
State Space Reduction in
the Maude-NRL Protocol Analyzer

Santiago Escobar1, Catherine Meadows2, and José Meseguer3

1 Universidad Politécnica de Valencia, Spain
sescobar@dsic.upv.es

2 Naval Research Laboratory, Washington, DC, USA
meadows@itd.nrl.navy.mil

3 University of Illinois at Urbana-Champaign, USA
meseguer@cs.uiuc.edu

Abstract. The Maude-NRL Protocol Analyzer (Maude-NPA) is a tool
and inference system for reasoning about the security of cryptographic
protocols in which the cryptosystems satisfy different equational prop-
erties. It both extends and provides a formal framework for the original
NRL Protocol Analyzer, which supported equational reasoning in a more
limited way. Maude-NPA supports a wide variety of algebraic properties
that includes many crypto-systems of interest such as, for example, one-
time pads and Diffie-Hellman. Maude-NPA, like the original NPA, looks
for attacks by searching backwards from an insecure attack state, and
assumes an unbounded number of sessions. Because of the unbounded
number of sessions and the support for different equational theories, it
is necessary to develop ways of reducing the search space and avoiding
infinite search paths. As a result, we have developed a number of state
space reduction techniques. In order for the techniques to prove useful,
they need not only to speed up the search, but should not violate sound-
ness so that failure to find attacks still guarantees security. In this paper
we describe the state space reduction techniques we use. We also pro-
vide soundness proofs, and experimental evaluations of their effect on
the performance of Maude-NPA.

1 Introduction

The Maude-NPA is a tool and inference system for reasoning about the security
of cryptographic protocols in which the cryptosystems satisfy different equa-
tional properties. The tool handles searches in the unbounded session model,
and thus can be used to provide proofs of security as well as to search for at-
tacks. It is the next generation of the NRL Protocol Analyzer [11], a tool that
supported limited equational reasoning and was successfully applied to the anal-
ysis of many different protocols. In Maude-NPA we improve on the original NPA
in three ways. First of all, unlike NPA, which required considerable interaction
with the user, Maude-NPA is completely automated. Secondly, its inference sys-
tem has a formal basis in terms of rewriting logic and narrowing, which allows

us to provide proofs of soundness and completeness [7]. Finally, the tool’s infer-
ence system supports reasoning modulo the algebraic properties of cryptographic
and other functions. Such algebraic properties are expressed as equational the-
ories whose equations are confluent, coherent, and terminating modulo equa-
tional axioms such as commutativity (C), associativity-commutativity (AC),
or associativity-commutativity plus identity (ACU) of some function symbols
[6]. The Maude-NPA has then both dedicated and generic methods for solving
unification problems in such theories [5,4], which under appropriate checkable
conditions yield finitary unification algorithms [4].

Since Maude-NPA allows reasoning in the unbounded session model, and
because it allows reasoning about different equational theories (which typically
generate many more solutions to unification problems than syntactic unifica-
tion, leading to bigger state spaces), it is necessary to find ways of pruning the
search space in order to prevent infinite or overwhelmingly large search spaces.
One technique for preventing infinite searches is the generation of formal gram-
mars describing terms unreachable by the intruder described in [11,7]. However,
grammars do not prune out all infinite searches, and there is a need for other
techniques. Moreover, even when a search space is finite it may still be neces-
sary to reduce it to a manageable size, and state space reduction techniques for
doing that will be necessary. In this paper we describe some of the major state
space reduction techniques that we have recently implemented in Maude-NPA,
and provide soundness proofs and experimental evaluations demonstrating an
average state-space size reduction of 96% (i.e., the average size of the reduced
state space is 4% of that of the original one) in the examples we have evaluated.
Furthermore, we show our combined techniques effective in obtaining a finite
state space for all protocols in our experiments.

We first describe the model of computation used by the Maude-NPA and
how we obtain a first state-space reduction by reducing the number of variables
present in a state. Also, we briefly describe how automatically generated gram-
mars provide a second reduction that cuts down the search space. The additional
state space reduction techniques presented in this paper are: (i) giving priority
to input messages in strands, (ii) early detection of inconsistent states (never
reaching an initial state), (iii) a relation of transition subsumption (to discard
transitions and states already being processed in another part of the search
space), and (iv) the super lazy intruder (to delay the generation of substitution
instances as much as possible).

The rest of the paper is organized as follows. After some preliminaries in
Section 2, we describe in Section 3 how Maude-NPA works. In Section 4, after a
brief overview of the way grammars are used, we describe the various state space
reduction techniques that have been introduced to control state explosion, and
give proofs of their soundness. We also show their relations to other optimization
techniques in the literature. In Section 5 we describe out our experimental eval-
uation of the state-space reduction techniques. In Section 6 we describe future
work and conclude the paper.

2

2 Preliminaries

We follow the classical notation and terminology from [16] for term rewriting
and from [12,13] for rewriting logic and order-sorted notions. We assume an
order-sorted signature Σ with a finite poset of sorts (S,≤) and a finite number
of function symbols. We assume an S-sorted family X = {Xs}s∈S of disjoint
variable sets with each Xs countably infinite. TΣ(X)s is the set of terms of sort
s, and TΣ,s is the set of ground terms of sort s. We write TΣ(X) and TΣ for the
corresponding term algebras. We write Var(t) for the set of variables present in
a term t. The set of positions of a term t is written Pos(t), and the set of non-
variable positions PosΣ(t). The root of a term is Λ. The subterm of t at position
p is t|p, and t[u]p is result of replacing t|p by u in t. A substitution σ is a sort-
preserving mapping from a finite subset of X to TΣ(X). The identity substitution
is id. Substitutions are homomorphically extended to TΣ(X). The restriction
of σ to a set of variables V is σ|V . The composition of two substitutions is
(σ ◦ θ)(X) = θ(σ(X)) for X ∈ X .

A Σ-equation is an unoriented pair t = t′, where t, t′ ∈ TΣ(X)s for some
sort s ∈ S. Given Σ and a set E of Σ-equations such that TΣ,s 6= ∅ for every
sort s, order-sorted equational logic induces a congruence relation =E on terms
t, t′ ∈ TΣ(X) (see [13]). Throughout this paper we assume that TΣ,s 6= ∅ for every
sort s. An E-unifier for a Σ-equation t = t′ is a substitution σ s.t. σ(t) =E σ(t′).
A complete set of E-unifiers of an equation t = t′ is written CSUE(t = t′). We
say CSUE(t = t′) is finitary if it contains a finite number of E-unifiers.

A rewrite rule is an oriented pair l → r, where l 6∈ X and l, r ∈ TΣ(X)s
for some sort s ∈ S. An (unconditional) order-sorted rewrite theory is a triple
R = (Σ,E,R) with Σ an order-sorted signature, E a set of Σ-equations, and R
a set of rewrite rules. A topmost rewrite theory is a rewrite theory s.t. for each
l → r ∈ R, l, r ∈ TΣ(X)State for a top sort State, r 6∈ X , and no operator in Σ

has State as an argument sort. The rewriting relation →R on TΣ(X) is t
p→R t′

(or →R) if p ∈ PosΣ(t), l → r ∈ R, t|p = σ(l), and t′ = t[σ(r)]p for some σ.
The rewriting relation →R,E on TΣ(X) is t

Λ→R,E t′ (or →R,E) if l → r ∈ R,
t =E σ(l), and t′ = σ(r).

The narrowing relation R on TΣ(X) is t
p
 σ,R t′ (or σ,R, R) if p ∈

PosΣ(t), l → r ∈ R, σ ∈ CSU∅(t|p = l), and t′ = σ(t[r]p). Assuming that E
has a finitary and complete unification algorithm, the narrowing relation R,E

on TΣ(X) is t
p
 σ,R,E t′ (or σ,R,E , R,E) if p ∈ PosΣ(t), l → r ∈ R, σ ∈

CSUE(t|p = l), and t′ = σ(t[r]p).

3 The Maude-NPA’s Execution Model

In the Maude-NPA [7], protocols are specified with a notation derived from
strand spaces [10]. In a strand, a local execution of a protocol by a principal is
indicated by a sequence of messages [msg−1 , msg+

2 , msg−3 , . . . , msg−k−1, msg+
k]

where nodes representing input messages are assigned a negative sign, and

3

nodes representing output messages are assigned a positive sign. In Maude-NPA,
strands evolve over time and thus we use the symbol | to divide past and future
in a strand, i.e., [nil,msg±1 , . . . ,msg±j−1 | msg±j ,msg±j+1, . . . ,msg±k , nil] where
msg±1 , . . . ,msg±j−1 are the past messages, and msg±j ,msg±j+1, . . . ,msg±k are the
future messages (msg±j is the immediate future message). The nils are present so
that the bar may be placed at the beginning or end of the strand if necessary. A
strand [msg±1 , . . . ,msg±k] is a shorthand for [nil | msg±1 , . . . ,msg±k , nil] and we
often remove the nils for clarity. We write P for the set of strands in a protocol.

A state is a set of Maude-NPA strands unioned together with an associative
and commutativity union operator & with identity operator ∅, along with an
additional term describing the intruder knowledge at that point. The intruder
knowledge is represented as a set of facts unioned together with an associative
and commutativity union operator , with identity operator ∅ and wrapped by
a function symbol { } as a state component. There are two kinds of intruder
facts: positive knowledge facts (the intruder knows m, i.e., m∈I), and negative
knowledge facts (the intruder does not yet know m but will know it in a future
state, i.e., m/∈I), where m is a message expression.

Strands communicate between them via a unique shared channel, i.e., by
sending messages to the channel and retrieving messages from the channel. How-
ever, we do not explicitly represent the channel in our model. Instead, since the
intruder is able to learn any message present in the channel, we use the intruder
knowledge as the channel. When the intruder observes a message in the channel,
then it learns it, i.e., a message m is learned in a transition (in a forward execu-
tion of the protocol) from a state with the fact m/∈I in its intruder knowledge
part to a state with the fact m∈I in its intruder knowledge part. The intruder
has the usual ability to read and redirect traffic, and can also perform opera-
tions, e.g., encryption, decryption, concatenation, exclusive or, exponentiation,
etc., on messages that it has received; the nature and algebraic properties of
such operations depend on the given cryptographic theory EP . Intruder opera-
tions are described in terms of the intruder sending messages to itself, which are
represented as different strands, one for each action. All intruder and protocol
strands are described symbolically, using a mixture of variables and constants,
so a single specification can stand for many concrete instances. There is no re-
striction on the number of principals, number of sessions, nonces, or time, i.e.,
no data abstraction or approximation is performed.

The user can make use of a special sort Fresh in the protocol-specific signature
Σ for representing fresh unguessable values, e.g., for nonces. The meaning of
a variable of sort Fresh is that it will never be instantiated by an E-unifier
generated during the backwards reachability analysis. This ensures that if nonces
are represented using variables of sort Fresh, they will never be merged and no
approximation for nonces is necessary. We make the Fresh variables generated
by a strand explicit by writing (r1, . . . , rk : Fresh) [msg±1 , . . . ,msg±n], where
r1, . . . , rk are all the variables of sort Fresh generated by msg±1 , . . . ,msg±n .

The types and algebraic properties of the operators used in messages (cryp-
tographic and otherwise) are described as an equational theory EP .

4

Example 1. [6] The Diffie-Hellman protocol uses exponentiation to achieve au-
thentication between two parties, A and B. The informal textbook-level protocol
description proceeds as follows.

1. A → B : {A,B, gNA} 2. B → A : {B,A, gNB} 3. A → B : {secret}
(gNB)NA

In the Maude-NPA formalization of the protocol, we explicitly specify the sig-
nature Σ describing messages, nonces, etc. A nonce NA is denoted by n(A, r),
where r is a unique variable of sort Fresh. Concatenation of two messages, e.g.,
NA and NB , is denoted by the operator ; , e.g., n(A, r) ; n(B, r′). Encryption of
a message M is denoted by e(A,M), e.g., {NB}KB

is denoted by e(KB , n(B, r′)).
Decryption is similarly denoted by d(A,M). Raising a message M to the power
of an exponent E (i.e., ME) is denoted by exp(M1,M2), e.g., gNB is denoted by
exp(g, n(B, r′)). Associative-commutative multiplication on nonces is denoted
by ∗ . A secret generated by a principal is denoted by sec(A, r), where r is
a unique variable of sort Fresh. The protocol-specific signature Σ is as follows
(Maude-NPA expects a sort Msg denoting messages in the protocol specifica-
tion):

a, b, i : → Name e, d : Key ×Msg → Enc
n : Name× Fresh → Nonce ; : Msg ×Msg → Msg g :→ Gen

exp : GenvExp× NonceSet → Exp _*_ : NonceSet× NonceSet → NonceSet

together with the following subsort relations Name,Nonce,Enc,Exp < Msg, Nonce
< NonceSet, and Gen,Exp < GenvExp. In the following we will use letters
A,B for variables of sort Name, letters r, r′, r′′ for variables of sort Fresh, and
letters M,M1,M2, Z for variables of sort Msg; whereas letters X, Y will also
represent variables, but their sort will depend on the concrete position in a
term. The encryption/decryption cancellation properties are described using
the equations e(X, d(X, Z)) = Z and d(X, e(X, Z)) = Z in EP . The key al-
gebraic property on exponentiations zxy

= zx∗y is described using the equation
exp(exp(W,Y), Z) = exp(W,Y ∗Z) in EP (where W is of sort Gen instead of the
more general sort GenvExp in order to provide a finitary narrowing-based unifi-
cation procedure modulo EP , see [6]). Although multiplication modulo a prime
number has a unit and inverses, we have only included the algebraic property
that is necessary for Diffie-Hellman to work. The two strands P associated to
the three protocol steps shown above are:

(s1) (r, r′:Fresh)[(A; B; exp(g, n(A, r)))+, (B; A; X)−, (e(exp(X, n(A, r)), sec(A, r′)))+]
(s2) (r′′:Fresh)[(A; B; Y)−, (B; A; exp(g, n(B, r′′)))+, (e(exp(Y, n(B, r′′)), SR)−]

The following strands describe the intruder abilities according to the Dolev-Yao
attacker’s capabilities [3]. Note that the intruder cannot extract information
from either an exponentiation or a product of exponents, only compose them.

(s3) [nil |M−
1 , M−

2 , (M1 ∗M2)
+, nil] Multiplication

(s4) [nil |M−
1 , M−

2 , exp(M1, M2)
+, nil] Exponentiation

(s5) [nil |g+, nil] Generator

(s6) [nil |A+, nil] All names are public

(s7) (nil, r′′′ : Fresh) [nil| n(i, r′′′)+ , nil] Generation of its own nonces

5

3.1 Backwards reachability analysis

In order to understand many of the optimizations described in this paper, it is
important to know the execution rules in the Maude-NPA; see [7] for further
details. In principle, these are represented by the following rewrite rules4 (we
use letters L,L1, L2 for variables of sort SMsgList, letters K, K ′ for variables of
sort Knowledge, and letters SS, SS′ for variables of sort StrandSet):

R = { SS & [L | M−, L′] & {M∈I, K}→SS & [L, M− | L′] & {M∈I, K}, (1)

SS & [L | M+, L′] & {K} →SS & [L, M+ | L′] & {K}, (2)

SS & [L | M+, L′] & {M /∈I, K}→SS & [L, M+ | L′] & {M∈I, K} } (3)

Rule (1) synchronizes an input message with a message already learned by the
intruder, Rule (2) accepts output messages but the intruder’s knowledge is not
increased, and Rule (3) accepts output messages but the intruder’s knowledge is
positively increased.

In a backwards execution of the protocol using narrowing, which is the one
we are interested in, we start from an attack state, i.e., a term with variables,
containing (i) some of the strands of the protocol with the bar at the end, e.g.,
Strands (s1) and (s2) for Example 1, (ii) some terms the intruder knows at the
attack state, i.e., of the form t∈I, (iii) a variable SS denoting a set of strands, and
(iv) a variable IK denoting a set of intruder facts. We then perform narrowing
with the Rules (1)–(3) in reverse to move the bars of the strands to the left. Note
that variables SS and IK will be instantiated by narrowing to new strands or
new intruder knowledge in order to find an initial state.

However, in an intermediate state we can have many partially executed
strands together with many intruder strands from the Dolev-Yao attacker’s ca-
pabilities, i.e., Strands (s3)–(s7). Thus, an initial or attack state in our tool may
involve an unbounded number of strands, which would be unfeasible. To avoid
this problem, while still supporting a complete formal analysis for an unbounded
number of sessions, we can use a more perspicuous set of rewrite rules describing
the protocol, where the necessary additional strands are introduced dynamically.
The key idea is to specialize Rule (3) using the different protocol strands; see [7]
for further details:

RP =R ∪ { [l1 |u+, l2] & {u/∈I,K} → {u∈I,K} s.t. [l1, u+, l2] ∈ P} (4)

Example 2. (Example 1 continued) The attack state we are looking for is one in
which Bob completes the protocol and the intruder is able to learn the secret.
The attack state pattern to be given as input to the system is:

(r′:Fresh)[(A; B; Y)−, (B; A; exp(g, n(B, r′)))+, (e(exp(Y, n(B, r′)), sec(a, r′′))− | nil]

& SS & {sec(a, r′′)∈I, IK}

4 The top level structure of the state is a multiset of strands formed with the &
union operator. The protocol and intruder rewrite rules are “essentially topmost”
in that, using an extension variable matching the “remaining strands” they can
always rewrite the whole state. Therefore, as explained in [14], completeness results
of narrowing for topmost theories also applies to them.

6

Using the above attack state pattern our tool is able to find the following initial
state of the protocol, showing that the attack state is reachable:

[nil | exp(g, n(a, r)))−, Z−, exp(g, Z ∗ n(a, r))+] &

[nil | exp(g, n(b, r′)))−, W−, exp(g, W ∗ n(b, r′))+] &

[nil | exp(g, Z ∗ n(a, r))−, e(exp(g, W ∗ n(a, r)), sec(a, r′′))−, sec(a, r′′)+] &

[nil | exp(g, W ∗ n(b, r′))−, sec(a, r′′)−, e(exp(g, W ∗ n(b, r′)), sec(a, r′′))+] &

[nil | (a; b; exp(g, n(b, r′)))−, (b; exp(g, n(b, r′)))+] &

[nil | (a; A′; exp(g, n(a, r)))−, (A′; exp(g, n(a, r)))+] &

[nil | (b; exp(g, n(b, r′)))−, exp(g, n(b, r′))+] &

[nil | (A′; exp(g, n(a, r)))−, exp(g, n(a, r))+] &

(r′ : Fresh)
[nil | (a; b; exp(g, Y))−, (a; b; exp(g, n(b, r′)))+, e(exp(g, W ∗ n(b, r′)), sec(a, r′′))−] &

(r′′, r : Fresh)
[nil | (a; A′; exp(g, n(a, r)))+, (a; A′; exp(g, Z))−, e(exp(g, Z ∗ n(a, r)), sec(a, r′′))+] &

{ sec(a, r′′)/∈I, e(exp(g, Z ∗ n(a, r)), sec(a, r′′))/∈I, e(exp(g, W ∗ n(b, r′)), sec(a, r′′))/∈I,
exp(g, n(a, r))/∈I, exp(g, n(b, r′))/∈I, exp(g, Z ∗ n(a, r))/∈I, exp(g, W ∗ n(b, r′))/∈I,
(a; b; exp(g, n(b, r′)))/∈I, (a; A′; exp(g, n(a, r)))/∈I, (b; exp(g, n(b, r′)))/∈I,
(A′; exp(g, n(a, r)))/∈I }

Note that strands not producing Fresh variables are intruder strands, while the
two strands producing fresh variables r, r′, r′′ are protocol strands. The concrete
message exchange sequence obtained by the reachability analysis is the following:

1.(a; b; exp(g, W))−

2.(a; b; exp(g, n(b, r′)))+

3.(a; b; exp(g, n(b, r′)))−

4.(b; exp(g, n(b, r′)))+

5.(b; exp(g, n(b, r′)))−

6.(exp(g, n(b, r′)))+

7.(exp(g, n(b, r′)))−

8.W−

9.exp(g, W ∗ n(b, r′))+

10.(a; A′; exp(g, n(a, r)))+

11.(a; A′; exp(g, n(a, r)))−

12.(A′; exp(g, n(a, r)))+

13.(A′; exp(g, n(a, r)))−

14.(exp(g, n(a, r)))+

15.(exp(g, n(a, r)))−

16.Z−

17.exp(g, Z ∗ n(a, r))+

18.(a; A′; exp(g, Z))−

19.e(exp(g, Z ∗ n(a, r)), sec(a, r′′))+

20.e(exp(g, Z ∗ n(a, r)), sec(a, r′′))−

21.sec(a, r′′)+

22.exp(g, W ∗ n(b, r′))−

23.sec(a, r′′)−

24.e(exp(g, W ∗ n(b, r′), sec(a, r′′))+

25.e(exp(g, W ∗ n(b, r′)).sec(a, r′′))−

Step 1) describes principal b receiving an initiating message (no correspond-
ing send because of the super-lazy intruder). Step 2) describes b sending the
response, and 3) describes the intruder receiving it. Steps 4) through 9) describe
the intruder computing the key she will use to communicate with b. Step 10)
describes a initiating the protocol with a principal A′. Step 11) describes the
intruder receiving it, and steps 11) through 17) describe the intruder construct-
ing the key she will use to communicate with a. Steps 18) and 19) describe a
receiving the response from the intruder impersonating A′ and a sending the
encrypted message. Steps 20) through 23) describe the intruder decrypting the
message to get the secret. In step 24) the intruder re-encrypts the secret in the
key she shares with b and sends it, and in step 25) b receives the message.

7

4 State Space Reduction Techniques

In this section, we describe the different state-reduction techniques identifying
unproductive narrowing steps St ;σ,R−1

P ,EP
St′. There are three reasons for

doing this. One is to reduce the initially infinite search space to a finite one, as
in the use of grammars. Another is to reduce the size of a (possibly finite) search
space by eliminating unreachable states early, i.e., before they are eliminated by
exhaustive search. The latter can have an effect far beyond eliminating a single
node in the search space, since a single unreachable state could appear multiple
times and/or have multiple descendants before being eliminated. Finally, it is
also possible to use various partial order reduction techniques.

4.1 Limiting Dynamic Introduction of New Strands

As pointed out in Section 3.1, Rules (4) allow a dynamic introduction of new
strands. However, new strands can also be introduced by unification of a state
containing a variable SS denoting a set of strands and one of the Rules 1-3, where
variables L and L′ denoting lists of input/output messages will be introduced by
instantiation of SS. The same can happen with new intruder facts of the form
X∈I, where X is a variable. In order to avoid a huge number of unproductive
narrowing steps, we allow the introduction of new strands and/or new intruder
facts only by rule application instead of just by instantiation. For this, we do two
things: (i) remove any of the following variables from actual states: SS denoting
a set of strands, K denoting a set of intruder facts, and L,L′ denoting a set of
input/output messages; and (ii) replace Rule (1) by the following Rule (5), since
we do no longer have a variable denoting a set of intruder facts that has to be
instantiated:

SS & [L | M−, L′] & {M∈I,K}→SS & [L,M− | L′] & {K} (5)

Note that in order to replace Rule (1) by Rule (5) we have to assume that the
intruder knowledge is a set of intruder facts without repeated elements, i.e., the
union operator , is ACUI (associative-commutative-identity-idempotent). This
is completeness-preserving, since it is in line with the restriction in [7] that the
intruder learns a term only once; if the intruder needs to use a term twice he must
learn it the first time it is needed; if he learns a term and needs to learn it again in
the backwards search, the state will be discarded as unreachable. Therefore, the
set of rewrite rules used for backwards narrowing are RP = {(5), (2), (3)} ∪ (4).

4.2 Grammars

Grammars, unlike the other mechanisms discussed in this paper, appeared in the
original Maude-NPA paper [7]. We include a brief discussion here for complete-
ness. In [7], it is shown that Maude-NPA’s ability to reason well about low-level
algebraic properties is a result of its combination of symbolic reachability anal-
ysis using narrowing, together with its grammar-based techniques for reducing

8

the size of the search space. Here we briefly explain how grammars work as a
state space reduction technique and refer the reader to [7] for further details.

Automatically generated grammars 〈G1, . . . , Gm〉 represent unreachability
information (or co-invariants), i.e., typically infinite sets of states unreachable
for the intruder. That is, given a message m and an automatically generated
grammar G, if m ∈ G, then there is no initial state Stinit and substitution
θ such that the intruder knowledge of Stinit contains the fact θ(m)/∈I. These
automatically generated grammars are very important in our framework, since
in the best case they can reduce the infinite search space to a finite one, or, at
least, can drastically reduce the search space. See [7] for further explanations.

Unlike NPA and the version of Maude-NPA described in [7], in which initial
grammars needed to be specified by the user, Maude-NPA now generates initial
grammars automatically. Each initial grammar consists of a single seed term
of the form C 7→ f(X1, · · · , Xn)∈L, where f is an operator symbol from the
protocol specification, the Xi are variables, and C is either empty or consists of
the single constraint Xi∈I.

4.3 Partial Order Reduction Giving Priority to Input Messages

The different execution rules are in general executed nondeterministically. This
is because the order of execution can make a difference as to what subsequent
rules can be executed. For example, an intruder cannot receive a term until it is
sent by somebody, and that send within a strand may depend upon other receives
in the past. There is one exception, Rule (5) (originally Rule (1)), which, in a
backwards search, only moves a negative term appearing right before the bar into
the intruder knowledge. The execution of this transition in a backwards search
does not disable any other transitions; indeed, it only enables send transitions.
Thus, it is safe to execute it at each stage before any other transition. For the
same reason, if several applications of Rule 5 are possible, it is safe to execute
them all at once before any other transition. Requiring all executions of Rule
5 to execute first thus eliminates interleavings of Rule 5 with send and receive
transitions, which are equivalent to the case in which Rule 5 executes first. In
practice, this has cut down on the search space size on the order of 50%.

Similar strategies have been employed by other tools in forward searches. For
example, in [15], a strategy is introduced that always executes send transitions
first whenever they are enabled. Since a send transition does not depend on any
other part of the state in order to take place, it can safely be executed first.
The original NPA also used this strategy; it had a receive transition which had
the effect of adding new terms to the intruder knowledge, and which always was
executed before any other transition once it was enabled.

Proposition 1. Given a topmost rewrite theory R = (Σ, EP , RP) representing
protocol P and a state St. If St ;σ1,R−1

P ,EP
St1 using Rule (5) in reverse (thus

with σ1 = id) and St ;σ2,R−1
P ,EP

St2, then St1 ;σ2,R−1
P ,EP

St2.

9

4.4 Detecting Inconsistent States Early

There are several types of states that are always unreachable or inconsistent. If
the Maude-NPA attempts to search beyond them, it will never find an initial
state. For this reason, we augment the Maude-NPA search engine to always mark
the following types of states as unreachable, and not search beyond them any
further:

1. A state St containing two contradictory facts t∈I and t/∈I for a term t.
2. A state St whose intruder knowledge contains the fact t/∈I and a strand of

the form [m±
1 , . . . , t−, . . . ,m±

j−1 | m
±
j , . . . ,m±

k].
3. A state St containing a fact t∈I such that t contains a fresh variable r

and the strand in St indexed by r, i.e., (r1, . . . , r, . . . , rk : Fresh) [m±
1 , . . . ,

m±
j−1 | m

±
j , . . . ,m±

k], cannot produce r, i.e., r is not a subterm of any output
message in m±

1 , . . . ,m±
j−1.

4. A state St containing a strand of the form [m±
1 , . . . , t−, . . . ,m±

j−1 | m
±
j , . . . ,

m±
k] for some term t such that t contains a fresh variable r and the strand

in St indexed by r cannot produce r.

Note that case 2 will become an instance of case 1 after some backwards narrow-
ing steps, and the same happens with cases 4 and 3. The proof of inconsistency
of cases 1 and 3 is obvious and we do not include it here.

4.5 Transition Subsumption

We define here a state relation in the spirit of both partial order reduction
techniques (POR) and the folding relations of [9], though a detailed study of the
relationship of such a state relation with folding and POR is left for future work.

In the following, we write IK∈ (resp. IK 6∈) to denote the subset of intruder
facts of the form t∈I (resp. t/∈I) appearing in the set of intruder facts IK. We
abuse the set notation and write IK1 ⊆EP IK2 for IK1 and IK2 sets of intruder
facts to denote that all the intruder facts of IK1 appear in IK2 (modulo EP).

Definition 1. Given a topmost rewrite theory R = (Σ,EP , RP) representing
protocol P, and given two non-initial states St1 = SS1 & {IK1} and St2 =
SS2 & {IK2}, we write St1 . St2 (or St2 / St1) if IK∈

1 ⊆EP IK∈
2 , and for each

non-initial strand [m±
1 , . . . ,m±

j−1 | m±
j , . . . ,m±

k] ∈ SS1, there exists [m±
1 , . . . ,

m±
j−1 | m±

j , . . . ,m±
k ,m±

k+1, . . . ,m
±
k′] ∈ SS2. Note that the comparison of the

non-initial strand in SS1 with the strands in SS2 is performed modulo EP .

Definition 2 (P-subsumption relation). Given a topmost rewrite theory
R = (Σ,EP , RP) representing protocol P and two non-initial states St1, St2.
We write St1 �P St2 and say that St1 is P-subsumed by St2 if there is a
substitution θ s.t. St1 / θ(St2).

The following result provides the appropriate connection between the transition
P-subsumption and narrowing transitions. In the following, ;

{0,1}
σ,R−1

P ,EP
denotes

zero or one narrowing steps.

10

Proposition 2. Given a topmost rewrite theory R = (Σ, EP , RP) representing
protocol P and two non-initial states St1, St2. If St1 �P St2 and St2 ;σ2,R−1

P ,EP

St′2, then there is a state St′1 and a substitution σ1 such that St1 ;
{0,1}
σ1,R−1

P ,EP
St′1

and St′1 �P St′2.

Therefore, we keep all the states of the backwards narrowing-based tree and
compare each new leaf of the tree with all the previous states in the tree. If a
leaf is P-subsumed by a previously generated node in the tree, we discard such
leaf.

4.6 The Super Lazy Intruder

Sometimes terms appear in the intruder knowledge that are trivially learnable
by the intruder. These include terms initially available to the intruder (such as
names) and variables. In the case of variables, the intruder can substitute any
arbitrary term of the same sort as the variable,5 and so there is no need to try
to determine all the ways in which the intruder can do this. For this reason it
is safe, at least temporarily, to drop these terms from the state. We will refer
to those terms as lazy intruder terms. The problem of course, is that later on
in the search the variable may become instantiated, in which case the term
now becomes relevant to the search. In order to avoid this problem, we take an
approach similar to that of the lazy intruder of Basin et al. [1] and extend it to
a more general case, that we call the super-lazy terms. We note that this use of
what we here call the super-lazy intruder was also present in the original NPA.

Super-lazy terms are defined inductively as the union of the set of lazy terms,
i.e., variables, with the set of terms that are produced out of other super-lazy
terms using operations available to the intruder. That is, e(K, X) is a super-lazy
term if the intruder can perform the e operation, and K and X are variables.
More precisely, the set of super-lazy intruder terms is defined as follows.

Definition 3. Given a topmost rewrite theory R = (Σ,EP , RP) representing
protocol P, and a state St where IK 6∈(St) = {x | x/∈I ∈ St}, its set of super-
lazy terms w.r.t. St (or simply super-lazy terms) is defined as the union of the
following:

– the set of variables of sort Msg or one of its subsorts,
– the set of terms t appearing in strands of the form [t+], and
– the set of terms of the form f(t1, . . . , tn) where {t1, . . . , tn} are super-lazy

intruder terms w.r.t. St, {t1, . . . , tn} 6⊆ IK 6∈(St), and there is an intruder
strand [(X1)−, . . . , (Xn)−, (f(X1, . . . , Xn))+] with X1, . . . , Xn variables.

5 This, of course, is subject to the assumption that the intruder can produce at least
one term of that sort. But since the intruder is assumed to be a member of the
network with access to all the operations available to an honest principal, this is a
safe assumption to make.

11

The idea behind the super-lazy intruder is that, given a term made out of lazy
intruder terms, such as a; e(K, Y), where a is a public name and K and Y are
variables, the term a; e(K, Y) is also a (super) lazy intruder term by applying
the operations e and ; .

Let us first briefly explain how the (super) lazy intruder mechanism works
before formally describing it. When we detect a state St with a super lazy term t,
we replace the intruder fact t∈I in St by a new expression ghost(t) and keep the
modified version of St in the history of states used by the transition subsumption
of Section 4.5. If later in the search tree we detect a state St′ containing an
expression ghost(t) such that t is no longer a super lazy intruder term (or ghost
expression), then t has been instantiated in an appropriate way and we must
reactivate the original state St that introduced the ghost(t) expression (and
that precedes St′ in the narrowing tree) with the new binding for variables in
t applied. That is, we “roll back” and replace the current state St′ with an
instantiated version of state St.

However, if the substitution θ binding variables in t includes variables of
sort Fresh, since they are unique in our model, we have to keep them in the
reactivated version of St. Therefore, the strands indexed by these fresh variables
must be included in the “rolled back” state, even if they were not there originally.
Moreover, they must have the bar at the place it was when the strands were
originally introduced. We show below how this is accomplished.

Furthermore, if any of the strands thus introduced have other variables of
sort Fresh as subterms, then the strands indexed by those variables must be
included too, and so on. Thus, when a state St′ properly instantiating a ghost
expression ghost(t) is found, the procedure of rolling back to the original state
St that gave rise to that ghost expression implies not only applying the bindings
for the variables of t to St, but also introducing in St all the strands from St′

that produced fresh variables and that either appear in the variables of t or are
recursively connected to them.

First, before formally defining the super-lazy intruder technique, we must
modify Rules 4 introducing new strands:

{ [l1 |u+] & {u/∈I,K} → {u∈I,K} s.t. [l1, u+, l2] ∈ P} (6)

Therefore, the set of rewrite rules used by narrowing in reverse are now RP =
{(5), (2), (3)} ∪ (6). Note that Rules (4) introduce strands [l1 | u+, l2], whereas
here Rules (6) introduce strands [l1 | u+]. This slight modification allows to
safely move the position of the bar back to the place where the strand was
introduced.

We extend the intruder knowledge to allow an extra fact ghost(t). We first de-
scribe how to reactivate a state. Given a strand s = (r1, . . . , rk : Fresh) [m±

1 , . . . |
. . . , m±

n], when we want to move the bar to the rightmost position (denoting a
final strand), we write s� = (r1, . . . , rk : Fresh) [m±

1 , . . . ,m±
n | nil].

Definition 4. Given a state St containing an intruder fact ghost(t) for some
term t with variables, we define the set of strands associated to t, denoted SSSt(t),
as follows: for each strand s in St of the form (r1, . . . , rk : Fresh) [m±

1 , . . . |

12

Protocol none Input First % Inconsistent % Grammar % Subsump % Lazy % All %
NSPK 5-15-104-427 1-11-11-145 69 5-14-71-176 51 3-7-27-86 77 5-15-61-107 65 5-15-104-405 3 1-4-3-6 97

SecReT06 1-7-26-154 1-19-33-222 0 1-7-26-152 1 1-2-6-14 87 1-7-14-18 78 1-7-26-154 0 1-2-2-1 96
SecReT07 6-15-94-283 1-11-30-242 28 6-10-32-75 69 5-13-70-201 27 6-15-74-192 27 6-11-24-52 76 1-4-4-5 96

DH 2-24-78-385 2-24-29-435 0 2-22-27-212 46 2-8-22-53 82 2-14-26-102 70 2-24-78-369 3 2-4-4-6 96
% Reduction 24 41 68 60 20 96

Table 1. Number of states for 1,2,3, and 4 backwards narrowing steps

Protocol Finite State Space Achieved by:
NSPK Grammars and Subsumption

SecReT06 Subsumption or (Grammars and Lazy)
SecReT07 Subsumption and Lazy

DH Grammars and Subsumption

Table 2. Finite state space achieved by reduction techniques

. . . , m±
n], if there is i ∈ {1, . . . , k} s.t. ri ∈ Var(t), then s� ∈ SSSt(t); or if there

is another strand s′ ∈ SSSt(t) of the form (r′1, . . . , r
′
k′ : Fresh) [w±

1 , . . . | . . . , w±
n′],

i ∈ {1, . . . , k}, and j ∈ {1, . . . , n′} s.t. ri ∈ Var(wj), then s� ∈ SSSt(t).

Given the previous definition, the following result is immediate.

Proposition 3. Given a topmost rewrite theory R = (Σ, EP , RP) representing
protocol P and a state St containing an intruder fact t∈I such that t is a super-
lazy term, let St denote the state obtained by replacing t∈I by ghost(t). Let St′

be a state such that St ;∗
σ,R−1

P ,EP
St′, where σ(t) is not a super-lazy term, and

let σ′ = σ|Var(t). Let the reactivated state be Ŝt = σ′(St) ∪ SSSt′(σ(t)). If there
is an initial state Stinit such that St ;∗

θ,R−1
P ,EP

Stinit and there is a substitution

ρ such that σ′ ◦ ρ =EP θ, then Ŝt ;∗
ρ,R−1

P ,EP
Stinit .

Improving the super lazy intruder. When we detect a state St with a
super lazy term t, we may want to analyze whether the variables of t may
be eventually instantiated or not before creating a ghost state. Therefore, if
for each strand [m±

1 , . . . ,m±
j−1 | m±

j , . . . ,m±
k] in St and each i ∈ {1, . . . , j −

1}, Var(t) ∩ Var(mi) = ∅, and for each term w∈I in the intruder knowledge,
Var(t) ∩ Var(w) = ∅, then we can clearly infer that the variables of t can never
be instantiated and adding a ghost to state St is unnecessary.

Interaction with transition subsumption. When a ghost state is reacti-
vated, we see from the above definition that such a reactivated state will be
P-subsumed by the original state that raised the ghost expression. Therefore,
the transition subsumption of Section 4.5 has to be slightly modified to avoid
checking a resuscitated state with its predecessor ghost state, i.e., St1 �′

P St2
iff St1 �P St2 and St2 is not a resuscitated version of St1.

5 Experimental Evaluation

In Table 1, we summarize the experimental evaluation of the impact of the differ-
ent state space reduction techniques for various example protocols searching up

13

to depth 4. We measure several numerical values for the techniques: (i) number
of states at each backwards narrowing step, and (ii) whether the state space is
finite or not. The experiments have been performed on a MacBook with 2 Gb
RAM using Maude 2.4. The protocols are the following: (i) NSPK, the standard
Needham-Schroeder protocol, (ii) SecReT06, a protocol with an attack using
type confusion and a bounded version of associativity that we presented in [8],
(ii) SecReT07, a short version of the Diffie-Hellman protocol that we presented
in [6], and (iv) DH, the Diffie-Hellman protocol of Example 1. The overall per-
centage of state-space reduction for each protocol and an average (96%) suggest
that our combined techniques are remarkably effective (the reduced number of
states is on average only 4% of the original number of states). The state reduc-
tion achieved by consuming input messages first is difficult to analyze because
it can reduce the number of states in protocols that contain several input mes-
sages in the strands, as in the NSPK protocol, but in general simply reduces the
length of the narrowing sequences and therefore more states are generated at a
concrete depth of the narrowing tree. The use of grammars and the transition
subsumption are clearly the most useful techniques in general. Indeed, all ex-
amples have a finite search space thanks to the use of the different state space
reduction techniques. Figure 2 summarizes the different techniques providing
a finite space. Note that grammars are insufficient for the SecReT07 example,
while the super lazy intruder is essential.

6 Concluding Remarks

The Maude-NPA can analyze the security of cryptographic protocols, modulo
given algebraic properties of the protocol’s cryptographic functions, in executions
with an unbounded number of sessions and with no approximations or data
abstractions. In this full generality, protocol security properties are well-known
to be undecidable. The Maude-NPA uses backwards narrowing-based search from
a symbolic description of a set of attack states by means of patterns to try to
reach an initial state of the protocol. If an attack state is reachable from an
initial state, the Maude-NPA’s complete narrowing methods are guaranteed to
prove it. But if the protocol is secure, the backwards search may be infinite and
never terminate.

It is therefore very important, both for efficiency and to achieve full verifi-
cation whenever possible when a protocol is secure, to use state-space reduction
techniques that: (i) can drastically cut down the number of states to be explored;
and (ii) have in practice a good chance to make the, generally infinite, search
space finite without losing soundness of the analysis; that is, so that if a protocol
is indeed secure, failure to find an attack in such a finite state space guarantees
the protocol’s security for all reachable states. We have presented a number of
state-space reduction techniques used in combination by the Maude-NPA for
exactly these purposes. We have given precise characterizations of theses tech-
niques and have shown that they preserve soundness, so that if no attack is

14

found and the state space is finite, full verification of the given security property
is achieved.

Using several representative examples we have also given an experimental
evaluation of these techniques. Our experiments support the conclusion that,
when used in combination, these techniques: (i) typically provide drastic state
space reductions; and (ii) they can often yield a finite state space, so that whether
the desired security property holds or not can in fact be decided automatically,
in spite of the general undecidability of such problems.

References

1. D. Basin, S. Mödersheim, and L. Viganò. OFMC: A symbolic model checker for
security protocols. Int’l Journal of Information Security, 4(3):181–208, 2005.

2. Edmund .M. Clarke, Orna. Grumberg, and Doron A. Peled. Model Checking. MIT
Press, 2001.

3. D. Dolev and A. Yao. On the security of public key protocols. IEEE Transaction
on Information Theory, 29(2):198–208, 1983.

4. S. Escobar, J. Meseguer, and R. Sasse. Effectively checking or disproving the finite
variant property. In Proc. of Term Rewriting and Applications, RTA 2008, LNCS
to appear. Springer, 2008.

5. S. Escobar, J. Meseguer, and R. Sasse. Variant narrowing and equational unifica-
tion. In Proc. of Rewriting Logic and its Applications, WRLA 2008, 2008.

6. S. Escobar, J. Hendrix, , C. Meadows, and J. Meseguer. Diffie-hellman crypto-
graphic reasoning in the Maude-NRL Protocol Analyzer. In Proc. of Security and
Rewriting Techniques, SecReT 2007, 2007.

7. S. Escobar, C. Meadows, and J. Meseguer. A rewriting-based inference system for
the NRL Protocol Analyzer and its meta-logical properties. Theoretical Computer
Science, 367(1-2), 2006.

8. S. Escobar, C. Meadows, and J. Meseguer. Equational cryptographic reasoning
in the maude-nrl protocol analyzer. Electronic Notes in Theoretical Computer
Science, 171(4):23–36, 2007.

9. S. Escobar and J. Meseguer. Symbolic model checking of infinite-state systems
using narrowing. In Proc. of Term Rewriting and Applications, RTA 2007, LNCS
4533, pages 153–168. Springer, 2007.

10. F. J. Thayer Fabrega, J. Herzog, and J. Guttman. Strand Spaces: What Makes a
Security Protocol Correct? Journal of Computer Security, 7:191–230, 1999.

11. C. Meadows. The NRL protocol analyzer: An overview. Journal of logic program-
ming, 26(2):113–131, 1996.

12. José Meseguer. Conditional rewriting logic as a unified model of concurrency.
Theoretical Computer Science, 96(1):73–155, 1992.

13. J. Meseguer. Membership algebra as a logical framework for equational specifica-
tion. In Proc. WADT’97, pages 18–61. Springer LNCS 1376, 1998.

14. J. Meseguer and P. Thati. Symbolic reachability analysis using narrowing and its
application to verification of cryptographic protocols. Higher-Order and Symbolic
Computation, 20(1-2):123–160, 2007.

15. V. Shmatikov and U. Stern. Efficient finite-state analysis for large security pro-
tocols. In 11th Computer Security Foundations Workshop — CSFW-11. IEEE
Computer Society Press, 1998.

16. TeReSe, editor. Term Rewriting Systems. Cambridge University Press, Cambridge,
2003.

15

	 Santiago Escobar, Catherine Meadows, and José Meseguer

