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Abstract

Tridiagonal parametrizations of linear state-space mod-
els are proposed for multivariable system identification.
The parametrizations are surjective, i.e. all systems up
to a given order can be described. The parametrization
is based on the fact that any real square matrix is simi-
lar to a real tridiagonal form as well as a compact tridi-
agonal form. These parametrizations has significantly
fewer parameters compared to a full parametrization of
the state-space matrices.

1 Introduction

System identification deals with selecting a linear
model from a model set using measured data. A set
of models is most often described by a parametrized
model structure. Hence, a parametrization is a map-
ping from the parameter space, a subset of R?, to the
space of linear systems of given input-output configu-
ration and state order. The best model in the set is
determined by a parametric optimization of some cri-
terion function. We will here consider parametrizations
of multivariable linear systems based on the state-space
form

& =Ax+ Bu, y=Cx+ Du

with n states, m inputs and p outputs. A parametriza-
tion describes which matrix elements have fixed values
and where the parameters enter into the system matrix
elements.

Parametrization of multivariable linear systems is
known as a difficult problem if a minimal parametriza-
tion is sought. In a minimal parametrization the map-
ping from parameter space to system space is injective,
i.e. each system can be represented by at most one point
in the parameter space. It is known [1] that the set of
all possible input-output behaviors is a manifold of di-
mension n(m+p)+pm. The number of elements in the
system matrices is however n” +n(m+ p) +pm. Conse-
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quently, in order to obtain an injective parametrization,
n? degrees of freedom must be removed.

1.1 Minimal Parametrizations

In system identification injective parametrizations are
known as being identifiable. If the parametrization is
also bijective the parametrization can describe all sys-
tems of given order and input-output configuration. In
this case each system corresponds to one and only one
point in the parameter space.

If the parametrization is bijective it is sufficient, for
each model order, to only consider one parametriza-
tion and consequently only have to run one optimiza-
tion. For single input multiple output systems or multi
input single output systems the standard controllable
canonical form and the observable canonical form are
examples of bijective parametrizations [5].

A classical result tells us that if both the input and
output dimensions are larger than one, a bijective
parametrization does not exist [7, 3]. Partially over-
lapping, injective parametrizations, based on the com-
panion matrix form, has been used for multivariable
system identification [12]. In this type of parametriza-
tions the number of parameters, which is the minimal
number, is

dmin = n(m + p) + mp

where n is the state dimension, m the input dimen-
sion and p the output dimension. For the observable
form there exist (Z:ll) different structures and for the
controllable form ("~') structures. The model sets
spanned by these parametrizations are partially over-
lapping and the union of all these equals the set of
all dynamical systems of fixed input-output dimen-
sions and fixed state order. The obvious drawback
with such a parametrization is that several, or all,
parametrizations should be considered when identify-
ing a model from data without any prior structural
knowledge. Even though one structure is capable of
describing almost the entire set of systems it is likely
that such a parametrization is numerically less favor-
able for a much larger class near the border of the set.

Based on the balanced realization a minimal (injec-



tive) parametrization has also been developed [10] and
studied in an identification context in [8]. They argue
that the balanced realization in general offer a more
well conditioned parametrization as compared with the
controllable-observable forms.

1.2 Non-minimal Parametrizations

If we drop the requirement of injectiveness of
the parametrization and instead consider surjective
parametrizations, the full parametrization is one triv-
ial choice. In this parametrization all matrix elements
of the state space matrices (A, B,C, D) are parame-
ters. In an identification context such a parametriza-
tion was proposed in [9]. An obvious drawback with the
full parametrization is the large number of parameters
which have to be estimated:

dean = 1° 4+ n(m + p) + mp.

In comparison with the minimal parametrization the
full parametrization has n? extra, redundant param-
eters. When using a parametrization with redundant
parameters the minimum of the criterion function will
not, be unique in the parameter space. This leads to a
singular Hessian matrix. However, trivial modifications
to standard Newton-type optimization algorithms en-
sure that a minimum is reached in a numerically stable
way.

Without dropping the surjective property it is desir-
able to find a parametrization using fewer parameters.
In this paper we show that every real square matrix is
similar to a tridiagonal real matrix. Any matrix can
be reduced to this quite compact form using similar-
ity transformations without any assumptions about the
eigenvalues or the eigensystem structure of the matrix.
We propose a surjective parametrization of state-space
models based on this tridiagonal form.

In Section 2, we prove that any real square matrix is
similar to a real tridiagonal matrix form as well as a real
tridiagonal compact form. Based on these tridiagonal
forms two new parametrizations of multivariable state-
space models are introduced in section 3. In section 4,
a small example illustrates the numerical advantages
with the proposed structure.

2 Tridiagonal Matrix Forms

A square matrix A is similar to another matrix A
if there exists a similarity transformation defined by

the non-singular transformation matrix T such that
T-1AT = A.

Definition 1 A real tridiagonal matrix is a square real
matriz having non-zero elements only on the main, first
super and first sub diagonals.

Lemma 1 (The Real Tridiagonal Lemma) Any
square real matriz is similar to a real tridiagonal
matriz form.

Proof. This lemma is straightforward to show assum-
ing distinct eigenvalues. As a preparation for the proof
of general case, we first recap some results on the Jor-
dan form.

It is a well-known fact, see e.g. [4], that any square
matrix is similar to a block-diagonal matrix

A =diag[[] Jo, M)y Jos(N2), oo, T A)], (1)

containing Jordan blocks. Each Jordan block,

A1 o --- 0
0 A 1
J,,()\) = 0 € (CVXV’ (2)
: 0 Al
L0 e e 0 )\J

is associated with the eigenvalue A. The eigenvalues
can be either real or complex. For real eigenvalues the
Jordan block is already on a real tridiagonal form. It
remains to prove Lemma 1 for complex eigenvalues.

Jordan blocks associated with a complex eigenvalue
and its complex conjugate can be rewritten into a real
Jordan block C,(a,b) =

where A = a + jb satisfies the equation A\ — 2a\ +
a®? 4+ b> = 0. The real Jordan block is not tridiagonal
since it contains two super-diagonals. There exists a
real tridiagonal form that is similar to the real Jordan
form for complex eigenvalues. This is now shown by
using minimal polynomials [4].

Counsider a tridiagonal matrix of the form A, (a,b) =
N R | N | B
b a 1 0
0 0 a b O

T a b 1 0 0 07
—b a O 1 0 O
0 0 a b 1 0 0 O
0 0 -b a 0 1 0 O
ER2V><2V
0 0 a b 1 0
: : 0 0 —-b a 0 1

€ RQVXQV

(3)



This matrix has a’s along its diagonal, alternating b’s
and 1’s along its super-diagonal, and alternating —b’s
and 0’s along the sub-diagonal; all other elements are
zero. Let

B,(a,b) = A%(a,b) — 2aA,(a,b) + (a* + b*)I5,.

It is now straightforward to show that

0 0 b 0 -+ 0]
0 b
B, (a,b) = 01,
b (4)
: 0
. 0 0 -
) 0 w1 0 ]
C0 0 !
Bl’jil(a,b) = 0 N
0 :
K 0 |
and
By (a,b) = 0.

The unique polynomial of minimum degree that annihi-
lates a square matrix is called the minimal polynomial
[4]. Thus the minimal polynomial of A, is

(A2(a,b) — 2aA,(a,b) + (a*> + b*)I,)" =0,
(5)

assuming b # 0, that is if A is complex. The minimal
polynomial of a Jordan block is

(Ju(A) = AL)" =0,
(C%(a,b) — 2aC,(a,b) + (a® + b*)I2,)" = 0.

According to [4], Corollary 3.3.3, similar matrices have
the same minimal polynomial. Since, both A, and C,
have the same minimal polynomial, they are also sim-
ilar. Thus, we have shown Lemma, 1. |

Recall the structure of the 2 x 2 block in the real tridi-
agonal form for complex eigenvalues (3)

X

which is a skew-symmetric matrix. Notice that a is re-
peated on the diagonal. For real eigenvalues a similar
2 x 2 form can be derived. If we have two real eigen-
values a+ b and a — b a 2 x 2 form with equal diagonal

is given by
a b
b a |’

which is a symmetric matrix. This structure can be
utilized to further reduce the number of parameters
in the tridiagonal matrix structure if the diagonal is
formed by repeating the a parameter. Hence the num-
ber of parameters of the diagonal is reduced to n/2 for
n even or (n + 1)/2 for n odd. Since it is unknown to
us whether the eigenvalues are complex or real we let
the anti-diagonal in the 2 x 2 block be independently
parametrized. When forming the full matrix it is ob-
vious that the super-diagonal must be independently
parametrized to allow coupling between blocks. How-
ever, on the sub-diagonal every second element can be
set to zero and we only need n/2 parameters when n
even and (n —1)/2 when n odd. The leads us to the
compact tridiagonal matrix form.

Definition 2 A compact tridiagonal matrix A is a
tridiagonal matriz where the diagonal elements are re-
peated, [A];; = [Ali+1,i+1, for i odd and every second
sub-diagonal element is zero, [Alits,iv2 =0, i odd.

We formalize the observations to the following result.

Lemma 2 (The Compact Tridiagonal Lemma)
Any square real matriz is similar to a real compact
tridiagonal matriz.

Proof: Any square real matrix is similar to a real
tridiagonal form where the blocks corresponding to real
eigenvalues are on the form given in (2) and the blocks
corresponding to complex eigenvalues are on the form
in (3). Blocks with even size, that is all complex blocks
and real blocks with even size are already on the com-
pact tridiagonal form. Odd-sized (real) blocks are com-
bined in pairs; the possible remaining odd-sized block is
placed in the lower right corner. Consider the follow-
ing particular (compact tridiagonal) structure of two
paired odd-sized blocks:

a1
A1 1
At Ai=As
2 2
A= A1—A2 A1tAe 1 ,
2 2
Az

1
Ay |

which is on the form of (3). Using a transformation
matrix defined by

-1 -




we obtain Ay = TAT ! =

A1
A1
_ A A1 5A2
0 Ao 1
A 1
A2

If A1 = )Xo this is already on a block diagonal Jordan
form. Otherwise, perform another transformation us-

ing
g n,, w
0 I, |’
This yields Ag = SA7S~! =

_ [ (M) Z =Ty, (M)W + W, (A2) }
- 0 JV2(>‘2) -

The upper right block, Z — J,, (A1)W + W J,,(A2), is a

Lyapunov equation and can be zeroed since A; and A
are distinct. [6] O

3 Tridiagonal Model Structures

The transfer function of a linear system
G(s)=D+C(sI —A)~'B (6)

is invariant under similarity transformations, i.e. a
change of basis of the state variables. A state space re-
alization (A, B, C, D) is similar to (A, B, C, D) if there
exists a non-singular T" such that

|

If two realizations are similar their corresponding trans-
fer functions are equal.

T'AT | T'B
cr | D

Ql :3>z
S &9:

Often when parametrizing a state-space model a real-
ization is sought that contains many fixed valued ma-
trix elements that consequently reduces the amount of
free parameters. Canonical parametrizations are such
forms that contain a minimal number of parameters.

In the next subsection we will propose parametriza-
tions based on the tridiagonal matrix forms. These
parametrizations are surjective, i.e. parametrizations
in which all linear systems with fixed input and output
dimensions and an upper bound of the state order can
be represented.

3.1 Surjective Parametrization

The derived tridiagonal matrix forms directly leads to
the following parametrizations of a multivariable linear
system (6).

Definition 3 (The Tridiagonal Parametrization)
Let A(0) be a tridiagonal matriz where the non-zero

elements are parameters. Let all elements in B(6),
C(#) and D(0) be parameters.

Definition 4 (The Compact Parametrization)
Let A(f) be a compact tridiagonal matriz where the
non-zero elements are parameters. Let all elements in
B(0), C(8) and D(0) be parameters.

We are now ready to state the main result of this paper.

Theorem 1 Let (A,B,C,D) be state-space matrices
representing any multivariable system with n states, m
inputs and p outputs and let (A(9), B(0),C(9), D(6)) be
parametrized according to Definition 8 or Definition 4.
Then there exists a 0* € R? such that (A, B,C, D) and
(A(6*), B(6*),C(0*), D(6*)) are similar.

Proof. First we note that each state space matrix is
independently parametrized and consequently we can
check similarity individually. The existence of a 6*
such that D = D(#*) follows directly. According to
Lemma 1 (Lemma 2) there exists a non-singular T
such that T~ AT is tridiagonal (compact tridiagonal),
which imply the existence of a #* such that T 'AT =
A(6*). The independent parametrization again im-
ply the existence of * such that T-!B = B(#*) and
CT = C(6). O

Remark 1 Note that the parametrizations do not re-
quire the original system to be minimal. Consequently
all systems with McMillan degree equal to or less than
n can be described in one single model structure.

For instance, the compact tridiagonal parametrization
of a fifth-order system with two inputs and two outputs

is given by
[ A(0) | B(9) ]
c@) | D)

3 6. 6, O 0 | 012 63

0 0 6; 65 03 |0 017
B0 021 B0 O3 04 | O30 031

L 025 B2 6Oa7 B2 b9 | O30 633

The tridiagonal parametrization contains
divi =n(3+m+p)—2+mp

parameters, which is only of order n compared to order
n? for the full parametrization.



The compact tridiagonal form has
detri = 2n — 1+ n(m + p) + pm

number of parameters. The price paid for surjectivity
is the estimation of 2n —1 additional parameters, which
is considerably less than n? for the full parametrization.
Although more parameters have to be adjusted it does
not necessary mean that the actual computational load
during an identification has to increase. As we will
see in the example in the next section the number of
necessary evaluations of the identification criterion in
order to reach a minimum actually decreases for the
non-minimal forms.

3.2 Finding the Tridiagonal Form

Prior to a parametric identification an initial estimate
is derived, for example by some subspace method. In
order to utilize the tridiagonal parametrization a simi-
larity transformation has to be found that tridiagonal-
ize the A-matrix. If all eigenvalues are distinct a stan-
dard eigen-decomposition of A will result in a similarity
transformation that diagonalizes the system. From the
complex diagonal form it is trivial to find the transfor-
mation to the real compact tridiagonal form. If multi-
ple eigenvalues are at hand and the eigenvectors do not
form a complete basis, the diagonal form does not ex-
ist. Then a non-symmetric Lanczos tridiagonalization
procedure can be used, see [11, 13].

4 Tridiagonal Parametrization Improves
Optimization Performance

The eigenvalues of a matrix in the companion form is
known to be very sensitive to perturbations in the non-
fixed elements except for a certain eigenvalue distribu-
tion [13]. The sensitivity of the eigenvalues of parame-
ter perturbations of matrices in the tridiagonal form is
in general much smaller [13]. Consequently one could
argue that the tridiagonal form is more favorable from
a numerical point of view.

By a simple example we will substantiate this claim
by showing that the probability of convergence to the
global optimum is larger and that less criterion function
evaluations are necessary. We do this by estimating
systems of increasing complexity using three different
parametrizations:

e tridiagonal form
e compact tridiagonal form

e observable canonical form

The systems have the transfer function

M

1
Gols) =
0(5) kz_; 52 +2<kwk8+wl2c

Table 1: Estimation results of Monte Carlo simulations
using different model orders and fixed perturba-
tion level of the initial parameters.

Parametrization
M Tridiagonal Compact Observable
4 |maxV | 31x107% 37x107? 9.6x107°
min V | 1.5x 107 47x 107! 59 x107°
# fail 0 0 0
eval. 306 266 609
5 |max V| 73x107° 6.6x1072 59x10~*
min V | 9.7x 10711 25x1071° 24x10°°
# fail 0 2 10
eval. 448 400 -
6 |max V| 80x107% 81x107? 4.8x1071
minV | 1.1 x107°% 13x107'© 14x102
# fail 0 0 10
eval. 647 606 -
7 |max V| 94x107° 79x107° 62x107!
min V 1.7x107° 87x10710 23x102
# fail 0 0 10
eval. 1070 979 -

with natural frequency wr, =1+4(k—1)/(M — 1) and
damping ratio {; = 0.1. Denote by go(t) the impulse
response of Gy. The data used for the identification are
200 samples of the noise-free impulse response go(t) of
the system sampled with a period time T=0.1.

The parametric optimization minimizes the nonlinear-
least squares criterion function

N
V(0) = lgo(kT) — g(k,0)|? (7)
k=1

using the Levenberg-Marquardt method leastsqin the
Matlab Optimization Toolbox [2]. In (7), §(k,0) is the
impulse response of a parametrized discrete time sys-
tem. Since the data is noise-free the criterion V(6)
should be zero at a minimum. The minimization is ter-
minated if the criterion function decreases below 1078
or if more than 2000 criterion evaluations has occured.
The optimization is considered successful if the algo-
rithm terminates with V' (#) < 1078.

The optimization algorithm is initiated with a parame-
ter value derived from a perturbed system. The pertur-
bation is constructed by forming the sample and hold
equivalence of Go(s) in balanced form and perturbing
all matrix elements with zero mean Gaussian random
noise with variance o2. The perturbed balanced form
is converted to the form associated with the particular
parametrization which defines the initial point in the
parameter space.

Tables 1 and 2 report the results of Monte Carlo
simulations. For each experimental setup, 10 opti-
mizations are performed using different initial param-
eters. In Table 1 the results for different system or-
ders (M = 4,...,7) and constant perturbation level
02 = 0.01 are reported. The results when keeping the



Table 2: Estimation results of Monte Carlo simulations
with different perturbation levels of the initial

parameters.
Parametrization
o? Tridiagonal Compact Observable
001 [max V| 52x107° 64x10° 9.6x107°
minV | 7.6 x 10717 1.5x 1071 49x107°
# fail 0 0 0
eval. 297 233 568
002 | max V| 63x107" 83x10° 87x1071?
minV | 23 x 1071 3.9x107"  41x107°
# fail 0 0 2
eval. 454 368 790
0.03 [max V| 88 x1072 52x107% 1.5x 1072
min V | 40x 107 59x1071! 41x107°
# fail 2 0 2
eval. 507 647 1192
0.04 | max V| 1.6 x 1071 1.4 x10° 6.1x 1071
minV | 21 x 1071% 4.0x 107" 3.9x107°
# fail 4 3 6
eval 758 557 1035

system order constant M = 4 and increasing the vari-
ance o2 = 0.01,...,0.04 of the initial parameter per-
turbations are reported in Table 2. For each experi-
mental setup the maximum and minimum value of the
criterion function for the 10 runs are given. The num-
ber of failed identifications (V' (#) > 10~®) are reported
together with the average number of criterion function
evaluations used by the optimization algorithm where
the average is formed over the successful identifications.

From the results it is clear that both the tridiagonal
and the compact tridiagonal parametrizations lead to
a higher probability to reach the global minimum when
the model complexity increases. It is also interesting
to see that although more parameters are estimated
the number of evaluations are less for the tridiagonal
forms. Since the evaluation of the criterion function is a
large part of the computational load, the non-minimal
tridiagonal parametrizations are more efficient.

5 Conclusions

Various parametrizations of multivariable state-space
models for system identification are studied. Exam-
ples of minimal parametrizations are observable and
controllable canonical forms. These have the impor-
tant drawback that different structures must be used
to cover all possible systems of a given order. Hence a
priori structural knowledge is needed. To avoid these
problems non-minimal parametrizations must be em-
ployed. One such is the full parametrization of the
state-space matrices. This form has the drawback that

it requires a large number of redundant parameters
(~ n?).

A real tridiagonal and a compact tridiagonal form are

proposed as alternative parametrization forms. It is
shown that any real square matrix is similar to a
real (compact) tridiagonal form. The number of re-
dundant parameters (~ 2n) is in this parametriza-
tion case significantly less than in the full parametriza-
tion. When the number of states are large it is im-
portant, for efficency, to reduce the number of pa-
rameters. Monte Carlo simulations indicate that the
introduced parametrizations improve the optimization
performance compared to observable or controllable
canonical forms.
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