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State-space models’ dirty little 
secrets: even simple linear Gaussian 
models can have estimation 
problems
Marie Auger-Méthé1, Chris Field1, Christoffer M. Albertsen2, Andrew E. Derocher3, 

Mark A. Lewis3,4, Ian D. Jonsen5 & Joanna Mills Flemming1

State-space models (SSMs) are increasingly used in ecology to model time-series such as animal 

movement paths and population dynamics. This type of hierarchical model is often structured to 
account for two levels of variability: biological stochasticity and measurement error. SSMs are 
flexible. They can model linear and nonlinear processes using a variety of statistical distributions. 
Recent ecological SSMs are often complex, with a large number of parameters to estimate. Through a 
simulation study, we show that even simple linear Gaussian SSMs can suffer from parameter- and state-
estimation problems. We demonstrate that these problems occur primarily when measurement error 
is larger than biological stochasticity, the condition that often drives ecologists to use SSMs. Using an 
animal movement example, we show how these estimation problems can affect ecological inference. 
Biased parameter estimates of a SSM describing the movement of polar bears (Ursus maritimus) result 

in overestimating their energy expenditure. We suggest potential solutions, but show that it often 
remains difficult to estimate parameters. While SSMs are powerful tools, they can give misleading 
results and we urge ecologists to assess whether the parameters can be estimated accurately before 
drawing ecological conclusions from their results.

State-space models (SSMs) are increasingly used in ecology and are becoming the favoured statistical framework 
for modelling animal movement and population dynamics1–4. SSMs are desirable because they are structured 
so as to di�erentiate between two distinct sources of variability: the biological or process variation (e.g., demo-
graphic stochasticity) and the measurement error associated with the sampling method2,4. Because marine obser-
vations are o�en associated with large measurement errors that can mask biological signals, much of the early 
development of SSMs in ecology was by marine ecologists and �sheries scientists (e.g.5–7). �e SSM framework 
has since become a general approach to account for multiple levels of stochasticity when modelling time-series, 
making them increasingly popular in the terrestrial literature (e.g.8–10). Here, we demonstrate that even simple 
SSMs can be problematic. �e model we chose is o�en used to explain how SSMs can account for two levels of 
stochasticity (e.g.4), yet, we show that it su�ers from parameter- and state-estimation problems.

SSMs are a type of hierarchical model, in which one level treats the underlying unobserved states as an auto-
correlated process, while another level accounts for measurement error11. �e SSM framework is �exible, espe-
cially when �tted with Monte Carlo methods such as particle �lters or Markov Chain Monte Carlo (MCMC). 
SSMs can be used to model a variety of linear and nonlinear processes, and can represent stochasticity with 
diverse statistical distributions (e.g.3,12,13). �e �exibility of the SSM approach allows ecologists to build com-
plex models that describe the biological and measurement processes with levels of detail that were previously 
unattainable.
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While the SSM framework is �exible, much of its theoretical foundation is based on simple linear Gaussian 
SSMs (sometimes referred as normal dynamic linear models, see Newman et al.4). An example of a simple univar-
iate linear Gaussian SSM is the one we will use to demonstrate parameter-estimability problems:
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 are observed at regular time intervals = … nt (1, , ) for a time-series of length 
n and = … …x x x xx ( , , , , , )t n0 1  are the true unobserved states, with x0 representing the initial state. An ecolog-
ical example of such a time-series would be a series of yearly population size estimates. For instance, Newman  
et al.4 use this model to introduce SSM for population dynamics with xt representing the true but unknown abun-
dance of an animal population at time t, yt an unbiased observation of the population size at time t, and ρ the 
population growth rate.

�e origin of SSMs is intimately linked with the Kalman �lter, a recursive procedure to estimate the unob-
served states based on inaccurate observations (e.g., estimating the true �sh abundance based on catch data). �e 
Kalman �lter was developed to estimate states based on a model without unknown parameter values14. However, 
in ecological applications, most parameters need to be estimated (e.g.3). Fitting methods for SSMs, such as the 
Kalman �lter, are now used to facilitate both state and parameter estimation15. In many cases, SSMs are used to 
estimate variance parameters because they are designed to di�erentiate measurement error from process stochas-
ticity16,17. While estimating parameters is o�en a means to estimate the unobserved states (e.g.13,15), parameters 
themselves can be of interest because they describe the underlying dynamics of the system, or behaviour of the 
animal (e.g.3,18).

Estimability problems associated with SSMs and other hierarchical models have been discussed in the popu-
lation dynamics literature (e.g.16,19). In particular, previous studies have emphasized how di�cult it is to use SSMs 
to estimate density dependence parameters19,20 and to di�erentiate process stochasticity from measurement error 
(e.g.16). However, the existence of parameter estimation problems have been largely overlooked in the movement 
literature, and by those that use complex Bayesian SSMs. As SMMs are becoming the favoured framework for 
many ecological analyses1–4, and are gaining popularity in other �elds (e.g.21), it is timely to warn researchers of 
their weaknesses.

Here, we use simulations to show that simple SSMs can have severe parameter-estimability problems that in 
turn a�ect state estimates. �ese problems are more frequent when the measurement error is large, the very con-
dition under which SSMs are needed, and can persist even when we incorporate measurement error information. 
While our main estimation approach consists of maximizing the likelihood numerically through Template Model 
Builder (TMB)22, we show that these problems persist across a wide range of platforms and statistical frameworks, 
including when the parameters and states are estimated via Bayesian methods. We use the polar bear (Ursus mar-
itimus) movement data that led us to notice these problems to demonstrate the e�ect of estimation problems on 
the biological interpretation of results. Finally, we discuss techniques to diagnose and, when possible, alleviate 
estimability problems.

Methods
Demonstration of the problem. When we �t models to data, we want the parameters to be identi�able, 
which means that, given perfect data (e.g., an in�nitely long time-series), it is possible to learn the true values of 
parameters. Assessing parameter identi�ability is o�en di�cult and a more attainable goal is to assess estimability. 
Estimability means that, given the data at hand, the method used to approximate the parameter yields a unique 
estimate. When the maximum value of the likelihood function occurs at more than one parameter value, the 
parameter is nonestimable. �e quality of parameter estimates can be assessed in terms of: its variance, meas-
ured over multiple repeated estimations; bias, the expected di�erence between the estimate and true value of 
the parameter; or mean square error, a composite of bias and variance. To demonstrate that the estimates of the 
parameters and states of SSMs can be inaccurate, we simulated a set of time-series using the model presented in 
equations 1–2. In all simulations, the values for the initial state, x0, the measurement error, σε, and the correla-
tion, ρ, were set to 0, 0.1, and 0.7, respectively. In Appendix A (Supplementary information), we explored other ρ 
values, including a simpler model where ρ is �xed to 1. Note that while this simpler model has fewer parameters 
to estimate, it is no longer stationary23. To investigate whether the ratio of measurement to process stochasticity 
a�ected estimation, we simulated a range of ση values: (0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1). For each parameter set, we 
simulated 200 time-series each with 100 observations (n =  100). Analyses using longer time-series (n =  500) are 
presented in Appendix B (Supplementary information).

For each simulation, we estimated the parameters, θ =  (σε, ρ, ση), and states, x, using the R24 package TMB. 
�is R package is similar to AD Model Builder25 in that it uses automatic di�erentiation and the Laplace approxi-
mation. Finding the Maximum Likelihood Estimate (MLE) of the parameters of a SSM requires the maximization 
of the marginal distribution of the observations4. For the model presented in equations 1–2, this involves maxi-
mizing the following likelihood:
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To get the marginal distribution, we integrate over the states, = … ′x xx ( , , )n1 . In TMB, this integration is 
achieved using the Laplace approximation, which in turn also returns state estimates13. While we refer to state 
“estimation”, this process is sometimes called “prediction” because states can be interpreted as random variables4. 
In this example, we assumed that the initial state is known (i.e., x0 =  0), which should help the estimation process. 
In instances where the initial state value is unavailable, the initial state can be modelled as x0 ~ N(µ, σ0)

23. TMB 
calculates standard errors for the estimated parameters by using the inverse of the observed Fisher information, 
i.e. the Hessian of the log likelihood (similar to ADMB, see Fournier et al.25). To calculate the 95% con�dence 
intervals (CI), we multiplied the aforementioned standard errors by the 2.5 and 97.5th percentiles of the normal 
distribution (i.e., the quadratic approximation in Bolker26).

To demonstrate that the problem is widespread across di�erent statistical platforms, we also �tted the simu-
lated data using two popular R packages: dlm27 and rjags28. dlm uses the Kalman �lter for the state estimates and 
calculates the MLE with numerical optimization methods. rjags is an R interface to JAGS29, a program that can 
be used to �t Bayesian hierarchical models using MCMC methods (Supplementary information: Appendix C).

We evaluated the parameter-estimation performance of SSMs by comparing the estimated and simulated 
values. Similar to Pedersen et al.12, we evaluated the state-estimation performance with the root mean square 
error (RMSE):
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where x̂t is the estimated state at time t and xt is the simulated (i.e., true) state at time t. To assess whether the 
state-estimation performance was a�ected by the parameter-estimation problems, we compare 

θ̂
RMSE , for which 

the parameters, θ =  (σε, ρ, ση), were also estimated, to RMSEθ, for which the parameter values were �xed at the 
values used to simulate the data.

To investigate the potential causes of the parameter-estimation problem, we explored the likelihood pro�le for 
a subset of the problematic simulations. We used the same simulations and parameter values as above, with the 
exception that we only examined the most problematic values: ση =  (0.01, 0.02, 0.05) (see Results). Because they 
are associated with high measurement error to process stochasticity ratios, these values also represent the condi-
tions when SSMs are most needed. For each scenario (i.e., di�erent values of ση), we randomly chose one simula-
tion for which the 

θ̂
RMSE  was 50% larger than RMSEθ. Again, we used TMB to estimate parameter values, θ, and 

the states, x. To examine whether the estimation problems were associated with the simultaneous estimation of 
states and parameters, we estimated parameters when the state values were fixed to their simulated values 
(Supplementary information: Appendix D). As a �nal investigation of the causes of the estimation problems, we 
show how these problems are associated with known limitations of the autoregressive-moving-average (ARMA) 
models (Supplementary information: Appendix E).

Incorporating measurement error information. Many ecologists incorporate information on measure-
ment error in their model by either �xing parameter values or, in a Bayesian framework, using informative priors 
(e.g.6,15,30). We investigated whether �xing the measurement error resolved the parameter estimation problem. To 
do so, we �tted our simple likelihood (equation 4) to the same simulations, but we �xed the standard deviation of 
the measurement equation to the value used to simulate the data, σε =  0.1. We only estimated the remaining 
parameters, θ ρ σ=

η
( , )m . As above, we investigated the parameter estimates, RMSE of the states, and likelihood 

pro�les.

Ecological example. �e movement of many animals, such as birds, �sh and marine mammals, is a com-
bination of the voluntary movement of the animal (active movement) and dri� (passive displacement resulting 
from ocean or wind currents). Currents do not always direct animals towards their goals, and moving against 
currents may require a substantial amount of energy (e.g.31). To understand how currents a�ect the behavioural 
strategies of an animal, it is necessary to distinguish between the voluntary movement of the animal and dri�32. 
�e voluntary movement can then be used as a proxy of energy expenditure, or can be integrated into an energy 
budget model to assess the e�ects of movement on survival and reproduction32,33. While developments in satellite 
telemetry are providing increasingly precise measurements of animal movement paths, it is di�cult to di�eren-
tiate between dri� and voluntary movement because wind, ocean, and sea ice dri� data are o�en associated with 
large errors (e.g.34,35).

We noticed the estimation problems of linear Gaussian SSMs when developing a model that would di�erenti-
ate between the voluntary movement of polar bears and sea ice dri�. Polar bears o�en move in the reverse direc-
tion of the sea ice dri�36,37 and sea ice dri� can be associated with large errors34. As a proxy of energy expended 
by bears, we wanted to estimate the voluntary movement. As a �rst test, we developed a 2 dimensional SSM that 
accounts for error in ice dri� data:

µ~ Nx PInitial state ( , ) (6)0 0

ε ε= + + ~s Ny x HMeasurement eq , (0, ) (7)t t t t t
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,
 is the daily sea ice dri� experienced by the bear. Here, 

the measurement error, εt, is associated with the ice data, not the polar bear location data. �e location data were 
determined by GPS, for which the error is negligible (< 30 m)38. For simplicity, we assumed that the two geo-
graphic coordinates are independent, thus:
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Because equations 6–8 model displacements, the elements of H represent the measurement error in the sea ice 
dri� data and those of Q are associated with the speed of the bear. Similar to γ in Jonsen et al.30, ρu and ρv repre-

sent the degree of autocorrelation in the random walk. To initialize the model we used µ =









0
0

 and σ = 150
2 . We 

chose 15 km as it is the standard deviation of the observed daily displacements of the polar bears in the u- and 
v-direction.

We used the daily movement of 15 polar bears collared in the Beaufort Sea in the spring of 2007–2011. �e 
bears were immobilized with standard methods39 and equipped with Telonics Inc. (Mesa, AZ) collars. All capture 
and handling procedures were carried out in accordance with the protocols approved by the University of Alberta 
Animal Care and Use Committee for Biosciences. We used the Polar Path�nder Daily 25 km Ease-Grid Sea Ice 
Motion Vectors40, which are daily estimates of sea ice displacements in the u- and v-directions of the Northern 
Hemisphere azimuthal equal-area EASE-Grid projection developed for polar sea ice data41. We used the same 
movement data and data handling procedures as in Auger-Méthé et al.37, including interpolating the ice dri� data 
at each bear location, assigning a dri� value of zero for landfast ice, and excluding the three days a�er collaring to 
remove movements a�ected by handling. �e only di�erences in the data used here, are that we excluded all bears 
that spent time on land and considered days with missing sea ice data as missing observations (i.e., we considered 
both yt and st as missing that day).

Our goal was to use the SSM to estimate the energy expenditure of each bear. Our proxy was the total volun-
tary bear displacement:
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,
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where x̂t u,  and x̂t v,  are the estimates of the daily voluntary bear displacements in the u- and v-directions. �e 
number of days, n, included in the time-series will a�ect our estimate of d. For consistency, we set n to be 342, the 
length of the shortest time-series across the 15 bears. To assess the e�ects of estimation problems on our ecologi-
cal interpretation, we simulated movement paths similar to those described by the polar bear data (Supplementary 
information: Appendix F).

�e code is available at https://gitlab.oceantrack.org/otn-statistical-modelling-group/SSMestProblems and as 
Supplementary data.

Results
Simulations results. According to the simulation results, parameter estimation was o�en inaccurate, and 
these problems a�ected the state estimates (Fig. 1). �e parameter estimates were o�en far from their true values, 
and their distributions o�en bimodal (Fig. 1, Supplementary Fig. A1). In many cases, the estimates for σε and ρ 
had peaks close to 0. �e 

θ̂
RMSE  of the state estimates had either a bimodal distribution, or a long tail compared 

to that of the RMSEθ (Supplementary Fig. A1). In other words, when the parameters were estimated, many repli-
cates had much higher state estimate error than when the true parameter values were used (Fig. 1). In fact, 29.6% 
of the simulations had a 

θ̂
RMSE  value that was 50% larger than their RMSEθ. When the simulations had high 

measurement error to process stochasticity ratios, the estimation problems for the states and two biologically 
relevant parameters, (ρ, ση) were much higher (Fig. 1). �e 

θ̂
RMSE  in some of these cases was close to 10 times 

greater than the simulated process stochasticity.
Our supplementary analyses demonstrated that similar estimation problems occurred when dlm and rjags 

were used (Supplementary information: Appendix C). However, while the parameters estimated with rjags were 
o�en biased, their distributions did not contain a peak at 0. Increasing the length of the time-series improved 
parameter and state estimation (Supplementary information: Appendix B). However, 500 time steps were insu�-
cient to completely eliminate problems. Our supplementary analyses also show that the problems are less appar-
ent when ρ is close to 1, or when we used the simpler non-stationary local-level model, which �xes the value of 
ρ =  1 (Supplementary information: Appendix A).

�e likelihood pro�les of a subset of the problematic simulations revealed that the likelihood was �at in some 
areas and sometimes bimodal or jagged (Fig. 2). �e CI of many parameters excluded the true simulated value. 
Because the estimated measurement error of these simulations were close to 0, the estimated states were very 
close to the observations and far from their true simulated values (Fig. 2D,H,L). When the states were �xed to 
their simulated rather than estimated values, the likelihood pro�les were unimodal and most CI included the 

https://gitlab.oceantrack.org/otn-statistical-modelling-group/SSMestProblems
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true parameter values, indicating that the problem lies in simultaneously estimating the states and the parameters 
(Supplementary information: Appendix D).

Fixing the measurement error. Fixing the standard deviation of the measurement error to the simulated 
value, σ = .

ε
0 1, helped reduce the estimation problems (Supplementary information: Appendix G). 

θ̂
RMSE  val-

ues were much closer to RMSEθ when the measurement error was �xed rather than estimated. In this case, only 
5.0% of the simulations had a 

θ̂
RMSE  value that was 50% larger than their RMSEθ. However, �xing the measure-

ment error did not completely resolve the estimation problems. Some parameter estimates continued to be on the 
boundary of parameter space and far from their simulated values. In addition, some likelihood pro�les remained 
�at and some CIs spanned the entire parameter space (see Supplementary information: Appendix G for more 
detail).

Ecological example. �e 15 polar bears studied used overlapping areas in the Beaufort Sea (Fig. 3A), but 
their parameters estimates varied widely (Fig. 3C–H). In particular, three individuals had much lower estimated 
sea ice measurement error, with either σ < .

ε
ˆ 0 01u,  and σ < .

ε
ˆ 0 01v, . �ese three individuals had total voluntary 

displacement estimates that were on the higher end of the range (Fig. 3B). �ese results are similar to those found 
when we simulated movement data similar to the real polar bear data (Supplementary information: Appendix F). 
�e simulations also showed that a few individuals would have σ < .

ε
ˆ 0 01u,  and σ < .

ε
ˆ 0 01v,  and that these indi-

viduals would be associated with higher values of total voluntary displacement.

Discussion
Linear Gaussian SSMs, and approximations of them, are commonly used in the ecological literature to model 
animal movement2,6,15 and population abundance (e.g.10,42). �ese SSMs are o�en used to di�erentiate meas-
urement error from process stochasticity and estimate the associated variance parameters (e.g.10,13,42,43). Our 
results demonstrated that simple linear Gaussian SSMs can have severe parameter- and state-estimation prob-
lems, and that these problems can a�ect biological inferences. According to our simulations, estimation problems 
were more frequent when the measurement error was much larger than the process stochasticity. In such cases, 
the three estimated parameters were o�en far from their simulated values, which in turn resulted in inaccurate 
state estimates. �e ARMA notation shows that when the measurement error is much greater than the process 
stochasticity there is parameter redundancy, explaining why it is di�cult to accurately estimate the parameters 
(Supplementary information: Appendix E). Our simulations showed that �xing the measurement error to its 
true value helped, but did not completely solve the estimation problems, especially when the �xed measurement 
error was relatively large. �is is particularly worrisome because SSMs are most needed when the measurement 
error is large compared to the process stochasticity, and this is the condition under which the largest estimation 
problems occur.

Figure 1. Changes in parameter estimates and state RMSEs associated with varying the measurement error 
to process stochasticity ratios (σε/ση) in the simulations. (A–C) �e boxplots represent the distribution of the 
parameter estimates (σ

ε
ˆ , ρ̂, σ

η
ˆ ) and the pink circles represent the true (simulated) values. (D) �e grey boxplots 

represent the distribution of the RMSE of the model �tted using the estimated parameter values, while the pink 
boxplots represent the RMSE when the model is �tted using the true parameter values.
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�e estimation problems are less critical when the measurement error is much smaller than the process sto-
chasticity. While the measurement error estimates were o�en close to 0, the estimates for the other parame-
ters, and those for the states, were generally accurate. As shown by the ARMA notation, when the measurement 
error is much smaller than the process stochasticity the model behaves as an AR(1) process, explaining why the 
measurement error estimates were o�en close to zero (Supplementary information: Appendix E). In e�ect, the 
measurement error is ignored. However, when the measurement error is negligible compared to the process sto-
chasticity, ignoring the e�ect of the measurement error is less likely to a�ect our interpretation of the biological 
process.

Others have discussed estimation problems associated with �tting simple linear Gaussian SSMs. A few recent 
ecological studies have reported di�culties when estimating variance parameters, including variance estimates 
close to 017,44. Dennis et al.16, who transformed the stochastic Gompertz population model into a linear Gaussian 
SSM, noted that while the process stochasticity and measurement error parameters can be estimated, multimodal 
likelihood functions occur and can lead to erroneous estimates. �ey showed that the likelihood functions tended 
to have multiple peaks, including two peaks associated with either no process stochasticity or no measurement 
error. While these two peaks can be local maxima, Dennis et al.16 noted that when there is substantial measure-
ment error, one of these modes was o�en the global maximum. Knape19 extended the study of the Gompertz SSM 
to focus on the estimability of the density dependence parameter, an autocorrelation parameter similar to ρ. He 
found that the density dependence was generally not identi�able in the presence of unknown process variability 
and measurement error, especially when the strength of the density dependence was close to 0. When the meas-
urement error was known, the strength of density dependence was estimable but the estimates o�en remained 
biased.

By extending the range of measurement error to process stochasticity ratios beyond those explored by Dennis 
et al.16 and Knape19, we demonstrate that relatively high measurement error can have dramatic e�ects on process 
parameter and state estimates, even when the measurement error is known. �e results of Knape19 suggested that 
ρ values close to 0 would result in estimability problems (see also Forester et al.45), which is not surprising. As 
the process becomes less autocorrelated it is harder to di�erentiate it from the temporally independent measure-
ment error, suggesting that di�erentiating between measurement error and process stochasticity would require 
a large sample size when ρ is far from 1. However, our results demonstrated that estimation problems remained 
with relatively high autocorrelation, ρ =  (0.7, 0.99) and ρ �xed to 1, and relatively long time-series, n =  (100, 500) 

Figure 2. Log likelihood pro�les for problematic simulations. In the �rst three columns, the curve represents 
the log likelihood when the focal parameter is �xed (the other parameters are optimise to maximise the log 
likelihood). �e dash lines are the true parameter values (i.e., value used for the simulation), the full lines are the 
maximum likelihood estimates and the grey bands represent the 95% CI. �e last column shows the time-series. 
�e black lines represent the observations, yt, the red lines the simulated true states, xt, and the grey dashed lines 
the estimated states, x̂t.
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(see Supplementary information: Appendices A-B). �ese results emphasize that the parameters and states are 
only estimable for a narrow range of conditions. Both the analysis of the ARMA formulation of our SSM and 
our ecological example show that parameter estimability within linear Gaussian SSMs is a general issue, not one 
restricted to the stochastic Gompertz population model. In fact, these problems extend to some nonlinear SSMs. 
For example, some of the estimated parameters of the nonlinear population SSMs of de Valpine and Hastings46 
had considerable bias when measurement error was large relative to process variability, de Valpine and Hilborn47 
showed that their advance Monte Carlo kernel likelihood method could not di�erentiate between the process 
stochasticity and measurement error of the nonlinear Schaefer population model, and Polansky et al.20 found 
similar problems in the theta-Ricker model.

Le� undiagnosed, biased parameter estimates will mislead conclusions based on the problematic model 
parameters and may a�ect our interpretation of the other model parameters, the state estimates, and other derived 
values11,48. For example, stochastic population SSMs with negatively biased estimates of the process stochasticity 
will underestimate extinction risk49. In our polar bear example, erroneous estimates of measurement error and 
process stochasticity biased the state estimates and proxy for energy expenditure. �us, even if the parameter 
values per se are not of interest, estimation problems need to be diagnosed because their e�ect on state estimates 
are likely to a�ect results of ecological importance.

�e �rst step to avoid these biased inferences is to detect the potential for parameter estimability problems, 
which can be done through a variety of practical means. Our simulations demonstrated that estimates at the 
boundary of parameter space can be indicative of a problem. For our polar bear example, we detected the esti-
mation problem because we had no reason to believe that the three bears with sea ice measurement error close 
to 0 used di�erent sea ice than the other bears. �ese three bears were exposed to similar levels of sea ice dri� as 
other bears and were not geographically or temporally isolated from them. Investigating the likelihood pro�le can 
also help detect estimation problems16,50,51. Indeed, the likelihood pro�les of our problematic simulations had �at 
sections and multiple modes. However, in a Bayesian framework, the estimation problems can be obscured by the 
use of vague priors, as these can smooth the likelihood and a�ect inference16,48,49,52. When we used JAGS to esti-
mates parameters, we had no estimates at the boundary and the posterior distributions of most parameters were 
unimodal, and yet, the estimates were biased (Supplementary information: Appendix C). A useful way to evaluate 
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the model’s capacity to separate process and measurement error parameters, is to assess the extent of correlation 
between these estimates (see Supplementary information: Appendix H for details). In the maximum likelihood 
context, a plot of the likelihood surface can reveal a correlation pattern symptomatic of an identi�ability issue20,47. 
In a Bayesian context, a plot of the joint posterior samples of these two parameters can reveal similar correlation 
patterns (Supplementary information: Appendix H). While few methods have been developed to formally assess 
parameter identi�ability problems, data cloning53,54 and the symbolic method4,55 are promising avenues.

How can we avoid these estimability problems? In many cases, a larger sample size can help (see 
Supplementary information: Appendix B). In particular, Dennis et al.50 demonstrated that sampling replicates can 
substantially improve the capacity of SSMs to di�erentiate process stochasticity from measurement error, and that 
it may be advantageous to design monitoring programs with multiple replicate counts per survey rather than 
increasing the length of the time series (i.e., number of times the survey is conducted). However, for many obser-
vational studies, ecologists are limited in their ability to gather more data and, for movement data, it is o�en 
impossible to have replicates of location estimates. An alternative is to incorporate information on the measure-
ment error. As we demonstrated in our simulation study, when we �x the measurement error to its true value, the 
estimates of the other parameters improved. While some parameter-estimation problems persisted, their e�ect on 
the state estimates diminished substantially. Similarly, de Valpine and Hilborn47 demonstrated that knowing the 
ratio of process to measurement variance would improve parameter estimates. In a Bayesian framework, specify-
ing informative priors for the measurement error could help make the other parameters identi�able and improve 
the state estimates11,49 (but see Lele and Dennis52). Another alternative is to estimate the measurement error and 
process stochasticity outside of the SSM framework using the principle that the measurement error is uncorre-
lated over time whereas the process stochasticity is temporally correlated56. Estimating the measurement and 
process standard deviations o�ine reduces the number of parameters to estimate within the SSM framework. 
Using restricted maximum-likelihood, which treats �xed-e�ects parameters (e.g., ρ) and variance components 
(e.g., σ

η

2, σ
ε

2) di�erently, can also be valuable to remove bias in SSM estimates50. When the estimation problem 
results in variance estimate close to 0, one can limit the estimate to interior (non-zero) solutions16,19. In particular, 
Dennis et al.16 suggested trying a variety of starting values for the optimizer used to numerically maximize the 
likelihood and eliminating all solutions that involve variance with near 0 values, even if one of these is the global 
maximum. Finally, restructuring the model can help reduce the problem. For example, in the polar bear example, 
we could create a population model with a single measurement error parameter for all bears. Even if the process 
variability continues to di�er between individuals, using one measurement error term for all bears signi�cantly 
decreases the number of parameters to estimate and increases the amount of data with which the measurement 
error term is estimated. As a general rule decreasing the number of parameters to estimate and increasing the 
amount of data will help reduce estimability problems.

Not all parameters are equally a�ected by estimation problems. Forester et al.45, who developed a linear 
Gaussian SSM for animal movement, demonstrated that coe�cient parameters associated with covariates and 
an intercept in the measurement equation are easier to separate than process autocorrelation (equivalent to ρ), 
measurement error and process stochasticity. Note, however, that all of these parameters had cases associated 
with estimation problems. For example, the coe�cient estimates were biased when their true simulated value was 
not equal to zero. Humbert et al.57 suggested that in the case of exponential growth SSMs the population trend 
parameter, similar to an intercept in the process equation, was o�en well estimated and that increasing the preci-
sion of the abundance estimates and the length of the time series, more than the completeness of the time series, 
could increase the performance of the SSM. �is further indicates that ecologists should closely consider model 
formulation, and that the estimability of parameter should be assessed.

If we cannot resolve the parameter estimation problem, we need to account for its potential e�ect on our 
inference. One way to account for the estimation uncertainty is to use a parametric bootstrap to get CIs on the 
parameter and state estimates16,45. �ese bootstrap CIs require simulating the model using the estimated param-
eter values and re-�tting the model to each simulation. �e 2.5th and 97.5th quantiles of the estimated parameters 
and states then becomes the 95% CI. �ese CIs di�er from those we calculated from the standard deviation 
reported by TMB. However, because TMB is orders of magnitude faster than MCMC methods13, implementing 
these parametric bootstrap CIs would be computationally feasible, even for complex models. Note, however, that 
the variability in the estimates of our simulations suggests that these CIs would be large and would o�en approach 
the boundary of parameter space.

Conclusion
We demonstrated that even simple linear Gaussian SSMs can have parameter estimability problems and that 
these problems can a�ect our ecological interpretation. As parameter estimability problems have been observed 
in other hierarchical models and because the ratio of information content to model complexity is expected to 
decrease with increasing numbers of hierarchies48,52, it is likely that these problems could occur in more com-
plex forms of SSMs. Estimating individual variance components is notoriously di�cult. SSMs do not escape this 
di�culty. While estimability problems have been discussed in the context of a few speci�c population dynamics 
SSMs (e.g.16,19,20), the voluminous literature on SSMs has paid relatively little attention to these problems. Such 
limited appreciation of the estimation problem is particularly dangerous because SSMs are usually advertised as 
providing the means to di�erentiate process from measurement variability (e.g.2,46,58).

It is timely to warn ecologists of these di�culties. SSMs are becoming the favoured framework for animal 
movement and population dynamics. SSMs used in ecology are becoming increasingly complex (e.g.3). In addi-
tion, tools to apply SSMs to data are becoming increasingly available. For example, R now provides a variety of 
packages that �t SSMs59. Until recently, SSMs were applied by statisticians or by ecologists with a strong statistical 
background. �ese researchers were more likely to be aware of potential estimability problems than most ecol-
ogists. Researchers have questioned whether ecologists have su�cient statistical training to properly implement 
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hierarchical models and have suggested that universities should start including advanced courses in statistical 
modelling in their ecological programs (e.g.16,60). If the limitation of SSMs are not emphasized, the better accessi-
bility of tools to �t these increasingly complex models are likely to lead to many undiagnosed estimation problems 
and incorrect conclusions.

While SSMs are powerful tools, they can give misleading results if they are misused. We believe it is impor-
tant for ecologists to be aware of the potential estimation problems of SSMs. Investigating the likelihood pro�le, 
incorporating information on measurement error, and accounting for estimability uncertainty are all good �rst 
steps. However, we urge statisticians to develop further tools that can be used to diagnosed such problems and 
these should be readily available along with the tools to �t SSMs.
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