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Abstract. Sampling in the space of controls or actions is a well-established method for 

ensuring feasible local motion plans.  However, as mobile robots advance in performance 

and competence in complex outdoor environments, this classical motion planning 

technique ceases to be effective.  When environmental constraints severely limit the space 

of acceptable motions or when global motion planning expresses strong preferences, a 

state space sampling strategy is more effective.  While this has been clear for some time, 

the practical question is how to achieve it while also satisfying the severe constraints of 

vehicle dynamic feasibility.  This paper presents an effective algorithm for state space 

sampling based on a model-based trajectory generation approach.  This method enables 

high-speed navigation in highly constrained and/or partially known environments such as 

trails, roadways, and dense off-road obstacle fields.    

1   Introduction 

Outdoor mobile robot navigation is a challenging problem because environments 

are often complex and only partially known, dynamics can be difficult to predict 

accurately, and both planning time and computational resources are limited.    

The dynamics of a vehicle can be modeled by a nonlinear differential 

equation of the form: 

( )t,,uxfx =&  (1) 

where u is called the input or control vector and x is the state vector and both are 

time-varying points in input and state spaces respectively. The complexity of 

such accurate models of mobility combined with the scale of outdoor mobile 

robot navigation leads to a difficult tradeoff between the computational demands 

of perceptive intelligence at the local level and deliberative intelligence at the 

global level. It is difficult to be both smart and fast when computation is limited. 

A common approach to this problem is to use a multi-level motion planning 

strategy to generate behavior that is both intelligent and responsive. A large-scale 

motion plan is generated infrequently based on simplified dynamic models and 

coarse representations of the environment. This global planner is deliberative and 

it understands the gross topology of the environment. A finer-scale plan is 
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generated more frequently by a local planner that utilizes higher fidelity dynamic 

models and finer resolution representations of the environment.  The local 

planner provides obstacle avoidance and ensures dynamic feasibility in the near-

term while the global planner provides high-level guidance (e.g. waypoint 

navigation).  This paper deals with generating local motion planning search 

spaces which satisfy feasibility and environmental constraints while exploiting 

global guidance. 

1.1 Motivation  

This paper will address a difficult issue that arises in the context of the above 

two-tiered architecture, and indeed in differentially constrained motion planning 

in general. The formulation of the local planning problem involves constraints 

and utilities that are most conveniently expressed in two spaces: 

• State Space: Those arising from the environment 

• Control Space: Those arising from vehicle mobility 

Traditional approaches to local motion planning involve searching 

alternatives expressed in control space because such alternatives are inherently 

feasible. Feasibility matters because commanding infeasible actions will lead to 

collisions or inability to execute other critical maneuvers. When most feasible 

motions are likely to satisfy environmental constraints, control space sampling is 

an effective approach. However, if the environment imposes severe limits on 

acceptable motions, this traditional approach does not work well. 

Global guidance is expressed fundamentally in terms of a utility or constraint 

field over state space. For example, a global path is specified and minimum 

deviation is desirable, or a road lane is specified and its edges cannot be 

breached except in lane change maneuvers. Alternatively, a navigation function 

might associate with every point in state space its expected cost to the goal and 

its gradient specifies the preferred vehicle orientation at that point. Such 

guidance is highly valuable because the global path is less likely to contain 

obstacles, it is often an optimal global solution based on a coarse but informative 

map, and it may pass through narrow safe regions whose traversal is critical to 

reaching the goal. 

Figure 1 illustrates how sampling in control space is a very poor approach 

under such conditions whereas state space sampling is ideal. 
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Fig. 1: Motion Planning in Constrained Environments.  Search spaces generated by sampling in 

control space vs. state space are shown in environments that are highly constrained (e.g. road 

networks).  Virtually all options generated by sampling in control space leave the lane or are 

oriented to do so eventually, whereas those generated by sampling in state space remain within the 

road network. 

A second consideration is path sampling efficiency. All approaches to 

planning fundamentally consider a finite number of alternatives and pick the best 

one, but some sets of alternatives are better than others are. Separation matters 

because nearly identical paths will likely intersect the same obstacles and waste 

computation. We define a well-separated set of trajectories to be one that covers 

a majority of the state space with a minimum of overlap. When a global path is 

specified, it would be useful to control the distribution of trajectory end states to 

ensure that they are both near and oriented along the global path.   

 For example, consider the search space illustrated in Figure 2. It was 

generated by uniformly sampling in control space for different initial conditions. 

Notice that the trajectories are denser in the direction opposite to the initial 

curvature (κ0) because the vehicle’s maximum turning rate (dκ/dt) leads to the 

same output for several distinct inputs. Sampling in state space permits direct 

control over the spacing of the endpoints of these trajectories.    

 

 

Fig. 2: Irregular Mapping from Control Space to State Space.  Accurate dynamic simulations of a set 

of vehicle controls (constant curvature arcs uniformly sampled between ±0.50 radians/meter) are 

shown for different initial vehicle curvatures. The responses to the controls are not uniformly 

separated despite the uniform separation of the controls. 

1.2 Related Work 

Some of the earliest work in outdoor model-based mobile robot motion planning 

appears in [1], where the local motion planning search space is generated by 
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sampling in the control space of curvature.  Each control is passed through a 

vehicle dynamics model to estimate the response of the vehicle to the control.  

The shape of the response is highly dependent on the vehicle model and the 

initial vehicle state (curvatures and velocities).   

Similar approaches have been adapted in a variety of other mobile robots [5].  

The method presented in [2] samples trajectories around the arc that reacquires a 

target path, where “nudges” and “swerves” represent small and large lateral 

offsets (adjustments of the solution trajectory) respectively. Another method for 

generating local motion planning search space is egographs [7]. This approach 

generates a well-separated dynamically feasible search space for a limited set of 

initial vehicle states offline. 

1.3 Technical Approach 

An effective local planning search space would ideally be optimal, efficient, and 

robust. The search space would be optimal if it could maximally exploit global 

guidance, efficient if it could control path separation, and robust if it searched 

only feasible motions. Recent advances in real-time model-based trajectory 

generation have provided the capability to make progress towards achieving 

these goals. In [3] a general method is presented that computes control inputs 

that satisfy a pair of boundary states subject to the vehicle dynamics model, and 

in [4] we apply it to the problem of path following in the absence of obstacles.  

This paper improves on [4] by generating a set of feasible actions by 

sampling in the surrounding state space.  By using the model-based trajectory 

generation algorithm to generate motions between the current vehicle state and a 

set of terminal states on the boundary of the local motion planning search space, 

the state space sampling technique is superior in its efficiency (mean separation 

of trajectories) and robustness to initial conditions than its control space 

sampling counterparts.  The approach in this paper differs from all of the prior 

work in its capacity to generate more expressive local motion planning search 

spaces.   

2   Adaptive Search Spaces 

The algorithm in [3] creates an opportunity to produce end state sample 

distributions that satisfy environmental, separation, and path following 

constraints while also being able to produce feasible motions that achieve these 

states. Section 2.1 outlines our general approach to structuring the search space 

adaptation algorithm while Section 2.2 discusses tuning the feasible set shape 

parameters for real vehicle applications.   
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2.1 Adaptive Search Space Design 

A general description of state space sampling techniques is to generate a set of 

actions by solving for trajectories between n boundary state pairs (xp).  The first 

state in each pair is the initial or current state of the vehicle (xi) while the second 

state is the terminal state (xf) which is reached at the end of each trajectory.   
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Note that this definition is independent of the method of generating the 

search space.  We will utilize the model-based trajectory generation algorithm 

presented in [3] because of its ability to generate feasible actions between 

boundary state pairs in real-time, although other techniques could be substituted.  

Our approach is based on designing rules and parameters that define the shape of 

the outline of the trajetories and adjust the terminal states based on global 

guidance and initial vehicle state information.   

For example, consider the example search spaces generated using this 

approach shown in Figure 3.  Here, terminal state positions are selected 

uniformly at a horizon (constant radius) of 5.0 meters from the center of the 

robot between ±45 degrees from the forward central axis of the vehicle.  Three 

headings at each terminal state position are considered, one aligned with the ray 

cast from the vehicle to the terminal state position and two others offset at a 

terminal heading adjustment angle (±45 degrees).   

 

 

Fig. 3: Uniform Terminal State Sampling for Adaptive Search Space Generation with Varied Initial 

States.  The ability to control the shape of the search space for three initial states: (a) turning left, (b) 

straight, and (c) turning right. Notice the sampling is more uniformly distributed than in Figure 2. 

The result of this approach is a set of sophisticated maneuvers that are 

roughly equidistant, making this an efficient (non-redundant) search space.  

Notice that even in the face of varied initial vehicle states, the search space shape 

adapts to the dynamic constraints of the vehicle. The trajectories reach the same 

set of well-separated terminal states, in contrast to the results of control space 

sampling techniques (Figure 2).  
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2.2 Utilizing Global Guidance Information 

On the assumption than deviation from global guidance is less likely to lead the 

goal, a local motion planning search space will improved if it biases its search to 

be most consistent with global guidance. We typically use a global planner 

which continuously provides a navigation function (cost from any point to the 

goal) to the local planner. Given such information, it is better to sample terminal 

states at a higher density in lower global cost regions and at a lower density in 

higher cost regions, as shown in Figure 4.  Some samples are retained in higher 

cost regions because the low cost regions produced by the global planner may 

not reflect actual dynamic constraints of the vehicle, and the global planner may 

not be able to react quickly to perceived obstacles. 

 

 

 

Fig. 4: Focused Terminal State Sampling for Adaptive Search Space Generation.  The ability to 

exploit global guidance via state space sampling generates local motion planning search spaces that 

are denser in the direction of minimum global cost (and therefore more likely to be obstacle-free). 

Examples (a) and (b) shows the same setup from Figure 3 but focused in the direction of minimum 

global cost.  

2.3 Model-Based Trajectory Generation 

To generate each motion, the real-time model-based trajectory generation 

algorithm in [3] is called for each boundary state pair in xp.  A model-based 

approach is used to determine the actual command required to complete the 

necessary motion.  The vehicle model is important because the mobile robot will 

execute these commands directly. The model is itself a tradeoff between speed 

(dynamics are computed tens of thousands of times per second) and fidelity (how 

well it can accurately predict the response to the inputs).  We have found first-

order models of linear and angular velocity response to be an effective tradeoff 

that encodes the major constraints of motion feasibility.   

In general, model-based trajectory generation techniques can be used to solve 

for motions for arbitrary vehicle state constraints (positions, headings, 

curvatures, rates of curvatures, velocities, etc…).  Here, the trajectory generator 

is only required to meet terminal position and heading constraints since the 

vehicle will likely never execute the entire motions between replanning cycles.  
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In contrast to terminal state, the full initial vehicle state (xi) is necessary to 

initialize the vehicle dynamic model used by the algorithm.   

2.4 Adaptive Search Envelope Determination 

The envelope of the adaptive search space depends heavily of the dynamic 

limitations of the mobile robot.  The horizon of the search space shape should 

adapt to the current speed because of braking distance and obstacle avoidance 

limitations. Likewise, the range of feasible terminal heading angles can vary 

heavily for vehicles with small curvature or angular acceleration limits.   

An effective way to determine envelope is simply to exhaustively sample control 

space and record the extremes achieved in state space.  This method would have 

to be employed off-line and it could not be used for vehicles whose models 

adjust over time.  Another approach is to evaluate several aggressive maneuvers 

(such as max-turn right and left) to form rough bounds on reachable positions 

and headings at the horizon.  This approach is simple, fast, and it can be used for 

adaptive vehicle models so we have preferred it over the off-line method.   

3   Experiments & Experimental Results 

In order to evaluate the performance of our approach, the adaptive search space 

algorithm presented in Section 2 has been tested in a series of simulation and 

field experiments.  The simulation experiments are comparisons against arc-

based (uniform sampling in control space) local motion planner search spaces in 

a series of randomized worlds.  The field experiments consisted of a series of 

long distance missions.  Sections 3.1, 3.2, 3.3, and 3.4 discuss the vehicle test 

platform, simulation setup, simulation results, and field experiment results and 

observations respectively.  

3.1 Vehicle Test Platform 

The vehicle used for this series of 

simulation and field experiments was 

Crusher (Figure 5), a six-wheel skid-

steered mobile robot that is the current 

platform for the DARPA UGVC-Perceptor 

Integrated (UPI) project.  The simulation 

uses the same simplified dynamic model of 

the vehicle (which represents the system 

delays and the linear and angular 

acceleration limits) as the one used by the 

Fig. 5: Crusher. The current platform of 

the DARPA UGCV-PerceptOR Integrated 

(UPI) program.
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planning system, so execution of commands is nearly ideal.  The fidelity of the 

model is reduced in the field experiments, as effects such as wheel slip and 

sliding are not predicted as well on the vehicle as they are in simulation.   

3.2 Simulation Setup 

To test the effectiveness of this adaptive search space on a statistically significant 

number of cases, a series of simulations were performed.  The simulation 

consists of a rectangular vehicle driving through a randomly generated world 

while trying to reach the goal waypoint on the other side of the world.  As the 

vehicle traverses the simulated world the global planner, Field D* [8], constantly 

provides the global path to goal and a field (navigation function) of path costs 

surrounding the vehicle.  The cost computed from the convolution of the vehicle 

body along each trajectory, combined with the D* path cost at the end of that 

trajectory, comprises the score used to select the trajectory to follow.  That 

trajectory is then followed during the next planning cycle, and a new trajectory 

selected at the end of that cycle.  For simplicity, the planner is not allowed to 

perform any stopping or backup maneuvers and the vehicle speed is pre-

computed based on obstacle cost and density. 

The simulated worlds used are a set of three, connected real-valued obstacle 

fields filled with randomly positioned circular obstacles of different densities (a 

single example is shown in Figure 6).  The target speeds in the high-, medium-, 

and low-density obstacle fields were 1.5 meters/second, 6.0 meters/second, and 

9.0 meters/second respectively.  The vehicle model in the simulator is the same 

vehicle model used by the trajectory generator (for the adaptive search space) 

and the vehicle motion simulator (for the arc-based search space).  To ensure a 

fair comparison of search spaces in the test, both the adaptive and arc-based sets 

are comprised of the same number of trajectories (99).  The arc-based set 

forward simulates 99 different constant curvatures whereas the adaptive set plans 

motions to three different headings at each of 33 different positions biased by the 

minimum D* path cost.     

3.3 Simulation Results 

One hundred simulated runs were performed for each of the local planner search 

spaces.  For each pair of runs one simulated world is generated and both the arcs-

based and adaptive search spaces were tested on that world.  One of the 

representative simulation runs comparing the two approaches is shown in Figure 

6.  In all but one of the simulated worlds the adaptive search space outperformed 

the arc-based search space.  On average, the overall path cost from the start to 

the end states was 24.8% lower for the adaptive search space, demonstrating that 

the improved flexibility and efficiency of the adaptive search space provides a 

performance advantage over constant curvature-control versions.  In the best and 

worst cases, the adaptive search space had 79.5% lower and 20.0% higher 

overall path cost respectively.  Lower overall path cost directly relates to 
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probability of mission success as higher cost regions pose threats to vehicle 

survival.   

 

Fig. 6: Simulation of arc-based vs. adaptive search spaces. Each type of motion planning scheme 

(arc-based and adaptive search spaces) was evaluated in a representative simulated environment.  In 

this particular example, the adaptive search space has a 43.0% lower cost along the path. 

3.4 Field Experiment Results 

Variants of the adaptive search space have been integrated and field tested on 

Crusher mobile robot (Figure 5).  The algorithm demonstrated the capability to 

dodge obstacles and reacquire paths at speeds up to 12 meters/second in off-road 

environments.  Figure 7 shows an example of the local planner utilizing the 

adaptive search space from field data.  The minimum cost trajectory selected is a 

swerve maneuver that avoids the high cost regions in the front right and left of 

the robot.  The new search space so consistently outperforms the older arc-based 

one that it has replaced it in all field tests. 

4   Conclusions and Future Work 

We have leveraged our own recent work in 

model-based trajectory generation to create a 

ult 

environments while preserving inherent

ay of the fidelity of the dynamic model (as 

capacity to navigate effectively in diffic

 

feasibility of local motion plans. Key aspects 

of the technique include explicit computation 

of the shape of the feasible set, and sampling 

strategies that adjust the distribution of 

samples to exploit global guidance. The 

benefits of the adaptive search space have been 

demonstrated in simulation and confirmed in 

off-road navigation.   

Current and future work of this algorithm 

include more extensive field testing and refinement of the search space design to 

more optimally represent the set of all feasible motions of the vehicle at different 

speeds.  Also, a more gradual dec

Fig. 7: Field Experiments of 

Dynamically Adaptive Search Spaces.  
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