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ABSTRACT

Power consumption in buildings show nonlinear behaviours that linear models cannot capture,
whereas recurrent neural networks (RNNs) can. This ability makes RNNs attractive alternatives for
the model-predictive control (MPC) of buildings. However, RNNs are nonlinear and non-smooth
functions whichmakes their use challenging in optimization problems. Therefore, this work system-
atically investigates whether using RNNs for building control provides net gains in MPC. It compares
over 2 months of simulated operation the representation power and control performance of two
architectures: an RNN architecture and a linear state-space (LSS) model with a nonlinear regressor
to estimate energy consumption. The results show that RNNs yield an identification error 69% lower
than LSS, but the LSS models yield control laws that achieve 10% lower objective function with a
computational time three times lower than the RNNs. Thus, on balance, well-designed LSS models
with nonlinear regressors are best in most cases of MPC.

ARTICLE HISTORY

Received 12 June 2020
Accepted 22 August 2020

KEYWORDS

Building modelling; model
predictive control; linear
state-space models; neural
networks; optimization

1. Introduction

Following the success of deep learning for imaging, text,

and audio processing, architectures with (recurrent) neu-

ral networks are increasingly popular to model dynamic

systems (Chung et al. 2014; Ogunmolu et al. 2016; Gonza-

lez andYu2018). Indeed, theyprovide a gain in prediction

accuracy over linear systems model that is evidenced by

both theoretical and experimental studies. For example,

Funahashi and Nakamura (1993) demonstrated universal

approximation properties of recurrent neural networks

(RNNs). Several groups have sought to take advantage

of this gain by using RNNs as predictive models within

model predictive control (MPC), an optimal control pro-

cedure for dynamic systems (CamachoandBordons 2007;

Peng, Nakano, and Shioya 2007; Mayne 2014; Drgoňa

et al. 2018; Lanzetti et al. 2019; Bieker et al. 2020).

However, thesemodels lead to optimization problems

that are not guaranteed to be linear or convex. Convex-

ity of the function encoded by an RNN can be enforced,

for example, by imposing non-negative constraints on

the weights and using rectified linear unit activations

(ReLU). Such approaches show promising results for con-

trol applications (Amos, Xu, and Kolter 2017; Chen, Shi,

andZhang2019, 2020). However, these approaches come

at the expense of the universal approximation capabili-

ties of RNNs for non-convex system dynamics. Because of

CONTACT Baptiste Schubnel baptiste.schubnel@csem.ch

this trade-off, it is, therefore, an open question whether

net gains in control performance can be obtained by

using RNNs as predictors rather than linear state-space

models.

Energy management in buildings is a representa-

tive illustration of this question. Indeed, buildings are

dynamic systems for which the common practice is to

use rule-based controllers and state of the art is MPC

based on linear state-space models (Sourbron, Verhelst,

and Helsen 2013; Sturzenegger et al. 2016). These mod-

els are adequate and reliable for room temperature

(Gorecki 2017; Péan, Salom, and Costa-Castelló 2019) but

cannot capture some nonlinear phenomena due to shad-

ing and solar gain, low-level control loops, or physical

characteristics of technical systems such as heat pumps

(Valenzuela et al. 2020). The authors of Chen, Shi, and

Zhang (2017) used ‘long short-term memory’ (LSTM), an

RNN architecture, to model a complex simulated build-

ing and to minimize energy consumption through opti-

mal control. They claimed some improvements over lin-

ear state-space models based on a limited amount of

validation data. Therefore, this paper sets about evaluat-

ing whether there are net, systematic gains in the per-

formance of building control by using neural networks

within MPC as compared to state-of-the-art linear state-

space models.
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In order to isolate the impact of control from random

variations in, for example, weather and occupancy, and to

run long experiments in identical conditions, we chose to

apply the different control methods on a detailed phys-

ical model of a single building. We trained and used

for control five instances for each of two types of mod-

els: (1) linear state-space models of the building enve-

lope combined with a nonlinear regressor to estimate

energy consumption, and (2) fully nonlinear, recurrent

neural network models. In addition, we implemented

rule-based controllers as benchmarks. We evaluated the

performance of the controllers over 2 months of opera-

tions. To ensure a fair comparison, we used exactly the

sameoptimization constraints and the sameoptimization

algorithm (sequential quadratic programming) for both

model architectures.

Based on this experimental approach, the paper eval-

uates the relative strengths and weaknesses of linear

state-space models and RNNs in terms of:

• representation capabilities by training the different

instances under several strategies and datasets;

• control performance in a constrained optimization

problem consisting in minimizing the power

exchanged between the grid and a building with pho-

tovoltaic (PV) production under the constraint of ther-

mal comfort in the building;

• computing time.

None of the two approaches outperforms the other

on all criteria. Our investigation confirmed the superior

representation capability of RNNs. However, on balance,

linear state-space models appear better suited to model-

predictive control, except if the application emphasizes

minimizing constraint violations.

The rest of the paper is organized as follows. Section 2

describes the simulated building. Section 3 presents the

two types of models used in this study. Section 4 explains

the optimization strategy used to solve the non-convex

problems within the MPC as well as the heuristics used

to improve the performance of the objective minimiza-

tion. Sections 5 and 6, respectively, present the results of

system identification and control performance results in

Section 6. Section 7 concludes thepaperwith a discussion

and directions for future work. The appendix provides

details on the hyperparameters of the models and the

training parameters.

2. Building test case

Abuilding simulatedwith EnergyPlus (Crawley et al. 2000)

was used to carry out the systematic performance anal-

ysis. The simulation time resolution was equal to 3min,

Figure 1. Building envelope overview with the four floors. There
are two thermal zones per apartment.

Figure 2. Schematic view of the heating and distribution system.

but control variables were updated by the MPC every

15min. The simulated building is a residential building

with four apartments and eight thermal zones, located

in Barcelona, Spain (Figure 1). It has two major technical

systems: a centralized geothermal heat pump and a pho-

tovoltaic installation that has a peak power of 10.8 kW.

The centralizedwater-to-water geothermal heatpump

system, which extracts heat from the ground through a

vertical ground heat exchanger, provides hot water for

the indoor fan coil units (two units per apartment) and

the domestic hot water (DHW) system. The domestic hot

water system is composed of four storage tanks, one for

each household. The heating loop circuit from the heat

pump is connected to the bottom half part of the tanks

and electrical heaters are placed on the top part acting

as auxiliary heating systems to meet domestic hot water

demand. The heat pump is connected to four tanks for

hot water consumption and to a heating loop for rooms

thermal regulation; see Figure 2.

Room temperature control is carried out with ther-

mostats and by a low-level control loop with an Ener-

gyPlus Program Manager that implements a hysteresis

control based on thermostats setpoints (SP) and bottom

tank temperature setpoints. It triggers the on/off cycles
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Table 1. Setpoints ranges.

Controlled setpoints Range (◦C)

Heat pump supply temp. [40, 55]
Tanks bottom temp. (4 SP) [35, 50]
Zone temp. (4 SP) [19, 25]

of the heat pump based on setpoints hysteresis viola-

tions. The low-level control loop coupled with the heat

pump is responsible for nonlinear behaviour of the power

consumption as a function of the room thermostat tem-

peratures and the pump supply temperature. The heat

pump properties have been carefully calibrated tomatch

the behaviour of a real geothermal heat pump in the IREC

laboratory. See Taddeo et al. (2020) for further details of

the EnergyPlus model where its thermal envelope was

used with a real heat pump in the IREC laboratory.

Daily schedule patterns for occupancy, hot water, light

and appliances consumption are used to model activity

in the building. The domestic hot water (DHW) profiles

used in our study are based on the European standard EN

16147 (European Standard 2011). This standard provides

energy consumption for different daily DHW usage and

tapping profiles. In the present study, the ‘medium’ tap-

ping cycle and an equivalent DHW temperature of 60◦C

have been selected and adapted to the occupancy and

simulation time step. Control variables are the room ther-

mostats (4 setpoints, one per apartment), the tanks bot-

tom temperatures (4 setpoints) and the heat pump sup-

ply temperature. Restrictions are imposed on the range of

allowed values as displayed on Table 1. ◦ Moreover, the

bottom temperatures of the tanks have to stay 5◦C lower

than the heat pump supply temperature.

The photovoltaic (PV) installation is simulated as an

array of PV modules with inverter. The PV array has an

active surface area of 58m2 and is oriented South with

an inclination of 40◦. The full geometric model for solar

radiation is used, including shading and reflections, to

determine the incident solar resource. The EnergyPlus PV

model was parametrized to match the real PV system

installedon the IREC laboratory roof in Tarragona (Taddeo

et al. 2020).

3. Linear and nonlinear state-spacemodels

Two different model architectures were used to estimate

rooms temperatures and electrical energy consumption:

• The first model is a linear state-space model that is

used to estimate room temperatures (see, e.g. Van

Overschee andDeMoor 2012). A nonlinear regressor is

used to estimate electrical energy consumption by the

thermal system using state-space model predictions.

Model instances built with this architecture are called

LSS-NL in the rest of the paper.

• The second model is a fully nonlinear state-space

model based on an encoder-decoder architecturewith

LSTMs (Hochreiter and Schmidhuber 1997). It simul-

taneously estimates temperature in the rooms and

electrical energy consumptionby the thermal systems.

Model instances built with this architecture are called

ENC-DEC in the rest of the paper.

3.1. Linear state-spacemodels with nonlinear

regression

A linear state-space model follows the set of equations:

xk+1 = Axk + Buk + εk ,

yk = Cxk + Duk + ε′
k ,

(1)

where k is the discrete timestep, xk ∈ R
h is the state

variable at time k, uk ∈ R
ex are the inputs at time k (or

exogenous variables), yk ∈ R
end are themodelled system

outputs (endogenous variables) at time k and εk , ε
′
k
are

white random vectors with zero mean. Initially, internal

state variables xk are estimated from a sequence of obser-

vations y1, . . . , yn using the forward innovation Kalman

equation (Van Overschee and De Moor 2012). For the

building test case, uk in Equation (1) is a concatena-

tion of the control commands and the external distur-

bances at time step k. The control commands are the

temperature setpoints for the zone’s thermostats, tanks

and heat pump forward temperature. The external dis-

turbances are the solar irradiance, outdoor temperature

and humidity. The output variables yk in Equation (1) are

the rooms temperatures. Even if the state variable xk in

Equation (1) has a priori no physical meaning, correspon-

dence between RCmodels and linear state-spacemodels

for buildings leads to the interpretationof xk as represent-

ing effective dynamics of internal components, e.g. walls

and sublayers temperatures.

Electrical energy consumption in buildings may

exhibit nonlinear behaviour, in particular if systems like

heat pumps and HVACs are used for heating and/or cool-

ing the building. The nonlinear behaviour may also arise

from low-level controllers that cannot be directly con-

trolled by the MPC controller. A kernel regression with

radial basis functions was chosen to model the elec-

tric energy consumption. More specifically, at any time

k, nonlinear variables zk ∈ R
nl (here the electric energy

consumption) are modelled by

zk =

N∑

i=1

αiϕ(wi,wk), (2)



710 B. SCHUBNEL ET AL.

where ϕ(x, y) = exp(−γ ‖y − x‖2) is the kernel function,

wk := (uk , yk) is the concatenation of the inputs and out-

put variables, andN is the number of points in the training

set. The right-hand side in Equation (2) is a closed-form

expressionwhich describes a smooth function. These two

properties are advantages of kernel regression over other

nonlinear regression methods (see, e.g. Papadopoulos

et al. 2018; Chakraborty and Elzarka 2019) if the optimiza-

tion techniques used for the model predictive controller

require gradient or hessian estimates of f, as discussed

below in Section 4.

3.2. Nonlinear state-spacemodel

The nonlinear state-spacemodel is based on an encoder–

decoder architecture where both the encoder and the

decoder are long short-term memory (LSTM) cells

(Hochreiter and Schmidhuber 1997). The encoder is an

LSTM-network that is used instead of a Kalman filter to

initialize the state of the physical system. The decoder is

another LSTM network followed by a multilayer percep-

tron (MLP) that is used to predict the model outputs step

by step. Let n ∈ N be the number of encoder steps used

to initialize the model. A schematic view of the neural

architecture is given on Figure 3.

The encoder cell state and output at time t are vec-

tors of size p respectively denoted by cenc(t) ∈ R
p and

henc(t) ∈ R
p. The concatenation (cenc, henc) plays a sim-

ilar role as the state variable x in linear state-space

models; see Equation (1). Like the linear Kalman filter,

Figure 3. Structure of a nonlinear state-spacemodel based on an
encoder–decoder architecture.

the LSTM encoder is used to generate the represen-

tation of the initial system state at time t0, given the

past n values. Setting w̃ := (u, y, z) as a concatenation

of exogenous variables, room temperature variables and

energy variables, the encoder can be viewed as an iter-

ative application of the map fenc : R
ex+end+nl+2p → R

2p

such that the tuple (cenc(t), henc(t)) is a representation

of the initial state of the system for t = t0 − 1 pro-

vided thatEquation 3 has been repeated n times from

t0 − n to t0 − 1.

(cenc(t), henc(t)) = fenc(w̃(t), cenc(t − 1), henc(t − 1)).

(3)

For t′ ≥ t0, the decoder LSTM is a map fdec : R
ex+2p →

R
2p that only depends on the commands and external

parameters (but not onprevious systemobservables ynor

on energy variables z):

(cdec(t
′), hdec(t

′)) = fdec(u(t
′), cdec(t

′ − 1), hdec(t
′ − 1)),

(4)

where cdec(t0 − 1) = cenc(t0 − 1) and hdec(t0 − 1) =

henc(t0 − 1).

The output hdec(t
′) is fed to a multilayer perceptron

network, giving rise to the estimated output y(t′), z(t′) at

time t′:

y(t′), z(t′) = fMLP(hdec(t
′)). (5)

Both architectures were trained by minimizing the mean

square error between observations and predictions. For

both architectures, the electric power production from

photovoltaic panels was estimated independently using

a simple physical model from the PVLIB library (Stein

et al. 2016) since the geometry of the PV system at the

IREC sitewas simple. Thephysicalmodel has as input solar

irradiance forecasts.

3.3. Trainingmethod

The architectures have different sampling efficiency for

system identification and different datasets were there-

fore used to identify the building models.

Linear state-space models identification techniques

are well covered in the literature; see, e.g. Ljung (1999)

and Van Overschee and De Moor (2012). Linear state-

space system identification is very sample efficient, theo-

retically founded, and a fewdays of observations are suffi-

cient for rooms temperature identification if signal excita-

tions can be sent to the building. In this paper, the N4SID

method is used to carry out rooms’ dynamics identifica-

tion; see Van Overschee and De Moor (2012). Nonlinear



JOURNAL OF BUILDING PERFORMANCE SIMULATION 711

variables identification with kernel ridge regression is

sample-efficient as well.

On the other hand, the encoder–decoder architecture

is sample inefficient and tends to be overparametrized

(see, e.g. Nakkiran et al. 2020 for an interesting empirical

study of over-parametrization in Neural Networks archi-

tecture and its effect on model accuracy). It needs to

ingest data under various conditions and setpoints to

avoidmodel overfit, and a period of at least a year of data

is needed to perform good identification (to cover the

four seasons). It is trained by stochastic gradient descent,

with no optimal fitting guarantee because of the non-

convexity of the architecture.

For the linear state-space model with nonlinear out-

puts, between 7 and 40 days of data with random

multisine signals excitation (see, e.g. Schoukens and

Ljung 2019) in winter times were used to capture room

dynamics and electrical power from thermal sources. The

distinct numbers of days considered as well as the ran-

dom character of the excitations were used to build five

models with distinct dynamic matrices A, B, C and D. The

models were kept constant over the 2 months evalua-

tion phase, as degradation in models predictions were

observed in the case where refit of the matrices A, B,

C, D was carried out online with collected data from

the MPC. The encoder–decoder model instances were

trained on 7 years of data with piecewise constant set-

points updated at a random frequency and with random

amplitudes lying in an acceptable physical range. Predic-

tion rangewerearbitrarily sampledbetween1 hand1day

ahead during training, to ensure that the model was able

to capture short- and long-range dynamics. As for the lin-

ear state-space models, five different models were built

using stochasticity of the training by mini-batch gradi-

ent descent, as well as by varying the number of training

steps. Models hyperparameters are detailed for all mod-

els in Appendix 1. The size of the training sets are based

on the intrinsic requirements of each architecture. A large

training data set is necessary for the encoder-decoder

architecture, because of the high number of parameters

of themodel and because it is trainedwith stochastic gra-

dient descent. On the other hand, the linear state-space

model is defined by a small number of parameters (A in

Equation (1) is an 8 × 8 matrix); the identification results

in Tables A5 and A6 show that even within the reported

range of training periods, which are significantly shorter

than for the RNN architecture, accuracy decreases with

increasing the size of the training set. Additional experi-

ments conducted by the authors (not reported here) with

6 months of training data for linear state-space models

withnonlinear output actually showedaworseningof the

identification accuracy.

4. Formulation of themodel predictive
controller

The objective of the model predictive controller is to

minimize the power exchanged between the grid and

the building without violating room temperature com-

fort constraints. The problem horizon is denoted by H

and the time resolution by �. Splitting the exogenous

variables u ≡ (uc, unc) into controllable (setpoint inputs)

and non-controllable variables (exterior parameters) and

introducing themodel function m : Rex×H → R
(end+nl)×H

that predicts room temperatures and nonlinear variables

(electrical energy consumption), the optimization prob-

lemat everydiscreteoptimization starting time t takes the

form

min
uc∈Rexc×H

f (m(u))

s.t. g(m(u)) ≤ 0,

(6)

where f denotes the objective function and g the con-

straint vector. The initialization phase is neglected here

to simplify notations.

In the present case, the objective function f is the

mean absolute difference between the electric power

consumed by all equipment, Pel(t), and the PV power

produced, Pprod(t), i.e.

f (m(u)) =

H∑

i=1

|Pel(t + i�) − Pprod(t + i�)|, (7)

for u = (u(t + �), . . . , u(t + H�)). The equipment com-

prises appliances, lighting system and thermal systems,

i.e. heat pump, auxiliary pumps and associated fans. The

components of the constraint vector g are the room con-

straints Tr − 24◦C and 19◦C − Tr , that apply to all eight

rooms, as well as the setpoint constraints in Table 1. As

commonly done in MPC, problem (6) is solved at discrete

optimization time t over the entire horizonH but only the

first setpoint u(t + �) is applied, and a new problem is

formulated starting at time t + � in a receding horizon

fashion.

The problem in Equation (6) is non-convex for both

models and was solved using sequential quadratic pro-

gramming (SQP); see e.g. Gill and Wong (2012). SQP

involves the minimization of a quadratic approximation

of the objective function f (m(u)) under a linear approx-

imation of the constraint vector g(m(u)). It solves iter-

atively the problem starting from an initial trajectory

u(0), making local quadratic expansion around each solu-

tion u(k), k ≥ 0, and solving the quadratic subproblem

in Equation 8 to obtain the next value u(k+1). Iterations

stop when the difference between two subsequent val-
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ues becomes negligible or when a maximum number of

iterations (e.g. 12) is reached.

min
uc∈Rexc×H

f (m(u(k))) + ∇(f ◦ m)T
|u(k)(uc − u(k))

+
1

2
(uc − u(k))TQ(u(k))(uc − u(k))

s.t. g(m(u(k))) + ∇(g ◦ m)T
|u(k)(uc − u(k)) ≤ 0,

(8)

for all k ≥ 0. The matrix Q denotes the Hessian of the

objective f ◦ m of the original problem. In practical algo-

rithms, important speed up and accuracy gains arise if the

gradients of the objective and constraint functions can

be computed without using finite difference methods.

In the present work, for the linear state-space method

with kernel regressor, the explicit expression of the non-

linear output is a net advantage in terms of speed and

numerical stability as it can be differentiated easily – see

Sections 6.1 and 6.2. The nonlinear state-space model

can use the automatic differentiation capabilities of the

deep learning libraries like Tensorflow or Pytorch (Abadi

et al. 2015) to compute themodel Jacobians. In that case,

estimating gradientswith Graphics ProcessingUnit (GPU)

provides better and faster estimates than finite difference

methods. Hessians are estimated using the LBFGS secant

method (Fletcher 1987).

Since the problem in Equation (6) is non-convex, a key

point to get good solutions with SQP is the choice of the

initial solution trajectory u(0). To stabilize the optimiza-

tion process with the fully nonlinear state-space model,

we used a shifted and smoothed version of the solution

at the previous optimization step as initial trajectory. The

resulting trajectories are presented in Section 6.1.

5. Identification results

To assess the representation capabilities of each archi-

tecture, models were evaluated on a test set of setpoints

and external parameters not seen during the identifica-

tion phase. The synthetic test set is made of weather

data observed in Barcelona from January to end of April.

The setpoints signals in this synthetic set (heat pump,

tanks and thermostats setpoints) are similar to excitation

signals used for system identification in real buildings.

They consist of a random profile of sinusoidal, square

and triangular setpoints, with varying frequencies over

time. These signals are used to check that the models

adequately reproduce the dynamic of the building simu-

lation under various excitations. The evaluation windows

were shifted on a fixed basis and prediction accuracy over

short and long rangewere computed. At time t, both LSS-

NL and encoder-decoder models were used to predictm

timesteps ahead until t+m given the last observed data

points. Then thewindowswere shiftedm steps ahead and

evaluation was performed starting at t+m, and so on.

Results are displayed for m = 4 (1-h-ahead prediction)

andm = 96 (1-day-ahead prediction) on Figure 4(a,b). In

Appendix 2, all the numerical values of themean absolute

error (MAE) and symmetric mean relative absolute error

(sMRAE) are tabluated. They are defined for N predictions

ŷ(ti) and observations y(ti) by

MAE =
1

N

N∑

i=1

|ŷ(ti) − y(ti)|, (9)

sMRAE =
2

N

N∑

i=1

|ŷ(ti) − y(ti)|

|ŷ(ti)| + |y(ti)|
. (10)

Encoder–decoder architectures (the five models labelled

by ENC-DEC1, . . . , ENC-DEC5) exhibit significantly lower

prediction errors both on 1-h and 1-day-ahead predic-

tions. For 1-h-ahead forecast, encoder–decoder archi-

tectures have a mean absolute error between 0.19

and 0.24◦C for temperature predictions and between

1.90 kW and 2.50 kW for power predictions, whereas lin-

ear state-space models (LSS-NL1 to 5) have errors on

temperature and power between 0.64 and 0.77◦C and

between 3.24 kW and 4.32 kW, respectively (see Table A6

in Appendix 2). For comparison, the peak power genera-

tion by the PV system is 10.8 kW and the average power

consumption under rule-based control is between 5 and

6 kW. For-day-ahead forecasts, errors grow but exhibit

similar ratios between encoder-decoder models and lin-

ear state-space models (see Table A5 in Appendix 2).

Figure 5 shows the temperature error distributions for 1-

day-aheadpredictions for thebestmodel fit of both archi-

tectures. Power error distributions show similar patterns,

with the error distribution being broader for the linear

state-space models than the encoder–decoder architec-

tures.

6. MPC results

6.1. Control performance

Four metrics are used to estimate the control perfor-

mance of the model predictive controllers. The two first

metrics are directly related to the optimization objective

and the constraints. The first metric is the mean power

exchanged with the grid, given by

P =
1

N

N∑

n=1

|Pel(tn) − Pprod(tn)|. (11)
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Figure 4. (a) sMRAE for temperature and power predictions at
1 day ahead, for the five instances of each model architectures.
ENC-DEC denotes encoder–decoder model instances, and LSS-NL
linear state-space model instances with nonlinear power predic-
tion; see Section 3. (b) Temperature error distribution for the best
two model instances of each architecture at 1 day ahead.

The second metrics is used to evaluate mean comfort

bounds violation, and is defined by

C :=
1

8N

N∑

n=1

8∑

r=1

(χ(Tr(tn) > 24)(Tr(tn) − 24)

+ χ(Tr(tn) < 19)(19 − Tr(tn))), (12)

where Tr is the measured temperature of room r and

χ is the Heaviside step function. The metric C has the

weakness to be relatively insensible to the magnitude of

the temperature violations, as the factor N−1 provides

an average over the entire evaluation period. To over-

come this issue the third metric, �, estimates the mean

Figure 5. (a) Mean self-consumed power P and temperature
deviation C for the model predictive controllers, as compared to
rule-based controllers. ENC-DECdenotes encoder–decodermodel
instances, and LSS-NL linear state-space model instances with
nonlinear power prediction; see Section 3. (b) Percentage of devi-
ating points versus mean temperature violation per deviation.

temperature deviation per violating points, i.e.

� =
8N

Nout
C, (13)

whereNout is thenumber of points lyingoutside the inter-

val [19,24] ◦ C. Finally, the mean power electric consump-

tion by the thermal systems are also reported to make

sure that optimizers do not globally consume more than

rule-based controllers:

Pth =
1

N

N∑

n=1

Pth(tn). (14)
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Table 2. Key performance indicators for rule-based controllers
and MPC on all model instances.

Model P (kW) Pth (kW) C (◦C) � (◦C)

RB 19◦C 4.81 4.46 1.35E−1 2.97E−1
RB 19.5◦C 5.13 4.91 3.48E−3 5.19E−2
RB 20◦C 5.41 5.32 0 0
RB 21◦C 6.01 6.22 0 0
LSS-NL1 3.61 3.41 3.21E−2 1.86E−1
LSS-NL2 3.94 3.95 1.93E−2 2.40E−1
LSS-NL3 3.74 3.63 4.7E−3 2.42E−1
LSS-NL4 3.62 3.56 1.05E−1 2.46E−1
LSS-NL5 3.92 3.62 5.11E−2 2.23E−1
ENC-DEC1 4.03 3.92 1.16E−2 1.50E−1
ENC-DEC2 4.04 3.91 1.11E−2 1.57E−1
ENC-DEC3 4.32 4.08 3.84E−3 9.37E−2
ENC-DEC4 4.42 4.30 2.44E−2 1.76E−1
ENC-DEC5 4.25 4.07 1.95E−2 1.61E−1

All metrics are evaluated over 2 months in Barcelona, in

February and March. The models were evaluated under

the hypothesis of perfect weather predictions.1 The MPC

controllers were compared against four rule-based con-

trollers (abbreviated RB in Table 2), that tried to keep

the zones temperature close to the following constant

setpoints: 19, 19.5,20 and 21◦C. Results are reported on

Table 2 and Figure 5(a,b). Properties of rule-based con-

trollers can be found in Appendix 1, where rule-based

commands for thermostats, tanks and heat pump are

given.

From Table 2 and Figure 5(a,b), the following key

points can be observed:

• All optimizers, even the worst ones, consistently out-

performs the implemented rule-based controllers in

terms of self-consumption and power consumption

from thermal devices.

• The linear state-space models show better results

in power consumption metrics than the encoder–

decoder models. However, as displayed clearly on

Figure 5(b), they come with the drawback of violating

the constraints in a stronger way than the full nonlin-

earmodels.On the trajectorydisplayedonFigure8, the

linear state-space MPC is clearly violating the comfort

rules at low temperature (light green curve), indicat-

ing that the model has not caught heating saturation

when the heat pump temperature is too low. The non-

linear MPC, however, only does a very minor violation.

Scatter plots on Figure 6(b) clearly show the superior-

ity of encoder-decoder models for comfort, as well as

the low temperature excursions of the controllers with

linear state-space models.

• This distinct behaviour at low exterior temperature is

due to the limited identification capabilities of linear

state-space models. Due to the low-level hysteresis

control loop (and such loops are often encountered

in real buildings), the room temperature evolution at

15min timescale follows two distinct regimes: It either

oscillates between the control band if the supply tem-

perature of the pump is high enough, or it decreases

because not enough heat is supplied to maintain the

temperature of the room close to the setpoint (which

is even enhanced by the similar temperature drops

happening simultaneously in all other rooms of the

building). The linear state-space model has to find

a linear compromise between the two regimes, that

will necessarily miss some of either the saturation or

the oscillation in the dead band interval. Since sat-

urated regimes occurs at a very low external tem-

perature, that is rare in the considered geographical

Figure 6. (a) Heating curve for the rule-based controllers (full
curve), as compared toMPC Heat pump temperature supply scat-
ter plots for two of the best performing models. (b) Zone 1 room
temperature measured: Scatter plots for two of the best perform-
ingmodels. Linear state-space controllers exhibit clear deviations
at low outside temperatures.
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Figure 7. Example of trajectories for two of the best performing models of each architecture. Dashed horizontal curves show the limit
range of 19 and 24◦C. Normalized irradiance data are displayed at the very bottom of the figure.

region, the saturated regime will not be well repro-

duced by the LSSmodel (whatever the amount of data

used).

• To take advantage of the heat pump COP and the

power generated by the photovoltaic panels, the two

MPC architectures use a completely different strategy

than typical heating curves used for rule-based con-

trollers. At low outside temperature, both controllers

lower the heat pump temperature to get a higher COP

(Figure 6(a)).

• Hours with higher ambient temperatures are corre-

lated with higher irradiance, and thus a high probabil-

ity of having an excess of PV. So the controllers tend to

increase the room setpoint temperatures as a strategy

to preheat the buildings and reduce power exchange

with the grid; see Figure 6(b) as well as Figure 7.

These results show the difficulty of optimizing

nonlinear state-space models with local optimization

techniques. Local methods like SQP find it hard to escape

a minimum and are quite sensitive to the initial tra-

jectory solution. In the fully nonlinear case, due to the

high number of parameters and the non-convexity of the

model, the objective hypersurfacewill presentmany local

minima. On the contrary, for linear state-space models

with smooth nonlinear outputs (like the kernel regression

used in this paper), fewer local minima are expected. This

effect is well illustrated on the heat pump trajectories on

Figure 7. The heat pump setpoints for the nonlinear MPC

(ENC-DEC1, in dark blue) slowly react to external condi-

tions, and theoptimizer takes time, at low temperature, to

reach setpoints close to 40◦C. On the contrary, transitions

from the linear state-space model controller (LSS-NL1, in

olive) are much faster, and setpoints quickly make the

transition from high temperatures heat pump supply to

the lower bound of 40◦C. Having a low supply tempera-

ture increases the COP of the heat pump, and therefore

reduces energy consumption, especially at night. The fact

that the SQP with the nonlinear models takes more time

to achieve the temperature transition lowers its energy

performance.

6.2. Execution time

Model identification and controller evaluations were

done for both architectures on the sameworkstation. This

workstation is equipped with an Intel i9-9960X CPU with

a nominal frequency of 3.10GHz and 16 physical cores,

and anNvidia RTX2080 TI Graphics ProcessingUnit (GPU).

The GPU was used to speed up computations with the

neural network architectures, in particular the gradient

evaluations. The use of the CPUs was intensified through
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Figure 8. Example of trajectories for two of the best performing models of each architecture. Dashed horizontal curves show the limit
range of 19 and 24◦C. Normalized irradiance data are displayed at the very bottom of the figure.

multiprocessing to speed up the gradient analytical com-

putations in the optimization of the linear state-space

models with kernel outputs.

The encoder–decoder architecture required about

one hour for training (depending on the number of iter-

ations) and the linear state-space model about 1min. In

both cases, this training time is negligible over the life-

time of the system in comparison with the computation

time required to solve the optimal control problems.

For both architectures, the execution speed of the

controllers was optimized. Jacobians in the SQP opti-

mization were evaluated with Tensorflow 1.14 on the

GPU for speed up, providing better time execution than

numerical approximation with finite differences. Opti-

mization coupledwith theencoder–decodermodels took

around 4.5min per control step. Analytic computations

of the Jacobians of the linear state-space model with

nonlinear outputswere carried out usingmultiprocessing

python package Numba (Lam, Pitrou, and Seibert 2015)

and using all the cores at disposal. Optimization cou-

pled with the linear state-space models with nonlin-

ear outputs took around 1.3min per control step. The

two methods, therefore, require a computation time in

the same order of magnitude at each control step but

the linear state-space model results in an optimization

more than three times as fast as the encoder-decoder

architecture.

Table 3. Comparison summary of the architectures capabilities.

Properties LSS-NL ENC-DEC

Sample efficiency Sys. Id. + –
Accuracy System Id. – +
Objective minimization + –
Respect of constraints – +
Computation time + –

7. Conclusion

A comparison of two model architectures for MPC for

building control has been presented: a linear state-space

model combined with a nonlinear regressor, and a fully

nonlinear architecture based on recurrent neural net-

works. Both architectures are capable of taking nonlin-

earities into account. They were used within a local opti-

mization procedure to minimize the power exchanged

between a building and the grid without degrading com-

fort.

Table 3 presents a qualitative comparison of the two

models used in the study. None comes on topof the other

on all criteria. The second architecture based on RNNs is

more data intensive but also more accurate. In general,

the higher representation capability of RNN architectures

does not translate into strong enough control perfor-

mance to justify the increased computational demand as
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compared to MPC based on well-designed linear state-

space models. The exception to this statement would be

cases were constraint violations have disproportionate

importance or for systems with more extreme nonlinear-

ities than the typical building used in this study.

In future work, the sample efficiency of the RNN

architecture could be improved using pre-training and

transfer learning techniques for buildings that share the

same inputs-outputs features. In cases where extreme

nonlinearities strengthen the value of this architec-

ture research is needed to alleviate some of the draw-

backs of the recurrent architectures outlined in Table 3.

For instance, as suggested in Maddalena et al. (2019),

it could be possible to reduce the computing costs by

changing the encoder-decoder architecture to directly

predict the quadratic form to be minimized in

Equation (8).

Through this systematic comparison in the representa-

tive example of a building, we were able to demonstrate

that, in their current form, RNN architectures do provide

improved accuracy on the modelling of nonlinear sys-

tems but have limited value in the optimal control of such

systems. Well-designed linear state-space models with

nonlinear regressors are the solution of choice in most

cases for model-predictive control.

Note

1. Actual weather data was used in order to benchmark only

the models and not errors from the predictions.
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Appendices

Appendix 1. Controller architectures

A.1 Rule-based controllers

Rule-based controllers use fixed thermostat temperature set-

points for the rooms and a heating curve for the heat pump

supply temperature. The heat pump temperature supply lies

within 40–55◦C; see Figure 1. The heating strategy follows typ-

ical heating strategies in buildings, where supply temperature

varies as a function of the outside temperature, providing more

heat at a lower temperature such as to ensure comfort bounds

will not be violated. The heat pump supply and tank setpoints

are the same for all models. A temperature of 40◦C has been

applied to the bottom temperature of the tanks to ensure that

the heat pump supply temperature was always higher than the

tank temperature. This prevents the heat pump from cooling

down the tanks. The rule-based controller names indicate the

fixed setpoints for the room thermostats: e.g. RB 19 is a rule-

based controller with 19◦C temperature setpoint for the room

thermostats. The following setpoints are used in the rule-based

controllers:

The hysteresis control around these setpoints is realized at

a lower level. The low-level hysteresis control loop turns on the

fan coil units in each room if the temperature is lower than the

room temperature setpoint minus 0.5◦C and it ensures the heat

pump is on. The pump and coils stay on until all room temper-

ature have reached their setpoints minus 0.1◦C (to take inertia

into account and avoid going above thedesired temperature). A

similar rule with a higher deadband (2◦C) is applied to the tanks.

A.2 Linear state-spacemodels

Linear state-space models have been fitted using N4SID

method. The models were fitted on data from the simulation

Figure A9. Heating curve for heat pump supply temperature.

Table A1. Rule-based controllers setpoints.

Controllers Room sp. (◦C) Tank sp. (◦C)

RB 19 19.0 40.0
RB 19.5 19.5 40.0
RB 20 20.0 40.0
RB 21 21.0 40.0
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Table A2. Linear state-space mod-
els with nonlinear outputs: number
of data points used for model iden-
tification, resolution of 15min.

Models
Data points
for training

LSS-NL1 4000
LSS-NL2 4000
LSS-NL3 2000
LSS-NL4 2000
LSS-NL5 750

Table A3. Encoder-decoder
sizing parameters.

Layers
Hidden
size

LSTM encoder 512
LSTM decoder 512
layer1 512
layer2 256
layer3 128

obtained with random multisine excitations (Schoukens and

Ljung 2019). The number of data points were varying between

the models, as well as the excitations and building response.

The linear state-space models have eight hidden degrees of

freedom i.e. x in Equation (1) belongs to R
8. Power energy con-

sumption has been estimated with kernel ridge regression with

rbf kernel with parameters γ = 0.1 and α = 1.0 (see Pedregosa

et al. (2011)).

A.3 Encoder-decodermodels

Encoder-decodermodels use LSTM andmulti-layer perceptrons

as described on Figure 3. All models have been identified with

the same dataset but with distinct numbers of training itera-

tions. Architectureparameters andnumberof training iterations

per model instances are given in Tables A3 and A4. For training,

the following strategies were used:

• Batch size of 200.

• Adam optimizer with default tensorflow Adam parameters

and learning rate of 1.10−4.

• Decoding length randomly chosen at each iteration in the set

{2, 4, 6, 8, 10, 16, 24, 32, 64, 88, 144}.

• Gradient clipping with norm 1 (see Zhang et al. (2019) for

an interesting analysis of gradient clipping and convergence

speed up).

Table A4. Encoder-decoder training
iterations per model instances (batch
size of 200 sequences per iteration).

Models
Training
iterations

ENC-DEC1 8 × 104

ENC-DEC2 8 × 104

ENC-DEC3 6 × 104

ENC-DEC4 3 × 104

ENC-DEC5 6 × 104

Appendix 2. Error models summary

Models accuracy metrics on the evaluation set are given below

for one hour ahead and 1 day ahead forecasts.

Table A5. Error metrics for sliding windows of 1-day-ahead fore-
cast, averaged over 4 months.

Models MAE T MAE P sMRAE T sMRAE P

LSS-NL1 0.97 3.57 0.047 0.55
LSS-NL2 0.73 3.24 0.035 0.51
LSS-NL3 0.77 3.52 0.037 0.54
LSS-NL4 0.81 3.43 0.039 0.54
LSS-NL5 0.71 4.33 0.034 0.63
ENC-DEC1 0.29 2.25 0.014 0.46
ENC-DEC2 0.26 1.91 0.012 0.36
ENC-DEC3 0.28 1.93 0.013 0.38
ENC-DEC4 0.39 2.50 0.019 0.56
ENC-DEC5 0.36 2.04 0.017 0.39

Values corresponding to the best-performing model are in bold.

Table A6. Error metrics for sliding windows of 1-h-ahead, aver-
aged over 4 months.

Models MAE T MAE P sMRAE T sMRAE P

LSS-NL1 0.64 3.43 0.030 0.54
LSS-NL2 0.67 3.24 0.031 0.51
LSS-NL3 0.66 3.55 0.031 0.55
LSS-NL4 0.77 3.41 0.037 0.54
LSS-NL5 0.62 4.32 0.029 0.63
ENC-DEC1 0.22 2.05 0.010 0.40
ENC-DEC2 0.19 1.90 0.009 0.37
ENC-DEC3 0.19 1.93 0.009 0.38
ENC-DEC4 0.24 2.50 0.011 0.54
ENC-DEC5 0.20 1.91 0.009 0.37

Values corresponding to the best-performing model are in bold.
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