disturbances or noise do enter the process in this manner, this may be a reasonable assumption. However, in other cases, where the major disturbances are generated elsewhere in the system (e.g., intemally in the catalyst particies) this structure for the noise may be poor.

The alternative is to independently identify and fit a state space model for the actual stochastic disturbances in the system from imput-output data. The combined dynamic stochastic system can be represented as an augmented state space model.

\subsection*{5.4.1 A Dynamic-Stochastic State Space Model}

To identify and fit a noise model for a state space mode? from input-output data, one must treat the residual vector \(N(t)\) (see (5-6)) as the stochastic noise sequence and write the dynamic-stochastic mode? as
\[
\begin{align*}
& \underline{x}(t+1)=A \underline{x}(t)+B \underline{u}(t) \tag{5-14}\\
& \underline{y}(t)=H \underline{x}(t)+\underline{N}(t) \tag{5-15}
\end{align*}
\]

In general, \(N(t)\) can be modelled by a multivariable linear autoregressive integrated-moving average (ARIMA) time series model (B5, W2) of the fom
\[
\begin{equation*}
\phi(B) \nabla^{d} \underline{N}(t)=\theta(B)_{\underline{Q}}(t) \tag{5-16}
\end{equation*}
\]
where
\(\phi(B)\) is a matrix autoregressive polynomial of back shift operators B
\(\nabla^{d}\) is a \(d^{\text {th }}\) difference operator
\(\theta(B)\) is a matrix moving average polynomial in \(B\)
\(B \quad\) is a back shift operator such that \(\operatorname{BN}(t)=N(t-1)\)
a(t) is a white noise vector sequence with covariance matrix \(Z\)
The identification and estimation of the single variabie noise models is discussed by Box, et al. (B6) and for multivariable noise models by Wilson (12). It can be shown that under certain conditions (B6), any
purely moving average (in) process of finite order may be represented by a purely autoregressive process (AR) of infinite order. Many common stochastic disturbances are well approximated by an autoregressive process of finite order, say \(p^{\text {th }}\) order.
\[
\begin{equation*}
\phi_{p}^{*}(B) V^{d} \underline{N}(t)=\underline{\alpha}(t) \tag{5-17}
\end{equation*}
\]

The AR parameters appear linearly in the models (5-16) and (5-77) and may be estimated by linear least squares methods. Estimation of the moving average parameters is a non-linear problem. If the nolsa mode? is stationary (mean level of the disturbances is constant) then we may represent the multivariable noise model as say a \(p^{\text {th }}\) order AR model
\[
\begin{equation*}
\phi_{p}(B) N(t)=\underline{a}(t) \tag{5-18}
\end{equation*}
\]

If for simplicity, we begin with a first order \(A R\) model \(A R(1)\) then (5-18) becomes
\[
(1-\phi B) \mathbb{N}(t)=\underset{\sim}{o}(t)
\]
or
\[
\begin{equation*}
N(t)=\phi N(t-1)+a(t) \tag{5-19}
\end{equation*}
\]
where \(\phi\) is a full matrix of parameters of order \(m\) (see (5-20)).
For \(n\) states, in measurements, and \(p\) control variables, then in \((5-14),(5-15)\) and \((5-19)\), the orders of the matrices are
\begin{tabular}{ll}
\(A(n \times n)\) & \(\underline{x}(n \times 1)\) \\
\(B(n \times p)\) & \(\underline{y}(m \times 1)\) \\
\(H(m \times n)\) & \(\underline{u}(n \times 1)\) \\
\(\phi(n \times m)\) & \(\underline{N}(m \times 1)\)
\end{tabular}

After fitting the dynamic-stochastic state model in the form (5-14), (5-15) with an identified noise model (5-19), one cen obtain the standard dynamic stochastic model form (5-11) and (5-12) as fallous.

Define \(m\) new states \(s(t)\) such that
\[
\begin{equation*}
\underline{N}(t)=\underline{s}(t) \tag{5-21}
\end{equation*}
\]
then adding \((5-19)\) to \((5-14)\) and \((5-15)\) we have
\[
\begin{aligned}
& y(t)=\operatorname{Hx}(t)+\underline{s}(t)
\end{aligned}
\]
or
\[
y(t)=\left[H: I_{m}\right]\left[\begin{array}{l}
x(t) \tag{5-23}\\
\hdashline s(t)
\end{array}\right]
\]
if we define
\[
\begin{align*}
& A^{*}=\left[\begin{array}{c}
A!0 \\
\hdashline 1 \\
01
\end{array}\right] \quad(m+n) \times(m+n) \\
& B^{*}=\left[\begin{array}{c}
B \\
\hdashline- \\
0
\end{array}\right] \quad(m+n) \times p \\
& w^{*}(t)=\left[\begin{array}{c}
0 \\
-- \\
I_{m}
\end{array}\right] \underline{a}(t)(m+n) \times 1 \tag{5.24}\\
& \underline{v}^{*}(t)=0 \\
& H^{*}=\left[\begin{array}{lll}
H & : & I_{m}
\end{array}\right] \quad m \times(m+n) \\
& \underline{x}^{x}(t)=\left[\begin{array}{l}
\underline{x}(t) \\
\frac{s}{s}(t)
\end{array}\right] \quad(m+n) \times 1
\end{align*}
\]

Then the augmented dynamic stochastic model can also be represonted in the form (5-11) and (5-12).
\[
\begin{align*}
& \underline{x}^{*}(t+1)=A^{*} x^{*}(t)+B^{*} \underline{u}(t)+\underline{w}^{*}(t) \tag{5-25}\\
& \underline{y}(t)=H^{*} \underline{x}^{*}(t)+\underline{v}^{*}(t) \tag{5-26}
\end{align*}
\]
where
\[
\text { Fw }^{*}=\cdot\left[\begin{array}{c:c}
0 & 0 \\
\hdashline 0 & 0
\end{array}\right] \text { and } \Sigma=E\left[\hat{o}(t) \underline{\underline{a}}^{\prime}(t)\right]
\]
and
\[
\begin{equation*}
R v^{*}=0 \tag{5-27}
\end{equation*}
\]

For an \(A R(2)\) model one would hàve to define an new states \(s(t)\)
and the state model would be of order (\(n+2 m\)).

\subsection*{5.4.2 Parameter Estimation}

Least squares estimation of the \(\phi\) matrix of parameters in the AR(1) modei in (5-19) is a linear probien. Define the autocovariance matrix at lag \(k\) as
\[
\Gamma(k)=E\left[N^{\prime}(t) N^{\prime}(t+k)\right]
\]
and
\[
\begin{equation*}
\Gamma^{\prime}(k)=r(-k) \tag{5-28}
\end{equation*}
\]
then for \(\operatorname{AR}(1)\) and modiel (5-19)
\[
\Gamma^{\prime}(k)=\phi \Gamma^{\prime}(k-1) \quad k \geqslant i
\]

For \(k=1\)
\[
F^{\prime}(T)=\phi \Gamma^{\prime}(0)
\]
and therefore
\[
\begin{equation*}
\phi=\Gamma^{\prime}(1) \Gamma^{\prime}(0)^{-1} \tag{5-29}
\end{equation*}
\]

For \(k=0\)
\[
\begin{equation*}
\Gamma(0)=\phi \Gamma(1)+\Sigma \tag{5-30}
\end{equation*}
\]
where
\[
\begin{equation*}
Y=E\left[a(t) a^{\prime}(t)\right] \quad(\sec (5-27)) \tag{5-31}
\end{equation*}
\]
substituting for \(\phi\) we get
\[
\begin{equation*}
\Gamma(0)=\Gamma^{\prime}(1) \Gamma(0)^{-1} \Gamma(1)+\Sigma \tag{5-32}
\end{equation*}
\]

Once the residuals have been obtained, is is easily estmated from (5-23). The estimation algorithm was detailed in Section 5.3.2 and in Figure 15, and may be extended to include estimation of the stochastic parameters \(\phi\) in a conditional manner (\(\mathrm{v} / 2\)).

\section*{Algorithe}
1. Guess dynamic parameters \(\lambda_{\text {er }}\left(k / k_{0}\right)\), etc.
2. Obtain residuals \(\mathrm{N}(\mathrm{t})\).
3. Estimate \(\phi\) from (\(5-29\)) conditional on dynamic parameters
4. Calculate \(\mathrm{a}(\mathrm{t})\) 's recursively from (5.19).
5. Feed \(\mathfrak{a}(t)\) 's to a minimisation routine to minmise the determinant criterion (5-2).
6. Obtain updates for the dynamic parameters conditional on \(\phi\) and return to step 2.

\section*{Results}

The rosiduals in the dynamic stochastic models are the \(\underline{\underline{a}}(t)\) 's, the variance-covariance or dispersion matrix (see (5-3)) of the \(a(t)\) 's \(\sum\), can be used as a measure of the goodness of fit of the model. The Iower limit for the variances of \(g(t)\) is the variance of the measurement error and from Section 5.1.1, this is known to be of the order of
\[
\sigma_{\text {meas }}^{2}=4.0
\]

The variance-covariance matrix for the dynamic, \(\mathbb{D}_{\mathbb{N}}(t)\), and the dynamic. stochastic riodel, \(\mathrm{D}_{\mathrm{a}}(\mathrm{t})\), is given in Table 2. These matrices are for the same data 111 ustrated in figures 16 to 19 and discussed in Section 5.3.3 (i.e., 26 May, 1976 rum).

From Table 2, it is seen that the sum of variances \(\sum_{i=1}^{7} 0^{2} a_{i}\) has been reduced to 27.4, from 43.5 for \(\sum_{i=1}^{7} \sigma_{a_{i}}{ }^{2}\) (see also Figure \({ }^{i=1}\)) by the incorporation of the stochastic model.

Recaling that 0 is the covariance matrix for the 7 axial temperatures in the bed in the order \(T_{1}\) to \(T_{7}\), Table 2 shows that the com variance between temperatures has been reduced, especially between temjeratures eariy in the bed. All the variances \(\sigma_{d_{i}}{ }^{2}\) have been reduced close to the measurement error, suggesting that the noise seguence \(N(t)\) has been adequately accounted for by the assumption of an AR(1) noise model. The dynamic stochastic parameters were first estmated by minimising the sum of the sum of squares of the temperature residuats \(J^{*}\)
\[
\begin{equation*}
J^{*}=\sum_{a 11} \underline{a}^{\prime}(t) \underline{a}(t) \tag{5-33}
\end{equation*}
\]

The estimates from this minimisation routine were then fed to a routine that minimised the determinant \(J(5-2)\) but ittile change occurred.

Towards the end of this study, a multivariate identification and checking progran becane available (w3). This program calculated multivariable auto-correlation and quasi-partial correlation matrices for a

TABLE 2: Variance-Covariance Matrices for Dynamic and Dynamic Stochastic Models for Data Taken 26 May, 1976
\(\mathrm{D}_{\mathrm{N}(t)}=\left[\begin{array}{rrrrrrr}6.65 & .93 & 1.65 & 2.13 & -.44 & -.04 & .18 \\ & 4.66 & .139 & .88 & .20 & -1.56 & -.89 \\ & & 3.77 & 2.41 & 1.07 & 2.84 & 2.75 \\ & & & 6.36 & 1.81 & 3.28 & 2.46 \\ & & & & 7.60 & 7.40 & 6.30 \\ & & & & & 12.17 & 10.54\end{array}\right]\)

Variance-Covariance matrix for \(\mathbb{N}(t)\) 's
\[
\sum_{i}^{7} 1_{a_{i}}{ }^{2}=48.5
\]

Total sum of squares \(=2867\)
\(0_{\mathrm{e}(\mathrm{E})}-\left[\begin{array}{ccccccc}3.83 & .59 & 1.34 & 1.95 & -.25 & .55 & .34 \\ & 4.23 & .39 & 1.26 & .97 & -.39 & .065 \\ & & 3.23 & 1.84 & .20 & 1.64 & 1.71 \\ & & & 5.09 & .28 & 1.24 & .91 \\ & & & & 3.19 & 1.34 & 1.26 \\ & & & & & 3.62 & 3.36 \\ & & & & & 4.17\end{array}\right]\)

Vartance-Covartance matrix for \(\mathfrak{a}(t)\) 's
\[
\sum_{i=1}^{7} \sigma_{i}^{2}=27.4
\]

Total sum of squares \(=1616\)
multivariable cime series. The \(\underset{\sim}{(}(t)\) series calculated fron (\(5-10\)) was tested and showed no evidence of auto-correlation in time: the 95\% confidence band around zero was 0.263; the largest element in the auto-correlation matrix at lag 1 was 0.232 and the average of the absolute values of all the elenents in the matrix was \(\sim 0.06\). This confirmed that the \(\underset{\alpha}{ }(\mathrm{t})\) was a white noise sequence and that the \(\operatorname{AR}(1)\) model in (5-19) was adequate.

The stochastic part of the model was thus properly identified; a noise model was developed and jointly fitted with the dynamic model. A larye improvement in the model fit was obtained, as indicated by the reduction of the dispersion matrix \(\left(D_{\underline{N}}(t)\right.\) to \({\underset{\underline{D}}{\underline{Q}}}(t)\) down close to mean surement error (4.0 's along the diagonal). In the next section, the possibility of reducing the dimensionality of the noise model is examined.

\subsection*{5.5 Dimensionality Reduction for the Noise Model}

In Section 5.3.3 (step (6)) it was pointed out that the 7 states in the model are related temperatures along the reactor profile. It is thus guite possible that a few (2 or 3) underlying disturbances in the system affect groups of these temperatures in a similar manner. It is then these fen fundamental disturbances expressed as a linear combination of the 7 temperatures that determine the actual dimensionality of the noise vector \(\mathbb{N}(t)\), which may in fact be much less than 7 . The order of the augnented dyamic stochastic model (Section 5.4.1, (5-24) is directly proportional to the dimensionality of the noise model \(\mathrm{N}(\mathrm{t}\)).

It is thus possible to reduce the order of the dyman－stochastic model． Furthermore，an analysis which shows up the fundanentai disturbances in the system as seen through the temperature measurements，may provide a deeper insight into and better understanding of，the process．Of prime interest here is the development of a dynamic－stochastic process model for the purpose of control．If one can determine the fundamental disturbances in the system，then the control scheme need take oniy these few into accomnt．In the next section，a canonical analysis of the moise model is used to select out the furdamental disturbances in the syster．

\section*{5．5．1 Canonical Analysis of the Noise Model}

MacGregor（MG）has applied a canonical analysis to mhltivartate noise models．For simplicity he considered a first order autoregressive model（see（5－19））
\[
\begin{equation*}
N(t)=d ⿴ 囗 十(t-1)+a(t) \tag{5-34}
\end{equation*}
\]

It was snown in Section 5．4．2 that for this system，the auto－covariance at lag \(k\) given by
\[
\Gamma(k)=E\left[H(t) \underline{W}^{\prime}(t+k)\right]
\]
may be used to obtain the following relationships
\[
\begin{equation*}
\phi=r^{\prime}(1) \Gamma(0)^{-1} \tag{5-35}
\end{equation*}
\]
\[
\begin{equation*}
r(0)=\Gamma^{\prime}(1) \Gamma(0)^{-1} \Gamma^{\prime}(1)+\sum \tag{5-35}
\end{equation*}
\]

Suppose that there exists some canonical form for \(\mathbb{N}(t)\) such that most of its "activity" could be represented by a few linear combinations of the \(\mathbb{N}(t)\) 's say \(\dot{N}_{1}(t)=\operatorname{lXm}_{1}^{\prime} M(t), \dot{N}_{2}(t)=\ell_{2} \mathbb{N}^{\prime}(t)\), etc. Box and Tiao (B7) have deveioped a scale free measuire of the "activity" by using the idea of the most forecastable variation. Using this idea, the first principa? comporent
\[
\dot{N}_{1}(t)=\ell_{1}^{\prime} N(t)=\ell_{1}^{\prime} \phi \underline{N}(t-1)+\ell_{1}^{\prime} \underline{a}(t)=\hat{\dot{N}}_{1}\left(t-i_{s} 1\right)+\dot{a}_{1}(t)
\]
is obtained by finding that linear combination \(\ell_{-1}\) which maximises the ratio of the variance of the one step ahead forecast \(\hat{\dot{N}}_{1}(t, i)\) to the vari. ance of the forecast error \(\dot{a}_{1}(t)\).

Hacaregor presents several altemative objective functions that could be maximised (see (\(5-39\)) to (\(5-47\))). The most convenient one being
\[
\operatorname{Max}_{l_{1}} \frac{\left.V \hat{\dot{N}}_{1}(t, 1)\right]}{\operatorname{VI}(t)]}=\frac{\ell_{1}^{\prime} \phi r(0) \phi^{\prime} \ell_{1}}{l_{1}^{\prime} \sum l_{1}}
\]

From (5-35) and \((5-36)=\frac{\ell_{1}^{\prime} r^{\prime}(1) r(0)^{-1} \Gamma(1) l_{1}}{l_{1}^{\prime}\left[r(0)-r^{\prime}(1) \Gamma(0)^{-1} \Gamma(1) \ell_{1}\right.}\)
where \(V[x]\) is the variance of \(x\). Equation (5-37) is known as a "Rayleigh quotiont (2) and the solution of (\(5-37\)) is obtained by solving
the generalised eigenvalue problem
\[
\begin{equation*}
\left[r^{\prime}(1) r(0)^{-1} \Gamma(1)-\lambda \Gamma l_{-1}=0\right. \tag{5-38}
\end{equation*}
\]

The maxinum value of \((5-37)\) is equal to \(\lambda_{1}\), the largest generalised eigenvalue of (\(5-38\)) and the corresponding generalised eigenvector \(\ell_{1}\) gives that linear combination of the \(N(t)\) 's which maximises (5-37). If alternatively, we had maximised the ratio
\[
\frac{v\left[\hat{\tilde{N}}_{1}(t, 1)\right]}{v\left[\hat{N}_{1}(t)\right]}
\]
and obtained the corresponding lamost eigervalue \(u_{1}\left(0<\mu_{j}<1\right)\) from
\[
\begin{equation*}
\left[r^{\prime}(1) \Gamma(0)^{-1} r(1)-\mu \Gamma(0)\right] l_{-1}=0 \tag{5-38a}
\end{equation*}
\]
we can see from (5-36) that if
\[
\begin{equation*}
\max _{l_{1}} \frac{v\left[\hat{\tilde{m}}_{1}(t, 1)\right]}{v\left[\tilde{H}_{1}(t)\right]}=\mu_{1} \quad\left(0<\mu_{1}<1\right) \tag{5-39}
\end{equation*}
\]
then
\[
\begin{equation*}
\max _{l_{1}} \frac{v\left[\hat{i}_{1}(t, 1)\right]}{v\left[\dot{a}_{1}(t)\right]}=\lambda_{1}=\frac{\mu_{1}}{1-\mu_{1}} \tag{5-40}
\end{equation*}
\]
also
\[
\begin{equation*}
\max _{i_{1}} \frac{V\left[\dot{a}_{1}(t)\right]}{v\left[\dot{m}_{1}(t)\right]}=1-u_{1} \tag{5-41}
\end{equation*}
\]

All the covariance matrices are symetric positive definite (others can be positive semi-definite) and at most there can be m real positive roots \(\mu_{1}>\mu_{2}>\mu_{m}\) and all \(\mu_{j}<1\). The generalised mxm modal
matrix \(L\), formed by letting each \(l_{i}^{\prime}\) be a row, simutaneously diagonalises (N2) \(\Gamma^{\prime}(1) \Gamma(0)^{-1} \Gamma(1)\) and \(\sum\) in (5-38); we can also choose the normalisation of the eigenvectors such that
\[
\begin{equation*}
(V[\underline{a}(t)]=) L \Sigma L^{\prime}=I_{m}=\dot{\Sigma} \tag{5-42}
\end{equation*}
\]

A non-singular transformation of the AR(1) model (5-34) gives
\[
\begin{align*}
\dot{N}(t)=L \underline{N}(t) & =\operatorname{L\phi N}(t-1)+L \underline{a}(t) \\
& =\left(L \phi L^{-1}\right) L \underline{N}(t-1)+L \underline{a}(t) \\
& =\dot{\phi} \hat{N}(t-1)+\underline{a}(t)
\end{align*}
\]

Furthermore from (5-42) and (5-36) because L simultancous? diagonalises \(\sum\) and \(\phi r(1)\), both the \(\dot{a}(t)\) ' \(s\) and the \(\dot{N}(t)\) 's will be uncorrelated with each other. From (5-42), the a \((t)\) 's will have equal variances and from (\(5-41\)), each \(V\left[\dot{N}_{j}(t)\right]=\frac{1}{1-\mu_{j}}\). The new canonicat noise variables, \(\dot{N}_{1}(t), \dot{N}_{2}(t) \ldots \dot{N}_{11}(t)\) account for the most activity, the next most aciivity and so on. Say we have determined that, of the \(m\) eigenvalues \(\lambda_{i}\) found, the last \(r\) were not significantly different from zero. This would imply, using (5-37) , (5-40) and (5-42) that
\[
\begin{equation*}
\ell_{j}^{\prime} \phi r(0) \phi \ell_{j}^{\prime}=\frac{\mu_{j}}{1-\mu_{j}}=0 \quad j=m-4+1, \ldots m \tag{5-44}
\end{equation*}
\]
this impiles \(\dot{q}_{i} \underline{i}_{i}=0 \quad j=m-r+1, \ldots m\)
or that \(r\) eigenvalues of \(\phi\) are zero and thet the noise model (\(5-34\)) is not fully m dimensional but may be represented as a (\(m-r\)) dimensional model. This also implies that the corresponding linear combination of the \(\mathbb{N}(t)\) 's for measured temperatures, \(y(t)\) 's, are white noise sequences.
\[
\begin{equation*}
\ell_{j} W(t)=\dot{N}_{j}(t)=a_{j}(t) \quad j=m-r+1, \ldots m \tag{5-45}
\end{equation*}
\]

These last \(r\) elements of \(\dot{H}(t)\) therefore contain no information (not forecastable) and may be aliminated from the noise model. Making use of (\(5-40\)) we can write the canonical noise model from (\(5-43\)) as
where \(\dot{\phi}_{m-r}\) is obtained as the upper left partition of \(\dot{\phi}_{m}=L_{\phi} L^{-1}\). The forecastable part of the noise model is then
\[
\begin{align*}
& \frac{\tilde{N}(t)}{m-r}=\dot{\phi}_{m-r} \frac{\dot{H}(t-1)}{m-r}+\underset{(m-r}{a(t)}+\dot{\phi}_{r} \frac{a}{r}(t-1) \tag{5-47a}\\
& (m-r) \times(m-r) \\
& (m-r) \times 1
\end{align*}
\]

The last term in (5-47a) can be added to \(\frac{a}{a}(t)\) to give a new correlated
 numerically, the elements of \(\dot{\phi}_{\mathrm{p}}\) were of the same order of magnitude as
the lower portion of L.fi \(^{-1}\) which is zero by hypothesis. So as a good approximation, \(\dot{\phi}_{r}{\underset{\underline{a}}{r}}^{(t-1)}\) was neglected in comparison with the remaining terms, and (5-47a) is written as
\[
\begin{equation*}
\left.\underset{m-r}{\dot{N}(t)}=\dot{\phi}_{m-r} \underset{m-r}{\dot{i}(t)}-1\right)+\underset{m-r}{\dot{a}(r)} \tag{5-47}
\end{equation*}
\]
(5-47) is the reduced dimension noise model and in order to write the augmented dynamic-stochastic state model (Section 5.4.1) we would reed to define only (\(\mathrm{m}-\mathrm{r}\)) new states (see Equation (5-21)) and the augnentec state model would be of order (\(n+m-r\)) for an \(A R(1)\) noise model.

It is advantageous to be able to test for the significance of the remaining \(r\) eigenvaiues, once the first mir eigenvalues, assumed to be non zero, have been removed. Following Maccregor (Mio) we first develop an overall test for the hypothesis \(H_{0}\) that \(\phi=0\). This test can be based on the ratio of the generalised variances given by
\[
\begin{equation*}
\Lambda=\frac{|\Gamma|}{\Gamma(0) T}=\frac{\Gamma(0)-\Gamma^{\prime}(1) \Gamma(0)^{-1} \Gamma(1) L}{|\Gamma(0)|} \tag{5-43}
\end{equation*}
\]

Assuming normality for \(\underline{\underline{a}}(\mathrm{t})\), Bartlett (B8, B9) proposed an spproximate test based on the fact that under the hypothesis \(H_{0}: \quad \phi=0\),
\[
\begin{align*}
& -\left[(4-m)^{\circ}-\frac{1}{2}(2 m+1)\right] 1 n A=x^{2} 2 m \tag{5-49}\\
& \text { N:= number of data points, } n=\text { dimension of } n(t)
\end{align*}
\]

Hence (\(5-48\)) is asymtotically distributed as a Chi-squared distribution with \(2 m\) degrees of freedom.

Now (5-48) can be written as (using (5-38a)
\[
\begin{equation*}
\Lambda=\frac{\left|I_{m}-r^{\prime}(1) r(0)^{-1} \Gamma(1) \Gamma(0)^{-1}\right|}{\left|I_{m}\right|}=\frac{\left|I_{m}-\mu\right|}{T I_{m} \mid}=\prod_{j=1}^{m}\left(1-\mu_{j}\right) \tag{5-50}
\end{equation*}
\]
and thus A provides an overall test of the hypothesis that ail the canonical eigenvalues \(\mu_{j}\) are equal to zero. However, we are more interested in testing the hypothesis that given the eigenvalues \(\mu_{1}, \mu_{2} \ldots \mu_{m-r}\) are nor zero, what is the probability that the remaining \(r\) eigenvalues \(\mu_{\mathrm{m}-\mathrm{r}+\mathrm{l}} \cdots \mu_{\mathrm{m}}\) are zero. Bartlett showed that if we calculate
\[
\begin{equation*}
\Lambda=\Lambda^{\prime} \Lambda^{\prime \prime}=\prod_{i=1}^{m-r}\left(1-\mu_{i}\right) \prod_{j=m-r+1}^{m}\left(1-\mu_{j}\right) \tag{5-51}
\end{equation*}
\]
the \(\chi^{2}\) test approximation for 1 may be extended to \(\Lambda^{\prime \prime}\) giving
\[
\begin{equation*}
-\left[(N-m)-\frac{1}{2}(2 m+1)\right] 1 n \Lambda^{\prime \prime}=x^{2} 2 r \tag{5-52}
\end{equation*}
\]
as being asymtotically distributed as Chi-square with \(2 r\) degrees of freedom. (5-52) may thus be used to test the hypothesis that the remaining \(r\) eigenvalues are zero.

\subsection*{5.5.2 Aplication to Reactor Data}

The canonical analysis described in the section above was applied to the residual sequence for the data illustrated in Figures 17 to 19 and dispersion matrix \(\mathrm{E}_{\mathrm{N}(t)}\) given in Table 2.

The matrices \(\Gamma(0)=D_{N(t)}, \Gamma(1)\) and \(\phi\), calculated from (5-35), are given in iable 3. The eigenvalues of \(q\) yere calculated to be
\begin{tabular}{cc}
Real & \(\lambda_{i}\) \\
\hline 0.8208 & \(0.1487 \pm \mathbf{i} 0.1397\) \\
0.7207 & \\
0.4230 & \(0.0869 \pm \mathbf{i} 0.0868\)
\end{tabular}
indicating thet the largest root .8208 was not too close to unity and that stationary behaviour for the \(A P(1)\) noise model could be expected. The \(\sum\) matrix was calculated from (5-36) and the generalised eigenvalue problem (5-38) was solvod using EISPACK (E1) and provided the following solution (eigenvectors normalised such that \(L \sum L^{\prime}=I\)).

Generalised Eigenvalues \(\lambda, \mu\)
\begin{tabular}{|c|c|c|c|}
\hline \((\operatorname{see}(5-33))\) & \(\lambda\) & \[
\mu=\frac{\lambda}{1+}
\] & \((\operatorname{see}(5-38 a)\) \\
\hline & 3.361 & 0.7707 & \\
\hline & 1.040 & 0.5098 & \\
\hline & 0.2706 & 0.2130 & \\
\hline & 0.1130 & 0.1051 & \\
\hline & 0.0318 & 0.0308 & \\
\hline & 0.0155 & 0.0154 & \\
\hline & 0.0057 & 0.0057 & \\
\hline
\end{tabular}

TABLE 3: Autocovariance Matrices and \(\phi\) matrix for Reactor Data
\[
\begin{aligned}
& \Gamma(0)=\left[\begin{array}{ccccccc}
0_{\mathbb{N}}(t) & (\text { Table 2) } \\
4.23 & .43 & .37 & .067 & -.45 & -1.25 & -.64 \\
.97 & .81 & .042 & .23 & -.54 & -.77 & -.71 \\
1.50 & -.23 & .72 & 1.44 & .82 & 1.09 & .90 \\
1.18 & -.49 & 1.13 & 2.32 & .25 & 2.82 & 1.86 \\
.004 & -1.23 & 1.38 & 1.81 & 4.71 & 7.04 & 6.13 \\
.32 & -1.27 & 1.31 & 2.55 & 6.99 & 9.68 & 3.22 \\
.82 & -.80 & 1.32 & 2.26 & 5.96 & 8.24 & 7.21 \\
& & & & & & \\
. .07 & .073 & .15 & -.081 & .032 & -.21 & .25 \\
.002 & -.21 & -.067 & -.078 & -.23 & -.011 & .13 \\
-.13 & -.007 & .10 & .16 & .27 & -.34 & .24 \\
-.054 & .038 & -.35 & .30 & .14 & -.11 & .12 \\
-.15 & .041 & -.36 & .21 & .06 & .49 & .085 \\
-.024 & -.002 & -.29 & .057 & .31 & .37 & .20
\end{array}\right]
\end{aligned}
\]

Modal Matrix 1 of Generalised Eigenvectors
\(L=\left[\begin{array}{ccccccc}.09965 & .03533 & .1647 & -.0635 & -.1940 & .5982 & .1494 \\ -.5721 & .0683 & .1260 & .1409 & -.1807 & .2650 & -.3134 \\ .00069 & .3305 & -.3280 & -.3220 & -.2457 & .2444 & .1183 \\ .0934 & .2710 & -.2191 & .0613 & .0669 & .5869 & -.6961 \\ -.0545 & .3401 & .0594 & .1625 & -.3020 & .0255 & .2231 \\ .0710 & -.1631 & -.4968 & .2656 & -.3343 & .1084 & .1361 \\ -.0922 & -.07142 & -.2506 & .2720 & .3479 & -.8219 & .6268 .\end{array}\right]\)
where \(L=\left[\begin{array}{c}\ell_{1}^{\prime} \\ \ell_{1}^{\prime} \\ l_{2} \\ \ell_{7} \\ l_{7}\end{array}\right]\) and the elements in \(\ell^{\prime}\) refer to the temperature measure \(y_{1}\) to \(y_{7}\), from left to right.
From the values of \(\mu\) above, we suspect that only the first \((m-r)=2\) or 3 eigenvalues will be of sigrificance and we can test this using (5-52) where \(N=60, m=7\)

TABLE 4: Sicrificance Test for Generalised Eigenvalues
\begin{tabular}{|c|c|c|c|}
\(H_{0}:\) last \(r \mu^{\prime} s=0\) & \(\Lambda^{\prime \prime}\) & \(-\left[(N-m)-\frac{1}{2}(2 m+1)\right] i n \Lambda^{\prime \prime}\) & \(\chi_{2 r}{ }^{2}(.05)\) \\
\hline\(r=4\) & 0.8525 & 7.25 & 15.5 \\
\(r=5\) & 0.6709 & 18.16 & 18.3 \\
\hline
\end{tabular}

The \(x^{2}\) values at the \(95 \%\) significance level indicate that certainly the lasi \(4 \mu^{\prime}\) s are zero and possibly the last 5 . If we use the result that the last a \(\mu^{\prime}\) 's are zero, this implies that the canonical noise model
(5-47) will be of third order. Hence there are only three linear conbinations of the \(N(t)\) 's that have a significant amount of activity or information and only these three canonical noise variates \(\dot{N}_{1}(t), \dot{N}_{2}(t)\) and \(\hat{N}_{3}(t)\) need be included in the noise model. The reduced dimension \(\dot{\phi}_{3}\) is calculated as (see 5-47)
\[
\dot{\phi}_{3}=\text { top left } 3 \times 3 \text { partition of }\left(L \phi L^{-T}\right) \text { is given by }
\]

What physical interpretation can be put on the first three rows of L., selected by the cancnical analysis, to be the linear combinations of the output which contain the most information? The linear combination for the most information (\(\ell_{\mathcal{T}}\) ', the first row of \(L\)) places the Targest. weight (-. .5982) on the second last measurement \(y_{6}(t)\). From Figure 17 , We see that this corresponds to the average position in time of hot spot temperature. This confirms an incuitive feeling that the hot spot is the single most important measurement in the reactor bed. The second Bnear combination places a large weight (-.5721) on the temporature
\(y_{1}(t)\) closest to the bed infet. The infet temperature is governed closely by (see Section 3.2) the wall temperature and the feed preheater. The wall temperature control configuration (because of its onoff nature) would induce slow cycling dynamics to an otherwise constant inlet temperature. Furthermore, when dynamic data was collected, the total flowrate of gas tended to cycle due to the \(\operatorname{AR}(1)\) dither signal that was added to the butane flow (see Figure 14). The gas preheater was set at a constant heating value irrespective of the gas flow through it, and therefore induced inlet temperature swings whenever the tota? flow changed.

The knowledge that the cooling loop and gas preheater was causing a disturbance in the system would probably lead to a re-design of these elements in an industrial reactor to eliminate these effects. Here, this is not possible and instead these disturbances are incorporated into the noise model.

The third linear combination in \(L\) appears to place less weight on the previous two temperatures but instead weights all the remaining temperatures nearly equally, indicating that the average level of the temperature profile exinibited the third largest variation.

The canonical analysis thus provides a method for reducing the dimensionality of the dynamic stochastic model. Further, it provides useful, intuitive, information about the underiying disturbances present. in the process, which might, with proper interpretation of the underlying physica? causes enable one to elininate them.

\section*{CHAPTER 6}

\section*{CONTROL STUDIES}

\subsection*{6.1 Introduction}

In Chapter 4, Part B, a linear state space model for reacton control was developed. In this chapter, the state model is used to develop a linear multivariable, quadratic feedback control algorithm, for regulatory control of the reactor (see section 6.3.1). Kalman Filter theory (Section 6.3.2) is used to obtain state estimates for the systen. Two approaches are adopted in designing the controlier and the Kalman filter from the reactor model. In Section 6.4, the white noise tems in the stochastic state space model \((w(t)\) and \(v(t)\), see Equations (5-11) and (5-i2) are not identified and modelled independently, but instead are approximated by adding a \(\underline{w}(t)\) and \(\underline{v}(t)\) (with estimated diagonal coveriance matrices) directly to the dynamic model. The para. meters in these covariance matrices are chosen such that the corresponding state estimates approch their measured values in the least squares sense. In Section 6.5 , the reduced dimensional noise model obtained in Section 5.5. is used directly to derive an augnented state model from which the characteristics of the noise terms \(w(t)\) and \(\underline{v}(t)\) are cttained.

In Section 6.6, the control algorithins developed from the two approches (in Sections 6.4 and 6.5) are implemented on the reactor in a series of doc control studies. The two controllers are compared with
each other (using predicted concentrations) as well as with a single loop PI controller with feedback on the hot spot temperature. A final control run which uses the best of the two multivariable aigorithms was implemented and the outputs from this controller were compared to concentration data from the gas chromatograph. This section is intended primarily as an initial control study on the reactor. Several future control studies are planned (see Chapter 7) as well as a present paraliel study based on an adaptive control scheme (Tremblay (T4)). Numerical values of all control matrices used in this section are presented in Appendix 3.

\subsection*{6.2 Direct Digital Control (ODC) Configuration}

A description of the experinental setup as well as the process control configuration has been given in Section 3.2. An equation releting temperature measurements to concentrations was given in Section 4.10.1. This enables one to develop a control scheme based on an objective function expressed in terms of concentrations. Actual concentràtion measurements from the process gas chromatograph (Section 3.2) were not used as part of the control algorithms developed here.

Some control simulations were performed with arbitrary noise characteristics to obtain some experience with the multivariable control algorithms and to detemine what levels of constrained control would be reasonable for the reactor system (J2). Real Time Control Software mas developed using a Data Gerera? Nova \(2 / 10\) minicomputer operating under a Rael Time Disk Operating System (rDos). Data General's Real Time Forian language was used to write a multivariable, linear
quadratic control "task" as a module program which formed part of a general data aquisition and control package [Tremblay (T5)].

A Flowsheet of the control algorithm is given below:

\section*{Control Algorithm}

\subsection*{6.3 Optimal Stochastic Control Theory}

\subsection*{6.3.1 Linear-Quatratic, Stochastic Feedback Control}

The design of constrained feedback controllers for linear, discrete, state space systens is well known [(N1), (A3), (S7)]. Analyticai sulutions to the general problem are available for systems which can be fommated with a quadratic performance criterion or objective function.

Consider the linear discrete state space Equations
\[
\begin{align*}
& \underline{x}(t+1)=A \underline{x}(t)+B \underline{u}(t)+\underline{w}(t) \tag{6-1}\\
& \underline{y}(t)=H \underline{x}(t)+\underline{v}(t) \tag{6-2}
\end{align*}
\]
where (\(6-1\)) and (6-2) are defined as in (5-11) and (5-12) and for con. venience, all variables are in deviation form.

Suppose it is desired to find the sequence of discrete controi policies \(u(t), \underline{u}(t+7), \ldots u(N)\) which will optimige the quadratic perfomance criterion
\(0 \leqslant t<N\)
\[
E\left[\sum _ { t = 0 } ^ { N - 1 } \left\{x^{\prime}\left(t Q_{1} x(t)+\underline{u}^{\prime}(t) Q_{2} u(t)+\underline{u}^{\prime}(t) v_{x}(t)+x^{\prime}(t) v^{\prime} u(t)\right\}[6-3)\right.\right.
\]
where \(E[x]\) is the expectation of \(x\).
\(Q_{1}\) and \(Q_{2}\) are symetric positive semi-definite matrices. This quadratic performance criterion is quite general and includes the case of minimum mean square error control, subject to a constraint 8 , on the vartance of the manipuiated variables, that is
\[
\operatorname{Min}_{u(t)} \quad E\left[\sum_{t=0}^{N-1}\left\{\underline{Q}^{\prime}(t) \underline{C}(t)+\underline{u}^{\prime}(t) \underline{u}(t)\right\}\right]
\]

Remerbering that the exit (deviation) concentrations \(\mathbb{C}(t)\), (or \(\Delta \bar{C}\) ex) may be expressed as a linean combination of the states \(x(t)\) and (devtation) controis uit) (or su) (see Section 4.70.1); in the present notation we
can write
\[
\begin{equation*}
\underline{C}(t)=Q_{3} \underline{x}(t)+Q_{4} u(t-1) \tag{6-5}
\end{equation*}
\]

A reasonable performance criterion would be to minimise the sum of the variances of the exit deviation concentrations \(\underline{C}\) (or \(\Delta \bar{C}\) ex), subject to a constraint \(Q\) on the variances of the input flowrates \(\underline{u}\). This is obtained by comaring (\(6-5\)) and (\(6-4\)) to (\(6-3\)) and choosing
\[
\begin{align*}
& Q_{1}=Q_{3}^{\prime} Q_{3} \\
& Q_{2}=Q+Q_{4}^{\prime} Q_{4} \\
& V=Q_{4}^{\prime} Q_{3}
\end{align*}
\]
\(Q\) is usually chosen as a diagonal matrix of the form
\[
Q=\left[\begin{array}{ll}
\lambda_{1} & 0 \tag{6-7}\\
0 & \lambda_{2}
\end{array}\right]
\]
where \(\lambda_{i}\) are Lagrange mutipitiers or simply cost parameters to be adjusted to obtain a desired level of constraint on the inputs \(\underline{u}(t)\).

The steady state solution (as final time \(N \rightarrow \infty\)) to the optimal contro? probiein is given by
\[
\begin{equation*}
\underline{u}(t)=-1_{\infty} \hat{x}(t / \tau) \tag{6-8}
\end{equation*}
\]
where \(u(t)\) is the optimal control seting to be applied at time \(t\) and \(\ddot{x}(t / t)\) is the conditiona expectation of the state vector \([f(t) \mid y(t)]\).
where \(\gamma^{\prime}(\tau)=(\underline{y}(\tau), \underline{y}(\tau-1) \ldots)\) represents the data available (up to time \(\tau\)) for computing the control action at time \(t\). This conditional state expectation is obtained from the Kalman Filter (see Section 6.3.2). \(L_{\infty}\) is a constant feedback gain matrix obtained as the steady state solution to the matrix Riccatil equations
\[
\begin{align*}
& L(t)=\left[Q_{2}+B^{\prime} S(t+1) B\right]^{-1}\left[V+B^{\prime} S(t+1) A\right] \tag{6-9}\\
& S(t)=A^{\prime} S(t+1)[A-B L(t)]-V^{\prime} L(t)+Q_{1}
\end{align*}
\]

With initial concentration \(S(t)=O_{7}\).

\subsection*{6.3.2 The Kalman Filter}

The discrete Kalman filter has been derived in several ways (S6, J3) and only the final equations will be given here.

Consider the general dynamic-stochastic model in Section 6.3.1.
\[
\begin{align*}
& \underline{x}(t+1)=A \underline{x}(t)+B \underline{u}(t)+\underline{w}(t) \tag{5-10}\\
& \underline{y}(t)=H \underline{x}(t)+\underline{y}(t) \tag{6-11}
\end{align*}
\]

Where as before, \(x(t)\) is an me state vector, \(y(t)\) is an mxl vector of observed outputs and \(u(t)\) is an pxi vector of input variables. \(w(t)\) and \(y(t)\) are white Goussian notse vectors with zero mean and covariances,
\[
\begin{aligned}
& E\left[w(t) w(t)^{\prime}\right]=R w \\
& E\left[w(t)^{\prime}(t+k)\right]=0 \quad \text { all } k \\
& E\left[\underline{v}(t) \underline{w}^{\prime}(t)\right]=R w
\end{aligned}
\]

The conditional simultaneous and delayed state estimates are given by
\[
\begin{align*}
& \hat{\underline{x}}(t / t)=\hat{x}(t / t-1)+K(t)[\underline{y}(t)-\hat{H}(t / t-1)] \tag{6-12}\\
& \underline{\hat{x}}(t / t-1)=\hat{A}(t-1 / t-1)+B u(t-1) \tag{6-13}
\end{align*}
\]
\(K(t)\) is the Kalman gain and in general, one is interested in the steady state gain \(K_{\infty}\) which is obtained as the steady state solution to the following matrix Riccat i equations
\[
\begin{align*}
& K(t)=P(t+1 / t) H^{\prime}\left[H P(t+1 / t) H^{\prime}+R V\right]^{-1} \tag{5-14}\\
& P(t / t)=P(t / t-1)-K(t) H P(t / t-1) \tag{5-15}\\
& P(t+1 / t)=A P(t / t) A^{\prime}+R W
\end{align*}
\]

Where \(P(\cdot)\) is the conditional covariance matrix for the state estimate \(\hat{x}(\cdot)\) in \((6-12)\) and \((6-13)\) and \(P_{\infty}(\cdot)\), the corresponding steady state value.

In the reactor system, there is no appreciable time lag or transport delay and a change in the input \(\underline{u}\) is registered at the output before the next sampling interval 60 seconds later. We thus require the simultaneous state estimate \(\hat{\underline{x}}(t / t)\) in (\(6-12\)) and the optha! control algorithm (\(0-8\)) becomes
\[
\begin{equation*}
u(t)=-L_{\infty} \hat{\underline{x}}(t / t) \tag{6-17}
\end{equation*}
\]

\section*{Variance Fomulie}

Variance formula for the closed loop systen (\(6-10\)) (\(6-11\)) and (6-17) are easily derived (105). These fomalae are useful for calculating, a priori, the covariance matrices of the inputs \(u\) and outputs y for a given constrained feedback conterl matrix \(L_{\infty}\) derived from a consiraint matrix \(Q\) isee (\(6-7\)). The constraint, \(Q\) is varied until the variances of the inputs and the outputs are jointly acceptable. It would be unaccaptable for the input flow control valves to bang open and closed frequently and some level of constraint on 4 (introduced through q) usually makes for smoother control action without appreciably increasing the variances of the output ((M5), see also below).

The covariance matrices of \(\underline{y}\) and \(y\) are calculated from (M5)
\[
\begin{align*}
& E\left[y(t) y^{\prime}(t)\right]=H r_{x}(0) H^{\prime}+R v \tag{6-18}\\
& E\left[u(t) \underline{u}^{\prime}(t)\right]=L_{\infty}\left[r_{x}(0)-P_{\infty}(t / t)\right] L_{\infty}^{\prime} \tag{6-10}
\end{align*}
\]

Where \(\Gamma_{x}(0)\) is the covariance matrix of the state vector \(\underline{x}(t)\), and can be obtained by soiving the matrix Riccatti equation
\[
\begin{align*}
& Y_{x}(0)=E\left[x(t) x^{\prime}(t)\right]=D_{x}(0) D^{\prime}+D P_{\infty}(t / t) L_{\infty} B^{\prime}+B L_{\infty} P_{\infty}(t / t) D^{\prime} \\
& +B L_{-\infty} P_{\alpha}(t / \tau) L_{\infty} B^{\prime}+R W \tag{6-20}
\end{align*}
\]
where \(\left.D=(A-B]_{\omega}\right)\). These matrix Riccat i equations are most conven. iertiy solved mumerically using an terative approach (M3).

\subsection*{6.4 Controi Synthesis Using a Model with Approximate Noise Characteristics}

In Section 5.1.1, we discussed how 9 measured temperatures were interpolated to provide measurements of the 7 states. This ensured that the measurement matrix \(H\) in \((6-11)\) was the unit matrix \(I_{7}\). The measurement error \(\mathrm{y}(\mathrm{t})\) in (6.11) can be approximated by estimating the pure error in the temperature measurements \(\left(\sigma_{i}{ }^{2} \simeq 4.0^{\circ} \mathrm{C}\right.\), Section 5.1.1) and choosing the covariance matrix Rv to be
\[
\begin{equation*}
R y=\text { diagonal }<4.0> \tag{6-21}
\end{equation*}
\]

\subsection*{6.4.1 Determination of the Covariance Matrix Pw}

In order to determine \(K_{\infty}\) from (\(6-14\)) to (6-16) we require both Ry and RW, \(W(t)\) is often referred to as the "generation" noise and is difficult to interpret physically in the way \(\mathrm{V}(\mathrm{t})\) can (see Section 5.4). For simpicity then, we assume that \(\underline{w}(t)\) can be approxi.. mated by specifying a covariance matrix Rw as
\[
\begin{equation*}
R w=\text { diagonal }\langle\beta\rangle \tag{6-22}
\end{equation*}
\]
where \(\beta\) is a slagle paraneter to be chosen. A similar icea was proposed by lamition et ar. (H6) where the ratio between tha diagomals of Ry and Ruw used to weight the state estimite. A large ratio of \(R y\) to Rw caused the model's contribution to be emphasised in the state estimate while a small ratio caused the data to be emphasised.

In this study, \(\beta\) and the corresponding \(k_{i s}\) (\(\beta\)) were chosen by minimistrg the following objective function
\[
\begin{equation*}
J_{K_{\infty}}=\sum_{t=0}^{N}[y(t)-\ddot{x}(t / t-1)]^{\prime}[\underline{y}(t) \quad \underset{d a t a}{ } \underline{x}(t / t-1)] \tag{6-23}
\end{equation*}
\]
(6-23) is minimised off-ine based on a set of collected data \(\underset{\text { data }}{(t) \text {, and }}\) \(\hat{x}(t / t-1)\) is calculated from \((6-12)\) and (5-13). The following algorithm was used.

Algorithm to Calcuiate \(K_{\infty}\)
(1) Given a fixed Rv
(2) Choose \(B\) : hence Rw
(3) Calculate \(k_{\infty}\) using (6-14) to (\(6-16\))
(4) Calculate \(\dot{x}(t / t-1)\) using \((6-12)\) and \((6-13)\)
(5) Calculate Objective (6-23)
(6) Return to (2) iterating until a minimum in (6-23) is obtained.

Aoplication to Reacton Data
The sum of squares surface was not very sensitive to the value of \(\beta\) as indicated below
\begin{tabular}{ll}
Ru diagonal \(\langle\beta\rangle\) & \(\mathrm{J}_{\mathrm{K}}\) \\
\hline \(2=1.0\) & 2765 \\
\(\beta=2.5\) & 2752 \\
\(\beta=4.0\) & 2770
\end{tabular}

A value for \(e=2.5\) was selected as beirg satisfactory. For comparison, the sum of squares of restanats for the same set of data (26 may) (sum of varlances 48.5 , Table z) was 2867. This sum of sountes was obtalied by
accounting for all noise in the model by a noise tern \(\mathbb{S}(t)\) at the output (Section 5.4.1). The more realistic representation of the nase ontering both the dymamic model and the measurement equation through \(w(t)\) and \(v(t)\) respectively, accounts partly for the reduced sum of squares value for \(3_{K}(=2752)\).

\subsection*{6.4.2 Determination of input Constraint 9}

A satisfactory constraint \(Q\) may be chosen by calculating the variances of the outputs \(y\) and inputs \(\underline{u}\) from the variance formulae (0-18) and (6-19). These variances should be jointly acceptable for a given Q. For simplicity, Q was chosen to be
\[
\begin{equation*}
Q=\lambda I_{2} \tag{6-24}
\end{equation*}
\]
and the single parameter \(\lambda\) was varied until a satisfactory combination of input-output variances was obtained.

\section*{Application to Reactor Data}

Fron the table below, a value of \(\lambda=10^{-4}\) was selected as giving satisfactory variances for both input flow rates, \({ }_{C_{C}}\) and \(U_{H_{2}}\) as well as for the average variance of the outputs \(y\). The individual variances for each of the outputs was also adequate. When applied to the 26 May data, the following results were obtained.
\begin{tabular}{|c|c|c|c|c|}
\hline 2 & \(\operatorname{Var} u_{c_{4}}\) & \(\operatorname{Var} u_{H_{2}}\) & \(\sum V\left[y_{i}\right]\) & \(V\left[y_{a v}\right]\) \\
\hline \(10^{-2}\) & .510 & .048 & 68.92 & 9.85 \\
\(10^{-3}\) & .639 & .049 & 68.34 & 9.76 \\
\(10^{-4}\) & .973 & 1.372 & 66.90 & 9.56 \\
\(10^{-5}\) & 4.034 & 26.02 & 65.58 & 9.37 \\
\hline
\end{tabular}

One can see that little is to be gained in tems of reducing the output variance if we reduce the constraint \(x\) below \(10^{-6}\). However, the large increase in the variance of the two flows would be undesirable.

\subsection*{6.5 Control Synthesis Using a Model with Identified Notse Characterictics}

In Section 5.4.1, the technique for augmenting the state equation to take account of a noise model was demonstrated. In Section 5.5.1. a reduced order noise model was developed. In this section, an augmented state equation is derived as well as an augmented objective function.

\subsection*{6.5.1 Augnonted State Equation}

In Section 5.5.1: a thansformation matrix L was obtained that separated the \(7^{\text {th }}\) order restoual vector \(N(t)\) into three canonical variates \(\mathrm{N}_{3}(4)(\operatorname{see}(5-53))\), the remaining four being indistinguishable from thite noise (see \((5-45)\)).
```

Wa gom thus whtte (see (5-43), (5-45) and (5.46))

```
\[
\underline{L N}(t)=\left[\begin{array}{c}
\dot{N}_{7}(t) \tag{6-25}\\
\dot{N}_{2}(t) \\
\dot{N}_{3}(t) \\
\dot{\dot{a}}_{6}(t) \\
\dot{a}_{5}(t) \\
\dot{a}_{6}(t) \\
\dot{a}_{7}(t)
\end{array}\right]=\left[\begin{array}{c}
\dot{N}_{7}(t) \\
\dot{N}_{2}(t) \\
\dot{N}_{3}(t) \\
-\cdots \\
0_{4} \\
{ }_{4}
\end{array}\right]+\left[\begin{array}{c}
\\
0_{3} \\
\hdashline \cdots \\
\hdashline \dot{a}_{4}(t) \\
\dot{a}_{5}(t) \\
\dot{a}_{6}(t) \\
\dot{a}_{7}(t)
\end{array}\right]
\]

The measurement Equation (5-15) is transfomed to canonical variates
\[
L \underline{y}(t)=L \underline{H x}(t)+L H(t)
\]
or
\[
\underline{\dot{y}}(t)=\dot{H} \underline{x}(t)+\left[\begin{array}{l}
\hat{\mu}_{3}(t) \tag{6-26}\\
\hdashline 0_{4}
\end{array}\right]+\left[\begin{array}{c}
0_{3} \\
\hdashline- \\
0_{4}(t)
\end{array}\right]
\]
where represents canonical transforms and \(\dot{\hat{N}}_{3}\) and \(\dot{\underline{a}}_{4}\) are two parts (three and four dimensioral, respectively) of the canonical noise vector \(\dot{\underline{N}}(t)\). Following section 5.4.1, the state vector \(x\) is augmented and defined as
\[
\begin{equation*}
x^{*}(t)=\left[\frac{x(t)}{\square-7}\right]_{3}^{7} \tag{6-27}
\end{equation*}
\]

Maktus use of (\(6-27\)) in (\(6-26\)) we obtain
\[
\begin{equation*}
\underline{y}(t)=H^{*} \underline{x}^{*}(t)+\underline{y}^{*}(t) \tag{6-28}
\end{equation*}
\]
where \(H^{*}=\left[\begin{array}{c:c}{[} & 1_{3} \\ \hdashline: & 0\end{array}\right]\)
and
\[
\underline{v}^{*}(\mathrm{t})=\left[\begin{array}{c}
0_{3} \tag{6-29}\\
-\dot{a}_{r}(\mathrm{t})
\end{array}\right]
\]

The roise model (5-53)
\[
\begin{equation*}
\dot{\underline{V}}_{3}(t)=\dot{\phi}_{3} \dot{\underline{k}}_{3}(t-1)+\dot{a}_{3}(t) \tag{5-53}
\end{equation*}
\]
is incorporated into the dynamic state model (see Section 5.4.1) as
\[
x^{*}(t)=\left[\begin{array}{c}
x(t) \\
\hdashline \hat{A}_{3}(t)
\end{array}\right]=\left[\begin{array}{c:c}
A & 0 \\
-1 & \vdots \\
0 & \vdots
\end{array}\right] x^{*}(t-1)+\left[\begin{array}{c}
0 \\
\hdashline 0
\end{array}\right] u(t-1)+\left[\begin{array}{c}
0 \\
\hdashline a_{3}(t)
\end{array}\right]
\]
or
\[
\begin{equation*}
x^{*}(t)=A^{*} x^{*}(t-1)+B^{*} \underline{u}^{\prime}(t-1)+w^{*}(t) \tag{5-30}
\end{equation*}
\]

Hence, from \((6-29)\) and \((6-30), v^{*}(t)\) and \(w^{*}(t)\) are obtained directly and because of the normaitsation (\(5-42\)), the covariance matrices are
\[
\begin{align*}
& R v^{*}=7\left[\begin{array}{c:c}
0_{3} & 0 \\
\hdashline 0 & I_{4}
\end{array}\right] \tag{6-31}\\
& R n^{*}=10\left[\begin{array}{c:c}
0 & 0 \\
\hdashline 0 & 1 \\
0 & 3
\end{array}\right]
\end{align*}
\]

\subsection*{5.5.2 Algmentad objective Function}

An atomented objective furction must be expressed as a quadratic function of the abgented tenth order state vector \({\underset{\sim}{*}}^{*}(t)\). The theoretical vaiues of the concentrations can be obtained from the seventh order state model in the form (see (6-5))
\[
\begin{equation*}
\underline{g}(t)=z^{i \times 1} \underline{x}(t)+p_{\underline{u}}^{2 \times 1}(t-1) \tag{6-32}
\end{equation*}
\]

The observed concentrations, if they were available at each time \(t\), would be modelled as
\[
\begin{equation*}
\underline{C}_{o b s}(t)=Z_{\underline{\sim}}(t)+P_{u}(t-1)+\underline{M}(0) \tag{6.36}
\end{equation*}
\]

Where \(\|(t)\) is a miltivariable noise model for the concentrations analagous to the \(\mathrm{N}(\mathrm{t})\) for temperatures. However, since \(\mathrm{C}_{\text {obs }}(\mathrm{t})\) is unavall able at every sampling interval, hence \(M(t)\), the best approximation at this time is to assune that the aumented state model is perfect and write \(C(t)\) as a direct function of \(y(t)\), calling it \(\underline{C}^{*}(t)\),
\[
\begin{align*}
& \underbrace{*}(t)=\underset{\underline{v}}{\underline{v}}(t)+P \underline{u}(t-1) \\
& =Z(H x(t)+N(t))+P u(t-1) \\
& \text { if } H=I_{7} \quad=2 \times(t)+P 日(t-1)+Z(t) \tag{6-3A}
\end{align*}
\]

So in effect, the assumption is that \(M(t)=Z M(t)\), i.e., all the disturbances that appear in the temperaturcs ans propagated through to the concontatons in this mamor. This is, of comese, not necessamiy true, but is the best approximaion, in the absence of concentration
data for control. (6-34) can be written in terms of the augmented state \(x^{*}(t)\)
\[
\begin{aligned}
& 3 \times 1 \quad 3 \times 7 \\
& \underline{c}^{*}=2 \times(t)+P \underline{u}(t-1)+2 L^{-1}(\operatorname{LN}(t))
\end{aligned}
\]
\[
=Z \underline{x}(t)+P u(t-1)+Z 1^{-1}\left[\begin{array}{c}
\dot{N}_{3}(t) \\
0
\end{array}\right]+Z L^{-1}\left[\begin{array}{c}
0_{3} \\
\hdashline \dot{a}_{4}(t)
\end{array}\right]
\]

Let \(Z L^{-1}=3\left[\left(Z^{3}-7\right)_{A}\left\{\left(Z^{4}-1\right)_{B}\right]\right.\)
then
\(\underline{c}^{*}(t)=3\left[Z^{7} ;\left(Z L^{-1}\right)_{A}\right]\left[\begin{array}{l}x(t)^{3} \\ {\underset{M}{3}}(t)\end{array}\right]+P u(t-1)+\left(Z L^{-1}\right)_{B} \dot{\dot{a}}_{4}(t)\)
\(3 \times 1\)
\[
\underline{c}^{*}(t)=z^{*} x^{*}(t)+P u(t-1)+\dot{\varepsilon}_{3}(t)
\]
where
\[
z^{3 \times 10}=\left[z:\left(z \mathrm{Z}^{-1}\right)_{A}\right]
\]
and
\[
\dot{\varepsilon}_{3}(t)=\left(7 L^{-1}\right)_{2} \dot{6}_{A}(t)
\]
a white noise vector.
In (\(6-35\)), the concentrations \(\underline{C}^{*}(\mathrm{t})\) are expressed as a function of the ten states in \(x^{*}\) and the augmented objective function is calculated from (0-4) as
\[
\begin{equation*}
u(t) E\left[L_{0}^{N}(t) 0^{*}(t)+u^{\prime}(t) Q u(t)\right] \tag{6-36}
\end{equation*}
\]

Application to Reactor Data \(\frac{10 \times 10}{2 \times 10}\)
The \(L_{c o}\) and \(K_{o n}\) may be calcuiated as before in Section 6.3. For this state space model structure, the control inatrix \(L\) for the \(10 \times 10\) system and the corresponding \(7 \times 7\) system are related according to
\[
\stackrel{2 \times 10}{L_{\infty}}=\left[{ }^{2 \times 7} L_{\infty}: L_{\infty}^{*}\right]
\]
where \(L^{*}\) are the additional elements required for the three autitional states in \({\underset{x}{*}}^{*}(t)\), the first elements being identical to the seventh order system. The \(K_{\infty}\), due to the smple structure of \(\underline{v}^{*}(t)\) and \(v^{*}(\sigma)\) (and thus \(\mathrm{Sy}^{*}\) and \(R w^{*}\)) in \((6-31)\), turns out to be structured as
\[
K_{\infty}=3\left[\begin{array}{c}
0, \\
\hdashline \mathrm{I}_{3} \\
\hdashline 0
\end{array}\right]
\]

\subsection*{6.6 DDC Control of the Reactor}

As mentioned previously the control algorithms are based solely on temperature measurenents, although the objective function is expressed as a function of the concentrations. The two control algorithas developed in Sectione 6.4 and 6.5 were implemented on the reactor. A single loop control scheme based on control of the hot spot temperature by regulating the hydrogen flow was also tested to provide a comparison. Without the avallability of concentration data, the basis used for comparison was the ability of the control algorithss to hold the mole fractions of the various species (as predicted by the mode!) steady, at their target values, in the presence of stochastic process disturbances. The ability of the alogrithms to control the reator (i.e. to pravent peactor runavay for step disturbances in the mator load variable (the wall temperature) was also tested.

When concentration data became availabie at a later stege (23 September), the state model was refitted using both concentration and temperature data (see Appandix 3, 23 Septenber data and end of Chapter 5). The \(7^{\text {th }}\) order (see (6.4)) control algorithm derived from this model, was implemented and the controller evaluated, in terms of the vachations in the neastued concentrations in the exit gases. A comparison cond atso be made betuen the mantmad concentrations and those predicted by the made?.

\subsection*{6.6.1 Cotolyst Deactivation}

The problems associated with catalyst deactivation were dis. cussed in Section 5.1.2. From the control standpoint, this problem presented a severe test for the robustness of the control algorithms developed. These algorithms were obtained directly from the state models which were fitted (off-7ine) to the reactor data obtained several days or months earlier. The reactor could not be left running over this period and when the control algorithms were eventually implemented, a noticeable decinine in the cataiyst activity was observed. A lower temperature profile was dtained for the seme wall temperature and gas flow rates previous? used. In order to approximate the previous conditions (ander which the model was fitited), the wall temperature was raised by a fad degrees to offset the decline in catalyst activity. This, of course, was not entirely satisfactory since ar increase in wall temperature camot compensate exactly for a loss in catalyst activity. As a result, some redistribution of products could be expected to occur. Nevertheless, under these conditions, a similar temperature mofile was obtathed tor the same flow condtions previously used. The robusthess of the controllers is a measure of their ability to control the reactor under these senewhet different conditions.

\subsection*{6.6.2 Control Using the order State Model}

A controt ran, using a \(7^{t h}\) order aigorithm (derived according to Section 6.4) was imponentad on the reator a fou days after fresh catalyst had bocr: matriod.

In Figure 22, a plot of the objective function (6-4) with constraint \(Q=0\), versus the flow controls of hydrogen and butane, is presented, together with the mole fractions of the various species and the conversion of butane. The objective in Figure 22 is minimised if the mote fractions of all species are held as closely as possible about their respective onerating levels, in spite of the presence of disturbances. For the first 30 minutes, during which time the reactor is subject to only the inherent stochastic disturbances, the controiler is able to hold (with firly smoth control action) all the mole fractions as wel? as the conversion rasonably constant. The objective function d, rises by less than 0.1 , over this period. Previous attempts at steady state open loop runs indicated that removal of the control during this period would cause the conversion to drop to zero (reaction quenched) or soer to \(100 \%\) (reactor manay). i.e., the reactor was opea 100 p unstable. The stochastic control algorithns developed heresare designed specifically to compersate for the stochastic noise discurbances present in the process. Nevertheless, a good test of the robustness of the algerthmi is to examine its response to a deterministic load disturbance. The most sereme load disturbance in this system nould be to step up the wall colant temperature by even a few degrees. Without control, the highiy exochemic nature of the reactions would cause a reactor temperature manay. giving rise to near \(100 \%\) conversion and hot spot temperature in excess of \(400^{\circ} \mathrm{C}\).

Aver appoxmately 30 mintes under control, a \(5^{\circ} \mathrm{c}\) step in

LOA H LH2/: : ccisec:

off the potential supply of heat (through the exothermic reaction) and proventing reator rumaway. The flow rate of hydrogen is increased slighty (Which tends to decrease the reaction rate (see Appendix 1)), but the contolier obviousiy sees the butane flow as the more important manipulated variable. Sone offet in the concentrations is apparent under this severe load disturbance. This is because the stochastic controller is of a proportional state feed back form and contains no integral action; although, if this type of disturbance were ccmon, integral action could be incorporated through the use of additional states. After the process had stabilised at its new level, the wall temperature was stepped back down by \(5^{\circ} \mathrm{C}\) and the flow controis returned to their original levels. The rate of increase of the (cumulative) objective function is reduced accondingly, rising to juct under 2.6 for the tokal 77 minute control rum.
 Section 6.5, was perfomed within a few hours after the control run using the \(7^{\text {th }}\) order algurim, to reduce the posstbility of a change in catalyst activity. The same procedirs was followed as for the previous run. The results of this control run are presated in Figure 23. The \(10^{\text {th }}\) order controller holds the mole fractions of the various species farly constant over the first 30 minutes. The quality of the control is not quite as good as the \(7^{\text {th }}\) order control. This is evident in the rondol action (espectaly of butane) and the mole fraction responses whith are mot as smooth as those show in figure 22. The

Figure 23: Reactor Contro Run weing \(70^{\text {th }}\) Onder Control Aygorithm.
objective in Figure 23 pises to about 0.2 over the first 30 minate period, compared to 0.1 for figure 22. The butane converston too, shows more variation than that in Figure 22. A step up of 50 C in the wall temperature was introduced after 30 minutes and this controller responded smilarly to the previous one by imediately reducing the butane to prevent reactor runaway. The offeets for the two controllers are approximately equal as seen by comparing the change in levels for the conversion and various mole fractions in Figures 22 and 23. The (cumulative) objoctive function rises to just under 3.0 for the some period (77 mintites) as the previous control run (where a value under 2.0 was ottained). The wail temperature was again stepped down \(5^{\circ} \mathrm{C}\) and the process returns to its previous level. Some reasons for the relative performance of the two controllers are discussed in the following section.

\subsection*{6.6.4 Robustness of the Controllers}

A preliminary control run was carried out in which the performances of both the \(7^{\text {th }}\) and \(10^{\text {th }}\) order algorithms were evaluated. In this run, the catalyst vas very weak and conditions were quite difforent from those under which data was taken for fitting the state modei.

A manked characteristic of the control algorithm derived from the \(7^{\text {th }}\) order dynamic-stochastic state model in 6.4 was its robustness. In this preliminary control run, the seventh order control algontha was sthl able to chtro the reactor well. The robustness of tha \(7^{\text {th }}\) onder control an bo attributed to the ract that diagonal matrices with

Equal elemenis were used for the noise covariance matrices Rv and Rw. This in effect, spreads the disturbances equally across all the tempera. ture states. Should the hoi spot temperature change its position due to a change in catalyst activity, the hot spot at the new position is accorded equal weight by the kalman filter, in obtaining the state estimates. This was not the case for the augmented \(10^{\text {th }}\) order state model, which models the actual disturbance characteristics and locacions present in the process, at the time of data collection.

In the preliminary control run, the \(10^{\text {th }}\) order control algorithm controlled the process poorly and much cycling and wandering of the reactor profiles was observed.

The poor performance of the \(10^{\text {th }}\) order algorithm was attributed to its lack of robustness. It was not able to accomodate the change in the process disturbance characteristics caused by a change in catalyst activity between the time the data was collected and the control was implemented. When the model was fitted, the data showed the hot spot positioned towards the exit end of the reactor \((z=.837\), see figure 16). In deriving and fitting the reduced order noise model, most of the "activity" and dicumbances were associated specifically with the hot spot tomperature in this position. The linear combinations of tempewatures containing the most "activity" or information were obtained and introduced into the augmented state model, (see Sections 5.5 and 6.5). At a later stage wher the control run was performed, the lot spor had moved due to a drob in catalyst activity) towards the centere the reactor. Tha prevous Tinear corbinations of temerature Which contatned the mose activity, no ionger contained most of the
disturbance information. This led to a degradation of control.
For the final control run presented in Figine 23, the catalyst was fairly fresh and the profiles were closer to those under which the model was fitted. The controller performance thus improved considerably but was still not as good as that of the \(7^{\text {th }}\) order model (Figure 22).

\subsection*{6.6.5 Single Loop Control}

It was mentioned that historically, the reactor was controlled by fixing the butane flow and implementing a single loop PI controller on the hydrogen flow. it was evident, from an examination of the data from a control run, that if a controller could regulate both the position and height of the hot spot, the product distribution too, would be well controiled (given that the catalyst activity was constant). An attempt was therefore made to reguiate the not spot temperature (see Section 5.2) about that value from the operating profile about which the reactor was to be regulated. This corresponded to a zero objective furction in (6.4). This PI controller was usually wned on-itne. The bases for tunime were siabthey of the neactor ard speed of tesponse to ster distambencos in whll tempature and flows (see also Tremblay (T2). The proportionat gatn was obtained by trial and error (in the absence of integral action) and then sufficient integral action was introduced to remove any observed offset. The controller gotns usually took several hours to obtain and deperided on many factors inciuding wat tergetature cotaty achuty and umer abd Tower constrathts imposed upon the flow ratos. This control wu was perfomed one day
before the multivariabie control runs in Sections 6.5 .2 and 6.6.3. The catalyst was thus probably slightly more active. The results of this run are presented in Figure 24. The flow rate of butane, \({ }_{U_{C}}\), is shown as a constant next to the hydrogen flow control which exhibits a wandering cyclic behaviour. This occurs even over the first 30 minutcs, where the PI controller is attempting to regulate the hot spot in presence of stochastic disturbances. The cumulative objective function rises up to 20.0 over this period (about 10 times that for the multivariable schemes). The mote fractions and conversion (as predicted by the state model) are seen to oscillate considerably about their mean values. A \(5^{\circ} \mathrm{C}\) step in the wall temperature introduced after 30 minutes, causes the harogen to increase to its upper limit. Ar upper and lower constraint of 120 and \(80 \mathrm{cc} / \mathrm{sec}\left(1 \mathrm{~atm}, 25^{\circ} \mathrm{C}\right)\) was imposed by mans of the control softiare to stabilise the contral action. The rapid drop to almost zero conversion (due to increased hydrogen flow) predicted by the miodel is almost certainily not accurate and is the result of the fact that, with hydrogen at its upper limit of \(120 \mathrm{cc} / \mathrm{s}\), the linearised state model predictions will have a large error. In spite of the presence of integrat action, the mole fractions still have some offset over the poriod 25 to 45 minutes, after which the wall temperature was sopped butk down anain by \(5^{\circ} \mathrm{C}\). The (cumulative) objective rises to beut 65, over a 50 minute ontrol run - a considerable increase over the multivantable scheres in Sections 6.6.2 and 6.6.3.

The rultivariable control schemes (which followed this run)
 contrast to hedrogen flow when histomically was used for control.

On this besis, a single loop butare PI controller was later implemented by Tremblay (TA). He found that using butane flow as the contmile for a data collection rum, allowed him to obtain higher hot spot temperatures (up to \(300^{\circ} \mathrm{C}\)) with less danger of reactor temperature runaway. However, large manipulations in the butane flow were often required on Tromblay's run and this would have the effect of upsetting the production rates of the various products. This controller may thus be of limited usefulness in an industrial emviroment.

\subsection*{6.6.6 A Control Pun In Comcentration Dato}

The concentrations predicted by the model in the previous runs, used only tempergture measurements. At the very end of this study, the gas chromatograph was successftliy interfaced and concentration data could be obtained. The mutivariable controller's ability to regulate the actual concentrations (measured by the gas chromatograph) could therefore be evaluated. An axact comarison between predicted mole froctions and the data was not possible due to a lack of proper synchronisation between temperature and concentration data (see end of Chater si. Sevethelass. the comperisons (shown in Figure 25) generated a Ict at confidence in the model and the control algorithm. The state rede? was ficted to both concontration and remperature data (see Chapter 5 wth Figures 20 and 21) and used to derive a \(7^{\text {th }}\) order control algorethe (the \(7^{\text {th }}\) order algonthen was shown in previous sections to be superion and more robust then the in order algorithm). The noise stucture for whe av used in the 26 hay rum wes used aseir (soe Appendix 3). The data ror foting ints state model was collected 10
days before the control run and some loss of canalyst accivity was observed when the control run was perfomed. To offset this, the Wail temperature was raised by \(3^{\circ} \mathrm{C}\) and thus some bias in the product distribution and levels was expected. In spite of this, the model predicted the mole fractions and conversion remarkably well as shown in Figure 25. The controller is seen to hold the mole fractions fairly constant and close to the values measured by the chromatograph, over the initial period of control, 60 mimates, where only stochastic disturbances were present. Over this period, the cumulative objective rose to 0.07, as compareá to 0.1 over a 30 minute period in figure 22. figain a \(5^{\circ} \mathrm{C}\) step in the wall temperature was introduced (at 60 minutes) and as before, the controller prevented reactor runaway by dropping the butane flow significantly and retsimg the hydrogen flow slighty. The offect in the levels is again due to the absence of integral action in the control algorithm. Even at the new level, the model is able to predict the mble fractions well. After approximately 35 minutcs at the offset leveis, the well temperature was stepped back down by \(5^{\circ} \mathrm{C}\) and the mole fractions and conversion returned to their previous levels. The tota? rise in the objective function over the 130 minute control run was 0.68.

A state space model has been fitted, using both conceritration ard temperature data. This model adequately predicts the concentration dynamics and levels in the reactor. The controi atgorithon derived from this model is able to regulate the reactor in the face of stochasthe and deloministic Toad detmbences.

\footnotetext{
TME (GTN)
}

The multivariable control studies discussed in this section were the first to be implemented on this reactor. They have demonstrated that this reactor can be well regulated by means of a multivariable linear quadratic stochastic feedback controller. The emphasis has been on applied control studies in the hope that the implications of these studies may be extended to include industrial process control problens.

\section*{CHAPTER 7}

\section*{CONCLUSTONS AND FUTURE WON}

An attempt has been made to apply the concepts of mitivariable stochastic modelling and control theory to a complex chemical process. The non-adiabatic fixed bed catalytic reactor represents a chalicnge from the modelling, the paramater estimation, ard the control points of view. This study is her first apprent published work th the applicacion of multivariable stuchastio modelling and control theory to an actua fixed bed reactor. As such, it attempts to close a large axisting gat betwen the theory and appication of moden stochastic control theory Motivation for this study is amply expounded upon by the athors whose work is discussed in Section 2.I, and an attemt was made to bear their philosphy in mind throughout the perfod of this work.

Ir parioular, this thesis has examed the problems of fommating a compehensive process mode? for the reactor. This model consisted of 0 set of four simptaneous, nor-inear pardia difemential equations.

The adhod of or bogonat whombtom wased successhaty to shmiry the pocess model in two stages. inthally, a high order state spaco mode!, sutable for simulation studtes, was developed and finally, a fow onder state space reactor model suiteble for on-line ode sugies restitu.

differential equations was developed. This method was successtully used to fit the state model to first, dynamic temperature data and then, to dynamic temperature and concentration data from the reactor.

The suochastic noise disturbances present in the reactor system were characterised and two proceduras for modelling these disturbances were applied. This resulted in two dynamic-stochastic state space models for the ractor; a seventh order model and a tenth order model.

Optimal stochastic feedback control algorithms (to regulate reactor exit concentrations) were derived from these two models and successfully impienented on tho reactor in a series of DDC contro? studies. The two control algonithms showed considerable improvement over a single loop PI controller which was implemented as a base case for comparison.

In a final multivariable control run, the mode? demonstrated its ability to predict the actual exit reactor concentrations (as measured by the process gas chronatographland the control algorithm was able to regulate these concentrations well.

A large effort was necessary to obtain a low order state model fow this reactor. This model howevor. provides oxtensive infomation about the system, nllowing one to relate concentrations to temperatures and to predtet duramic temperature and concentration profites in the radal and axid directions. In an industrial environment, the value of the infomation provided by this extensive model and the quality of the contmi schemes developed from it, would have to be weighed agathet the cost in man-mors of develobtra the mod. This thests seebs to demorsthate that extensive process models carbe cotaned mo suceesstully
used to derive and impiement multivariable control schemes, which did show considerable improvement over single loop schenes here. This thesis thus argues in favour of opening industrial process control problems to modern control theory.

\section*{Future Vork}

A direct extension of this work would be the development of a combined concentration and temperature noise model and the inclusion of both temperature and concentration measurements in a state estimator. The fact the hesemesuments are available at difforent time intervals peses an interesting problem.

The Extended Kalman Filter, which uses a linoar filter equation coupled with a non-luear state model would provide an interesting application to the reactor. The development of a non-itneer stata model vould ircrease its range of application and could lead to the development of a servo control scheme which may be used for startup, shutdown and optimal changeover control schemes.

Sore technique which specifically accounts for the changing cablyst aceivity on the reactor would be of great interest. Either the pate of charge of catalyst activity could be modelled or some onIne adabtive schens conld be developed to trock the changes in catalyst activity.

There are, at present, severet on-going or planned studites on the reactor. Tremblay (ra) has developed a control scheme based on a
multivariable model reference adaptive control technique which uses corcentration and temperature measurenents. The adaptive antloy of the contol schone should be able to track any changes in catalyst activity. Sone of the mon.linearities in the process should be accounted for and this vould allow one to oporate at a variety of conditions.

Wong (H 3) is studying whe identiftabion and estimation of a multivariable transer-function noise model from the input-output data of the reactor. This empirical or black-bo\% model will be used to derive and imploment a multivariable stochastic controller which with provide a direct comparison with this study:

Hamis (17) is exomiring the appilcation of a univeriate self. theing regulator to the reactor.

The ractor is sufechently varied and comples a systrm to pro. vide an interesting application for a variety of modeting and contho? stutles and it is hoped thet this study will provide some ground work for these studies.

\section*{REEERENCS}
(A) Aoki, M. "Control of Large Scale Dynamic Systems by Aggregation". IEEE Trans. Aut Contr. AC-13 (3), 2A6 (1968).
(A2) Aström, k. U., "Computer Conmol of a Paver Machine - an Applioation of linear Stochascic Control Theory", IBM j, Res. Dev. 11,389 (1967).
(A3) Astrom. K.J., Introduction to Stochastic Control Theory, Acad. Press , N.Y. (?970).
(BI) Beok, J., "Design of Packed Cataiytio Reactors": Ecy. Cherical Enc., Vo7. 3. 203 (1962).
 Selectivity and Aging Propertios of Heterogeneous Catalysts". Ache symp. Series, No. \(143,70.27\) (1974).
(B2) Box, G.E.P. and MacGregor, J.E., "The Anaysis of CToseduloop Dymanic Stochastic Systems": Technometrics No. 3, 16. 39 (1074).
(EA) Bo\%, G.E.P. and Macomegor, J.F. " "Parametes Estmation with
 Beermg. Mohester University, hamilton, Datario, July (1075).
(B5) Box, E.E.B. and Drever. NR. "The Bayeston Estimation of Combat Paramens fron Severai Pesponses", Btonetrika 52, 355 (1065).
(00) Box, G.E.p. and Jenkins, GH: The Sevies hatysis Fomestung end Gontrol. Holden Day. Son Franciso (1970).
 (107\%).
(B8) Bartletr, M.S., "Further Aspects on the Theory of Multiple Regressioni, Proc. Camb. Phil. Soc. 34, 33 (1938).
(89) Bartlett, M.S., "Multivariate Analysis". J.R.S.S.(B) 9, 176 (1947).
(B10) Duriisch, R. and Scoer, J., "Wmerical Treatment of Ordinary Differential Equations by Extrepolation Methods", Numerishe Mathematik 8, No. 1, 1-13 (1966).
(C1) Carberry, J.J. and White, D., "On the Role of Transport Phenotema in Catalytic Reactor Behaviour". Ind. Eny. Chem. 5 (7), 27 (1559).
(C2) Crider, J.E. and Foss, A.S.s "Computational Studies of Transients in Packed Tubular Chemical Reactors", Rone 12 (3). 514 (1960).
(C3) Grider: U.E. and Foss, A.S., "An Analytical Solution for the Dynamics of a Packed Adiabatic Chemicel Reacton, AIChe I4 (1), 77. (1968).
(C4) Chamg. K.S., C.E.S. 25 (9), 1405 (1971).
(Dl) Dyring, y. Kmet. Mo, "Analogue Simulation and Control of a Thular Reactor", Chen Eng. I. 5 (1), 93 (1973).
(02) Gewosh, L. Froment, G.f., C.E.S. 26 (5), 53 (197).
(03) Davison, E.J., "A lethod of Simplifying Linear Dyamic systems", IEEE Trans. Aut. Cont. AC-1] (1), 93 (1966).
(Ei) EISPRCK An Eigenvalue Cigenvector Subroutine Package Avatiable Through monester Universty Fortran Library, Hamiton, Ontario.
(97) Froment, GF, Ady, Chen Ser, 100 , "Chemical Reaction Engineering", American Chemical Soc., p. 1-34 (1972).
(r2) Froment, G.F., "Fived Bed Catalytic Reators", Ind. Eng. Chem. \(59(2)\). 18 (1967).
(F3) Froment, G.F., Chem. Eng. Techn. 45 (9), 387 (1974).
(F4) Fonlayson, B. A. "Packed Bed peacton Analysis by Orthogonal Colloca. WOW", C.E.S. 25, 1081 (1971).
(F5) Fhlayson, B.A, "Urthogonal Collocation in Chemtal Reaction Erginoerint, Cat. Rev.-Sci. Erg. 10 (1), 60-138 (1074),
(E) Fergecn, N.B. and fintayson. B.A. "Transient demmel Reaction Analysis by Orthogorat Collocation", Chem. Eng. doumal I, 372 (1970).
(57) Fintayson, B.A. , Method of Wetphted Restouls and Vortactonal Princioles, Acad. Press, N.Y. (1972).
(Fo) Foss, A.Si. "Critique of Chemical Process Control Theory", Arche 19 (2), 209 (1973).
(FQ) Fisher, D.E and Sehorg: D.E., "Aavanced Compuer Control
 71 (1973).
(mio) Ferguson, N.B. and Fibloyson, B, A. "Tmasient Modelling of a
 AIGE 60 (3), 539 (1974).
(Fil) Friedy, D. Dynamic Behasom of Processes, Prentice Hoti (1972).
(F12) Fintayson, B.A., "Appliestions of the method of Weighted Residuals and Variational Methods: \({ }^{11}\), B.C.E. 14 (1) 53 (1969).
(61) Gould, L.A., Chenical Process Controi: Theory and Applicationo. Addison Wesley, Mass. (1969).
(HI) Mavacek, V., "Aspects in Decion of Packed Catalytic Reactors": Ind. Eng. Chem. 62 (7), 8 (1970).
(H2) Hansen, K. Waede, "Simutation of the Transiem Behaviour of a Pilot Plant Fixed Bed Reactor", C.E.S. 28, 723 (1973).
(43) Gansen, K. Waede. "Analysis of Transient Models for Tubutor Reactors by Orhogonal Collocation", C.E.S. 26. 1556 (1971).
(Ha) Himelblau, D.H. Erocess Amalyels by Statistice Methode, wom Wiley (1970),
(4g) Hofman, T.W. and Reiliy, P.M. "Transferring infomation fron One Experment to Another \({ }^{\text {B }}\), To be published (1977).
(Ab) Yamitun, J.C. Seborg, D.E. and Fischer, D.G., "An Experimertal Evaluaton of Kaman Filtermg", AChE 19, to. 5, sot (1073).
 To be publached (1977.
(J) Jutan; A., "A Paramoter Estimation Program for Multiresponse Data Using a Bavestan fpproch", Sac Report 417 . Faculty of Enginearing.

(J2) Jutan: A., et al., "State Spece Modelling for the Control of a Non Adiabatic Packed Bed Catalytic Reactor", SOC Report 114 , Faculty of Engineering, MoMaster University, Hamilton, Ontario, January (1976).
(33) vaminski, A.A., Stochastic Processes ant Fitcering Theory, Acad. Press, N. Y (1970).
(K1) Kestenbaum, A. et al. "Design Concepts for Process Control", Ind. Eng. Chem. Proc. Des. Dev. 15 (1), (1975).
(K2) Kopel, z., Numerical madysis. (1955).
(K3) Kurihara, H., "Optimal Concrol of a Fluid Catalytic Cracking Process", Fh.D. Thesis, M.I.T., Cambridge, Mass. (i967).
(LT) Lee, H. and Neekmen, V.U., "Aruanced Control Practice in the Chemical Process Industry: A Vien from Industry": ATChe az (1), 27(1976).
(L?) Levonsplel, 0., Chemical Reaction Engineering, John Wiley (1967).
(M1) Fears: D.E., Ind, Eng. Chem. Fund I5 (1), 20 (1976),
(m) Vicheisen, Makit, H.E. and Foss, A.S., "Scate Space Fomulation of fixed Bed Reactor Bynamics"s Ind. Eng. Chem. Fund. \(12(3), 323(1973)\).
(13) Marrocitin, G., et al., "Practical Control of Batch Reactors", C.E.S. 28 (4). \(905(19 / 3)\).
 Non Linear Perometers: U. Soc. Ind. Appi. Math. 2, Mo. \%, (sesi.
(M5) MacGregor, J.F., "Optimal Discrete Stochastic Control Theory for Process Application", CJChE 51, 668 (1973).
(MS) MacGregor, J.F., "Topics in the Control of Linear Frocesses Subject to Stochastic Disturbances", Ph.D. Thesis, University of Misconsin at Madison, Wisconsin, U.S.A. (1971).
(N1) Notoh, A.R.M., Introduction to Variational Methods in Contal Engiraering, Pergamon Press (1965).
(N2) Nobe?, Ben. Aoplied Linear Algebra, Prentice Hall (1069).
(01) Onlikas, A., "Kinetic Study of the Hutrogenolysis of n-Butane on Nickel Catalyst", H.Eng. Thesis, Momaster University, Romiton, Cntario (1970).
(02) Drlikas, A., Hoffman, T.W., Shaw, I.D.and Rethy, P.A., Con. 3. Chem. Eng. 50, 658-636 (1072).
(PI) Paris. W.R. and Stevens.W.F., "Mathenatical Modeis for a Pocked Bed Chomical Reactor", Can. J. Chem. Eng. 48, 100 (1970).
(a) Rosenbruck, H.H., "Distmotive Problems of Process Control". Chen Erg. Prog. 58 (9). 43 (1962)
(Si) Sinai, \(\mathcal{A}\) and Foss, A.S. "Experimental and Computational Studies of the Dyamics of a Fixed Sed Chomet Ractor", Arche le (4), \(000(1070)\).
(S2) Shincky, 5.6. "Stable Distillation Control Through proper Pairing of Varables \({ }^{14}\) ISA Trans. \(10(4),(1971)\).
(S3) Selifeld, J.H., Ind, Eng. Chem. Fund. 9 (4), 651 (1971).
(S4) Shan, I.D. " Modelling and Discrimination Studies in a Catalytic Fluidised bed Reactor, Ph.D. Thesis, Mofaster University, Hamition, Ontario (1974).
(S5) Shaw, I.D., Hofman, T.W., Onlikas, A. and Reilly, P.M., Can. J. Chem. Eng. 50, 637-643 (1972).
(S6) Sage, A.F. and Melsa, U.L.s Estmation Thoory with Applications to Commetations ard Control. Wicgraw-Hill (197!).
(S7) Sege, A.P. Cptimum Systams Control, Prentice-Hon (1968).
(S8) Soderstroms \(T\). Gustavsson, I, and lifung, L., "Indentifiability Conditions for Linean Systems Operating in Ciosed Loop", Int. J. Cont. 21. No. 2, 243-255 (1975).
(Ti) Tinkier, L. and Lamb, T., "Dymmics of a Fixed Bed Chemical Reactor - Design of a Feed Forward Control Scheme", Chem. Eng. Prog. Sym. Ser. No. 55. Vol. 61, p. 155 (1965).
(te) Trendra, U.P., "Computer Controt of a Butane Hydrogenolysis Reactur", MiMg. Thests, Mowastor Ineverity, Hmilton, ontario. (1973)
(T3) Trembley, J.P. and Whigh, J.D., "Conputer Controi of Butane Hymow genolysis Reactor". Can J. Cher. Eng. 52, 845 (1374).
(TA) Trenbiay, 1.P., Ph. O. Thests, Motastoy University, Hantiton, Ontario, (to ma pubtichod).
(15) Tremblay, J.P., "GOSEX - A Generalised Gperating Softrare Executive Progran:" SOC-Hov Report \(\# 3.01\), HChaster Universty, Hamiton, Ontario (1975).
(VI) Villacsen, J.V. and Stewart., W.E., "Solution of Boundary Value Problems by Orthogonal Collocation", C.E.S. 22, 1483-1501 (1967).
(V2) Vakil, H.B., Michelsen, M.L. and Voss, A.S., "Fixed Bed Reactor Control with State Estimation", Ind, Eng. Chem. Fund. 12 (3) (1973).
(til) Weekman, V.H., Jre "Inductria? Process Hodels - State of the Art", to be published in Chemicai Reaction Engincering - I, Ady. in Chen. Ser. Nashington, D.C.
(W2) Wilscn, G.7. "Modelling Limear Systems for Muthoyiabie contor", Phan. Thesis. Universtey of Lancester (1970).
(W3) Mons, L.K., M.Eng. Thests, Mchaster liniversity, Hanilton, Ontario, to be pubilished (1977).
(il) Tomes L. O. and Ftntayson. B.A., Ind. Eng. Chem. Fund. 12,412 . 422 (1073)

\section*{APPEDDE 1}

\section*{BUTAME HYDROGENOLYSIS KINETICS}

The kinetics of the n-butane hydrogenolysis reaction on a nickel on silica catalyst have been modelled by Orlikas (01) and Shaw (S4). The fundamental work done by Orlikas was mprover by Shaw. They have postulated a mechanism for the reaction and it is represented by Figure A-1. This mechanism is based on the following assumptions:
- butans and propane are absorbed on the catalyst surface and reaction takes place ontirely as a sufface-catalyzed reaction.
- the reaction products from these reactions may react further or be desorbed.
- becuse of lon protability of breating the or three camon bond strutancusly, reactions converting butene and propane to medrane are assumed not to occur.

The formal mechanistic mod based on these assumptions has been estatished and is presented below. From a number of treatwents with actial expermental data, the paraneters have been estimated oo yield the best fit.

OVERALG REACTOM SCHEME FOR THE HYDROGEMOEVSTS OF BUTANE

Suscus
\(\mathrm{O}_{\mathrm{g}} \mathrm{t}_{10}=\) mate of araokno of butano
\(\mathrm{R}_{3}^{2} \mathrm{C}_{0}=\) rate of absurption of propane
\(R_{C_{3}}^{d}=\) rate of desorption of propene
\(\mathrm{R}_{\mathrm{c}}^{\mathrm{a}} \mathrm{g}\) : mate of adsorption of ethame
\(\mathrm{P}_{\mathrm{C}} \mathrm{C}=\mathrm{rate}\) or desomption of ethane
\(R_{C l_{4}}=\) rate of production of methane
\(F=F r e c t i o n\) of \(\mathrm{O}_{4} \mathrm{H}_{\mathrm{m}}{ }^{\text {that }}\) cracks to \(\mathrm{C}_{3} \mathrm{H}_{8}^{*}\)
\(\longrightarrow\) Reaction Faths Constiered
w....................... Asemed - 0

\section*{Reaction Rates of the Reaction Species}

Net rote of disappearance of butane
\[
P_{C_{4}} H_{10}=k / k_{0} \cdot A \cdot P_{C_{4} H_{10}}^{m^{\prime}} \cdot P_{H_{2}}^{n^{\prime}}
\]
where \(A=k_{B} \cdot \exp \left\{-\Delta E_{B} / R T\right\}\)
Net rate of appearance of propane
\[
R_{C_{3} H_{8}}=\frac{F \cdot R_{C_{6} H_{10}}-k / k_{0} \cdot B \cdot P_{C_{3} H_{8}}^{m^{\prime \prime}} \cdot P_{H_{2}}^{n^{\prime \prime}}}{\mathrm{m}^{\mathrm{C}}}
\]
where \(B=k_{p l} \cdot \exp \left\{-4 E_{p} / R T\right\}\)
\[
C=\dot{K}_{\mathrm{F} 2} \cdot \exp \left\{-\Delta E_{\mathrm{P} 2} / R T\right\}
\]

Net rate of appearance of ethane
\[
R_{C_{2} H_{6}}=\frac{(2-F) \cdot{ }_{C} C_{4} H_{10}-R_{C_{3} H_{8}}-k / k_{0} \cdot D \cdot P_{C_{2} H_{6}}^{H^{i}} \cdot P_{H_{2}^{n}}^{n^{i}}}{1+G}
\]
where \(D=k_{E 1} \cdot \exp \left\{-\Delta E_{E 1} / \operatorname{RT}\right\}\)
\[
\theta=k_{E 2} \cdot \exp \left\{-\Delta E_{E 2} / R T\right\}
\]

Net rate of appearance of methane
\[
R_{\mathrm{C}_{4}}=4 \cdot R_{C_{6} H_{10}}-3 \cdot R_{C_{3} H_{8}}-2 \cdot R_{C_{2} H_{5}}
\]

Net rate of disappearance of hydrogen
\[
R_{H_{2}}=3 \cdot R_{4} H_{10}-2 \cdot P_{C_{2}}-R_{2} H_{6}
\]
where
\begin{tabular}{|c|c|}
\hline F & \(=\) fraction of butane which reacts to pronene \\
\hline \(k / k_{0}\) & \(=\) catalyst activity (dimensionless) \\
\hline \(k_{B}\) & \[
\begin{aligned}
= & \text { frequency factor for butane (moles-sec }-10 \\
& \text { catalyst } \left.-1-\operatorname{atm}^{-1}+m^{\prime}\right)
\end{aligned}
\] \\
\hline \(\Delta E_{B}\) & \[
\begin{aligned}
= & \text { activation encrgy for rate of butane cracking } \\
& (\text { cal-gm mole }
\end{aligned}
\] \\
\hline \(m^{\prime}\) & = exponent on butane partial pressure \\
\hline \(n^{\prime}\) & \(=\) exponent on hydrogen partial pressure in the butane rate expression \\
\hline \[
{ }^{P} \mathrm{C}_{4} \mathrm{H}_{10}
\] & = partial pressure of butane (atm) \\
\hline \[
P_{H_{2}}
\] & \(=\) partial pressure of hydroger: (atn) \\
\hline \(k_{p 1}\) & \[
\begin{aligned}
= & \text { pre-exponenttal factor in propane rate expression } \\
& \left(m o l e s-\sec ^{-1}-\mathrm{gm}^{-1} \text { cotaly }{ }^{-1} \operatorname{stm}^{-\left(\mathrm{m}^{3} n^{\prime}\right)}\right)
\end{aligned}
\] \\
\hline \(k_{p 2}\) & = pre-exponential froctor in propane rate expression (dimensionless) \\
\hline \(\Delta E_{p 1}, \Delta E_{P 2}\) & \[
\begin{aligned}
= & \text { activation energies in propane rate expression } \\
& (\text { calagm mole }
\end{aligned}
\] \\
\hline \(m^{\prime \prime}\) & = exponent on propanc bartial pressure \\
\hline \(n^{\prime \prime}\) & \(=\) exponent on hydrogen partial pressure in the propane rate expression \\
\hline \[
P_{C_{3} H_{8}}
\] & = partial pressure of propane (atm) \\
\hline \(\mathrm{k}_{\mathrm{E}, 1}\) & \[
\begin{aligned}
= & \text { pre-exponential factor in ethane rate expression } \\
& \left(\text { motes-sec }{ }^{\prime} \text { gm cetalyst }{ }^{\prime 2} \text {-atm }\left(n^{\prime \prime}+n^{\prime \prime}\right)\right)
\end{aligned}
\] \\
\hline
\end{tabular}
\[
\begin{aligned}
& k_{2} \quad=\text { pre-exponential factor in ethane rate expression } \\
& \text { (dimensionless) } \\
& \Delta E_{\mathrm{E}}, \Delta E_{\mathrm{E} 2}=\text { activation energies in ethane rate expression } \\
& \text { (cat-Gn mo } e^{-1} \text {) } \\
& \text { n: } \quad=\text { exponent on ethane partial pressure } \\
& n^{1:} \quad=\text { exponent on hydrogen partial pressure in the } \\
& \text { ethane rate expression } \\
& P_{C_{2}} H_{0}=\text { partial pressure of ethane (atm) } \\
& R_{i} \quad=\text { rate of disappearance or appearance of component } \\
& \text { ((om moles-sec } 0^{-1} \text {-gm catalyst }{ }^{-1} \text {) } \\
& =\text { reacting temperature (}{ }^{\circ} \mathrm{K} \text {) } \\
& =\text { aniversol gas law constant (atmont }{ }^{+3} \text {-gl mole }{ }^{-1} \text {. } \\
& { }^{o n-1} \text {) }
\end{aligned}
\]

\section*{Hales of Kinetic Parameters Ref. Shan (S4)}
(a) Butene rata
\[
\begin{array}{ll}
k_{\mathrm{B}}=10^{15.6} & m^{\prime}=1 \\
\Lambda_{\mathrm{B}}=5.1 \times 10^{4} & n^{\prime}=-2.34(0 r-2.15)
\end{array}
\]
(b) Propane rate expression
\[
\begin{array}{ll}
k_{p 1}=10^{0.6} & \Delta E_{P 2}=3.0 \times 10^{4} \\
k_{p 2}=10^{12.2} & n^{2}=1.0 \\
\Delta E_{P 1}=4.0 \times 10^{4} & n^{11}=-2.05(00-2.08\}
\end{array}
\]
(c) Ethane rate expression
\[
\begin{array}{ll}
k_{E T}=10^{4.52} & \Delta E_{E 2}=1.6 \times 10^{4} \\
k_{E 2}=10^{6.81} & m^{\prime \prime \prime}=1.0 \\
\Delta E_{E T}=2.6 \times 10^{4} & n^{\prime \prime}=-2.2 \pi
\end{array}
\]

\section*{APPETOXX 2}

\section*{A SUMARY OF ORTHOSONAI COLLOCATION THEORY}

Since the intial paper by Villadsen and Stewart (V1), Orthogonal collocation has become a popular techaigue for approximating the solution to differential equations. The method of Orthogonal Collocation is simply one of the many methors of the more fanitiar grow of approximation methods know under the general heading of the rethods of Weighted Residuals (PW) (Fi2). However, Collocation methods are generally eastor to use then other methods, hence their pophiarty. The basic idea of colvocation and its relation to \(\begin{aligned} & \text { WR }\end{aligned}\) may be illustrated as foltows:

Consider as an examples a bolndary value promen of the fom
\[
7^{2} T=0
\]
where \(v^{2}\) is the Laptacian operator in \(x, y, z\) space. The bourdary conditions ano apected as
\[
\begin{equation*}
T=T_{0} \text { on boundary } \tag{A-2}
\end{equation*}
\]

To obtain a approximate solution to (A-i) by MR, we first choose a trial function of the form
\[
\begin{equation*}
T^{(n)}=T_{0}+\int_{i=1}^{n} c_{i} n_{i} \tag{A-3}
\end{equation*}
\]
where \(u_{i}\) are chosen approximating functions which allow the boundary condition (A-2) to be satisfied and also allow for any symmetry exnibited by the problen. \(c_{i}\) are unknown constants to be detemined and (\(n\)) is the order of approximation. Notice how the trial function (A-3) incorporates the boundary condition into its structure. We substitute this mat function into the differential Equation (A-1) and since the trial function is unlikely to be an exact solution, we obtain a residual Tumetions \(R\) defined as
\[
\begin{equation*}
R\left(c_{i}, x, y, z\right)=\nabla^{2} T_{0}+\sum_{i=1}^{n} c_{i} \nabla^{2} u_{i} \tag{A-A}
\end{equation*}
\]

Since ve bencary condition \(T_{0}\) and chosen the functions \(u_{i}\) are known, the resione R, is a known function of position \(x, y, z\) for any given set of constats \(c_{i}\). In MMR, we chose the constants \(c_{i}\) in such a way thet the resthat is minimised in some weighted average sense. The weighted \(\left(y_{3}\right)\) integrats of the restdal are set equal to zero
\[
\begin{equation*}
\left\langle w_{j}, R\right\rangle=0 \quad j=1,2, \ldots n \tag{A-5}
\end{equation*}
\]
where
\[
\left\langle w_{3}, p>=\int_{v} w_{j} R d x d y d z\right.
\]
amd \(\because\) is the domatn of integration.
Combtang Equtions \((A-A)\) and \((A-5)\) gives
\[
\begin{equation*}
\sum_{i}^{2} u_{i} n_{j}, \nabla^{2} u_{0}>-\cdots<n_{j}, \nabla^{2} T_{0} \tag{A-6}
\end{equation*}
\]
or simity
\[
\begin{equation*}
\sum_{i=1}^{n} B_{j i} c_{i}=d_{j} \quad j=1,2, \ldots n \tag{A-7}
\end{equation*}
\]
where
\[
\begin{equation*}
E_{j i}=\left\langle w_{j}, \nabla^{2} u_{i}\right\rangle \text { and } d_{j}=-\left\langle w_{j} ; v^{2} T_{0}\right\rangle \tag{A-8}
\end{equation*}
\]

The unknown constatits are then simply obtained from (A-7) as
\[
\begin{equation*}
c_{j}=\sum_{i=1}^{n} B_{i j}^{-1} d_{j} \tag{A-O}
\end{equation*}
\]

These constants when substitated into (\(A-3\)) given the approximate solution to \((A-1)\).

The rolation between the various \(\begin{aligned} & \text { WR and the Colnocation method con }\end{aligned}\) be stated simply in teme of the weights \(w_{j}\), used in (A-5).
(1) Subdomain method \(\quad w_{j}=\left[\begin{array}{l}1 \\ 0\end{array}\right] \begin{aligned} & -x, y, z \text { in } v_{j} \\ & -x, y, z \text { not in } v_{j}\end{aligned}\)
(2) Hethod of Homents \(w_{j}=x^{j}\)
(3) Wethod of Galerkin \(w_{j}=u_{j}\)
(A) Coliccation method \(y_{j}=\delta\left(x-x_{j}, y-y_{i}, z-z_{j}\right)\)

Where a refers to the dirac delta function. The use of this function wakes equantion of the thtagels in (A-3) particularly simple and hence the unknow coefficients \(c_{i}\) are easily obtained.

Dealing with orthogal colnocation in porticuta now, we sea chat first a trat tunction \(\mathrm{F}^{(n)}\) is chosen with \(n\) undetennad cooficionts
\(c_{i}\). These coefficients are then chosen so that the residual function \(R\) is exactly zero at each of the \(n\) selected points in conain \(V\). This cat be verified, since using the definition of the diroc della function Equation (A-5) bacones
\[
\begin{equation*}
R_{j}=0 \quad j=1, R, \ldots n \tag{A-10}
\end{equation*}
\]

Because the resiolual vanishes at these points, the approximate solution will be exact at these so-called collocation points. Notice also, that the boundary condition is satisfied exactly by choosing the triai func. tion \(T^{(n)}\) appropriately. This particular type of coliocation is called Feterior Collocation (V1).

Tro questions remain to be resolved:
(1) Location of the enllocation points in domain \(V\).
(2) Choice of the approximating function type up

The collocation points \(j\), at which the residuals \(k_{j}\) are set to zero are not chosen randomy, but according to a method which mininises the average error over the whole domain. The choice of coltocation points can best be illustrated by means of a quadrature example:

Say we wish to obtein an appoximation to the integral I of a symatric function \(f(x)\) over a nomalised domain \(y\)
\[
\begin{equation*}
I-\int_{0}^{1} F d x \tag{A-11}
\end{equation*}
\]

Choose an \(n^{\text {th }}\) order trial function f \(n\)) of the fom, say
\[
F^{(n)}=F(1)+\left(1 \cdots x^{2}\right)\left[c_{0}^{(n)}+c_{1}\left(n x^{2}+\ldots+c_{r-1}(n) x^{2 n-2](a-12)}\right.\right.
\]

The superscript (\(n\)) on the coefficients \(C_{i}(n)\), is to emphasise that the coefticients change as the order of approximation changes. Say the optimal collocation points to be detemined are written as \(x_{p}, x_{2}, \ldots x_{p}\). Becuse \(F(x)\) is symetric (given), the residual function \(R_{;}\)must vanish at \(\pm x_{1}, \pm x_{2}, \ldots \pm x_{n}\), the collocation points. If \(F\) is the exact function, then the residual furction \(R\) may be represented as
\[
\begin{equation*}
F-F^{(n)}=R^{(n)} \tag{n-3}
\end{equation*}
\]

This residual itself can be expanded about the collocation points as follows
\[
\begin{align*}
n^{(n)} & =\left(1 \cdots x^{2}\right)\left[\left(x_{1}^{2}-x^{2}\right)\left(x_{2}^{2}-x^{2}\right) \ldots\left(x_{n}^{2}-x^{2}\right)\right]\left(b_{0}^{(n)}+b_{1}^{(n)} x^{2}\right. \\
& \left.+b_{2}^{(n)} x^{2}+\ldots\right) \tag{A-14}
\end{align*}
\]

Integration of \((A-13)\) gives
\[
\begin{equation*}
\int_{0}^{1} F d x=\int_{0}^{1} F^{(n)} d x+\int_{0}^{1} R^{(n)} d x \tag{A-15}
\end{equation*}
\]

The last tem in (A-15) represents the guadratare error which, from (A-14). depends on the caliocation points \(x_{i}\). To minimise this error, we select che a collocation points so that the first \(n\) wefficients \(b_{0},{ }^{2}, \ldots b_{n-1}\) moke no contribution to the error integrat. This defines the following set of onthomarity condtione:
\[
\begin{equation*}
\int_{0}^{1}\left(1-x^{2}\right)\left(x_{1}^{2}-x^{2}\right) \ldots\left(x_{n}^{2}-x^{2}\right) x^{2 k} d x=0 \quad k=0,1, \ldots n-1 \tag{A-16}
\end{equation*}
\]

Equations \((A-16)\) uniquely detemme the collocation points \(x_{i}\). Wth the ponts thus selected, the integral will be exact if the actual degree of \(F\) does not exceed in (since all the coefficients \(b_{i}\) (n) are zero beyond \(b_{n-1}(n)\) for any function fof degree \(A_{n}\) or less). The cal. culation of the collocation points can be simplified by rewiting (A-16) in the form
\[
\begin{equation*}
\int_{0}^{1}\left(i-x^{2}\right) p_{n}\left(x^{2}\right) x^{2 k} i x-0 \quad k-0,1, \ldots i+i \tag{A-7}
\end{equation*}
\]
and finding the zeroes of the polynomiais \(p_{n}\left(x^{2}\right)\). Furthermore, success ive application of \((A-17)\) fon \(n-1,2\), etc., generates a fanty of polynomials, \({ }^{\prime}\left(x^{2}\right)\) which satisfy the orthogonally relations.
\[
\int_{0}^{1}\left(1-x^{2}\right) p_{i}\left(x^{2}\right) p_{j}\left(x^{2}\right) d x=\left[\begin{array}{l}
0 \tag{A-18}\\
d_{i}
\end{array}\right]-\text { if } i \neq k=k
\]

The polynomials pare in fact, dacobi polynomials, roots of which de well known. So the collocation points are chosen to be the roots of Jacobi poryomiale.

These sane poiynomiais may be used as approximating functions sibce they fom a complete set and provide good approximotion proper.. ties (V1).
\[
\begin{align*}
& \text { A typical symmetric trial function is given by } \\
& T(n)=T(1)+\left(1-x^{2}\right) \prod_{0}^{n} r_{i}^{2}(n) p\left(x^{2}\right) \tag{A-19}
\end{align*}
\]

Derivative and Quadrature fommlae
Once these tria? functions are available, they may be used to generate quadrature fomulae (VI). One can ailso develop an expression for the frrst derivative and Laplacian of \(r^{(n)}\) by simply taking derivatives in (A) Th). This provides expressions for the derivatives in terms of the unknown coefficients \(c_{i}{ }^{(n)}\); these in turn, may be expressed, using Tinear algebra (V), in terms of the temperatures themselves at the collocation points. Based on this, Villadsen (V1) and Finlayson (F7) provide a set of formulae for quadrature and derivatives
at \(x=x_{i} \quad \frac{d}{d x}(n)=\sum_{j=1}^{n+1} A_{i j}^{(n)} T^{(n)}\left(x_{j}\right)\)
\(a t x=x_{i} \quad x^{\eta-a} \frac{d}{d x}\left(x^{-(1-a)} \frac{d T}{d x}\right)=\sum_{j=1}^{n+1} B_{i j}^{(n)} T^{(n)}\left(x_{j}\right)\)
\(\int_{0}^{1} f(x) x^{a-1} d x=\sum_{i=1}^{n+1} w_{i}^{(n)} f\left(x_{i}\right)\)
Where a is a gemetry factor.
\(a=1\) flat geonetry
\(\mathrm{z}=2\) cylindrice geometry
\(a=3\) spherical geometry
The first tho equations are exact provided the true function orcer does not exceed \(2 n\). The quadrature is exact for functions up to An (V1).

The quadrature fomatae are of a famitor form but the derivaWe romulae are tew and they way be vians as exterded finite differarce formbec: instead of expressing the derivative at a particular
point in tems of function values on either side of that point, the dertative at point \(x_{i}\) is given in terms of function values across the whole function.

\section*{APPENDIX 3}

\section*{ESTIMATION ROUTIME DATA AND STATE SPACE MATRICES}
(1) State Space Parameter estimation moutine using Dynamic Temperature data.

This routine linearises about a given average temperature profile described by a spline function:

MPAR = number of paraneters (dynamic)
\(\mathrm{TH}=\) sampling interye (60 sec)
PRESS \(=\) reactor pressure (1.65 atm\()\)
\(R(1 P 2 R)=\) vector of parameters
\(R T(1)=k / k_{0}\)
\(R(2)=\lambda_{0} \quad\left(\lambda_{\text {er }}=\lambda_{0}+a\left(T^{4}-T_{u}^{4}\right)\right.\)
\(A L P=\alpha\) (fixed here)
\(B)=806\) number (43.5)
\(T W=T_{2}\) wall temp (5120 \()\)
Coto \(=\operatorname{constant} 7.0\) (ionore)
SuRRUTHE UHADS Parameten estmation routino using herquarat's Method (Ref. J.F. fachregor, Department of Chemical Engineering, Mohaster Miversity, hamiton. Ontario).
(a) Bynamic Tepperature data for 26 lhay rum (inctuced as data behtom collocaton and snlthe constants for routine in (li).
(s) Fitted State कace and Contmi Marices (ab May).
(4) Dynamic Temperature and mole fraction data (23 September) approxi. mateiy synchronised (see Chapter 5) as 1,\(1 ; 2,7: 3,13, \ldots 17,97\).
(5) Fitted State Space and Control Matrices (23 September)
(6) Typical parameter correlations matrices for 26 May, 23 Septomber Fits.

NOTES
Fitted Control Matrices are identified as
\(A\) - discrete \(A\) matrix in \(x(t+i)=A x(t)+B u(t)\)
B -. disorete B matrix
\(L \quad-L_{\infty}\) feedback gein matrix in \(\underline{u}(t)=-L_{\infty} \hat{x}(t / t)\) Constraint: \(Q=\lambda I, \lambda=10^{-4} 26\) May, \(\lambda=5 \times 10^{-5} 23\) September.

K - \(K_{\infty}\) Kalman Gain
\(3 \times 3\)
 \(\therefore C_{i} \Delta u(t-1)\)
CI in Moacurement matrix \(\hat{i}\) (see Fquation (4-62))

Operatimg Fion
\(\operatorname{Bates}\left(\sin ^{3} / \mathrm{s}\right)\)
STP Fions
Reactor Inlet conditions

26 Ba
80.3
16.4

23 Septender
87.4
16.1
\begin{tabular}{cc}
\(T_{W}\) & Pressure \\
\hline \(512^{\circ} \mathrm{K}\) & \(1.65(2 \mathrm{~m})\) \\
\(522^{\circ} \mathrm{K}\) & 1.65 (atm)
\end{tabular}

Convert spe fows to reactor hlet condtions when caloulating controls
4.
```

ATTACH(UWHAUS,ID=HPPJ,EY=4)
ATTACH, IHSLIB.
ATTACH, SSPIIS.
FFL,57%)\.
FTN
REDUCE.
LOSET (LTG=IMS- -9)
OSET (LIP=SSDITE)
OAD(UWHAUS)
LGO.
PROGRAM TEST \INPUT,OUTPUT,PUNCH,TAPES=INPUT,TAPEG=OUTPUT,
1 TAPET=PUNCH
C MAIN PROGGAM FOR DYHA*IC ESTIMATION OF REACTOR PARAMETERS

```

```

SFLINE FUNCTION)
DYNAMIC TEMP PROFILE IS FIT TO 7*7 STATE MODEL USING TEMP ANO INPUT
FLOW GATA FPOM OEACTOF EXFERTMENT

```

```

    EXTERNAL OBJECT
    COMMON Y,U
    COMMON /KNOT/'CI(3,3), YXI(3),XKI(3),NXK
    GOMMON/PARM/ BI, EE
    GOMMOM/F //HPAR,NO,
    COMMON /X7/ GONO,ALP
    COMMCN /XI/ OER,E,XL,P,XK,TW,RHOB,AX
    COMAON /MOO/GSH,GSC,OO,SS
    OIMENSION W(4)
    BIMENSION YI(7,00), Q1(4),OIFF(3),SIGNS(3),SORAT (2900)
    OIMENSION AM ( 7, &, 1, 1),U(2,100),U1 (2,100)
    DIMENSION AA (8,8)
    DIMENSION X (3,4)
    EQUTVALENCE (U1,YI)
        C. BETA(2)=PADIALLEHEAT ALFNDUCTIUITIPLIEDGGY INOESEIO INTERNALLY
    BE AL(2)=ANIAL HEA CONOU
    NAMELIST/TNFOI/OER GSH,GI
    ER=DERIVATIVE FACTOR
    2 TO+Y =OR+ILY TEMP IN DEG CELCIUS
2 TORY=0EE-GG TEMP IN DEG CELCIUS
TDAY=25
NDATA=66
O NXK=NUMBER OF K*OT POTNTS
NK=3
NXK1=NXK=1
10=7
NO=?
-Q***=\#\#-DAPANET=
COND,CD ,SS

```
```

    NPAR=2
    EPS=1.8E-09
    COC FEAORMMT(SF1O.4)
2FAO(E,INFO1)
READ(E,SNFO2)
REAO(E,INFO3)
WRTTE(6,INFO1)
WFITE(5,INFO2)
WRITE (6, INFOZ)
NN=NO+1
O reAD IN COLLOCATION MATRICES
O-60C I=1, NM
REAC (5,100) (AA (I, J), J=1,NM)

```

```

    00 171 I=1,NXK1
        REAC(\frac{1}{5,1,171)(CI (I,J), J=1,3)}
    171 WRITE(6;1171) (CT (I,J),J=1,3)
READ(5,1171) (YXI(I),I=1,NXK1)
WRITE(G,1171)(YXI(I),I=1,NXK1)
1171 FORMAT(3F12.4)
XKI(1)=]
XKI (2) =0.82
XKI(z)=1.0
OO 10 I=1, NDATA
READ(5, 1081)(Y(J,I),J=1,NO), (U1(J,I),J=1,NI), II
1001 FORMAP(1H,9F%.3,IG)

```

```

        GSC=0.
        GSH=0.4. (TOAY +273.)
    OO 20 K= 1,NOATA
    GSH=GSH+U1(1,K)*CT
    GSC=GSC+UZ(2,K)*GT
    20 GONTINTE
GSH=GSH/MOATA
GSC=GER/NOATA
WRITE(G,1033) GSH,GSC

```

```

    COHVEFSION DF U(I)=UC4,U(2)=UH2 DATA TO STP CO
    U(1,IT)=U\frac{1}{2}(2,I)
    C1 CONVEPT TOO REACTOR INLET CONOITIONS TW,PRESS

```
```

        COFEC=TW/(273.*DFESS)
        O0 12 I=1,NOATA
    2.U(J,T)=U(j)I)* COREC
    DA&A SHIFTED IN TIME USE ONE LESS IN ESTIMATION PROG
    PARAMETERS AGTIVITY R1(1),AND 2 THERMAL CONDUGTIVITY PARAM R1(2),ALP(SET)
    R1(1)=4.0184
    21(2)=.017734
        ALP=1.48E-13
        NDATA=NOATA-
    = FARAMETERS FOR ESTIMATION PROGRAM UWHAUS (MARQUARDT,S NETHOO)
MIT=1
FNU=18
FLAM=0.015
EPS1=1:0E-06
PS2=1.0E-14
OIFF(1)=OIFF(2)=1.0E-0.3
SIGNS (1)=1.0
SIGNS(2)
OO50C I=1,NOB
YI(I)=GHAUS(1,OBJECT,NOB,YI,NPAR,R1,OIFF,SIGNS,EPS1,EPS2,MIT,
1
ISTAM,FNU,SCRAT)
STO
C SPLINE FUNCTION FOD GIVEN OPERATING PROFILE
COMMON /KNOT/C (3,3),Y(3), XK(3),NXK
NXK1=NXK-1
=0
DO 1C I=1,NXK1
IF(Z,GE:XK'(I),AND,Z,LT,XK(I+1))J=I
10 CONTINUE
IF(Z.GE:XK(NXK))J=KKK1
=z-xK(J
TNOT=((CG:J;)STOP11
QETUEN
END
SUBPOUTINE OBJECT(NPROB,X,FF,NOB,NP)
CALCULATION OF OBJECTIVE FOR USE NITH ESTIMATION FOUTINE
WITH COMPENT CAPDS IN PLACE AS IS, SUB OBJEGT CALCULATES RESIDUALS
FOR USE WITH SUB UWHAUS
FEMOVE C FROM CARDS SFT DI=0. ,THEN SUB OBJECT (X,F) CALCULATES DETERMINANT
WHICH IS M,U. GENERALESATION OF OF LEAST SQUARES,NOW USE ANY OTHER
OFTIMASATION. ROUTINE E.G.SIMPLEX

```
```

C
C
51 P(J,T)=P(2,N)
WRITE(6,104)
SUM=0.
SUM=SUM+OT(I,I)
1CL FOPMAT(IH,|,* CONOITIONAL D MATRIX*//)
20 OOR2OT=1,NO
102 FORMAT(7E15.4)
DI=1,
C CALLIINUSF(P,WKI,L,N,N,D1,D2,WK,IERS)
63 FRITE(6,53)IERS
IF(IERS.EQ.13G)GO, 55) 64
GO TO 65
E% WRITE(E,69)
FORMAI(E MATPIX NUMERICALLY SINGULAR E+50 ASSUM+D*)
GET=1.6E+5!
IF(D1.LE.0.)GOTO 54
ZD=ALOG1!(01)+D2*ALOG10(2.)
IF(ZO.GT.130.)GO TO 66
GO T0 67
OET=1.GE +100

```
```

67 DET=E1*2.**O2
g\& CONTINUE SQUARES OGJECTIVW
F=DET
WRTTE (E, 10, ) (Y(I),I=1,NPAR)
WRITE(E;100) (YET
100 FORMAK(% CURRENG
GOPMATE-
CONTINUE
TRITE(6,302) SUM
CO2 PLAOE ALL ATIS ONOROP TO FORM ONE LONG COLUMN GIVES SUR OF SUM OF SOUARES
OO}501 i=1,N
501 FF((T-1)*MOATA +J)=AT (I,J)
CONTINUE
RETUQN
ENO

```

```

    SUB TO CALQULATE FESIDUALS OF STATA SPACE MODEL, GIVEN PARAMETERS
    II ORIGINAL F.D.E,,S OF THE REACTOR MODEL
            DATA FOSMAT
    QEAD IA U STEAOY STATE (USS) AT STP CONOITIONS
    THROUGH INFO (NAMELIST) GSH,GSC
        READ IN DELTA UE PRO(TW,PBESSURE)-USS (TW,PRESSURE)
        AND TEMPERATURE PROFTLE T(TIME) WK6,WK,A1,B1, A2,B2
        COMMON /PGES/PKESS
    O IS A VECTOR OF PFOCESS OUTPUTS
    UHETIS A VECTOR OF PROCESS INPUTS
    THETA IS A VECTOR OF PARAMETERS
        NP =NUM OF PARAMETEOS
    NM IS OTMENSTON OF MOOEL AS SET IN DIFENSIONS STATEMENTS
    NTF =TOTAL IME/SAMPLING INTERVAL TIN
            INN = SAMPLING INTEEVAL IN SECS
            AT IS VECTOR OF RISIDUALS SAME OIMENSION AS YD
        OIMENSION OF YO((NM,NTF),AT (NM,NTF),UO(2,NTF)THETA((NP)
            EX ERNAL DERIV1
            EXTERNAL DERTV
            GIMENSTON Y (111), RE(11),WK(333)
            DIMENSTON X1(7), XT(7)
    OIMENSION THETA (4},AT(7,100),YO(7,101),UD(2,100)
    O IF NSWTCH=G MINIMUN OTPUT,SET=1 FOR LAST RUN ONLV

```
```

    C TF IF CO=, SS ERUALS I.O ONLY STEADY STATE WILL BE CALCULATED
    IF CO=O. NO GAROS WILL BE PUNCHED
    XKE= BETA +ALP* (T**L-TW**4)
    ZIMENSION LW1(21),LW2(21)
    DIMENSION X (E),Y(8),P(7,7), YZ(8)
    C FOF
    ```

```

    DIMETSIOH EL (7,8)
    COMMON/MOJ/GSH,GSC,CO,SS
    ```

```

    BIMENSION A4 (21;2), A41(42),84 (21;2);841 (42)
    ```

```

    OIMENSION WKI (441),WK2(441),WK3(441),WK4 (441),WK5(441)
    OIMENSION VECR (7,7},VECI (7,7), EVR(7), EVI (7)
    OIMENSION WKG (441), WK2WK? (14)
    EQUTVALENCE (A1,A11,WK5),(B1,811), (AL), (A2,A21), (B2, B21)
    EQUTVALEVCE (AL,ALI), (BL,GL1), (A,AZ), (B,GZ), (G;GZ')
    EQUIVALENCE (VECS,AL1), (VECI,B21)
    GOMMON /XI/ OEF,E'XL,D'XK,TW,PHOE,AX
    COMMOH /X2/ AL1,AL2,ALZ
    COMMON /X3/ XKG, SE-A,DERM
    COMMON/XG/GH%GG
    COMMON/PAPH/CBI, EOSO
    COMMON /AAA/AA
    COMMON /PEAC/ XKE1,XKE 2,DEE1,DEE2, XKP1,XKP2,DEP1,DEP2,XKB,DEE
    OOMMON /74/ A,B
    COMMON /Zi%,A,B
    NRITE (6,1306)
    FOPMAT(1HL)
    OALL SECOND(TINE)
    WRITE(E,998)TINE
    C IPRINT=NUMBER OF DRINTS FOR OYNAMIC PROFILES AT EAGH FIT
    C IPRINTEANORMEO VARIABLES
    XKO=THETA(1)
    BETA=THETA(2)*1. EE-#3
    E000 FONMAT(ESQ.4)
    WRITE (6, ठ612) xK0,BETA 
    EE12 FORMAT(%,6E12)XKO,BETA
    FORMAT(8F1H.5)
    x E= 25.6
    }EFM=50.0.
    PESS=1.%
    ```

```

            AX=13.1
            RHOB=0.72
            GG=GSC*TW/273. /PEESS
            GH=GSH+TH/273: /PRESS
            G0=GH+GO
            XK=22.4E-3*TW/273.
            XK=XK何ESS
            TOK=GU*XE
            ALI=DER*E*XL/R/R*8.
            ALL 2=2:/(BI+2.)
            AL 3=BI/(BI+2:)
            ZLH=GH/GOK
            ZC=GC/G0K
            =NM
            X(1)}=0.0337
            x(z)=0:16940
            X(4)=1.38050
            X(5)=0.61931
            x(5)=6.619.31
            X(6)=6.83064
            X(\varepsilon)=1,0
            W1=2.13
            ONSTANTS'FOR REACTION RATES
            DEP=5.1E+4/1.99
    ```

```

            X 
            XKP1=1%**10.E
            DEP1=L.EE+4;1.90
            DEPこ=3.%E+L苗.90
            X L 2=3.8E+4/2.99
            XKE2=10** * 52
            DEF1=2.6E+4/1.09
            DEE 2=1.5E+4/1.:99
            NN=N+1
    - INITIAL CONOITIONS
O0 50 T=1,5
50 P(T)
C P(X,1) LATER REFERS TO THE SECOND POINT AT X(2)
P( 3,1)=Y(7)
101 FROMAT(IH1)
XX=0.
C12=0

```
```

        **GO QOgOOO
        CLAV=H1*C41+WO*C4O
        C3AV=W1*C31+W0*C36
        CHAV}=W1*CH1+WO*CH
        WRITE(5,102) XX,C41,CH1,C31,C21,C11,C40,CHO, C3O,C2O,C16,T1,
    1 T, CQAV,CHAV,C}3{
    FORMA}(//F13.5,7E13.5,/,8E13.5)
        EPS=1.UE-G
        0051, J=1,*
        DO 120 IT=1%?
        EVII(II)=Y(II)
        H=X(J+1)-X(J)
        H=H/10
    701 CALL DPEBS(DERIV,Y,ZT, 5, 3, 2,3,H, 1.0E-6,EPS,YZ,EVI,WK1,IER)
Y(7)=TNOT (7T)
WRITE(E,250)ZT,Y
250 FORMAT(F{O,3,7E12.4)
IF(ZT.GT:X(J+1)SSTOP10
IF(ZT,EQ:X(J+1))G0 TO 700
IF((ZJ+H)-X(J+1)) ?,1,7,1,702
H=X(j+1)-2T
GO TO 701
GONTINUE
IF(IEF.ERQ129)WRTTF(6,103), CONVERGENCE NOT OBTAINED*)
00,52 K=1,2
TF(Y(M):LE.Q., Y(K)=1.LE-15
IF(Y(7):LT:TW) Y(7)=TW
IF(Y(1).GT.ZC)Y(1)=ZC-1.0E-15
IF(Y(E):GT:ZH)Y(5)=7H-1.0E-15
IF(Y(\overline{2}):GT:ZH)Y(2)=7H-1:0E-15
OO 53 K K=1,?
5 3
P(K,J)=Y(K)
CL1=ZC-Y(4)
CHI=ZH-Y(5)
CH1=YH-Y
C21=3.*Y(4)-2.*Y(6) -Y(5)
C21=3.*Y(4)-2.*Y(6) -Y (5)

```
```

        G40 =ZC-Y(1)
        CHC=7H-Y(2)
        O30=Y(3)
        C2g=?**Y(1) -2:*Y(3) -Y (2)
        C10=2(9)
        C4AV=W1*C41+W0*C40
        G3AV=W:*C31+WO*C30
        CHAY=W1*CH4+WC*CHC
        WRITE(ढ, 102) ZT C
    1 T1=AL2%TOL,CHAV,CZAV
    CONTINUE
    CALL SECOND (TIME)
    WFITE(G,998)TMNE,ER.1.) RETURN
    C O STORE STEADY STATE TEMPERATURE PROFILES IN YSS TO BE USEO IN RESIOUALS
420 OO 420,I=1,NM
C CALQULATION OF DERIVATIVES
OO 18U I=1,2
NS=I-1
0 180 J=1,!
F41=P(L, J)
H1=P(5,J)
*1=P(G,J)
F40=P(1;J)
FHO=P(2,J)
T=P(7,J)
T1=AL2*T +AL3*TW
Sム=T*EO
C1=F40*(1.+ER)
AL(I,Y,i)=(RC4P(GH,GC,C1,FHO,F30,F41,FH1,F31,T,NS)
1+C2=FL1*(1.+EC)
q=1.+ER
AL(I,J, 2)=(PC4P(GH,GC,FLO,FHO,F3O,C2,FFH1,F31,T,NS)
1C5=T*Q
Ti=T
AL(I,J,3)=(RCLP(GH,GC,F4O,FHO,F3O,F41,FH1,F31,C5 ,NS)
1, -RC4P(GH,GC,F40,FHU,F30,F41,FH1,F31,TL ,NS))/S4
3T(I,J,3)=(PH2D(GH,GC,FL0,FHO,F3O,F41,FH1,FF31;C5 ;NS) )
1

```
```

            G6=GC*O,4)=(RC4P(GH,C6,F40,FHM,F3O,F41,FH1,F31,T,NS)
    I
    ```


```

    CC7=GH*O
    AL(I,J,E)=(PC4P(C7,GC,F40,FHU,F3E,F41,FH1,F31,T,NS)
    1GT(I,J,5)=(RH2P(C7,GC,F4O;FHU,F3C,F41,FFH1,F31;I,NS)
    1 (I, N,5)=(RH2P(GH,GC,F4O,FHO,F30,FF41,FH1,F31,I'NS) )/(GH*ER)
    GM(I,J,5)=(RC3P(C7,GC,F40,FHO,F3U,F41,FH1, F31,T,NS) )/(GH*ER)
    1-8=FH1* (1.+ER*NS)
        S2=(FHO*(1-NS)+FH1*NS)*ER
        CG=FHO* (1.+ER* (1 -NS))
    AL(I,J,6)=(RC4P(GH,GC,FLO,CG,FS30,F41,C8 ,F31,T,NSS) )/S2
    c x x xxxxxxxxxxxxxxxxxxxxxx\xxxx<xxx<x
C1=FH0*Q
BT(I,J,1)=(PH2F(GH,GC,F4T,C1,F30,F41,FH1,F31,T,NS)
1. 2=FH1*Q - RH2P(GH,GC,F4O,FHO,F3C,F41,FH1,F31;T,NS)
BT(I,J,2)=(RH2P(GH,GC,F4O,FHO,F3O,F41, C2, F31, T,NS)
1OG=FLU*(1.-RH2P(GH,GC;
C8=F41*(1:+ER*NS)
C10=F31*(1,+ER*NS)
C1:=F30*(10+ER*(1 -NS))
Si=F(F40*(1)-NS)+F41*NS)*ER
GT(I,J,G)=(RH2P(GH,GC,CG,FHO,F3O,C8,FFH1,F31,TT,NS)
1
3T(I,J,7)=(OH2D(GH,GC,F4O,FHO,C11,F41,FH1,C10,T,NS)

```


```

    C1=F30*O
    Cl
    1. -RC3P(GH;GC,F40,FHO,F3C,F41;FH1,F31;T;NS)
    C8=F41*(1.+ER*NS)
    O9=F40*(1.+ER*(1-NS))
    C1:=FHO* (1,FER*(A-NS))
    GM(I,J,6)=(RC3P(GH,GG,C9,FHO,F3O,C8 ,FH1,F31,T,NS)
    1. RC3P(GH,GC,F43,FHO,F30,F41,FH1,F31,T,NS) )/S1
    1GM(I,J,7)=(RC3P\GH,GC,FF4O,C11,F30,F41,C10,F31,T,NS)
    ```
```

    1 - PC3P(GH,GC,F4S,FHO,F30,F41,FH1,F31,T,NS) )/S2
    180 CONTINUE
CALCULATION OF HEAT DERIVATTVS
O FEED IN ALL VALUES OF TEMO FROM }\times(0) TO X(N
183 YO (KK+i)
Y(1)=TW
70 181,J=1,N
FH0=P(土,j)
FHO=P(2,J)
C ORIG NOTATION FOR AA SAME, BEGIN WITH AA(2,1)
C1=F40*2
k=J+1
OL(J,1)=( STGHP(GH,GC,C1, FHO,F30,Y(K))
1
OL=GC**)=(SIGHPF(GH,C2,FLO,FHO,F3O,Y,M,K)
1 C3=GH*- SIGHPF(GH,GC,F40,FHO,F3O,Y ,K) //(GC*ER)

```

```

            C4=FHC*Q
            OL (J,6)= (SIGHP (GH,GC,F40,C4,F3O,Y(K))
    1.SNO-SIGHP (GH,GG,F4O,FHO,F3O,Y(K)))/(FHO*ER)
            C5=F3G*Q=( STGHF(GH,GC,F4Y,FHO,C5,Y(K))
    1
        YZ(1)=TW
            DO 181 LE1,N
    1&2. YZ(i+1) =F={\mp@code{i,I)}
            k1=L+1
            YZ(K1)=Y(K1)*0
            E1(J,K1)=(SIGHPP(GH,GC,F40,FHO,F30,YZ, K),K))/( Y(K1)*ER)
    1 ONTTNUE
    181 CONTINUE
\& SET UP MATRTCESSES
N3=N**
OO 504 I=1,N3
00 506 J=1,N3
A1(I,J)=C.
000 31 (I;J)=0:
00 507 J=:2N3
3(T,j)=0.
A2(J,I)=0.
42(J,I)=0.
43(J)=0.

```

```

    A}4(J,K)=\mp@code{0
    34(J,k)=0.
        00 519 I=1,N
        A (I, ,j)=J=1,
        AO
    10 G(,j,I)=0.
    C A1 AND,AN, B1 MATRIX
00 5011 I=1,N
K=I+N
L=J+N
K1=I+2*N
A
A1 (I, J) =-AA(I (I+1, I+1 )
A1 (K,L)= -AA (I+1,3+1
31(K,L)=-AA(I+1,j+1)
A1(K, L1) = +AA(I+1,J+1)
502
ONTINUE
A1(I, I) =A1(I,1)-AL(1, I, 1)
Ai (K,I+N)=A1 (K,1+N) - GT(1,I,1)
31(K,1+N)=31(K,1+N) - 87(2,I,2)
A1(K,1;1+2*N)=A1(K1;1+2*N);-GM(1; I, 1)
B1(K,I)=-BT (2,I,6)
A1(K,I)=-BT(1,I,5
A1(K1,I)=-GM(1,I,G)
B1(K1;I) =-GM(2;I;6)
A1(I,K)=-AL (1, =, b
31(I,K)=-AL(2,I,5)
A1(K,K1) =-8T(1, (1,7)
B1(K,K1)=-BT(2, I;7)
A1(K1,K)=-GM(1, I;7)
31(K1;K)=-GM(2;I;7)
501
CONTINUE
A2, AND B B2, MATRICES
KI=I+
A2(I,T)=AL (1, I, 3)
BC(I, I) =AL(2,I,3)
A2(K,I)=8T(1, I, 3)
32(K,I)=3T(2,I,3)

```
```

        A2(K1,T)=64(1, I, T)
    ```

```

        A (I) =AL (1,T,2)
        B3(I)=AL (2,T, 1)
        BZ(K)=BT( (2,I', 2)
        A 3 (K1) =GM( },1,1,2
        MATROLCES =GM(2,ING B)
    Snz MATRICESME
00 504 J=1,2
j j=j+3
5u4 I=1,N
K=1+
<1=T+2*N
AL(I,J)=AL(1,I,JI)
B4(I,J)=AL (2, I, JJ)
AL (K,J)=BT( (1, I, ,J)
AL
34(K1;J)}=GM(2;I,\mp@code{J)
504 CONTINUE
ADO MATEIX I=1,N
00 505 J=1,N
S05. A A AN,J) =E泣(I,KIX
OO 50E I=1,N
K=I+N
K1=I+2*N
B (I,I)=DL(T,1)
B(I;K)=OL(T,E)
B(I, K1) =OL (1,7)
J=J+
G(I2J)=DL(I,JJ)
50E CONTINUE
C CALG OF FEDUCED N*N SYSTEM, ABAF AND BBAR
GALL MINY(B11,N3,O,LW1,LW2)
\squareX=ABS (0)
1000 FORMAT(* SINGULAR WATRIX, 位*,E10.4)
GALL MPFD(A3,B11,WK1,NZ,N3,2,C,N3)
GALL MDED(WKT, B3,WK2,NZ,N3,0,2,N3)
GALL GMSUB(A11,WK2,WK3,N3,N3)
GALL GMCRO(WK1,Q?I,WK2,N3,NJ,N)
GALL GMADO(WK2,AZI,WKL,NS;N)

```
```

    BALL GMPPO(WK1,BL1,WK2,N3,N3,2)
    GALL GMADD(WK2,AL1,WK1,N3,2)
    CALL MINV(WK3,NZ,D,LW1,LW2)
    OX=ABS (D)
    IF(DX.LT.1.,E-GE) HRITE (6,1002)
    FOPMAT(* SINGULAR MATEIX, 2*)
CALL GNPPD(WK3,WK4,A21,N3,N3,N)
GALL GIPPD(WK3,WK1,WKE,N3,N3,2)
CALL GMPPD(BZ, A21,WK2,N,N3,N)
CALL GMADD(WK2,AR,NK4,N,N)
GALL GMPDD(BZ, WK6,WK2;N,N3,2)
CALL,GMADO(WK2,GZ,WK3,N,2)
IST=2*N
00 2505 I=1,ISI
2505
2503
CALL GMTPA(WK3;WK2,N,2)
WPITG(E,2503)
00512 I=1,N
ji=(I-L)*N+1
J2=J1+N-4
WPITE(E, 200
IF(CDNE,O.IWRITE (F,20\&U) (Wki(J), J=J1, J2)
512
WRITE (E,2504)
FOPMAT(YT,O4) CONTINUOUS MATRIX B*//1
J1=(I-1) = = - ! \
J2=\1+1
NRTTE (6, 2GOU) (WK2(J),JJJ1, J2)
GONTINUE
IF(CD.NE.O.)WRITE(T,20,0)(P(7,I),I=1,N)
IF (NSWTCH.EQ,0) GO to 2501
C CALCULATIOA DF OUTPUT MATRICES ZT AND ZU
CALL MPPD(83,A21,NK1,N3,N3,2,O,N)
CALL GMADO(WK1,B21,NK2,H3,N)
CALL GMPPD(B11,WK2,WK1,N3,N3,N)
CALL MPFD(B3,WK6,WK2,N3,N3,2,0,2)
CALL GMADO(WK2,B41,WK3,N3,2)
*******LLGMPRO(E11,WK3,WK2,N3,N3,2)
CALL SMPY(WKI,W1,WK3,N3,N,Q)
GALL SMPY(AL1,WO;NK1,NB,N;O)
CALL GMADO(WK1,Wk3,WK5,N3,N)
CALL SMPY (WK2,W1,WK3,N3,2,O)
CALL SMPY (WKE,WC,WK1,NZ, 2,G)
BALL GMAOD(WK,NW3,WK6,N3,2)
GALL GMTPA (WK5,WKI,N3,N)

```
```

    CALLGGMPA(WK6,WK2,N3,2)
    WRITE(6,15]0)
    FOPMAT'*MATRICES ZT ANO ZW IN FAV=ZT.OTC +ZW.OU*
    OO 524 I=1,Nz
    J = (I-1)*N+1
    J2= J2+1-1
    520 WFITE(6,2,00)(WK:(J),J=J1,J2)
00 = (T 1 -1) = = 2,N+1
J2= JI+1
521 WRITE(6,20UG)(WKZ (J) %J=J1,J2)
ALCULATION OF HTH MATEIX
WPITE(E,211)
K4=0
K5 =1
K6=\
O0 201 I=N,N3,N
OO 2OC J=12N
CALL LOCV(I,J,IR,N3,N,U)
K3=J+KL

```

```

    K6=K6+N
    K5=k5+1
    201 K
FOPMAT (* HTH MATRIX *)
WRITE(E,205)

```

```

    CALL GMPPD(WK1,WK2,WK3,N,3,N)
    CALL GMTRA(WK3,WK2,N,N)
    30 203 I= 1,N
    J1=(I-1)*N+1
    J2=j4+1-4
    WPITE(E,2000)(WK2(M),M=31,J2)
    IF(CD.NE.0.)WRITE(T,2COO)(WK2(J), J=J1,J2)
    203 CONTINUE
CALCULTATE EIGENVALUES OF DYMAMIC MATRIX A
00 5114 I=1,N
SALL LOCV(T,J,IE,N,N,O)
CALLEIGENP(N,N2A,LS, EVR,EVI,VECR,VECI,IND)
IF(INCO:EQQZIWRIGE(E,QUY1)'N SULCULION SUCGESSFUL*)
2002 FOFMAT(,20, %2) EIGENVALUES*)
O0 5+5 T=1,*
515 NRITE(6,2E.3)EVE(I),EVI(I)

```
```

2003 FOCHAT(2E2..6)
2501 CONTINUE
GALL SECOND(TIME)
WALLTE SECONO(TIME)
FORMAT(** CPU TIME=*;F10.2)
IO CALCULATION OF, OISCREET SYSTEM
NM2=NM+2
WRITE}(6,30
FORNAT ( * ISCRETE MATRICES A,B COLUMNS*)
N=NM
00 20 I=1,
GALLLLOCVN(I,J,IR,N,N,O)
00}21 I==1,
00 21 J=1゙
CALLLLOCV'(I,J,IR,N,2,0)
00 41 K=1,NM2
00 2
Y(I)=0.
Y(K)=1.
UC=Y(1N+1)
UH=Y(NM+2
ZT=0.

```

```

    Y1(I)=Y(I)
        HH=H/10.
        XX=H
    401 CALL OREBSOERIV1,Y,ZT,N,4,2,0,HH,1.OE-6,EPSU,RR,Y1,WK,IER)
IF(ZT.GT.XX)STOP12
TF(ZT.EQ.XX)G0 T0 400
IF ((7T+HH)-XX)401, 401,402
HH=XX-ZT
G0 TO L0:
CONTINUE
IF(IER.EQ.129)STOP13
NPITE(G,10) (Y(I),I=1,N)
FF
P(J3K) J=1, (j)
G0 +0 42
CONTINUE
00 34 J=1,年
OL(J,K-N)=Y(J)
IF(CD.EQ.0.)GO TO 41

```
```

        IF(NSWTCH.EQ.0) GO TO 41
        WRITE (7,10)(Y(I),I=1,N)
        CONTINU
        GALL SECOND (TINE)
        GRENEGA&IONOF RESIOUALS AT
    CALCULATION OF INITIAL STATES
        OO & IK=1,N
        X0(IK)=YO(IK,1)-4SS(IK
        CNT=0
        WRITE (6,6131) X0
        FORMAT (I10,7G12.3)
        00 38 IT IT=1,N
    3 9
30 35 J=:,N
5 Xi(I) =P(I;,J)* Xu(J)+X1(I)
00 36 I=1,N
00 36 J=1,?
X1(I)=X1(TI)+DL(I,J)*UD(J,IT)
00 37 T=12
CATA MATCHED AS Y(T), U(T)
OATA IN THE FOFM TEMP(TIME) VS, DELTA U(TIME)
AT(INIT)=YD(I,IT+1)-YSS(I)-Xi(I)
XU(T)=X1 (I)
CNT=CHT+
IF(CNT.EQ.IPRINT)GO TO 6132
6132 WeITE(6,6131) X1
WRITE(6,6131) X1, (AT (I,IT), IE1,N)
WRITE (S,GIB3)IT, (AT (I,IT),I=1,N)
O PUNCH RESIDUALS FOR OFF-LINE ANALYSIS, I=1,N)
70C3 FORMÁT(I号,TEI1.4)
CNT=0
E134 CONTINUE
cONTINUE
CALL NOISE(AT,N,NTF)
IF(CD.EQ,G.) GO
WRITE (E,T\cupGS)IT,(AT(I,IT), I=1,N)
7001 WRITEEE,
CALLSECONR(TIME)
QETD

```
```

    SUBFOU*INE DERIVI(Y,Z,N,DY)
    COMMON /Z2/ UCgUM
    GOMHOH /Z1/A,9
    GIMENSION A (7,7),5(7,21)
    DIMENSION Y(1),DY(1)
    OQ,1%T=1,N
    00 10 j=1
    DO 10 J=1 = 2
    O(I)=0Y(I) +A(I,J)*Y(J)
    ```

```

    RETUR
    SUBPOUTINE OERIV(Y,Z,N,OY)
    COHMON /XI/ DER,E,XL,R,XK,TW,RHOB,AX
    COMMON /X4/ CPS,3ETA, OEPM
    COMMCN / X5/ GD, CEAF, FHOG,CPG
    GOMMON /X6/GGH,GC
    OTMENSION Y(7),DY(7)
    FH1=Y (4)
    FH1=Y(5)
    F31=Y(6)
    F40\=Y(4)
    F30=Y(3)
    FHC=Y(2)
    T=TNOT(Z)
    0010 j=1,2
    LL=J-1
    L=3*LL
    OY(1+L)=-RC4P (GH,GC,F4O,FHO,F3,F41,FH1,F31,T,LL)
    OY(3+L)=RC3P(GH,GC,F4, FFHC;F3D,F41;FH1,F31;F, LL)
    DUMT=SIGHP(GH,GGGFLG,FHG,FZO,T), FTC.
    SETS COFFECT VALUES FOP RHOG,CPG,ETC.
O1=GO*RHOG*CPG/(AX*XL*CBAR)
OY(7)=DUMT/D1
AD7=ABS(DY(7)
IF(AO7.GT.OERM)DY(7)=)Y(7)/AD7*OERM
RETUQN
ENO
FUICTIOH RG4P(GH2GG,FLG,FHE,F3t,F41;FH1,F31,T,NS)
COMMON/XI/ OER,E,XL,R,XK,TW,RHOB,AX
GOMMO1 /X2/ ALLI
COMMCN /X3/ XKO
COMMOH /X4/ CPS,BETA,DERM
GG=GH+GC
O1=ALI*AX/GU*(F41-F40)
Z=1.\hat{UE}+5
D2=RHOB*I* XL*AX/GU

```
```

    IF(NS.EQ.0)GO TO 10
    GO T0 11
    01=-01
    CNTTMUS
    T1=AL2*T+AL3*TW
    2GLP=E1-D2*RO4(GH,GC,F41,FH1,T1)
    GO TO & L
    RC4P=C1-D2*OC4(GH,GC,F4O,FHO,T)
    CONTINU
    END
    EUNCTION RCLL(GH,GC,FL,FH,T)
    COMMON /PEAC/ XKE1;XKE2,GEE1,DEE2, XKP1,XKP2,DEP1,DEP2,XKB,OEB
    COMMCH /XI/ OER,E,XL,R,XK;TW,RHOE;AX
    COMMCN
    GO=GH+GC
    GKK=GC*XK
    7C=GC/GOK
    ZH=GH/GO
    IF(F4.GT.ZO)FL=ZS-1.0E-15
    IF(FH.GT, ZH)FH=ZH-1.,VE-15
    TF(T.LT:*W)T=TW
    S=1.0E-5
ZCF=(ZO-F4)*S
ZHF=(2H-FH)*S
XA =XKB*EXP(-DEB/T)
O1=XKO* XA
D2=(82.057**)**(-1.15)*ZCF*ZHF**(-2.15)
2C4=01:02
RETURN
RET
FUNCTION PCO(GH,GC,F4,FH,FZ,T)
COMMON /PEAC/ XKE1;XKE2,OEE1,DEE?, XKP1,XKP2, DEP1,DEP2,XKB,OEE
COMMON /XI/ OER,E;XL,R,XK,TW;RHOG;AX
COMMON / X3/ XKO
GG=GE+GH
GEK=GC*XK
ZH=GH/GOK
IF(FH,GT,ZH)FH=ZH-1.UE-15
IF(T.LT.TW)T=TW
F=C.9
S=1.be-6

```

```

ZMF=(ZH-FH)*S
XB=XKP1*EXP(-DEP1/T)
O2=1,+XKP2*EXP (-DEP2/T)
1=X8*(82.057*T)**(-1.0.0)*FX*ZHF** (-2.07)
RC3=(F*RC:(GH,GC,FG,FH,T)-XKO*D1)/02
的㧶品

```
```

    ENO
    FUNCTION PCZ(GH,GC,F4,FH,FZ,T
    COMMON /PEAC/ XRE1,XKE2,XEE1,DEE2, XKP1,XKP2,DEP1,DEP2,XKB,DEB
    COMMOH <X:/ DEE,E,XL,R,XK,TW,RHOB,AX
    COMMON /X3/ XKO
    F=0.9
    GO=GH+GC
    GUK=GG*XK
    S=1 1F-15
    OL=3.*F4-2.*F3 -FH
    TF(04.LT.0.0)04=1.0E-15
    IF(FH:GT:(GH/GGK))FH=GH/GUK -1.0E-15
    IF(T.LT.TW)T=TW
    ZHF=(GH/GOK-FH)*S
    XC=XKE1* EXP(-OEE1/IT
    O1=XKE2* EXP (-DEE2ノT)
    02=04* S* Z HF** (-2.21)
    03=02*XK0* XD* (82.057*T)**(-1.21)
    RC2=((2,-F)*RC4(GH,GC,F4,FH,T)-RC3(GH,GC,F4,FH,F3,T)-D3)/01
    RETUPN
    END
    FUNCTION OH2 (GH2GC, FL, FH2F3,T)
    ```

```

    RH2=01
    END
    FUNGTION SIGOH(GH,GC,F4,FH2F3,T)
    F=0.
    IFF(P.LT.TW)T=TW
    ```

```

    BH2 =-10322. -6.33*(T-298.)
    DH4=-15542. -2.52*(T-298.)
    D4 =RC4 (GH,GC,F4,FH,T)
    33=RCZ (GH,GC,F4,FH,F3,T)
    SIGDH= -(DH1*F*O4+DH2*(1,-F)*O4 +DH4*(-D2+(2.-F)*O4-03))
    RETURN
    ENO
    FUNCTION FH2P (GH,GC,F4O,FHO,F3G,F41,FH1,F31,T,NS)
    GOMMON/X1/OER,E,XL,R,XK,TW,RHOBB,AX
    GOMMON /X3/ XKO
    G0=GH+GC
    O1=AL1*AX/GC*(FHI-FHO)
    Z=1.0E+06
    O2=RHOS*Z*XL*AX/G0
    IF(NS.EQ.O)GO TO IO
    GOTO}1
    ```
11 GONTONUE
 CONTINUE
 RH2P=C1-D2*FH2(GH,GC,F41,FH1,F31,T1)
 3 RH2P=D1-D2*RH2(GH,GC,F4O,FHO,F3U,T)
 RH2P=0
 FUNCTION RCZP(GH,GC,F4,FHO,F3O,F41, FH1,F31,T,NS)
 COMMON /X1/ DER,E,XL,R,X
 GOMMON /XZ/ XKO
 GG=GH+GC
 Z1=-ALI*A
 %=1*:HE+*V* KL*AX/G0
 IF(NS.EQ.0)GOTO 1H
 GO T0 :1
 01=-01
 G0 TO 13
 CONTINUE
 T1=AL2*T+ALZ*TW
 RC3P=D1+O2*EC3(GH,GC,F41,FH1,F31,T1)
 GOTO IL
13 14 RC3P=01+O2*PC3(GH,GG,F40,FH0,F30,T)
 END
 FUNCTION SIGHP(GH,GC,F4O,FHO,F30,T)
 COMMON /PRES/PRESS
 COMMON /XI/ DER,E,XL,O,XK,TW,RHOB,AX
 GOMMON /X2/ ALI,AL2,ALZ
 COMMON /X4/ GPS,GETA,OERM, GO,GOG,GPG
 COMMON /X5/GO,GOSBAR,RHOG,GPG
 GOMMON /XZ/ COND,ALP
 G0=GH
 XKE= 3ETA +ALP* (T**4-TW**4)
 QHOG=(GH*O.CO +GC*2.5)*0.273/(TW*GO) * COND*PRESS
 CPG=(GH* 0.30E +GC*1.95)/(GH*0.09 +GC*2.6)
 OBAR= CPS*PHOQ +CPG* PHOG*E
 IF (T.LT.TW)T=TW
 B1=XKE*4.*ALZ*(TH-T)/(CBAR*R*R)
 SIGHP=D1+SIGDH(GH,GC,FLO,FHO,F3O,T) *RHOB/CBAR
 קE,
 FUHCTION SIGHPF(GH,GC,FLO,FHC,F3O,TT,IZ)
 COMMON/PRES/PRESS
 COMMON /XIT,DER,E,XL,P,XK,TW,RHOR,AX N
 COMMON /X2/ AL1,ALR,ALZ,NK,NOE,AX N
 COMMON /X4/ CPS,BETA,OERN
```

```
 GOMMON /XT/ COND,ALP
 COMMON/AAA/AA
 BIMENSTON AAA(8,8)
 DIMENSIO
 RHCG=(GH*0.09 +GC*2.6)*0.273/(TW*G0) *CONO*PRESS
```



```
 CPG=(GH*U*ZUG +GS*1:95)/GG
 CBAR=CPS*PHOB +CPG*RHOG*E (AX)
 NOTATIOH FOR AA DOES NOT CHANGE,BEGIN WITH AA(2,1) TO AA (2,6)
 TEMP=TT (IZ)
 NN=N+1
 NA=N+1
- cALC ZO DERIVATIVE USING ALL VALUES OF T FROM Z=0 TO Z=1.0
 00 1UM I=A =NN,I) *TT(I) +SUM
 SIGHPP=FACT*SUM+SIGHP(GH,GC,F4O,FHO,F3C,TEMP)
 RETURA
 END
 SUBROUTINE NOISE(XNT,N,NTF)
 ********#***
C CONVEFT XNT (N(T)) TO WHTTE NOISE SEQUENCE A(T) AND ESTIMATE PHI
 IN N(T)=PHI* N(T-1) +\Delta(T)

 EQUIVALENCE (GMO;GMOU),(GM1,GM11), (PSI,PSI1)
 DIMENSION PSI (7, 3),XNTG(7 100), XAT(7,10,G)
 calculate gmo
 OO 10 I= 隹,N
 GO
 GMO(I,J)=0.
```



```
C CALCULATE GM1
 NTFI=NTF-1
 00 13 I= %N
 DO, 13 j=主年
 GM1 (I, JT=O.NNTF1
14 GM1 (I, J)=GM1 (IT,J) +FLOANT (ITRIT)*XNT (J,IT+1)
C SYMMETRIC MATRIX
 SYMMEYRIC M
12 GMO(J,I)=GMO(I,J)
 GOG(J,I)=GMO(I,J)
```

```
36 %lOM, FOFMAT(* MATPIX GME*)
$NFO4 DERE 20,RI=43.5 $
$NFO2 TW=512, GSH=94.,GSS=18.0
```




510.0	512.0	520.1	525.5	531.5	534.9	533.0	130.0	20.0	10
2.4	51.8	520.1	525.8	528.9	532.4	531.0	125.0	21.0	10
0	4.8	518.6	525.6	526.6	527.6	527.0	114.0	19.8	10
505.0	6.8	516.2	516.6	52504	525.6	525.0	95.0	21.8	$1{ }_{10}^{10}$
512.0	2.9	519.2	523.8	525.9	527.6	527.0	00.0	20.0	10
									1
512.0	512.9	523.8	530.1	527.8	529.3	527.0	90.0	19.0	10
512.0	545.8	518.9	528.3	534.1	529.4	527.0	$0 \cdot 0$	19.0	10
512.6	519.7		529.1				90.0	20.0	10
512.0	593.8	523.7	$525 \cdot 1$	$531.8$	$530 \cdot 8$	$527 \cdot 0$	99.0	22.0	10
				537.0	530.3		94.0		
E12.0	516.9	522.9	532.7	535.6	533.6	531.0	99.0	22.0	10

```
MAY 26 FITTEO CONTROL MATPICES
```

MATPIX A (COLUMNS)


DYNAMIC DATA SEP 23 (TEMPERATURES +CONCENTRATIONS)



$\begin{aligned} & 523.0 \\ & 522.0 \\ & 523.0 \\ & 523.0 \end{aligned}$	$\begin{aligned} & 525 \cdot 4 \\ & 525 \cdot 4 \\ & 525: \frac{2}{3} \\ & 524: 3 \end{aligned}$	$\begin{aligned} & 533.6 \\ & 529.8 \\ & 528.8 \\ & 530.1 \end{aligned}$	$\begin{aligned} & 544.7 \\ & 540.6 \\ & 539.1 \\ & 537.9 \end{aligned}$	$\begin{aligned} & 553.4 \\ & 551.2 \\ & 546.6 \\ & 544.3 \end{aligned}$	$\begin{aligned} & 544.6 \\ & 544.2 \\ & 542.4 \\ & 544.0 \end{aligned}$	$\begin{aligned} & 538.0 \\ & 538.0 \\ & 536.0 \\ & 539.0 \end{aligned}$	$\begin{aligned} & 119.0 \\ & 112.0 \\ & 110.0 \\ & 110.0 \end{aligned}$	$\begin{aligned} & 19 \cdot 0 \\ & 17.0 \\ & 17: 0 \\ & 17.0 \end{aligned}$	$\begin{array}{r} 97 \\ 98 \\ 99 \\ 100 \end{array}$
	$E F P A$	IONS	, H2,	C2					



## SEP 23 FITTED CONTROL MATRICES

MATRIX A (COLUMNS)


## Typical Correlation matrices (R) for Parameter Estates

26 May beta (ibnearisation about average profile, Figure If)
$\left.R=\begin{array}{c|ll}k / k_{0} & 1.0 & \\ \lambda & 0.813 & 1.0\end{array}\right]$

26 Hay Dato ( 7 inearisation about steady state, Figure 18)
$\mathrm{R}=\mathrm{B}_{1} \mathrm{~B}_{2}\left[\begin{array}{ccc}1.0 & & \\ B_{3} & -.895 & 1.0 \\ -.877 & .980 & 1.0\end{array}\right]$

$$
\begin{aligned}
& \beta_{1}=2 \mathrm{k} / k_{0} \\
& \hat{\beta}_{2}=2 \mathrm{k} / k_{0}-i_{0} \\
& \beta_{3}=0
\end{aligned}
$$

23 Septerer Data (1 nearisation about average profile, Figure 20)
$\left.\begin{array}{c|ccc|}k / k_{0} & 1.0 & & \\ a=\lambda_{0} & .029 & 1.0 & \\ D_{0} & .355 & -.026 & 1.0\end{array}\right]$

