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Abstract 

The most common state space reconstruction method in the analysis of chaotic time series is the Method of Delays (MOD). 
Many techniques have been suggested to estimate the parameters of MOD, i.e. the time delay r and the embedding dimension m. 

We discuss the applicability of these techniques with a critical view as to their validity, and point out the necessity of determining 
the overall time window length, rw, for successful embedding. Emphasis is put on the relation between rw and the dynamics of 

the underlying chaotic system, and we suggest to set rw > rp, the mean orbital period; rp is approximated from the oscillations 
of the time series. The procedure is assessed using the correlation dimension for both synthetic and real data. For clean synthetic 

data, values of rw larger than rp always give good results given enough data and thus rp can be considered as a lower limit (rw > 
rp). For noisy synthetic data and real data, an upper limit is reached for rw which approaches rp for increasing noise amplitude. 

geywords: Time series: Chaos: State space reconstruction: Correlation dimension 

1. In t roduct ion  

State space reconstruction is the first step in non- 

linear time series analysis of data from chaotic systems 

including estimation of invariants and prediction. For 

a recent review of these topics see [1,2]. Reconstruc- 

tion consists of viewing a time series xk = x(krs) ,  

k = l . . . . .  N in a Euclidean space R m, where m is 

the embedding dimension and rs is the sampling time. 

Doing this, we hope that the points in R m form an at- 

tractor that preserves the topological properties of the 

original unknown attractor. A standard way to recon- 

struct the state space is the Method of Delays (MOD). 

Using MOD, each m-dimensional embedding vector 

is formed as xk = [xk, xk+, . . . . .  Xk+tm_l)p] T where 

p is a multiple integer of rs so that the delay time t 

equals pts  [3]. The m coordinates of each point xk are 

samples from the time series (separated by a fixed r)  

covering a time window of length rw = (m - l ) r  (or 

tw = (m - I )p as multiple of rs). 

The fundamental theorem of reconstruction, in- 

troduced first by Takens [ 4 ] l a n d  extended more 

recently in [6], gives no restriction on r while for 

m states the sufficient (but not necessary) condition 

m > 2d + I, where d is the fractal dimension of 

the underlying attractor.2Takens ' theorem is valid 

for the case of infinitely many noise-free data. In 

! Similar work was made independently in [5l. 
2 Actually, Takens ° condition uses [d] instead of d, the topo- 

logical dimension, i.e. the lower integer greater than d. The 
use of d in the inequality has been established in [61 allowing 
lower values for m. 
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practice, however, with a limited number of possi- 

bly noisy observations, the selection of r and m is 

rather important for the quality of the reconstruc- 

tion. Many methods have been suggested for esti- 

mating these parameters, but they are all empirical 

in nature and do not - as we show - necessarily 

provide appropriate estimates. This is a rather typi- 

cal situation regarding state space reconstruction in 

general. 

While there will always be uncertainties related to 

reconstruction from real data, it is still important to 

try to improve the procedures. We suggest rw as an 

independent parameter instead of focusing on the in- 

terrelated parameters r and m of MOD. The time 

window length is of particular importance since it 

determines, in a certain sense, the amount of infor- 

mation passed from the time series to the embed- 

ding vectors. For a given rw, one may then select 

a sufficiently large m. Suggestions for the selection 

of rw have been made in [7-121 but to our knowl- 

edge there has been little systematic work regard- 

ing this parameter. We give procedures for estimat- 

ing rw from the signal. Only time series from con- 

tinuous systems is treated. For discrete systems, one 

typically sets p = I, reducing the number of param- 

eters to one - the embedding dimension, since rw = 

m - I .  

The quality of the reconstructions is assessed using 

the correlation dimension 113]. The resulting recon- 

structions may not be the most suitable for other pur- 

poses such as estimation of Lyapunov exponents and 

prediction. However, with improved reconstructions 

for dimension estimation it is likely that the technique 

will be valuable also in other cases. 

In Section 2, we discuss several of the meth- 

ods suggested up to now for estimating r and m 

in MOD and comment on the underlying ideas 

as well as on the validity of the results. In Sec- 

tion 3, we establish the role of rw in reconstruc- 

tion and give simple ways to estimate it. Finally, 

in Section 4, the correlation dimension is used 

to assess the proposed procedure using noise-free 

and noise-corrupted synthetic data as well as real 

data. 

2. Suggested methods for estimating the 

MOD-parameters 

A very helpful approach in visualizing the re- 

construction problem is to consider the reconstruc- 

tion as an orthogonal projection from some high 

p-dimensional state space onto an m-dimensional 

subspace defined by the m coordinates of the re- 

constructed vectors. Defining the linear mapping 

B : RP > R m, from each p-dimensional vector x p 
m m P to an m-dimensional vector x k , we have x k = Bx k , 

where the rows of the m x p  matrix B are orthonormal. 

The p coordinates of x p are actually all the samples 

in the time window rw and in the case of MOD, 

where p - 1 = rw = (m - l)p,  the m coordinates of 

the projected subspace are every pth sample starting 

with the first, i.e. each row of B has one 1 and p - 1 

zeros. Obviously, one can find other m-dimensional 

subspaces using a smaller p (which may not cover 

the whole rw). Using p = 1 results in an unfavorable 

reconstruction if the time series is densely sampled 

because then the attractor lies on the diagonal in R m. 

(The successive samples differ very little from each 

other.) In such a projection we utilize only the m first 

samples of rw. Other projections may be considered 

such as the one employed in the Singular Spectrum 

Approach (SSA) [71. This method yields first a trans- 

tbrmation of the natural coordinate system to another 

orthogonal system, ranking the p new directions ac- 

cording to the variance they explain, followed by a 

projection onto the m first directions. The rows of the 

B matrix are then the first m eigenvectors of the p x p 

sample covariance matrix of the embedding vectors. 

The reconstruction viewed as a projection from the 

hyperspace determined by rw reveals the importance 

of this parameter. For MOD, the subspace is defined 

completely by the parameters r (or p) and m and for 

SSA by p and m. 

Certain statements supporting current methods for 

estimating r and m have been widely accepted and 

almost adopted as axioms. We do not intend to ques- 

tion all the existing methodology on MOD state space 

reconstruction, but feel that a discussion is needed re- 

garding the guidelines used to choose the parameters. 
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2. I. Comments on the selection of  the delay time 

Consider first r and the two following wide!y ac- 

cepted criteria: 

( l )  The reconstructed attractor nmst be expanded 

from the diagonal (implying that r should not be 

too small) but not too much so that it folds back 

(implying that r should not be too large). 

(2) The components of the vector x~ must be uncor- 

related. 

Note the similarity of the two criteria: increasing 

r expands the attractor from the diagonal and the 

components get less correlated; beyond some range 

of r ,  folding may occur and the components again 

get correlated. These goals are intuitively reasonable 

for m = 2, while the generalization to a larger m is 

not always straightforward as we show below. Many 

methods based on geometric properties seek the r 

that makes the attractor cover the largest region or 

expands it maximally from the diagonal [14,12,15]. 

However, the goal of stretching the attractor from the 

diagonal to get "good" reconstructions is based rather 

on empirical than theoretical grounds. In theory, a 

good reconstruction means near topological equiva- 

lence of the reconstructed attractor to the original one. 

One way to assess topological equivalence is to check 

whether stretching and folding are proportionally the 

same in the two attractors. In practice, this is done 

by checking v+hether the interdistances of points re- 

main proportionally the same in the two attractors or, 
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Fig. I. Correlation diagrams of the distances of points on the 

original attractor (x-axis) and on the reconstructed attractor 
(y-axis) for the Lorenz system. Results are shown for 10% of 
the 20000 data points sampled with rs = 0.01 time units. For 
each point on the original attractor the distance fi'om its nearest 
neighbor is computed and keeping track of the lime indices 
the distance of the corresponding points on the reconstructed 
attractor is then found. The attractor is reconstructed with MOD, 

m = 3 a n d p = !  i n ( a ) , p =  18 in (b), and p = g in (c). 

alternatively, by checking whether nearby points on 

the original attractor remain relatively close on the 

reconstructed attractor. This last property is not al- 

ways preserved when we expand the attractor from 

the diagonal, even for proper expansions according to 

the two above criteria. We show this for the Lorenz 

system [ 16] in Fig. 1. Fig. l(a) shows that when r is 

very small (r = 0.01) the reconstructed attractor lies 

almost on the diagonal and the points are generally 
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getting closer than the corresponding points on the 

original attractor. One expects that this problem is re- 

solved when we expand the attractor sufficiently (r = 

0.18 which gives the minimum of the so-called mu- 

tual information - see below). But the opposite phe- 

nomenon is observed instead as shown in Fig. l(b), i.e. 

points that are close on the original attractor become 

more distant on the reconstructed attractor. Further, 

we show in Fig. l(c) that the distances are more bal- 

anced for the reconstruction with a comparably small 

value of r (r = 0.09) which is not apparent from the 

two above criteria. The point we want to infer from 

this remark is that there is not necessarily a mean- 

ingful answer to the question: Why should we seek 

the r that gives sufficient expansion from the diago- 

nal? Expansion per se does not guarantee a configura- 

tion of the reconstructed attractor closer to the original 

one. 

Concerning the second criterion, the estimates for 

are based either on linear decorrelation, choosing 

t" such that R(T) --- 0, where R is the autocorre- 

lation function, 3 or general decorrelation choosing 

r to be the first minimum of the mutual informa- 

tion I (~') as developed in [ 18]. These two methods 

guarantee decorrelation (linear or general) between 

two successive components xk and xk+~ of the re- 

constructed vector xk. But even if xk and xk+r are 

uncorrelated and Xk+T and Xk+2r are uncorrelated, 

it does not follow that xk and xk+2r are also un- 

correlated. As an example, we show in Fig.2 R 

and I for a time series from the Taylor--Couette 

experiment in the chaotic regime [19] which ex- 

hibits strong decorrelation for some lag r and strong 

correlation for lag 2r. We believe that the behav- 

ior of the correlation functions in Fig. 2 is often 

met in applications since chaotic time series from 

low-dimensional systems frequently show pseudo- 

periodicities. 

One may be confronted also with other problems 

attempting to estimate 3: the autocorrelation function 

may get approximately zero only after an extremely 

long time, as for the x-variable of the Lorenz system, 

3Other values of R(z) such as R(r)  = l / e  have also been 

suggested but used little in applications, e.g. see [17]. 
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Fig. 2. Autocorrelation function R(r) in (a) and mutual informa- 

tion l ( r )  in (b) for a time series of 10000 data measured from 

the Taylor-Couette experiment in the chaotic regime. Note the 

approximate matching of the zeros of R to minimums of ! and 

the extremes of R to maximums of ! indicating a dominant lin- 

ear correlation. Moreover, note that the first decorrelation time 

is for p -'- 20 while for p "-, 40 there is maximum correlation. 

or the mutual information may not have a clear min- 

imum, as is the case with the physiological data used 

below. 

2.2. Comments on the selection of  the embedding 

dimension 

The standard way to find m is to use some crite- 

rion which the geometry of the attractor must meet 

and check for which embedding dimension m* this is 
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fulfilled as the attractor is embedded in successively 

higher dimensional spaces. Then m* is the lowest em- 

bedding dimension to be used for reconstruction. Ob- 

viously, in estimating m, r is fixed when MOD is used. 

Among different geometrical criteria (including 

also the correlation dimension), the most popular 

seems to be the method of "False Nearest Neighbors" 

(FNN) developed in [20] and enhanced recently in 

[21]. The rationale behind this method has also been 

discussed in [22,23]. This criterion concerns the fun- 

damental condition of no self-intersections of the 

reconstructed attractor. The original attractor lies on a 

smooth manifold of dimension [d]. Self-intersections 

of the reconstructed attractor indicate that it does not 

lie on a smooth manifold and thus the reconstruction 

is not successful. The condition of no self-intersection 

states that if the attractor is to be reconstructed suc- 

cessfully in R m, then all neighbor points in R m should 

also be neighbors in R m+l. The method checks the 

neighbors in successively higher embedding dimen- 

sions until it finds only a negligible number of false 

neighbors when increasing the dimension from m* 

to m* + 1. This m* is chosen as the lowest embed- 

ding dimension that gives reconstructions without 

self-intersections. However, the fact that the distances 

between neighboring points do not change when mea- 

sured in ~m and in R re+m, does not necessarily mean 

that these points are also true neighbors on the original 

attractor. 

Specifically, one has to consider the interdepen- 

dence of m and r. The estimation of m depends on the 

selection of r (p) as we show in Fig. 3 for the Lorenz 

sy stem. The proportion of false nearest neighbors does 

not fall to zero for the same m as r increases but rather 

the estimated m increases slowly with 1:. Thus, the es- 

timation of m is somewhat arbitrary unless the method 

finds the same m for a sufficiently large range of r val- 

ues. For a very small r, there is a typical underestima- 

tion of m. Such a r forces the attractor to lie near the 

diagonal in R m. Increasing m by one has little effect 

on the geometry of the attractor as it will still lie near 

the diagonal of R m+l. All the points will apparently 

look as true neighbors leading to a wrong conclusion. 

The method is very sensitive to noise giving larger 

values of m for noisy data as pointed in [23,24]. In 
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Fig. 3. Plot of the percent of false neighbors detected as the 
embedding dimension is increased for different values of r. 

The algorithm of FNN has been implemented for a time series 

of 10000 samples of the x-variable of the Lorenz system. 
The different curves correspond to the time delays given in 

the legend as multiple of the sampling time rs = 0.01. The 
horizontal stippled line shows the ! % level of false neighbors 
which is often used as the discriminative threshold value. 

fact, the effect of noise is greater for larger values of 

r. This is a serious drawback of the method because in 

real applications we are led to choose a larger m than 

we really need. This problem is particularly relevant 

for MOD, where the projections are chosen without 

regard to noise filtering which is partly accomplished 

using SSA-reconstructions [9]. 

Another method that has been suggested to esti- 

mate m is based on truncating the singular spectrum 

of SSA (for details see [7,25]). In fact, the idea be- 

hind this linear approach is, given the hyperspace of 

dimension p, to find the smallest subspace (hyper- 

plane) that approximately bounds the attractor. This 

subspace is spanned by the eigenvectors correspond- 

ing to the largest eigenvalues of the sample covadance 

matrix, i.e. the directions where the attractor has the 

largest variance. However, a strange attractor lies on a 

manifold which occupies all directions in the embed- 

ded space (very much like noi~) and a clear cut-off is 

not expected [26]. On the other hand, if this approach 

is implemented locally it can reveal the dimension of 

the tangent space to the manifold and the averaging 

over a grid of local regions can give a robust estimate 

of m as shown in [27]. However, this estimate depends 
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on the choice of the dimension p of the hyperspace, 

i.e. the time window length rw. 

From these remarks we conclude that many of the 

existing methods for estimating r and m are based on 

somewhat arbitrary criteria and do not always guar- 

antee good reconstructions. The performance depends 

on the problem at hand. 

3. The time window length (rw) 

When analysing a time series one typically be- 

gins with an initial reconstruction, and implements 

a non-linear method to this and other modified 

reconstructions until a stable result is attained. Here 

we concentrate on the time window length rw to 

determine the reconstruction. 

There is probably no uniquely best way to choose 

an initial rw. We will argue that it may be reason- 

able to set rw equal to the "memory" of the system, 

i.e. the measurement record needed to determine fu- 

ture observations as reliably as possible. For practi- 

cal reasons, one would like the shortest possible rw. 

Geometrically, one could associate such a rw with 

the mean orbital period rp, i.e. the mean time be- 

tween two consecutive visits to a local neighborhood. 

For low-dimensional chaotic systems showing pseudo- 

periodicity, the mean orbital period could naturally 

be associated with the mean time between visiting a 

Poincar6 section. 

For several chaotic systems, rp carries significant in- 

tbrmation about the dynamics. For systems that gener- 

ate attractors with a sheet-like structure in R 3 (see for 

example [28]), it can be shown that the Poincar6 sec- 

tion gives points that in a scatter plot lie approximately 

on a curve, which is the one-dimensional manifold 

that embeds an attractor very much like the strange 

attractor of the logistic map. The same result may be 

obtained by selecting the points from the extremes 

or maxima o.f the time series directly instead of us- 

ing reconstruction and Poincar6 section. This has been 

shown for the Lorenz system [29] and the R0ssler sys- 

tem [30]. We found similar results by studying the 

oscillations of other systems with sheet-like structure, 

such as the Rabinovich-Fabrikant system [31] and the 

Mackey Glass system for A = 17 [32] (for details of 

this system see below). 

As indicated above, the procedure suggested here 

requires only an initial estimate of rw which is subse- 

quently adjusted. Given only a set of observations, a 

very simple solution is to select the initial rw as the 

mean time between peaks (tbp) of the original time 

series. In general, tbp will be less than rp, and thus 

it is natural to consider tbp a lower limit. For a low- 

dimensional system, e.g. defined asymptotically in R 3, 

it is reasonable to assume that an orbital period corre- 

sponds to an oscillation when projected down to the 

observed axis, and thus rp = tbp. For more compli- 

cated systems in higher-dimensional spaces, a com- 

plete orbit may form more than one oscillation. !n that 

case, rp should be estimated as the average over a pat- 

tern of oscillations. 

The equation of Mackey Glass [32] 

0 . 2 x ( t -  A) 
.~ = + O.lx(t) ( l)  

1 + [ x ( t - / t ) ] 1 0  

is a good example to show how one can find lower 

limits for rw from the oscillations of the time series. 

This time delay differential equation was discretized 

following the iterative scheme in [331, and segments 

of the time series for different zi are shown in Fig. 4 

with solid grey lines. 

For zi = 17, the attractor is low-dimensional 

(d - 2 [131) and an orbital period can be assumed 

to correspond to a single oscillation (solid grey line 

in Fig. 4(a)). Then rp can be easily estimated as tbp 

after filtering the time series to avoid close peaks 

that do not correspond to distinct oscillations (stip- 

pled black line in Fig.4(a)), and thus for A = 17 

we can conclude that rw > rp = tbp _ 50 time 

units. 

For A = 30, the attractor has a higher-dimension 

(d ~_ 3 [13]) and as Fig.4(b) shows, in many parts 

of the time series there are systematic variations over 

a pattern of oscillations (often comprised of a small 

and a large oscillation), approximately repeating itself. 

Filtering gives a new time series with one peak for 

each such pattern, facilitating the computation of rp 

from the tbp of the filtered time series giving rw > 

rp ~ 100. 
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Fig. 4. The solid grey lines in all three figures are for segments 
of the Mackey Glass time series for different it and the stippled 
lines after smoothing with a k-FIR filter. (a) A = 17, ~'s = 1, 
and k = 10. (b) A = 30, rs = 1, and k = 30. (c) Zl = 100, 
rs = 1, and k = 80. 

For A = 1 O0 in Fig. 4(c), the attractor is much more 

complicated (d _~ 7.1 [33]) and therefore it is difficult 

to observe patterns of oscillations that repeat them- 

selves (but not as difficult as to make Poincar6 sec- 

tions). However, in some particular parts of ~he time 

series, consecutive similar patterns may be observed 

showing implicit conrespondence to orbital periods 

(see Fig. 4(c)). Hard filtering allows us even to assign a 

peak to each pattern giving rw ___ rp _ 330. Note that 

filtering is performed only in order to discern the rep- 

resentative peaks, especially for higher-dimensional 

systems. Noisy time series should be filtered anyway, 

before estimating rp to avoid the fake peaks that are 

due to noise. 

Up to this point we have assumed that the measure- 

ment function is well defined according to Takens' 

generic assumptions, so that the oscillations in the ob- 

served time series do reflect the periodic-like orbits of 

the original system and vice versa. However, this is 

not always the case and as an example of a "good" and 

"bad" mapping let us consider the x- and z-variable 

of the R6ssler system (see Fig. 5). In the time series of 

the x-variable, the oscillations represent the real orbits 

while in the time series of the z-variable the orbital 

periods can hardly be recognized. In the latter case, an 

analysis will fail to identify the correct attributes of the 

system unless a very large amount of data is provided 

to compensate for the bad mapping. We found, for ex- 

ample, that for measurements over the same epoch, the 

correlation dimension of the R6ssler attractor was well 

estimated by the x-measurements but significantly un- 

derestimated by the z-measurements due to the "knee" 

phenomenon we discuss below. 

We here suggest working directly in the time do- 

main tn e~timate rw instead of considering periods 

corresponding to dominant frequencies as suggested 

by [7,10]. Chaotic data will in general not show well 

defined frequency peaks. Other suggestions regard- 

ing rw have been presented in the literature [8,1 !, 12]. 

Some attempted to estimate rw based on decorrelation 

criteria from the autocorrelation function and the mu- 

tual information [9,34,35]. In one paper treating this 

issue, [9], lower and upper limits for rw were based 

on the autocorrelation function and it was proposed to 

set rc < rw < 4rc, where rc is the correlation time 
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Fig. 5. (a) A trajectory of the R6ssler system in IR 3. (b) Mea- 
surements of the z-variable of the trajectory. (c) Measurements 
of the x-variable of the trajectory. Note that the oscillations of 
the time series in (b) do not reveal all orbital periods associated 
with the trajectory while in (c) they do. 

defined as the delay where the autocorrelation func- 

tion is 1/e. This lower limit is much smaller than rp 

for most systems. An upper limit for Tw was given in 

[11] by 2x/3(x(°)) / (x( l ) ) ,  where (x (°)) and (x Cl)) are 

the mean values of the time series and its first deriva- 

tive, respectively. We found that for many systems this 

upper limit is also smaller than rp. 

4 .  C o r r e l a t i o n  d i m e n s i o n  a n d  ~w 

We now discuss the use of rw in the time series 

analysis. A natural procedure is to start with an initial 

tw and perform calculations - in this case computing 

the correlation dimension v - for a sufficiently large m. 

Then rw is modified, the calculations repeated, and so 

on. To be able to conclude that a valid result has been 

obtained, reasonably stable values have to be found 

over a range of rw values. 

First we define the correlation integral C(r) ,  a statis- 

tic that measures the fraction of points on the attractor 

being less than r units apart 

1 N 

C(r)  = N ( N  - I) ~ O(r  - - [ I X /  --  Xj I I ) ,  
i . j=l,l i- j l>K 

(2) 

where O(x) is the Heaviside function, defined as 

O(x) - 1 for x >_ 0 and O(x) = 0 for x < 0, and K 

is used to omit time-correlated points in the compu- 

tation of C(r) .  The Euclidean norm is used because 

it gives more robust results in the presence of noise 

[36]. For deterministic systems, the correlation inte- 

gral scales as C(r)  ~. r v, where theoretically r - ,  0. 

Preferably, v should be estimated from the slope of 

the graph of log C(r)  against log r over a sufficient 

range [ri, r2] of small interdistances. However, due 

to noise or to limited data, an approximately constant 

slope may be maintained only for larger values of 

rl and re. We chose re/r l  = 4 for the length of the 

interval, and searched over all such intervals to find 

the one where the computed v varied least. 4 The 

mean value of the slope in this interval is the estimated 

4To  compute the slope for each r we used the best fit slope 

for three values, the current r ,  the previous and the next. 
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v, and it is always reported together with the standard 

deviation (shown with bars in the following figures). 

A key observation is that the estimate of the cor- 

relation dimension of a chaotic time series (clean or 

noisy) is approximately the same under variations of 

the parameters p and in while keeping rw = (m - l)p 
fixed (assuming that m is always larger than the di- 

mension of the attractor). Only few workers seem to 

have thought along these lines [8-10,12]. The typical 

features are demonstrated in Fig. 6 which shows the 

correlation dimension estimates for different rw for 

clean and noisy data from the Lorenz system. Note 

how the grey and black curves match for the clean 

data in Fig. 6(a). They correspond to the same rw but 

with p = 2 and p = 10, respectively. Once rw, and 

thus the p-dimensional hyperspace, has been deter- 

mined, the particular projection chosen is not criti- 

cal as long as the projection is sufficient, i.e. m > v 

and p ~ ( p -  l ) / ( m -  1) --= r w / ( m -  1). This is 

so, because the interdistances of points remain sta- 

tistically the same in IRP and in R m. Considering all 

the coordinates or only the selected subset has the 

same effect on the computation of the interdistance 

as long as a suitable norm is used, e.g. the Euclidean 

norm [36]. 

When white noise is added to the clean Lorenz data 

(Fig. 6(b)) the two curves still match but now show 

an increasing trend with rw. The estimation of v is 

more sensitive to the choice of rw in the presence of 

noise. 

Results for the estimation of v from noisy data or 

few data (compared to the minimum number of data 

required) should be interpreted with caution because 

they are derived from scaling properties based on large 

r. For smaller r, the scaling is corrupted by noise 

or distorted due to few neighbors in state space. In 

the case of attractors with different scaling properties 

for small and large r (a phenomenon referred to as a 

"knee" [37]), erroneous estimates are obtained from 

the scaling for large r when noise or insufficient data 

length mask the correct scaling for small r. Such a phe- 

nomenon is observed for the z-measurements of the 

Rrssler system mentioned before. The correct scaling 

(v _~ 2.01) can be only detected for very small in- 

terpoint distances r requiring a very large number of 
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Fig. 6. Plot of the correlation dimension estimate v for MOD 
reconstruction with different rw for time series of the x-variable 
of the Lorenz system. The bars denote the standard deviation 
of the estimate. In each figure the grey curve with grey error 
bars correspond to p = 2 while the black ones to p = 10. In 
(a) the estimation is based on the clean time series of 4000 
data sampled with rs = 0.02 and in (b) on the same data but 
corrupted with 5% noise. The horizontal stippled line shows the 
correct plateau for v = 2.06 and the shaded area the confidence 
interval of 4-5% of the correct v. 

data, otherwise another scaling is detected for larger 

r, underestimating v. 

The estimation of v, even when it is constrained 

only to large r, is not straightforward as it varies with 

rw and a typical situation is shown in Fig. 7 for Lorenz 

system. Too small rw (rw = 20) or too large rw (rw = 

160) gives uncertain and wrong estimates while for 

rw larger than but still close to rp = 50 (here rw = 
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Thus when estimating v from a limited number of 

noisy data we seek the range of rw that gives clear 

scaling for large r keeping in mind that the results are 

still ambiguous due to the possible different scaling for 

small and inaccessible r (the "knee" phenomenon). In 

the sequel, we consider in more detail simulated data 

corrupted with noise as well as real data. 

4.1. Noisy synthetic data 

0.5 

-°1 -o.s o 0.5 1 
log r 

Fig. 7. Plot of the slope of the graph log C(r) against log r for 

the time series of 4000 data from the Lorenz system, sampled 

with rs = 0.02 and with 3% additive noise. The three curves 

are derived from reconstructions with p = 10 and m = 3 

(minimum embedding dimension), m = 9 and m = 17 and are 

identified by the length of rw marked on the figure. The scaling 

interval of least variation is denoted with the black solid line 

segment for each slope curve. The grey area shows roughly the 

region where interpoint distances are corrupted by noise leaving 
a small interval of r to estimate v and making the choice of rw 
critical. The horizoatal stippled line shows the correct plateau 
for v ~ 2.06. 

80) 5 the scaling is clear indicating a reliable estimate. 

On the other hand, the range of suitable rw depends 

on the length of the time series: the longer the time 

series, the broader the limits for rw. Noise also restricts 

rw from above because the slope curves derived for 

increasing rw do not saturate. Setting a criterion for the 

acceptance of the u-estimate, e.g. 4-5% of the correct 

value, an upper limit rn for the range of rw may be 

found which varies with the amplitude of the noise 

(e.g. rn - 110 for Fig. 6(b)). It is thus expected that 

the scaling gets distorted as rw increases over rn giving 

less confident estimates as shown with the slope curve 

for rw = 160 in Fig. 7. So, when the time series is 

corrupted with noise, the v-estimates are more biased 

and the interval [rp, rnl of the accepted rw shrinks 

from above, and it may be no reliable estimate of v 

for any rw if me impact of noise is so large that rn 

decreases to the level of rp. 

5 For this time series the periods of the oscillations vary a 
lot and thus the estimate rp has large variance and does not 
completely indicate the "memory of the system". 

Most of the time series we use here has length 

N = 4000 adjusting the sampling time rs accord- 

ingly in order to have enough oscillations as well as 

enough samples for each oscillation. It follows that 

the number of data points is not the best measure of 

the record length. We therefore also quote the number 

of rp within the record, denoted #tp, together with the 

number of samples in rp. Note that under changes of 

the reconstruction parameters or the noise amplitudes, 

the values rl and r2 of the scaling interval [rl, r2] that 

gives v-estimates with least variance may change as 

well. 

Results for the time series from the x-variable of 

the Lorenz system with rs = 0.02 and rp _ 50 and 

#rp 2 80 were shown in Fig. 6. For the clean data, 

legitimate estimates of u (within 4-5% of the correct 

v = 2.06 shown as a shaded zone in the figure) were 

obtained for a large interval of rw values beginning 

even lower than rp. As rw is increased long beyond 

rp the estimates increase somewhat and have larger 

variance. When 5% white Gaussian noise is added to 

these data, the correlation dimension is underestimated 

significantly for rw < ~'p, and for rw > rn - 110, v is 

overestimated with larger variance. 

The attractor derived from the x-variable of the 

R~issler system has a simpler structure than the Lorenz 

attractor and about the same dimension. However, es- 

timates of v are more dependent on the reconstruction 

parameters and the amplitude of the noise. The time 

series is sampled with rs = 0.1 that gives 60 samples 

in each oscillation and about 66 oscillations, which 

are comparable to the rp and #rp for the Lorenz data. 

In Fig. 8, the v-estimates are plotted against rw for the 

clean and noisy R6ssler data displayed with grey and 

black error bars, respectively, together with the 4-5%- 
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zone of  the accepted range of  v. Here, as well as in 

the following estimations, we keep p fixed (p = 20 

in Fig. 8) and vary m. This is done for convenience 

sint,: the results are essentially the same for other com- 

binations of  p and m (refer back to Fig. 6). For the 

clean data, reasonable and confident v-estimates can 

be found for a small range of  rp = 60 < rw < 140 

(the grey error bars in the -l-5%-zone in the figure). 

When just  2% white noise is added to these data, the 

small horizontal plateau seems to disappear (the black 

line in Fig. 8) and only v-estimates close to rp and 

above can be accepted, which is in accordance with 

the proposed rw. 

The Mackey Glass attractor for za - 17 has the 

same dimensionality as the two last attractors but gives 

less biased estimates of v. For rs = 1, we found rp = 

50 and #rp _'2 80 from single oscillations. In Fig. 9, 

results from the estimation of  v are presented in the 

same way as for the R/Sssler data. For the clean data, a 

very reliable v-estimat:e is derived over a large interval 

of  rw, [20,160] (from the +5%-criterion).  When 5% 

noise is added, confident estimates are obtained only 

close to rp, and when 10% noise is added, reasonable 

estimates are only obtained for rw -~ rp. 

When Zi -- 30, the dimension of  the attractor in- 

creases to v _~ 3 [13]. However, using N = 4000 and 

rs = 2 an underestimate (v " 2.5) was found. For this 

rs, the rp estimated with the mean time for patterns of  

two oscillations (cf. Section 3) is kept down to rp = 

50 and #rp "- 80, as for z~ = 17. The results from 

estimation of  v for 

10% noise (shown 

as a lower limit for 

clean a~d noisy data with 5% and 

in Fig 10(a)) assert the use of  rp 

rw and the decrease of  the iqterval 

of  accepted values for rw from above and towards rp 

as the amplitude of  the added noise is increased. The 

underestimation of  v is due to the limited number  of  

data. This attractor shows a "knee"  structure, i.e. it has 

also another scaling (the correct v _ 3.0) for small r 

which can be detected only when many data are ac- 

cumulated as shown in Fig. 10(b). The slope for too 

small Zw (Zw = 24) underestimates v while for Zw > 

rp the correct scaling is achieved (shown with the two 

curves for rw = 48 and tw = 168 in the figure). Note 

that these curves form a second scaling for larger r. 

For Zi = 100, the Mackey Glass attractor gets high- 

dimensional with v "- 7 [33]. Our  results show a 

slightly lower v with as few as N = 4000. We sam- 
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Fig. 8. Plot of  the correlation dimension estimate v for MOD 

reconstruction with different rw for time series of the x-variable 
of the ROssler system. The grey curve with grey error bars 
corresponds to the clean data and the black to the same data 
corrupted with 2% noise. Here, N = 4000, rs = 0.1 and 
p = 20. The horizontal stippled line shows the correct plateau 
for v = 2.01 and the shaded area the confidence interval of 
4.5% of the correct v. 
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Fig. 9. Plot of the correlation dimension estimate v for MOD 
reconstruction with different rw for time series of the Mackey 
Glass equation for A = 17. The solid grey curve with solid 
grey error bars corresponds to the clean data, the solid black to 
the noisy data with 5% noise and the stippled grey to the noisy 
data with 10% noise. Here, N = 4000, rs = 1 and p = 12. The 
horizontal stippled line shows the correct plateau for v = 2 and 
the shaded area the confidence interval of 4-5% of the correct v. 
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Fig. 10. (a) Plot of the correlation dimension estimate t, for 
MOD reconstruction with different rw for time series of the 
Mackey Glass e~uation for A -- 30. The solid grey curve with 
solid grey error bars corresponds to the clean data, the solid 
black to the noisy data with 5% noise and the stippled grey to 
the noisy data with 10% noise. Here. N - 4000, rs -- 2 and 
p = 12. The horizontal stippled line shows the correct plateau 
for t, _~ 3.0 and the shaded area the confidence interval of 4.5% 
of the underestimated t, ~_ 2.5. (b) Plot of the slope of the 
graph log C(r) against log r for the same type of data but for 
N - 30 000. The three curves are derived from reconstructions 
with p -- 12 and m - 3 ,  m - 6 a n d  m - 17 and are identified 
by the length of rw marked on the figure. The scaling interval 
of least variation is denoted with the black solid line segment 
for each slope curve. The two horizontal stippled lines show 
the two scalings of this attractor. 

pied the discretized system with rs = 10 in order to 

have enough, but not too many, samples within the es- 

timated mean orbital period, rp ~_ 33, giving as many 

as #rp _~ 120 repetitions of the oscillation pattern 

10 
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Fig. 11. Plot of the correlation dimension estimate u for MOD 
reconstruction with different rw for time series of the Mackey 
Glass equation for A -- !00. The solid grey curve with solid 
grey error bars corresponds to the clean data, the solid black 
to the noisy data with 5% noise and the stippled grey to the 
noisy data with 10% noise. Here, N -- 4000, rs - 1 0  and 
p - 4 .  The horizontal stippled line shows the correct plateau 
for I, _~ 7.1 and the shaded area the confidence interval of 4-5% 
of the correct t,. 

that is assumed to correspond to an orbit of the un- 

derlying system. We deliberately keep the data record 

down to N -- 4000 in order to test our procedure for 

short time series (compared to the high dimensional- 

ity of the system). The estimated v is an increasing 

function of rw both in values and uncertainty, show- 

ing some stability in value and in variance for rp " 

30 _< rw _< 45. This is, however, an underestimation 

of v, possibly due to insufficient data (see Fig. 11). 

Adding 5% noise does not alter the v-estimates but 

just increases moderately the uncertainty of the esti- 

mates; when 10% noise is added, the v-estimates for 

rw > rp vary significantly from those of the clean 

data. 

These findings, as well as results for the Rabinovich- 

Fabrikant system [31], and the four-dimensional 

R6ssler Hyperchaos system [38], not shown here, 

confirm our suggestion for estimating rw with rp 

giving the best estimates of v. If the effect of 

noise or limited length of the time series is such 

that estimation of v can be made only for a short 

range of ~:w values, this is close to and little larger 

than rp. 
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4.2. Real data 

In addition to simulated data, observations from 

physically controlled experiments on low-dimensional 

deterministic processes should be used to assess the 

validity of non-linear methods. The noise level is often 

insignificant in such cases. Here we use a time series 

of N = 4000 samples from the Taylor-Couette exper- 

iment in the chaotic regime. We estimated rp _~ 75 

and #rp ~_ 54, but the results for the estimation of v 

do not change for longer time records covering more 

oscillations (increasing either N or rs if we insist on 

keeping N small). Contrary to most of the previous re- 

sults from simulated data with noise, the estimated v 

varies little with rw as shown in Fig. 12. For all rw > 

rp the estimates are more or less fixed to v "- 2.6, 

approximately the value given in the literature [ 19], 

with a slowly increasing uncertainty for rw > 150. 

This indicates that there is little noise in the data and 

the dimension of the chaotic attractor can be identified 

even with large rw (up to 2rp), so that the choice of rw 

is not critical. However, when we add noise to these 

data, to simulate a larger experimental uncertainty, the 

estimates have as expected a larger variance, but for 

rw close to rp the estimates are the same as for the 

original time series. For larger rw there is a systematic 

overestimation of v, showing again that the optimal 

rw for correct estimation is close to rp. 

We now turn to observational data that are not 

output of a controlled experiment, and concentrate 

on physiological data of the electroencephalogram 

(Fig. 13) from epileptic patients (e.g. see [39]). Di- 

mension estimation of physiological data has been a 

hot subject in the last years. However, the results to 

date are not promising, partly because different pro- 

cedures are often used giving different v-estimates for 

the same type of data, and partly because these data 

do not seem to share the same nice chaotic properties 

as the well-studied simulated data [40]. Previous work 

on v-estimation of EEG epileptic signals reported 

low-dimensional attractors of varying dimension be- 

tween 2 and 6, according to the physiological nature 

of the data, the data acquisition process, the computa- 

tional scheme of estimation, as well as the parameter 

setting for reconstruction [41-44]. 
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Fig. 12. Plot of the correlation dimension estimate v for 
MOD reconstruction with different rw for time series from the 
Taylor--Couette experiment in the chaotic regime. The solid 
grey curve with solid grey error bars correspond to the origi- 
nal data, the solid black to the original data corrupted with 5% 
noise and the stippled grey to the original data corrupted with 
10% noise. Here, p = 20 is chosen for reconstructions varying 
with m. The horizontal stippled line shows the correct plateau 
for v _~ 2.6 and the shaded area the confidence interval of 4-5% 
of the correct v. 

Here, we use a short time series from an epileptic 

seizure of N = 3400 data sampled with rs = 0.005 s. 

The oscillations of the time series evolve irregularly, 

so the estimated tbp ~_ 30 does not seem to be directly 

related to rp. With a more thorough examination 

of the sequence of oscillations, we can distinguish 

patterns of oscillations that may correspond to or- 

bital periods of the potential underlying attractor. In 

Fig. 13(a) we show a part of the time series where 

such patterns are apparent. After severe filtering, the 

time corresponding to each pattern can be estimated 

by the tbp for the filtered time series giving rp -~ 110. 

Other parts of the time series are not so regular but 

still patterns of about the same time length can be 

identified qualitatively. The standard estimation pro- 

cedure applied to these data gave no clear saturation 

of the v-estimate for increasing rw, (grey curve in 

Fig. 13(b)). The estimate increases with increasing 

variance showing some flatness for a small region of 

values of rw around 100. In fact, for rw > 100 there 

is scaling but over a shorter interval of interdistances 

[rl ,r2] not satisfying the more stringent criterion 

r2/ri = 4. Relaxing this to r2/ri = 2, which has 
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previously been used for EEG signals [45], a clear 

saturation with v ~ 4 is established for rw > 100, 

though with increasing variance (Fig. 13(b)). Thus, 

the optimal choice of ~'w for the computation of v 

should be around 100, which is close to rp = 110, the 

estimate of rw from the oscillations of the time series. 

Note that these results are not general for epilep- 

tic EEG signals. Other EEG data showed very poor 

scaling and no saturation for increasing rw even for 

r2/rl = 2 [46] giving no valid estimate for v. In these 

cases, no patterns of oscillations could be observed. 

5. Conclusions 

Our analysis in Section 2 showed that when one re- 

constructs with MOD, effective techniques for deter- 

mining the delay time ~" and the lowest embedding di- 

mension m are lacking. Concerning 3, there is no stan- 

dard indication of which value is the most appropriate. 

In fact, if we allow m to be very large, we can even use 

a very small r in the reconstruction. It seems that in- 

stead of relying on estimates for r (such as the zero of 

the autocorrelation function or the minimum of mutual 

information) and m (such as the estimate from false 

nearest neighbors) one could rather employ "trial and 

error". In fact, this seems to be common in practice. 

A more systematic and less tedious way to make 

reconstructions has been proposed here focusing on 

the time window length rw. We argued that rw is the 

first parameter to be determined when reconstructing 

the state space and suggested that it should be ap- 

proximated by the mean orbital period rp. For low- 

dimensional attractors, rp is set to the time between 

peaks tbp, easily calculated by averaging the time be- 

tween successive maxima of the time series. Noisy 

time series may be filtered before determining tbp. For 

higher-dimensional and more complicated systems, 

the mean orbital period may be found from coherent 

patterns of oscillations. Computationally, this can be 

done measuring the "period" of such oscillating pat- 

terns, or applying strict filtering so that each pattern 

becomes one oscillation, and then compute the tbp. 

With the estimation of rw and a sufficiently large 

m, the reconstruction is completely defined and can be 
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Fig. 13. (a) Segment of the EEG time series of an epileptic 
seizure sampled with rs = 0.005 s (solid grey line) and after 
smoothing with a 40 point FIR filter (stippled black line). 
(b) Plot of the correlation dimension estimate v for MOD 
reconstruction with different rw for EEG time series in epileptic 
seizure. The grey curve with grey error bars correspond to 
estimation over a scaling interval [rl, r2] with r2/rl = 4 while 
the black curve with black error bars correspond to r 2 / r  I - -  2. 
The other parameters are N = 3400, rs = 0.005 and p = 10. 

used |br further analysis of the time series. Regarding 

the correlation dimension, an initial estimate may be 

derived with rw = rp, and then checking whether the 

same estimate is obtained when rw is increased. For 

noisy data, the estimate remains the same only for 

rw close to ¢p, as noise sets an upper limit to rw. 

The proposed parameter setting turned out to give the 

most confident v-estimates for all data analyzed where 

estimation was possible. 
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