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STATE-SPACE SOLUTIONS TO THE %/LTR DESIGN 

PROBLEM 

JAKOB STOUSTRUP AND HANS HENRIK NIEMANN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Mathematical Institute, Technical University zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Denmark, Building 303, DK-2800 Lyngby, Denmark 

SUMMARY 

The LTR design problem using an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJC optimality criterion is presented for two types of recovery errors, 
the sensitivity recovery error and the input-output recovery error. For both errors two different 
approaches are presented. First, following the classical LTR design philosophy, a Luenberger observer 
based approach is proposed, where the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ part of the controller is appended to a standard full-order 
observer. Second, allowing for general controllers, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan JC state-space problem is formulated directly from 
the recovery errors. Both approaches lead to controller orders of at most 2n. In the minimum phase case, 
though, the order of the controllers can be reduced to n in all cases. The control problems corresponding 
to the various controller types are given as four different singular state-space problems, and the 
solutions are given in terms of the relevant equations and inequalities. 

KEY WORDS Loop transfer recovery Singular 25% theory Luenberger observer 
Youla parameterization 

1. INTRODUCTION 

In the last decade the concept of loop transfer recovery (LTR) has emerged as an important 
approach to the design of robust feedback controllers. The attractive theoretical properties of 
such controllers in combination with its conceptual and computational simplicity has 
motivated its popularity and spread in the control community for continuous time 
systems L45,8,11.18.19,?.4,25 and for discrete time  system^.^"^.'^ The LTR philosophy establishes 
a systematic two-step method for the design of dynamical measurement feedback controllers. 
The first step is to design a static state feedback which performs according to the specifications. 
The second step is to design a dynamical measurement feedback controller, which ‘behaves 
almost’ like the static state feedback. In the two steps entirely different design methodologies 
can be applied, which make LTR an attractive alternative to ‘one-shot’ methods. The objective 
of this paper is to provide a complete zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA% design method for the second step. 

Design methods as LQGILTR, ES/LTR (i.e. eigenstructure assignment LTR) and singular 
perturbation LTR are all based on sufficient conditions for obtaining recovery. Further, 
practically only controllers based on full-order or minimal-order observers have been used for 
recovery design. As a result of these two drawbacks no guarantee can be given that the best 
controller type is selected for a given problem. 
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2 J.  STOUSTRUP AND H. H. NIEMANN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A first step towards a more systematic description of conditions for obtaining recovery has 

been done by Goodman' by the introduction of the open loop recovery error for full order 
observer based controllers. In Reference zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA14 the recovery error concept has been extended to 
both open and closed loop recovery errors and more general controllers have been investigated: 
the Luenberger observed based controller and the output feedback controller (the unknown 
input observer based controller). In this work, it was shown that a certain matrix-valued 
function, the so-called recovery matrix, plays a crucial role in the LTR problem. In the 
asymptotic recovery case, it turns out that both recovery error types tend to zero if and only 
if the recovery matrix does. Accordingly, both necessary and sufficient conditions for achieving 
asymptotic recovery were obtained by the study of the recovery matrix. 

Methods as LQG/LTR, ES/LTR and singular perturbation LTR are mainly ad hoc, in the 
sense that they try to reduce a more or less unspecified part of the system. In References 21 
and 23 an Z / L T R  problem is formulated in order to reduce the norm of the recovery matrix. 
We shall refer to this method as an indirect design method. One significant problem caused 
by using indirect design methods is that no guarantee exists that the norm of the recovery 
errors decreases when the norm of the recovery matrix decreases (except in the asymptotic 
recovery case-see above). In fact, in the course of this paper we shall study an example, where 
the recovery errors even increase when the norm of the recovery matrix decreases. 

Moreover, for non-minimum phase systems, most contributions so far deal only with 
analysis. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA17~1929 Hence, there is a need for systematic design procedures. A more advantageous 
approach to LTR controller design is therefore to use the recovery errors directly in the 
recovery design problem formulation, which we shall call the direct LTR design method. Till 
this point, only one such method has been investigated. l2 This recovery method imposes an 
Z constraint on the sensitivity recovery error. The method is based on coprime factorizations 
of the sensitivity recovery error for a system where the direct feedthrough term is assumed to 
have full rank. This method has two drawbacks: first, the order of the final observer based 
controllers is 2n for square system and 3n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1 otherwise in the minimum phase case. However, 
it is always possible to reduce the Z norm of the recovery errors by nth order controllers in 
the minimum phase case. 21s23 Second, for non-minimum phase systems, only the minimum 
phase part is considered in Reference 12 and no norm bounds are guaranteed for the overall 
system. But, as a matter of fact, the main importance of direct design methods, are their 
application to non-minimum phase systems, as will appear in the course of this paper. 

The key contribution of this paper is to formulate the recovery design problem as a direct 
Z optimization problem of the recovery errors and to derive the associated Z / L T R  
controller in state-space form. The basis of this contribution is the general recovery description 
given in Reference 14 which is summarized in Section 2. Concurrently, two different controller 
structures are considered for both the sensitivity recovery problem and the input-output 
recovery problem. First, the so-called Q-observer is considered which is a structure, where the 
Z part of the controller is appended (in a block-diagram sense) to a standard full order 
observer based controller. Second, a description is given, where the Z standard problem 
emerges directly from the recovery errors. 22 Effectively, five different zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3% problem 
formulations are given at the end of Section 2. 

The five Z problem formulated in Section 2, are all singular, i.e., they do not fulfil the 
usual assumptions about the rank of the direct feedthrough term. This problem is often 
overcome by approximation techniques, but a complete generalization of the Z problem to 
include singular D matrices have been given by Stoorvogel. 2o The results needed in this 
presentation are cited in Appendix A, along with some easy corollaries. In Appendix B the 
relevant algorithms for the singular Z approach are given. 
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In the following two sections (Sections 3 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4) the solutions to the four direct zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,% problems 

are given. State-space formulations of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4% problems are given; the controllers are given in 
state-space form and are expressed in terms of certain quadratic matrix inequalities which are 
generalizations of the matrix Riccati equations known from Reference 3 (and solved by similar 
techniques). 

The results from Sections 3 and 4 are briefly summarized in Section 5. In Section 6 an 
exhaustive discussion of a non-minimum phase example is given. Finally, some concluding 
remarks are given in Section 7. 

2. THE LTR PROBLEM FORMULATION 

In this section we shall shortly describe the significance of LTR and give a brief introduction 
of the Luenberger observer. Further, Q-parameterized controllers will be introduced, both as 
Luenberger observer based controllers and as general controllers. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.1. The principle of recovery design 

Loop transfer recovery (LTR) is a tool applied in robust multivariable control. LTR design 
is the last step in a two-step design procedure for constructing dynamic compensators. The first 
step in the procedure is a specification of the desired properties for the final feedback control 
system and the design of a target loop, using a state feedback for which the specifications are 
satisfied. Then the LTR step follows, where the target loop is ‘recovered’ by an admissible 
measurement based controller. 

Suppose the design specifications are given as bounds on the sensitivity transfer function 
S( - ) and the complementary sensitivity transfer function T( - ). 

where \I - 11- is the 4% norm. The performance specifications (e.g. asymptotic tracking, 
bandwidth) are expressed by the weight function W1( ) on the sensitivity function.’ The 
weight WZ( - ) on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT( ) reflects system uncertainties such as disturbances, noise and modelling 
errors. In the sequel, the specifications will always be reflected to the input node. Independent 
of the selected dynamic controller type, see Sections 2.2-2.6, the systematic LTR design 
procedure can be applied to the design problem. First a state feedback design, the target 
design, which satisfies ( l ) ,  is designed, ‘.19 resulting in the target loop transfer function. 
Second, the LTR step is performed, where the target design is recovered systematically for each 
frequency by using a dynamic controller C(s). Often the system is assumed to be minimum 
phase, which has been shown to be a sufficient condition l4 for achieving asymptotic recovery, 
i.e. recovering each frequency arbitrarily well. The minimum phase condition is not necessary 
for asymptotic recovery. Necessary and sufficient conditions are known but rather 
complicated. The LTR design originated as an approach to design of full order observer based 
 controller^,^'^ but it is possible to design other controller types by the LTR principle. l4 At this 
point we would like to stress, that the target design can be performed completely independent 
of the specific LTR procedure chosen. For non-minimum phase systems, though, it might in 
some cases be beneficial to design a state feedback which facilitates asymptotic recovery. l 7  
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2.2. Recovery errors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
represented by a state-space realization (A, B, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC, 0):  

Let us consider a finite-dimensional, linear, time-invariant (FDLTI) plant model, 

=r=h+Bu z = c x  

with transfer function: 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIR", U E  IRm, 

G ( S )  = C(SI - A)-'B (3) 

z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE R', with m > r and A, B and C are matrices of appropriate 
dimensions. The system is assumed to be stabilizable, detectable and left invertible. Moreover, 
we shall make the technical assumption, that A(A) n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 = 0. Note, however, that this can 
always be achieved by applying a preliminary static output feedback. Furthermore, this 
preliminary static output feedback can be chosen arbitrarily small. 

The associated sensitivity and input-output transfer functions for the target design and the 
full loop design are given by: 

(4) 

( 5 )  

&FL(S) = (I - F(s1- A)-'B)-' 

SI(S) = (I - C(s)G(s))-' 

where F is the target static state feedback, and C(s) is the controller to be designed. Using 
these transfer functions, two possible types of recovery errors can be defined. 

Dejnition 2.1 

The sensitivity recovery error ES and the input-output recovery error EIO are defined by 

Es (s) = STFL(S) - SI (s) 

EIO(S) = GFL(S) - GIO(S) 

(8) 

(9) 

The objective in the rest of this paper is to describe how the norm of these two recovery errors 
can be made small when applying different kinds of controllers, using methods. The 
various controller types will be introduced in the following. 

2.3. The Luenberger observer based controller 

Suppose that we wish to control the plant by a control law of the form: 

u = F%+ r = w + r (10) 

where P is an estimate of the plant state. In the Luenberger observer w = F% is given by the 
following equations: 

(1 1) 
= DZ + GU + Ey 

w = Pz + v y  
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The Luenberger matrices T, D, E, G, P, V have to ~a t i s f y :~  

(i) A(D)CC- 

(ii) TA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- DT = EC 

(iii) G = TB 

(iv) F =PT+VC 

The controller obtained when applying this observer has the following transfer function: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(12) 

C(s) = V + P(s1- D - GP)-'(E + GV), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC ( s ) : p  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx m (13) 

When the Luenberger observer based controller is applied, the two recovery errors of 
Definition 2.1 can be written in a more convenient form. 

Lemma 2.2 

Define 

Then 

Proof. The prool o 

M ~ ( s )  = P(SI - D)-'G 

Lemma 2.2 can be found in Reference 14. 

The matrix-valued function MI( * ) turns out to be of great significance in the sequel. It 
describes the mismatch between the actual and the desired transfer function. Therefore we will 
refer to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMI( - ) as the recovery matrix (for the plant input node). The recovery matrix is not 
just an abstract quantity, but it has a nice interpretation, namely as the transfer function from 
u to w in Figure 1. 

One of the pay-offs of considering MI (s) for Luenberger observer based controllers is 
illustrated by the following Iemma. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 
- 

Figure 1. The Luenberger observer 
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Lemma 2.3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

With MI as above, then, 

and 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAui( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA* ) is the ith singular value. 

Proof. See Reference 26. 

The two norm inequalities in Lemma 2.3 provide two measures of the relative mismatch 
between the full loop and the target loop, where 11 MI( ) 11.. is a common bound for these two 
measures (for all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi). 11 MI( * ) 11- is therefore in a certain sense a measure for the quality of the 
recovery design. In 26 the strong dependency of the recovery design on )I MI(.) (1- has bLen 
used in analysing the trade-off between good recovery (i.e. small 11 MI( - ) and relatively low 
controller gains, which is inevitable for ‘generic’ systems. Moreover, the two inequalities also 
suggest that the task of reducing the norm of SI or Gro amounts just to the task of reducing 
11 MI( - ) /I-, which is true in the minimum phase case (see 21 and 23). In Section 6, however, 
we shall give an example to illustrate, that EI or EIO is not always ‘minimized’ when MI is 
‘minimized’. 

In the following we shall use two special cases of the Luenberger observer, the full-order 
observer and the Q-observer. 

2.4. The full-order observer 

appears from the Luenberger expressions by the following selection of matrices: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9,15 

The full-order observer is the most commonly used observer type. The full-order observer 

D = A + K C  
G = B  
P = F  
E= -K 
v = o  
T = I  

where K is the observer gain. The recovery matrix becomes: 

MI(s) = F(sI - A - KC)-’B 

for these Luenberger parameters. 

2.5. The Q-observer 

The second Luenberger observer based controller type to be considered in this section is the 
Q-parameterized controller implemented according to the construction in Reference 2. In the 
sequel we shall consider the reduction of the norm of the recovery errors in an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA% framework. 
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To that end, we wish to compare the performance of controllers with a certain structure to 
that of general controllers, i.e., controllers that are only required to be FDLTI and internally 
stabilizing. One approach to characterize general controllers is the Youla parameterization of 
all stabilizing controllers. Briefly, the principle in the well-known Youla (or Q-) 
parameterization is to take zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAany stabilizing controller which is thereafter fixed, and then make 
a certain interconnection structure. Now, the class of all stabilizing controllers is parameterized 
by applying the class of all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&%, systems at the interconnection nodes. In Reference 2 it is shown 
that the simple construction shown in Figure 2 is an implementation of the Youla 
parameterization. In the sequel we shall zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAus this implementation, which we shall denote the 
Q-observer. 

In the following sections, we shall need the following result from Reference zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA14. 

Lemma 2.4 

Assume that Q E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB%,, with a state-space representation, say, 

XG = AQXQ + BQUQ 

ZQ = CQXQ + DQUQ EQ: 

Here X Q E  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARq, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq is the order of Q. 
Then the corresponding Q-observer is a Luenberger observer with the following parameters: 

P =  [F+ DQC CQ] 

V =  -DQ 

The corresponding recovery matrix becomes: 

MI(s) = F(sI - A  - KC)-'B + Q(s)C(SI - A  - KC)-'B (23) 

2.6. The &%, standard setup 

The traditional LTR design approach using observer based controllers, especially the 
Q-observer structure, has been treated in the above section. Alternatively, we can directly 
formulate the &%,/LTR design problem as an 31% standard problem. The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY& standard 
philosophy is to define a fictitious plant CT which is a realization of the compound transfer 
function on which the 3I% constraint is posed, rather than of the plant itself (see, for example, 
Reference 6). 

Consider the closed loop system in Figure 3. Denote the transfer function of the controller 
C.s  by Q(s) E 5W&. Then the closed loop transfer function from w to z becomes: 

G d s )  = T d s )  + TZu(s)Q(s)(I - Tyu(~)Q(~))- lTyw(~)  (24) 
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I I !  w zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ!TJ 

T 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
c,! 

Figure 2. The Q-observer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
z 

Y U zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA?:g' 
Figure 3.  The .% standard problem 

where Tzw(s), TZU(s), Tyu(s) and Tyw(s) are the open loop transfer function from w - z, u - z, 

u - y and w - y respectively. 
Now, with Gz,(s) being the sensitivity recovery error Es(s) introduced in Definition 2.1, we 

have: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Lemma zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2.5 

A linear fractional transformation of Es(s) in the form (24) is given by the following 
transfer functions: 

T,,(s) = (I - F(SI - A ) - ~ B ) - ~  - I 

TzU(s) = - I  

Tyu(s) = C(SI - A)-'B 

T,(s) = C(SI - A)-'B 
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Proof. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe proof is omitted. It follows directly from the definition of Es(s). 

Similarly, for E~o(s) we have: 

Lemma 2.6 

A linear fractional transformation of EIO(S) in the form (24) is given by the following 
transfer functions: 

T,,(s) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= C(SI - A - BF)-*B - C(SI - A)-'B 

T,,(s) = -C(SI - A)-'B 

Tyll(s) = C(SI - A)-'B 

TYw(s) = C(SI - A)-'B 

Proof. The proof is straightforward. 

State-space representations for these two models of Es(s) and EIO(S) are given in Sections 3 
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. 

2.7. 3% formulation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the loop transfer recovery problem 

turn out to have slightly different answers. 
The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAYG version of the LTR design problem can be stated in a number of ways which will 

In References 21 and 23 the following problem was treated: 

Problem 1 

Let y > 0 be given. Find, if possible, a FDLTI system Q(s) such that: 

I1 M I ( *  llm < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY (27) 

(28) 

or, equivalently, 

1 1  F(s1- A - KC)-'B + Q(s)C(sI - A - KC)-'B l l m  < y 

is achieved, and the closed loop system is internally stable. Here 11 * (IoD is the &?2, norm. 

Thus, using the Q-observer structure in this formulation, the solution will immediately give us 
a Luenberger observer based controller, with the structure of Lemma 2.4. 

For the asymptotic recovery case, any series of controllers which make the norm of MI(s) 
tend to zero, also make the norms of the two recovery errors in Definition 2.1 tend to zero. 
Consequently, we can just apply the simple procedure outlined in 21 and 23 for reducing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
MI( - ), even if the original goal was to reduce Es( * ) or EIO( * ). This will be called indirect 
design. The resulting controllers turn out to be of dynamic order not greater than n. 

It might be, though that in the case where asymptotic recovery is not possible, we are in a 
situation where the norms of Es( * ) and EIO( - ) are not 'minimized' by the controller which 
'minimize' the norm of MI ( * ). An example of this is given in Section 6. Hence, it is of interest 
to make a problem statement which directly involves the norms of Es( * ) and EIO( - ). This can 
be formulated either as a standard zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ problem, or as a standard 3% problem where we 
furthermore require the solution to be in the Q-observer form. 
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Problem 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Q-observer the closed loop is internally stable, and: 

Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> 0 be given. Find, if possible, a FDLTI system Q(s) such that when applied in a 

II Es(- ) llm < Y 
or, equivalently, 

1) (I + F(s1- A - BF)-'B)(F(sI - A - KC)-'B + Q(s)C(sI - A - KC)-'B) 11- < y (30) 

The Q-observer expression for Es(s) and the following for Elo(S) has been derived in 
Reference 14. With no constraints on the controller type we get the following formulation. 

Problem 3 

a dynamic measurement feedback controller we achieve: 
Let y > 0 be given. Find, if possible, a FDLTI controller Q(s) such that when applied as 

II Ed. )  llm < Y (31) 

or, equivalently, 

( 1  F(sI - A - BF)-'B - Q(s)(I - C(s1- A)-'BQ(s))-'C(sI - A)-'B) < y (32) 

is achieved, and the closed loop system is internally stable. 

Problems 2 and 3 are treated in Section 3. Correspondingly, we consider the X, problem 
formulated for E I ~ ,  both with a Q-observer based controller, and directly as a standard 
problem. 

Problem 4 

Q-observer: 

or, equivalently, 

Let y > 0 be given. Find, if possible, a FDLTI system Q(s) such that when applied in a 

(33) 

(34) 

I 1  EIO(.)  l lm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc Y 

( 1  C(SI - A - BF)-'B(F(sI - A - KC)-'B + Q(s)C(sI - A - KC)-'B) ! I D o  < y 

is achieved, and the closed loop system is internally stable. 

Problem 5 

a dynamic measurement feedback controller we achieve: 

or, equivalently, 

11 C(s1- A - BF)-'B 

Let y > 0 be given. Find, if possible, a FDLTI controller zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ(s )  such that when applied as 

(34) II Era(-) l lm < Y 

- C(SI - A)-'B - C(SI - A)-'BQ(s)(I - C(SI - A)-'BQ(s))-'C(sI - A)-'B < y (36) 

is achieved, and the closed loop system is internally stable. 

Problems 4 and 5 will be treated in Section 4. 
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Note that from the results of Reference 2, it follows that solvability of Problem 2 (resp. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4) 
is equivalent to solvability of Problem 3 (resp. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5) .  

3. THE SENSITIVITY Z / L T R  DESIGN PROBLEM 

In the following we shall consider the sensitivity recovery problem formulated with an Z 
optimality criterion. Two different formulations will be considered, which both impose an S4%. 
norm constraint on the sensitivity recovery error. Following the approach of References 14, 
21 and 23, observer based controllers will be studied, which possess the Q-observer structure 
introduced in Section 2 which is based on the Youla (Q-) parameterization (Problem 2). In 
Section 3.3, a more direct approach will be taken (Problem 3), where no preliminary 
compensator is introduced, and the optimization problem is formulated without 
restrictions on the controller structure. Hence, the latter follows strictly the 'standard problem' 
philosophy of Z theory, whereas the former is more conceptually clear from an LTR point 
of view, since the corresponding controllers simply are classical, full state, observer based 
controllers, augmented (in a block diagram sense) by the required S4%. dynamics. As a 
drawback this implies that the controller order is initially larger than the 'standard problem' 
controllers. Fortunately, though, the superfluous controller states can easily be dismissed, as 
will be shown in the sequel. For the Q-observer based zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.%, problem, the sensitivity error is affine 
in the controller, whereas the sensitivity error is a general linear fractional transformation for 
the Z standard problem formulation. In the course of this section it will turn out that the 
two controller types, solving the Z / L T R  problem in the two formulations, will have 
significant similarities, and design methods will be given for each controller type. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.1.  Preliminaries and notation 

In the following we shall subscribe extensively to the so-called singular 3% theory in the 
approach of Reference 20. An introduction to this approach as well as a summary of the most 
important results for our needs is given in Appendix A. The algorithms involved are described 
in Appendix B. 

Briefly the principle in the approach of Reference 20 is the following. First, a certain 
quadratic matrix inequality is considered, which along with two algebraic constraints (rank 
conditions) guarantees uniqueness of a solution. Once this solution to the quadratic matrix 
inequality has been obtained, a new system is constructed through the full information 
transformation (see Appendix A). For this transformed system another inequality, the dual 
quadratic matrix inequality is considered, again with two associated rank conditions. 
Eventually, once the unique solution to the dual quadratic matrix inequality has been 
determined, the transformed system is itself transformed by a dual transformation, the full 
control transformation. It so happens that the doubly transformed system (1) has the same 
controllers as solution to the S4%. problem as the original system, and (2) is minimum phase. 
These two facts imply that after the two transformations the solution to the original problem 
is easily obtained - see Appendix A. 

For further details of the applied singular X, approach please refer to Appendix A. Here 
we shall introduce some required concepts and notation. Consider the following dynamic 
system: 

X = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA X +  BU + EW X E  R",u E IR'", w E IR9 

Z E  IR' 
D ~ w  yEIRP (37) 

z = C ~ X  + D ~ u  
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where A , B , E , C ~ , D I , C ~  and D2 are matrices of appropriate dimensions. Based on these 
matrices, we define the following two matrix valued functions: 

1 A'P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ PA + CTC2 + Y-~PEE'P PB + CFD2 
[ B'P + DZC2 D ~ T D ~  
AQ + QA' + EE' + -y-'QC;C2Q QC: + ED 

C1Q + DIET D ~ D T  

F,W = 

WQ)= [ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(39) 

Then we shall say that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 is a solution to the quadratic matrix inequality if and only if the 
following three conditions are all satisfied: 

F,(P) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0 (40) 

(41) 

["' - A - y-2EE'p - "1 = n + normrank C2(sI - A)-'B + D2, vs E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC+ U Co (42) rank 

where normrank M( ) is the maximal rank of M(s) over all s E C. An algorithm for finding 
P satisfying (40-42) is given in Appendix B. We also need to introduce the dual quadratic 
matrix inequality. We say that Q 2 0 is a solution to the dual quadratic matrix inequality if: 

rank F,(P) = normrank C2(sI - A)-'B + D2 

FAP) 

Gy(Q) 2 0 (43) 

rank G,(Q) = normrank Cl(sI - A)-'E + Dt (4) 

G,(Q) = n + normrank Cl(s1- A)-'E + D1, Vs E C+ U C' 

(45) 

1 SI - A - Y - ~ Q C I C ~  
- c1 

rank [ 

3.2. Sensitivity recovery using the Q-observer 

Using the Q-observer introduced in Section 2, the sensitivity recovery error is given by: 

Es(s) = STFL(S)MI(S) = (1 + F@FB)(F@KB + Q(s)C@KB) (46) 

The state-space formulation of equation (46) is given by: 

( z = [  F F ] x +  Iu 

or, in short 

x =Ax + Bu + Ew zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
CS,Q: Y=elx + b l w  (48) [ 2 = c2x + b2u 

For this system Assumption A.1 amounts to the condition that (A, B, C, 0) has neither zeros 
nor poles on the imaginary axis (see Appendix C). This is assumed throughout this section. 

Note that D2 = I is injective and DI = 0, which means that the quadratic matrix inequality 
is regular and that the dual quadratic matrix inequality is totally singular. First, we wish to 
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find a solution to the quadratic matrix inequality, so we can perform the full information 
transformation (see Appendix A). Using injectiveness of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADZ to apply Corollary A.3 the 
solution to the quadratic matrix inequality is found: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Theorem 3.1 

For the system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACS,Q described by (47), the solution of the quadratic matrix inequality with 
the associated rank conditions, is: 

F=[" O P  o] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(49) 

where P is the unique solution to the algebraic Riccati equation: 

A ~ P  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ PA - P B B ~ P  = o (50) 

P is given by: 

P = - llf(IIGJIT)-'ll 

Here, G, is the controllability gramian, and ll is the orthogonal projection on to *A)* 
along Z(A), the space of generalized stable eigenvectors of A. - -  

F,(P) factorizes as: 

[F B T P + F  I] = pp] [ ~ z , P  bp] 
D; 

Proof. See Appendix C .  

Note that the solution of the quadratic matrix inequality does not depend on y. Further, in 
the special case when A is stable, F=O is the unique solution, and the resulting full 
information transformation (see Appendix A) in this case is the identity. 

In general, performing the full information transformation (see Appendix A), we get the 
following matrices: 

A p = A  

C1.P = el 

bp = 0 2  

(53) 
C2,p = [F BTP + F] 

Now a solution P to the dual quadratic matrix inequality for the transformed system has to 
be found in order to determine the corresponding full control transformation. Using the dual 
of Corollary A.4 one can easily see that: 

Lemma 3.2 

solution of the associated dual quadratic matrix inequality, 
Let the matrices A P , B , E , E I , P , C ~ , P , ~ %  and bp be as in (47), (48) and (53). Then the 
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satisfies: 

CY11=0 and CYl2=0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- -  
Gy(Y) factorizes as: 

The conditions under which the dual quadratic matrix inequality has the solution P = 0 are 
different from the conditions under which the (primary) quadratic matrix inequality has the 
solution P = 0 as it is seen from the following corollary. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Corollary 3.3 

Assume that the system (A,B,C,O) is invertible and minimum phase. Then P=O is a 
solution of the dual quadratic matrix inequality satisfying the involved rank conditions. 
Conversely, = 0 is a solution of the dual quadratic matrix inequality only if (A,B,C,O) is 
invertible and minimum phase. In this case no second (full control) transformation is needed. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Proof. See Appendix C. 

For %? # 0 the full control transformation proceeds as follows: 

with: 

A ~ ! Q  = AK + y-'YIIFTF + T-~Y]~(PBF + FTF) 

AsfQ = y-2Yll(FTBTP + F'F) + y-2Yi2(PBBTP + F'F) 

A$!Q = BF + y-2Yi2FTF + y-'Yi2(PBF + F'F) 

A~:Q = AF + T - ~ Y I ~ ( F ~ B ~ P  + F'F) + ym2Y22(PBBTP + F'F) 

and 

After the full information and full control transformations (see Appendix A), the controller zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
U = Q(s)y described in Theorem A.5 can now be designed in order to satisfy the two norm 
inequalities in (A.12) and (A.13). It is readily seen that (A.12) is trivially satisfied for: 

L = -C2,p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(58) 

since this solves an (exact) disturbance decoupling problem. 

Lemma 3.4 

Let P be given by (51) and let M =  [M: MT]' be any matrix satisfying 

11 (SI - AP,Q - MCl,P)-'EP,Q 11- < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy/ 11 C2.P 11 (59) 
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Then an admissible controller for the above zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa% problem is given by: 

- 1  SI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- A - KC - MIC 

[ -M2C SI - A: BBTP] [::I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ(s)  = [F BTP + F] 

= F(s1- A - KC - MlC)-'Ml 
+ (BTP + F)sI - A + BBTP)-'M2C(sI - A - KC - MiC)-'Ml 
+ (BTP + F ) ( d  - A + BBTP)-'M2 (60) 

Proof. The lemma follows directly by substituting the above matrices in Theorem A.6. 

The controller derived in Lemma 3.4 has dynamic order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2n. When inserted in the overall 
controller structure, as described in Section 2, we get a controller of order 3n, if no reduction 
is carried out. It turns out, though, that a structural reduction can be performed. The basic 
idea is to use the remaining freedom in the observer gain K designed in Section 2 to obtain 
some of the desired controller dynamics. This is done by means of a procedure as follows. First 
a full (nth-)order observer Cobs with any stabilizing gain K is designed. Using the Q-observer 
construction we append a dynamic compensator zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEx, of order 2n such that the a% constraints 
are satisfied by the overall compensator. Now the original full order observer is returned, 
allowing for a dynamic compensator EL of order n to be substituted for CS-, maintaining 
the same transfer function for the cascade of the two compensators: the modified full order 
observer Ezbs and the modified a% controller EL, as we achieved for the original full order 
observer Cobs cascaded with the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAYG, controller CS&. - see Figure 4. The validity of the 
method described above, follows from Theorem 3.5. 

(a) (b) 

Figure 4. (a) Original system with Jnth-order controller. (b) Transformed system with 2nth-order controller 

Theorem 3.5 

Let the transfer function Q * ( s )  for the output feedback compensator system C.>* be given 
by its transfer function Q*(s) = (B'P + F)(sI - A + BBTP)-'Mz. When applying Z,%- to a Q- 
observer configuration with observer gain K* = K + MI  (see Figure 4(b)), the a% norm of the 
transfer function from w to z equals the YG, norm obtained when applying C . H ~  described by 
(47) to a similar system with observer gain K. 

Proof. Please refer to Appendix C. 
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In the minimum phase case it can be seen that an nth-order admissible controller is obtained 
by choosing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0. Mi must then satisfy: 

11 (sI - A - KC - MIC)-'B 110. < y/ I( STFL(. IF IIm (61) 

which follows directly from the statement of the sensitivity recovery design problem. 
Luenberger observer parameters in both the minimum phase and the non-minimum phase case 
is given in the following theorem. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Theorem 3.6 

following matrices: 
The cascade of C:bs and C k  (described above) is a 

Non-minimum phase systems: 

D =  [A+KC+MIC M2C 
A - BBTP O I  

P =  F B'P+F] 

E = [" zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&yl] 
v = o  

.=[:I 

Luenberger observer, described by the 

Minimum phase systems: 

D = A  + KC + MiC 

G = B  

P = F  

E = K + M i  

v = o  

T = I  

Moreover, the closed loop transfer function obtained by applying this Luenberger observer has 
% norm smaller than y. 

Proof. See Appendix C. 

Note that the overall controller is of order n in the minimum phase case, and 2n in the non- 
minimum phase case. The reason, why the controller reduction from 3n to 2n is possible, is 
the remaining freedom in the preliminary observer design. The dynamics from this observer 
will be cancelled by the &%, controller and substituted by a more feasible one in the resulting 
Q-observer structure. 

Note that only the output injection M in the %/LTR controller depends on y; L does not. 

3.3. Sensitivity recovery in the % standard formulation 

in Section 2.2 has the form in Section 2.6: 
When applying a general controller Q, Q c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5Z?.%, the sensitivity recovery error introduced 

E ~ ( s )  = F(sI - A - BF)-'B - Q(s)(I - C(SI - A)-'BQ(s))-'C(sI - A)-'B (62) 

which is a linear fractional transformation in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ(s ) .  
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The state-space formulation equivalent to (62) is: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
L = [ O  F ] x -  IU 

or, in short zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Ax + Bu + Ew 

Cs,st: y = ClX + b l W  [ 2 = C2x + 62u 

Like the problem in Section 3.2 this is neither a regular nor a totally singular zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA% problem, 
the state feedback subproblem (the quadratic matrix inequality) is regular and the estimation 
subproblem (the dual quadratic matrix inequality) is totally singular. In the sequel the structure 
of the solutions to the quadratic matrix inequality and the dual quadratic matrix inequality will 
be described as well as the full information and the full control transformations. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Theorem 3.7 

For the system &.st describes by (63), the solution P of the quadratic matrix inequality is: 

P - P  
p = [ - P  PI 

165) 

where P is given in Theorem 3.1. The associated quadratic matrix becomes: 

(66) 
- -  

x [-BTP BTP+F -I]  

Proof. See Appendix D. 

Note that solvability of, and the solution to, the quadratic matrix inequality does not depend 
on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy. Hence solvability of the 3% problem is equivalent to solvability of the transformed dual 
quadratic matrix inequality below, 

From Appendix A we achieve the following matrices associated with the % problem 
(63-64) by the full information transformation: 

& = A  
ep = e, 

bp = 6 2  

(67) 
Q p  = [ - BTP BTP + F] 

Now, the dual version of Corollary A.4 can be applied to the full information transform of 
the original system to obtain of the dual quadratic matrix inequality. 

Lemma 3.8 

For the system described by (63) with the modified matrices given by (67) the solution to the 
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dual quadratic matrix inequality: 

satisfies 

in addition to the conditions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4) and (6) of Theorem A.2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc7 (y )  factorizes as: 

CYI I=O and CY12=0 

This time the special case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 appears in the following situation: 

Corollary 3.9 

solution to the dual quadratic matrix inequality, satisfying the involved rank conditions. 
Assume that the system (A,B,C,O) is invertible and minimum phase. Then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi ! = O  is a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Proof. Equivalent to the proof of Corollary 3.3. 

For % # 0 the full control transformation proceeds as follows: 

with: 

A$!Q = A + y-2(Y11 - Y12)PBBTP - y-2Y12FTBTP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A ~ ! Q  = y-'(YT2 - Y22)PBBTP - Y - ~ Y ~ ~ F ~ B ~ P  

A~:Q = AF + Y-~(Yzz - YT2)(PBBrP + PBF) + Y - ~ Y ~ ~ ( F ' B ~ P  + FTF) 

A$:Q = ~ - ~ ( Y i z  - Yii)(PBB'P + PBF) + y-2Yi2(FTBTP + FTF) 

After these two transformations, the final controller Q ( s )  can be designed directly, by means 
of solutions to the two norm inequalities given by (A.12) and (A.13). It is readily seen that 
(A. 12) is trivially satisfied for: 

L =  [-BTP BTP+F]  (72) 

since this choice solves an (exact) disturbance decoupling problem. 

Lemma 3.10 

Let P be as above and let M = [MT MI]' be an output injection satisfying: 

I1 (sI - AP.Q - MG)-'EP,Q 11- < y/ II G,P I1 (73) 

Then an admissible controller for the above .%, problem is given by: 

(74) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASI - A + BB'P - MIC -BB'P - BF] -' E:] 
[ -M2C SI - A - BF 

Q(s) = - [ - BTP B'P + F] 
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Proof. Lemma 3.10 follows by substituting the above matrices in the expression of Theorem 

A S .  The relaxed norm bound in (73) (compared to (A.12)) is achieved by exploiting that L 
solves an exact disturbance decoupling problem. 

Note that the controller depends on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY only indirectly (through zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM). 

is invertible and minimum phase. The following controller results from substituting 
Theorem A S .  

As in Section 3.2 it is possible to obtain an nth-order controller if the system (A, B, C, 0) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
= 0 in 

Lemma zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3.11 

admissible controller for the above zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA% problem is given by: 
Assume that v=O is the solution to the dual quadratic matrix inequality. Then an 

(75) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ(s)  = F(sI - A - BF - NC)-'N 

Proof. See Appendix D. 

4. THE INPUT-OUTPUT S&/LTR DESIGN PROBLEM 

In this section we shall consider the input-output recovery problem with an ;>I&, optimality 
criterion. As in Section 3, two different approaches will be taken. In Section 4.1 the A% prob- 
lem is treated by the Q-observer formulation from Section 2, Problem 4. In Section 4.2 the 
problem is formulated with no constraints on the imposed controller type, the standard A% 
setup (Problem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5) .  

4.1. Input-output recovery using the Q-observer 

becomes: 
with the Q-observer structure introduced in Section 2, the input-output recovery error 

EIO(S) = (;TFL(s)MI(s) = C(SI - A - BF)-'B(F(sI - A - KC)-'B 

+ Q(s)C(sI - A - KC)-'B) (77) 

The state-space model of the input-output 

or, in short 

L=[ 0 

recovery error transfer function is: 

A + B F  O ] x + [ ; ] u + [ 9 w  

0 I X  + ow 

c 3 x +  ou 

(78) 
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The corresponding zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX2 problem is seen to be totally singular. Now, following the line of 
Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3.1, the solutions to the quadratic matrix inequality and the dual quadratic matrix 
inequality are found, using Corollary A.4 and the associated transformations. For the 
quadratic matrix inequality we have the following. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Theorem 4.1 

The quadratic matrix inequality associated with the system &O,Q has the solution 

where P is the unique matrix satisfying: 

(i) ATP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ PA + CTC = CT,PC~,~  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0 

(ii) PB = 0 

(iii) rank (ATP + PA + CTC) = normrank G(s)  

(iv) rank [” - A -”] = n + normrank G(s) ,  Vs E ct 
C2.P 0 

with G ( s )  = C(s1- A - BF)-’B. 

Proof. See Appendix E. 

Note, that the quadratic matrix inequality in this case reduces to a dissipation inequality 
(known from classical LQG theory, see for example, Reference 7) of nth order. This equation 
can be solved by a much simplified version of the algorithm in Appendix B. 

Also in the case the solution of the quadratic matrix inequality is independent of y. 
Solvability of the %/LTR problem will effectively depend only on solvability of the 
transformed dual quadratic matrix inequality. 

As a consequence of Theorem 4.1 we have the following corollary. 

Corollary 4.2 

Assume that (A,B,C,O) is minimum phase. Then P=O is the unique solution to the 
quadratic matrix inequality. Conversely, if P = 0 solves the quadratic matrix inequality (and 
the associated rank conditions), (A, B, C, 0) is minimum phase. 

Proof. Corollary 4.2 follows directly from Theorem 4.1. 

In general, however, the full information transformation (see Appendix A) will be non-trivial, 
and amount to: 

Ap= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 

C1.P = El (82) 

C2,P = [O C2,pl 

On this system, obtained by the full information transformation, the dual version of Corollary 
A.4 can now be applied to derive the solution of the dual quadratic matrix inequality. 
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Lemma 4.3 

modified as in (82), the solution: 
For the dual quadratic matrix inequality associated with the system CIO,Q with matrices 

in addition to the conditions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(6) of Theorem A.2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE,(v) factorizes as: 

Er(P)= EQ] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx [ETp,Q 01 

Proof. The proof of Lemma 4.3 proceeds exactly as the proof of Lemma 3.2. 

As in the sensitivity recovery error case, it will be possible to simplify the solution of the dual 
quadratic matrix inequality in special cases, as it appears from the following Corollary. 

Corollary 4.4 

to the transformed dual quadratic matrix inequality. 
If (and only if) the system (A, B, C, 0) is minimum phase and invertible, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = 0 is a solution 

More generally, though, the full control transformation will result in the following matrices: 

and B ~ , Q = B  1 y -2Y 12CT,PC2,P 

= [A+KC BF A + BF + y-2YzzCz,~C2,~ 

Performing both transformations, we eventually obtain the controller, solving the Z 
problem. 

Lemma 4.5 

Assume that y has been chosen sufficiently large. Let L =  [L1 Lz] be a state feedback 
satisfying (A.12) and let M =  [M: M i l T  be an output injection satisfying (A.13). Then a 
controller, making the closed loop internally stable, and making the 2% norm of the transfer 
from w to z smaller than y is given by: 

Q(s)  = - [Li 
SI - A  - KC - MiC 
- BF - BLI - M2C 

- r-2Y '2CT.PC2,P 
SI - A - BF - y-'Y22CT,pC2,p - BL2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI-' x ["'I M2 

(86) 

Moreover, whenever a solution exists, it can be seen that L might always be chosen as 
L = [ - F Lz] . Hence, the problem can always be solved by applying a controller of the form: 

[ Lzl X 

SI - A - KC - MiC 

-M2C 
- y-2Y12cz,Pc2,P 

Q W =  [F -L21 X [ SI - A - BF - y-'Y22CT,pCz,p - BL2 

Proof. (86) follows directly from Theorem A.5. L1 = - F  is proven in Appendix E. 
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The Q-term, given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(87), of the controller is of dynamic order 2n, which means that the 
complete controller will be of order 3n. In Section 3 it was possible by careful selection of the 
preliminary observer gain K to obtain a 2nth-order controller. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAIso for the 10-recovery prob- 
lem, if the preliminary full order observer gain had been chosen as K* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= K + MI rather than 
K, it can be shown that the resulting controller with 3n controller states would have had a 
transfer function of dynamic order 2n (when selecting M = [O M?] which is admissible in this 
case). In Section 3 this 2nth-order transfer function could itself be implemented as a Q- 
observer with an nth-order Q-term. This is not possible for the 10-recovery problem. However, 
the 2nth-order transfer function can still be implemented as a Luenberger observer based 
controller, whose parameters are given in Theorem 4.6. In the minimum phase case, Mz = 0 
is an admissible choice which reduces the order of the controller to n. The minimum phase 
controller is now obtained by selecting MI such that: 

1) (sI - A - KC - MiC)-'B !IoD < y<ll GTFL(' )F llOD)-' (88) 

This is verified directly from the definition of the input-output recovery problem. The 
minimum phase controller can be implemented as a full order observer based controller with 
observer gain K*. In comparison we have: 

Theorem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4.6 

internally stabilizing and makes the S4% norm of EIO( 9 ) smaller than y: 

The Luenberger observer based controller with the following characteristic matrices is 

Non-minimum phase systems: Minimum phase systems: 

] D = A + K C + M , C  
D =  [ A + KC + MIC y - 2Y12cT,Pc2,P 

MzC A + BF + BL2 + y-'Y22CESpC2,p 

G = B  

P =  [F - L2] P = F  

v = o  v = o  

T = I  

This Luenberger observer based controller, when applied to the system described by (78) makes 
the Z norm of the closed loop transfer function from w to z smaller than y. 

Proof. The proof is given in Appendix E. 

4.2. Input-output recovery in the S4% standard formulation 

introduced in Section 2.2 has the form: 
When applying a general controller Q, Q E m,, the input-output recovery error 

E , ~  = C(SI - A - BF)-'B - C(SI - A)-]B 

- C(s1- A)-'BQ(s)(I - C(s1- A)-'BQ(s))-'C(sI - A)-'B (89) 



Yi%/LTR DESIGN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA23 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
which is again a linear fraction transformation in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ ( s ) .  The state-space formulation equivalent 
to (89) is: 

\ Z = [ - C  c ] x +  ou 

or, in short zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
=Ax zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB u  + Ew 

Cr0,st: y=C1x + b l W  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1" z = c2x + bzu 

Thus, the % problem to be considered in the following is again totally singular, and 
consequently Corollary A.4 can be applied to solve the associated quadratic matrix inequality 
and the dual quadratic matrix inequality. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Theorem 4.7 

Consider the system 7210,s~ given by (90). The solution to the associated quadratic matrix 
inequality has the following form: 

P -P 
p=[-P PI 

where P is given by Theorem 4.1. 

The full information transformation (see Appendix A) corresponding to Theorem 4.7 

becomes: 

& = A  
C1.p = c1 

C2,P = iC2.P - C2,PI 

where C2.p is given as a square root by: 

F,(P) = -C;,P x iC2.p - C2.p 01 

- - rpl 
(93) 

(94) 

Proof. See Appendix F. 

When P = 0 or v = 0 are solutions to the quadratic matrix inequality or the dual quadratic 
matrix inequality, resp., the associated rank conditions are satisfied in the following case: 

Lemma 4.8 

Assume that the system (A, B, C, 0) is minimum phase. Then P = 0 is the unique solution 
to the quadratic matrix inequality satisfying the involved rank conditions. Further if 
(A, B, C, 0) is also invertible, then = 0 is the unique solution to the dual quadratic matrix 
inequality satisfying the two rank conditions. 
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Proof. Follows from Theorem 4.7 and Theorem A.2. 

These conditions are exactly the same as the conditions derived in Section 4.1. For non-trivial 
transformations we obtain the following matrices for the transformed system: 

where: 

Cl,P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= El 
C2,P = K 2 , P  -C2,p1 

Eventually, an admissible controller, solving the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3iG problem is obtained in terms of these 
transformed matrices. 

Lemma 4.9 

Let L = [L1 Lz] be a state feedback satisfying (A.12) and let M = [MT MIIT be an output 
injection satisfying (A.13). Then, an internally stabilizing controller, making the 3iG norm of 
the closed loop transfer function from w to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz smaller than y is given by: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Proof. Lemma 4.9 follows from (A.14). 

In the case where the transfer function C(s1- A)-'B is minimum phase and square with full 
rank, then = = 0 and we have the following controller reduction. 

Lemma 4.10 

Assume that P = 0 and P = 0 are the solutions to the quadratic matrix inequality and the 
dual quadratic matrix inequality, respectively. Then an admissible controller for the above zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ 
problem is given by: 

(97) 
where N satisfies: 

Q(s)  = F ( d  - A - BF - NC)-'N 

1) ( ~ 1 -  A - NC)-'B 11- < 7/11 Go(. )F 11- (98) 

with A + NC stable. 

Proof. See Appendix F. 
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5 .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASUMMARY OF Z./LTR CONTROLLERS 

In this section we shall give a brief comparison of the order of the %/LTR controllers 
elaborated in the previous two sections. 

In Table I, the solutions to the quadratic matrix inequality (QMI) are compared for the four 
Z / L T R  problems from Sections 3 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. Note, that the solutions to the four quadratic matrix 
inequalities are very intimately related. The P solution for the Q-observer has the same 
structure for both the sensitivity and the input-output recovery problem, and equivalently for 
the standard Z. setup. Moreover the P parameter satisfies the same nth-order Riccati equation 
for both controller types in the sensitivity recovery case. Equivalently, for the input-output 
recovery case, the P parameter satisfies the same nth-order dissipation inequality for both 
controller types. The conditions for the special solutions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0, are the same 
for both controller types in the sensitivity recovery case. Equivalently for the input-output 
recovery case. 

In Table I1 the sufficient controller orders are given for the solutions to the five %/LTR 
problems given in Section 2.7. 

In general, the question of determining the minimal order of an admissible zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3% controller, 
is answered by means of careful parameter selection, and subsequent application of model 
reduction techniques. There are, though, special cases where an nth-order standard observer 
based controller suffices for structural reasons 1231. 

= 0, respectively 

Let us consider the sensitivity recovery error. We define the following two bounds: 

= inf II ES [ ID l  (99) 
ra2. 

Table I. Solutions to the quadratic matrix inequality (QMI) 

QMI solution Es EIO 

Q-observer based controller 

General controller 

P-=b ;] 
P -P 

P-=[-P PI 

Where P satisfies: Sing. Riccati equation: Dissipation 
inequality: 

A ~ P  + PA - P B B ~ P  = o A ~ P  + PA + C ~ C  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 o 

Table 11. The order of the various &/LTR controllers 

Design problem 11 H( * ) 11- < Controller type Min. phase Non-min. phase 

Full order obs. nth order nth order Problem #1 
Problem # 2  H 0) = Es 0)  Q-obs . based nth order 2nth order 
Problem # 3  H(s) = Es(s) General nth order 2nth order 
Problem # 4  H(s) = E~o(s) Q-obs. based nth order 2nth order 
Problem # 5  H(s) = E~o(s) General nth order 2nth order 

H (s) = MI (s) 
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where the 'inf' is taken over all internally stabilizing FDLTI controllers of order no greater 
than 2n. Correspondingly, we define: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

7; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= inf 11 Es 11- (loo) 
W" 

where the 'inf' is taken over all internally stabilizing FDLTI controllers of order no greater 
than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn. 

= $, we are guaranteed that an nth- 
order standard observer based controller will suffice. Otherwise controllers of order higher 
than n are required for near-optimal performance, in general. 

In the special cases of a symptotic recovery, i.e. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$n = 0, it can be shown that $= 7:n = 0. 
Necessary and sufficient conditions for obtaining asymptotic recovery are given in [14]. 

In Reference 12 the sensitivity recovery case has also been treated as an &2 problem. The 
approach in Reference 12 is based on frequency-domain methods, using coprime factorizations 
of the systems, and the solutions are found using the regular &2 theory. However, to make 
the A% problem regular, it has been necessary to consider plants including direct terms, i.e. 
plants given by: 

Clearly 7:. < 7:. Only in the special case, where 

G(s) = C(SI - A)-'B + D (101) 

where D has full column rank. When D does not have full column rank, only approximative 
solutions are given, whereas our results give exact answers. Further, the controller order in 
Reference 12 is 3n - 1 if no model reduction is carried out, whereas the order for the state- 
space approach based controllers introduced in this paper never exceed 2n. In the minimum 
phase case, our controllers are of order n, where the controllers in Reference 12 are of order 
3n - 1 for non-square systems. 

In the rest of this section, we will demonstrate how the presented &2/LTR design very easily 
can be extended to include non-strictly proper plants as given by (101), except that D is not 
required to have full column rank. In this case it is easily seen that the recovery matrix is: 

M&) = F(SI - A - KC)-'(B + KD) + Q(S)C(SI - A - KC)-'(B + KD) (102) 

for non-strictly proper plants, when the Q-observer is used, Q E .%%%. The recovery error is 
then given by the following lemma. 

Lemma 5.1 

in (102). Then we get: 
Let the errors Es(s) and EIO(S) be as in Definition 2.1, and the recovery matrix MI(s) as 

E ~ ( s )  = (I + F(sI - A - BF)-'B)(F(sI - A - KC)-'(B + KD) 

+ Q(s)C(SI - A - KC)-'@ + KD)) (103) 

(104) 

where Q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE L%!%,,. 
Solutions to the two more general problems associated with these expressions for Es(s) and 

EIO(S) can be obtained by straightforward extensions of the results in this paper. Note, that 
only the dual quadratic matrix inequality are modified. Instead of being totally singular they 
will be neither regular nor totally singular. For reasons of brevity, we shall not pursue this 
subject further here. 

The standard &2 setup can equivalently be extended to handle non-strictly proper plants. 

E ~ ~ ( s )  = (C + DF)(SI - A - BF)-'B(F(SI - A - KC)-'(B + KD) 

+ Q(s)C(sI - A - KC)-'(B + KD)) 
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6. A NON-MINIMUM PHASE EXAMPLE 

In this section we shall study an example of a non-minimum phase system to which the various 
controllers of this paper will be applied. We shall give comparisons of the recovery achieved 
by LQG/LTR controllers and %/LTR controllers designed by the four different techniques 
described in this paper. We shall consider design based on both types of recovery errors, which 
will also be compared to the %/LTR design which results from considering the recovery 
matrix, a design method which has been treated in References [21,23]. At this point, we would 
like to stress that the controller designs carried out in this section only aim to make the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA% 
norm for the specified problem 'very small'. Hence, we shall in all cases design controllers 
having closed loop performance very close to the infimally achievable % norm y*. This will 
in general have some drawbacks in terms of bandwidth etc., and in practice one wouldn't 
normally design controllers with y = y*. The example is, however, merely meant to illustrate 
the theoretical results and design methods outlined in this paper. y* is determined in the sequel 
by an iteration technique. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6.1. The recovery matrix 

We shall consider the system given by the following state-space matrices: 

1 ,  B =  ["""I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC =  [l.ooOO -1.58111 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-5 .5000 -0.6325 

0.6325 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO-oooO 0 . m  ' 
A =  [ 

This system has a right half plane zero, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz = 1.0oO. 
As the target state feedback let us take: 

F =  [l.ooOO -8.95251 

A standard LQG/LTR calculation gives the following observer gain: 

- 22 453 .=[ 5797 ] 
Applying the LQG/LTR controller the maximal singular value of MI (s) becomes 
1 - 3 5  - 2.62 dB. For the 3% problem described in References [21, 231, the infimally achievable 
y&, norm is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy* = 0.67 - - 3.36 dB, and we can hence improve the LQG/LTR design by 6 dB 
by the technique described in References [21, 231. As a bound for the % problem we have 
to select y > y* so we choose, for example, y = 0-68 - - 3.35 dB. 

By the technique outlined in References [21, 231, we find: 

to satisfy the % bound. 
The recovery matrices achieved by applying these two second-order controllers are shown 

in Figure 5 .  The % plot has a maximum peak which is 6 dB lower than the maximum peak 
of the LQG plot. However, because of the restricted freedom of a second-order controller this 
gain in recovery level is paid for by a higher roll-off frequency. 

6.2. The sensitivity recovery error 

With the above system, we consider the problem of minimizing the sensitivity recovery error 
by means of a Q-observer based controller as described in Section 3. For this problem, the 
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E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 .  The recovery matrix 

infimally achievable Z, norm turns out to be y* = 0.40 - - 7.75 dB so let us choose 
y = 0.41 - - 7.74 dB as a specification level of sensitivity recovery. 

According to Theorem 3.1, the solution to the quadratic matrix inequality is F = 0, since A 
is stable. 

The dual quadratic matrix inequality is solved using the algorithm in Appendix B giving: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I 1.2815 0.8105 -0.5167 -0.3268 

0.8105 0.5126 -0.3268 -0.2067 
Q =  [ -0.5167 -0.3268 0.2084 0.1318 

-0.3268 -0.2067 0.1318 0.0833 

The condition (A.19) is satisfied for: 
- 

L =  -C2,p= - [F F] = [-l.ooOO 8.9525 -1.ooOO 8.95251 

Now, defining: 

we obtain a minimum phase system (A$,Q, CT, Ef, 0). Consequently, we can determine M such 
that: 

AP*Q = A + y-YjCZC2 

I )  ET(d - A$,Q - E:MT)-' 11- < y/ 11 C2 11 
This is for instance achieved by: 
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and the controller becomes: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Q(s )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= C~(SI - A + BC2 - MCi)-'M 

Now, let us consider the solution to the same problem in the standard formulation in Section 
3.3. Of course the infimally achievable Sf& norm is the same in either formulation so we choose 
the same y as above as our specification. 

Since A is stable, according to Theorem 3.7, P = 0 is the unique solution to the quadratic 
matrix inequality. For the dual quadratic matrix inequality we apply Algorithm B. 1 to obtain: 

1 1.2815 0.8105 0.7648 0.4837 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0-8105 0.5126 0.4837 0.3059 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Q =  [ 0-7648 0.4837 0.4564 0.2887 
0.4837 0.3059 0.2887 0.1826 

From (72) we obtain: 

L = [0 F] = [O*oooO O.oo00 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.oooO -8.95251 

Calculating: 

Ap,Q = A + 

we are able to determine M such that: 

Since an almost disturbance decoupling problem is solvable for the transformed system. One 
possible choice is: 

- 1464 M=[-;:3E] 
The resulting controller is: 

Q ( S )  = -C*(SI - A  - BE2 - M E ~ M  

Figure 6 shows the sensitivity recovery errors achieved by applying these two fourth-order 
controllers compared to the two second-order controllers given above. 

The two fourth-order controllers both have max peaks close to y which is an improvement 
of 6 dB and 7 dB compared to the LQG controller and the 'MI minimizing' controller, 
respectively. Note that the discrepancies in achieved Z, norm is not due to the different 
controller orders, but simply illustrates the fact that, when design is based on an Sf& bound 
for MI, we are not guaranteed anything about the Z, norm of Es. 

6.3. The input-output recovery error 

For the A% problem described by (78) the corresponding fourth-order quadratic matrix 
inequality can by Theorem 4.1 be reduced to a second-order dissipation inequality, which in 
Algorithm B.l reduces to a scalar quadratic equation. y* equals 0.11 - - 18.6 dB. Let US 
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\ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Q-observec 
Standard H-inf.: 
Indinct design: 
LQG/LTR: __-_-_____-__-___ 

.._ . . ... . _._........._... , .... . ... zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

choose y = 0.12 - - 18.4 dB. We get: 

0 0 0  

.=[o 0 0 0  0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 i ] 
0 0 0 4.9995 

The dual quadratic matrix inequality is solved by Algorithm B.l and yields: 

0.8172 0.5169 -0.3295 -0.2084 
0.5169 0.3269 -0.2084 -0.1318 

Q =  [ -0.3295 -0.2084 0.1329 0.0840 
-0.2084 -0.1318 0.0840 0.0532 1 

We perform the transformations and obtain the following solutions to the almost disturbance 
decoupling problem and the almost disturbance decoupled estimation problem, 

L =  [-l.ooOO 8.9525 -383.4 -602.21 resp.M= 

Note that I, = [ -F  I,?] as stated in Lemma 4.5. 
For the general controller structure of Section 4.2, the 4% problem associated with Ero, the 
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- 

, 

Or  1 1 , 1  ,,,,, , , , , , , . , ,  , , . . . . . . .  , . . . . . . . .  . . . _ _ _ _ -  

Standard H-inf.: 
Indirect design: 

-80 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt 

..__ I 

\ I  

quadratic matrix inequality has the following solution: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 

0 0 0 
P -P 0 4.9995 0 -4.9995 

0 -4.9995 0 4.9995 
P"-P 0 0 

which is effectively obtained by solving a scalar quadratic equation, when Theorem 4.7 is 
applied. The dual quadratic matrix inequality has the following solution: 

0-0266 0.0168 0.0159 0.0100 
0-0420 0.0266 0.0251 0.0159 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Q =  [ 0.0251 0.0159 0.0150 0.0095 
0.0159 0*0100 0.0095 0.0060 1 

We perform the transformation, and achieve the following two gain matrices associated with 
the controller given by Lemma 4.9: 

39 142 

L = [ - 1276 - 2024 1277 20151 and M = [ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz:] 
The input-output recovery achieved by these two fourth-order controllers is displayed in 

Figure 7. Also the recovery of the two second-order controllers of Section 6.1 is shown. This 
time the fourth-order controllers have an % norm which is 2.7 dB better than the second- 
order controller and 5.4 dB better than the LQG controller. Again, the improvement is not 
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due to the extra dynamics but is explained by the fact, that the fourth-order controllers aimed 
directly at a good input-output recovery. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6.4. Conclusions concerning the example 

As our main conclusion, let us emphasize that a compensator solving a control problem, 
performs in accordance with the specifications for which the problem was posed, and the 
behaviour concerning different specifications might be arbitrarily bad in general. Hence, if we 
wish a closed loop system to have good sensitivity recovery, for example, the control problem 
should be stated as a sensitivity recovery problem, since a recovery matrix reduction does not 
yield any specific guarantees for the sensitivity recovery in the non-minimum phase case. 

In the example, a controller which ‘minimizes’ the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ, norm of M,(s) gives a better 
input-output recovery than the LQG controller, but a (slightly) worse sensitivity recovery. 
Both controllers, though, behave considerably worse than the dedicated Z, controllers in both 
cases. 

Another matter is the question of controller order. In the authors’ opinion the best way to 
achieve an nth-order controller, in the case where no specific simplifying conditions such as 
described in Sections 3 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 exist, is to design a 2nth-order dedicated controller and then 
perform frequency-weighted model reduction. It should be noted, however, that the best 
approach to this, is to start with a y which is not to close to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy*. Otherwise, the states of the 
2nth-order controller all tend to get ‘important’, as computing experience with the above 
example has shown. 

7. CONCLUSIONS 

In this paper we have given a precise formulation of the Z,/LTR problem based on the 
sensitivity recovery error and the input-output recovery error, where the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& constraint has 
been imposed directly on these recovery errors. 

The &/LTR problem has been treated in two ways: (1) in a straightforward fashion 
allowing for a general controller structure, and (2) with the constraint that the controller 
should be a Q-observer based controller as described in Reference 2. The Q-observer structure 
allows the Z, contribution to the controller to be appended (in a block-diagram sense) to a 
standard full-order observer based controller, which is appealing from a practical point of 
view. 

The four resulting controllers are given in terms of the unique solution to the dual quadratic 
matrix inequality of order 2n, and additionally by the solution to an nth-order (singular) 
matrix Riccati equation (the two sensitivity cases) or, respectively, a nth-order dissipation 
inequality (the input-output cases). By the algorithms in Appendix B, the quadratic matrix 
inequality is in turn reduced to a reduced order matrix Riccati equation. Let us emphasize that 
all resuIts in this paper are completely constructive, and controllers can be found using well- 
known computational techniques. 

Comparing the &%/LTR design methods proposed above to traditional LTR methods, a 
major advantage is that non-minimum phase systems can be treated by exactly the same 
techniques as minimum phase systems after a preliminary transformation has been performed. 
This preliminary transformation involves a state-space transformation and the solution to a 
reduced order Riccati equation. The preliminary transformation is a one-shot process requiring 
no iterations. 

The four controllers considered in this paper are all of dynamic order at most 2n in the non- 
minimum phase case. For the controllers, though, a reduction can be carried out if the system 
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considered fulfils a minimum phase condition (although the reduction is possible also for 
certain non-minimum phase systems) yielding an nth-order standard full-order observer based 
controller structure. 

As it has been mentioned in Section 6, nth-order controllers can also be achieved by doing 
frequency-weighted model order reduction (which should probably emphasize cross-over 
frequencies). But, if model order reduction is intended from the start, the recovery 
specification level zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy should not be chosen too close to the infimally achievable value y*, since 
this tends to make the condition numbers of the gramians small, i.e. the smallest singular 
values become important to the design as well as the larger ones. 

Not surprisingly the LQG controller does not compete with the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa& controllers in the 
example of Section 6, when the maximal singular values are considered. This is rather obvious, 
owing to the fact that when a controller is designed with a certain optimality criterion it will 
behave optimal with respect to that criterion, and arbitrarily bad for other criteria. There are, 
though, some good reasons for applying the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAYC, norm as opposed to other norms to LTR prob- 
lems, since LTR typically is the last step in an overall design procedure, where the first step 
is robustness loop shaping. But to design for robustness the design objective must be posed 
in the YC, norm. 

On closing, it is important to note some of the limitations of an automatic design procedure 
such as the one described zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin this paper. First of all, we have not been dealing with the first 
part of the design procedure, the state feedback design. For uncertain systems one should pay 
attention to the fact that not all robustness properties are guaranteed simply by the use of state 
feedbacks. State feedbacks themselves have to be designed such that the knowledge of the 
uncertainty structure is exploited. Then in our approach robust stability with respect to 
unmodelled dynamics is preserved in the dynamic output feedback controller implementation. 
Other kinds of uncertainties have to be taken care of separately. Finally, in this paper we have 
studied the a& norm of two recovery errors. In some practical applications, the given control 
objective is instead to reduce the norm of the recovery errors in certain frequency windows 
only. Hence, it would be relevant to incorporate weighting functions for the recovery errors 
in the theory. This can be done of course. However, the price is twofold. First, the order of 
the controllers will be even higher than 2n. Second, part of the structure of the solutions will 
vanish, implying that the algorithms will be slightly further complicated. Thus, a subject for 
further research is to consider weighed recovery errors by lower-order controllers. 

APPENDIX A 

The required preliminaries for the method used in this paper will be introduced in this appendix. The 
approach taken is based on the results in Reference zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20, the so-called singular X2 approach. This is a very 
general approach which includes the well-known approach by Doyle et 

In the state-space approach to SL the standard problem is as follows. Consider a finite-dimensional, 
linear, time-invariant system: 

as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa special case. 

X = A x + B u + E w  xER",  u E R m ,  w € R q  
y = C l x +  Dlw y € R p  
z = C ~ X  + D ~ u  X €  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlRr 

We assume that y > 0 has been given. We wish to design, if possible, an internally stabilizing FDLTI 
compensator u = Q(s)y such that the 3% norm of the resulting closed loop transfer function from w to 
z is smaller than y. 

Assumption A. I 

It is assumed that the systems (A, B, Cz, D2) and (A, E, CI, DI)  have no invariant zeros in Co. 
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The main result is: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Theorem A.2 

Consider the system C above satisfying Assumption A.l. Let y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> 0 be given. Then, there exists a 
FDLTI compensator u = Q(s)y for which the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASfL norm of the resulting closed-loop transfer function 
from w to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz is smaller than y, if and only if there exist P a 0  and Q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0 for which: 

(1) F,(P) 2 0 
(2) G,(Q) 2 0 
(3) rank F,(P) = normrank G 
(4) rank G,(Q) = normrank H 

(5 )  rank [".". ''1 = n + normrank G ,  V S €  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC+ U Co 
F,(P) 

(6) rank [M,(Q, s) G,(Q)] = n + normrank H, VSE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC+ U Co 
(7) p(PQ) < y2 

where the notation used is as follows: 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I 

A ~ P  + PA + cIc2 + y - 2 ~ ~ ~ T ~  PB + CTDZ 
F,@) = [ BTP + D;cz D:D~ 

AQ + Q A ~  + E E ~  + y - Z ~ ~ ; ~ z ~  QCT + ED: 

G ~ ( Q ) =  [ c l Q  + DIET D ~ D T  

1 SI - A - y-'QCZC2 
L,(P, S) = [sI - A - y-'EETP - B] , M,(Q, s) = 

(A.3) 

('4.4) 

G ( s )  = C~(SI - A)-'B + Dz, H(s) = CI(SI - A)-'E + DI (A.5) 

The proof of Theorem A.2 can be found in Reference 20. We shall refer to condition (1) as the quadratic 
matrix inequality, and any P a 0 satisfying (1) will be called a solution to the quadratic matrix inequality. 
Analogously we shall call (2) the dual quadratic matrix inequality, and refer to as solutions to the 
dual quadratic matrix inequality any Q 3 0 satisfying (2). Conditions (3) and ( 5 )  guarantees that a 
solution to the quadratic matrix inequality is unique and of minimal rank (and dually for the dual 
quadratic matrix inequality with (4) and (6)). (7) is a typical % coupling condition, which also appears 
in Reference 3. 

Further, we shall need a couple of corollaries. 

Corollary A.3. The regular case 

Assume that DZ in injective. Then (l), (3) and ( 5 )  are satisfied if and only if 

A ~ P  +PA + cIcz + y - 2 ~ ~ ~ T ~  - (PB + cTD~) (DTD~) -~ (B~P + DZC~) = o 
and 

A(A + - B(D:D~) -~ (B~P + D%)) c c- 

Corollary A.4. The totally singular case 

Assume DZ = 0. Then (1) is equivalent to: 

A ~ P  + PA + cTcz + y - z ~ ~ ~ T ~  2 o 

where P satisfies PB = 0. 

The two corollaries have straightforward duals, which are also used in this paper. 

transformations of C. First we defined C2.p and Dp by the following factorization: 
Expressions for admissible controllers will be given in the following in terms of the matrices for certain 

F,(P) = [G.P DplT x [CZ.P DPI (A. 6) 
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Moreover, we will need the following matrices: 

Ap = A  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ y-’EETP, CI,P = CI + y-’DIETP (A.7) 
Y = (1 - r - z ~ ~ ) - l ~  (A.8) 

(A. 9) 

We shall refer to the system where AP, CI.P, CZ,P and DP substitute A, CI, CZ and DZ as the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfull 
information transformation of the system C. The dual quadratic matrix inequality for the system 
obtained by the full information transformation becomes: 

AP,Q = AP + y-zYC:,~Cz,~, BP,Q = B + y-’YC:,pDp 

A ~ Y  + YA$ + EE’ + y-z~c~ ,pcz ,p~  YC:,~ + 
C ] , ~ Y  + D , E ~  

= [ E ~ . Q  D$.Q]’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX [E$,Q D$.Q] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0 

(A.lO) 

d,(Y) = 

Substituting A ~ , Q ,  B ~ , Q ,  EP,Q and DP,Q for the corresponding variables in the previous system will be 
referred to as the full control transformation. The system obtained by the full control transformation 
becomes: 

X = AP~QX + BP,QU + EP,QW 
CP,Q: y = c1 ,Px + DP.QW [ z = C2,px + D ~ u  

In terms of these transformed system matrices we can compute the desired % controller: 

(A. 11) 

Theorem A.5 

such that: 
Let AP,Q, Bp,q and C1.p be as above. Let L be a state feedback, such that AP,Q + BP~QL is stable, and 

(A.12) I( WZ.P + DpL)(sI - AP,Q - BP,QL)-’ 11- < 7/(3 * 11 EP,Q 11 1 

Let M be an output injection, such that AP,Q + MC1.p is stable and further: 

I( (sI - AP,Q - M C 1 , ~ ) - ’ ( E p . ~  + MDP,Q) 11- < f (A.13) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 = min [y/(3 (I DPL I1 1, 11 EP,Q 11/11 BP.QL 11 I 

u = - L(s1- AP,Q - BP,QL - MCI,P)-’MY (A. 14) 

makes the .%% norm of the resulting closed loop transform function from w to z in C smaller than y. 

The significance of Theorem A S  is to transform the original &%. problem to two disturbance attenuation 
problems, which can be solved by well known methods, see, for example, References 16, 27, and 28. 

Then the controller: 

APPENDIX B 

In Appendix A solvability condition were given for the standard .%% ‘singular’ problem, which were used 
in Sections 3 and 4 in terms of solvability of the quadratic matrix inequality. In this appendix we shall 
describe an explicit algorithm for solving the quadratic matrix inequality in the case of a totally singular 
system, i.e. to a system without a ‘D’ matrix. The solution to the quadratic matrix inequality is based 
on the subspaces zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA92,’ and 92; which are concepts from geometric control theory.” In Reference 20 the 
notation %(c) has been used for &, the strongly controllable subspace. For the convenience of the 
reader, we have listed the complete algorithm for the solution of the quadratic matrix inequality in 
the totally singular case, in matrix notation. 

M I  denotes a maximal kernel matrix of M’, i.e., M I  is a matrix satisfying MTML = 0, with a maximal 
number of columns, and having full column Rank. 

We shall introduce some notation: 

K denotes a right kernel matrix of CZ, i.e.. K = (C:)’. 
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Algorithm B. I 

Inputs: y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. System matrices A, By E and CZ. 

(1) Initializing: & =  [KL B I ]  *, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk = 1. 
(2) Calculate W = [A& Bl 
(3) Next iterate: R ~ + I =  [K* W * ] I ,  k = k + l .  
(4) If k = n proceed to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(9, else go to (2). 
(5) Define Tz=R, and let TI and T3 be matrices such that Im W = Im [Tz Ts], and Rank 

[TI TZ T3] = n. In short, T3 consists of columns from W which are linearly independent of the 
columns in Tz, and T1 consist of arbitrary columns linearly interdependent of W. 

(6) Calculate 

Theorem B.2 

large, i.e. y > y*. Then the output P from Algorithm B.l satisfies: 
Let matrices A, B, E and CZ be given as input for Algorithm B.l. Assume y has been chosen sufficiently 

] = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF ] [ S Z  01 2 0  
ATP + PA + CTCz + y-’PEETP PB 

BTP 0 
F,(P) = 

rank FJP) = rank CZ = normrank Cz(s1- A)-’B 

= n + normrank Ct(s1- A)-’B, V ~ E  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC+ U Co -B1 0 

rank [,, - A - y - Z ~ ~ T ~  

S Z  

i.e. P is the unique solution to the totally singular quadratic matrix inequality. 

Proof. The purpose of steps (1)-(4) is to calculate the subspaces S?: and S?:. The present algorithm 
is merely matrix interpretations, merging some well-known algorithms in ‘geometrical’ style which can 
be found, for example, in References 20, 27, and 28. They are: 

It is well known that an = and .% = Wb* (in fact fewer iterations will always suffice). The effect of 
step (5 )  is to define a basis for the strongly controllable subspace a:, the columns of [Tz T3] , and a 
basis for a complement, the columns of TI. In Reference 20 it has been shown that P only relates to the 
subsystem corresponding to TI which is then exploited in steps (6) and (7) to generate the reduced order 
Riccati equation in step (8). 

The algorithms in this section and the solution to the reduced-order Riccati equation in Algorithm B.l 
has been implemented as MATLAB programs, which are available on request (including floppy disk) to 
the authors. 
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APPENDIX zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
In this appendix we shall give proofs of the results in Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3.2. 

The %/LTR problem considered corresponds to the following standard problem: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
X = &  +Bu zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+-Ew 
Y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= C_lX + Dlw (C.1) 
2 = czx + Bzu 

where: 

A + K C  0 
A = [  BF A+BF],  B =  E]. E =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc], C I =  [C 01, & = O ,  Cz= [F F] and 6 2 = I .  

To apply the results fros ection 3 ,  _we-ha_ve to require that Assumption A.l is satisfied, which means 
that the systems (A, B, CZ, Dz) and (A, E, CI, DI) have no zeros on the imaginary axis. 

- 
rank[ SI C~ - A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 = 2 n + r n ,  V s € C o  

0 
-BF s I - A - B F  = 2 n + m ,  VSCC' r-:-, F 

8 

8 

8 

rank [sI - A - KC] = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn A rank y - y  -"I = n + r n ,  VS€CO 
I 

rank [sI - A - KC] = n A rank 

A(A+KC)f lCo=A(A)nCo= [ ] (C.2) 
A(A + KC) f l  Co = 

to be taken into consi_deratip. 
] follows from stability of A + KC, but A(A) n Co = [ ] is a condition which has 

Let % = normrank D1 + Cl(sI - A)-% = normrank C(s1- A - KC)-'B. Then, as above, we get: 

rank[SIiIA 
= 2n + T f ,  Vs € Co 

r-:-Kc -B1 0 

0 

0 

$ 

-BF s I - A - B F  0 = 2 n + R ,  VsfC'  

[,-:-KC -B] = n + f t ,  VsECo 

8 

8 

8 

rank [sI - A - BF] = n A rank 
0 

rank [sI - A - BF] = n A rank [,,A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-3 = n + T f ,  V S € C O  

A ( A + B F ) n C o =  ( J and g(A,B,C,O)nCO= ( 1 (C.2) 
again A(A + BF) f l  Co = [ J follows from stability of A + BF, whereas $'(A, B, C, 0) f l  Co = [ I is a non- 
trivial condition. Conclusively, (A,B,C,O) must have neither zeros nor poles on the imaginary axis if 
we wish to apply the results from Appendix A. 

Proof of Theorem 3.1 

Let P be the stabilizing solution to the algebraic Riccati equation: 

A'P + PA - PBBTP = 0 
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We define: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- -  

Evaluating Fy(P) we get: 

I 

F ~ B ~ P  + F ~ F  
AJP + PAF + F ~ F  PB + F~ 

B'P + F 

= PB+F' x [F BTP+F I] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0  [ : I  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(C.6) 

The last identity holds because: 

(A + BF)TP + P(A + BF) + FTF = PBBTP + FTBTP + PBF + FTF = (PB + FT) x (BTP + F) (C.7) 

Hence, for the full information transform we get C2.p = [F BTP + FJ and Dp = I. 
The stability condition of Corollary A.3 amounts to: 

A(A + y-*EETP - B(614)-'(BTF + 6TC2)) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC C- 

A + K C  
O zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA] c c -  

A[ o A-BBTP 

8 

8 
A(A + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKC) c C- and A(A - BBTP) c C- 

which is always satisfied, since A + KC is stable by assumption, and P is the stabilizing solution, which 
exists according to Theorem-A.5. Note, that in the special case when A is stable, P = 0 is the unique 
solution to (C.4), and thus P = 0 is the unique solution to the quadratic matrix inequality. 

Proof of Corollary 3.3 

For = 0 we get: 

Since H(s) = C(s1- A - KC)-'B, from 

rank cy(%?) = H(s) 

we obtain the condition that (A, B, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC, 0) is right invertible, i.e., we have effectively at least as many inputs 
as outputs. 

From Theorem A.2(6) we get the following. 
- -  

rank [By@,  s) Gy(Y)] = 2n + normrank H(s), vs c c+ 
# 

SI - A - KC 0 

-C 0 
rank[ BF = 2n + normrank H(s). vsc C' 

L 

f 
= n + normrank H(s), vsc c' 

0 1 rank[sI - A - BF] = n A 

rank[sI-A-BF] = n ~  p--t = n + normrank H(s), VSE c' 
~ - 

Thus, necessary and sufficient conditions for P = 0 to be a solution is that A + BF is stable, and that 
(A, B, C, 0) is minimum phase and right-invertible. 
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Proof of Theorem 3.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
for the two systems in Figure 4. Utilizing: 

Theorem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3.5 is proved by showing that the closed loop transfer functions between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw to z is the same 

Es(s) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= STFL(S)MI(S) 

and 

E h )  = STFL(S)M:(S) 

it is seen, that it suffices to prove that MI@) = M:(s) 

MI@) = Ti(s) + Q(s)Tz(s) 
= F(sI - A - KC)-'B + Q(s)C(SI - A - KC)-'B 
=F(SI-A-KC)-]B 

+ [F(d - A - KC - MIC)-'MI + (BTP + F)(sI - A + BB'P)-'MzC(sI - A - KC - MiC)-'Mi 
+ (BTP + F)(sI - A + BBTP)-*M~]C(~ I  - A - KC)-'B 

+ BTP(sI - A + BBTP)-'M2C(I + (sI - A - KC - MIC)-'MIC)(SI - A - KC)-'B 
= F(I + (SI - A + BB~P)-~M~c)( I  + (SI - A - KC - M~C)-'M~C)(SI - A - KC)-'B 

= [F(I + (sI - A + BBTP)-'M2C) + BTP(sI - A + BBTP)-'MzC](~I - A - KC - MiC)-'B 
= F(s1- A - (K + M')C)-'B + (F + BTP)(sI - A + BBTP)-'M2C(sI - A - (K + Mi)C)-'B 

= M ~ ( s )  

= T ~ ( s )  + Q*(s)T:(s) 

APPENDIX D zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Proof of Theorem 3.7 

Let P be the stabilizing solution to the algebraic Riccati equation: 

ATP + PA - PBBTP = 0 

We define 
P -P 

P=[ -P P] 

The associated quadratic matrix becomes: 

I 

(D.4) 

PB 1 ATP + PA - A ~ P  - PA- PBF 
F7(F)= -ATP-FTBTP-PA ATP+FTBTP+PA+PBF+FTF -PB-FT [ BTP - B ~ P - F  

[ BTP -B'P - F pB I 1 PBB~P - PBBTP - PBF 
= - PBB'P - F ~ B ~ P  P B B ~ P  + PBF + F ~ B ~ P  + F ~ F  - PB - F' 

= P B + F T  x [-BTP B T P + F  -I] [ ] 
The Riccati equation (D. 1) has been exploited to obtain (D.4). 

The stability condition of Corollary A.3 amounts to: 

A(A + y-%ETP - B(nz&-'(BTF+ bTC2)) C 43- 

8 

h 

A-BB'P B ( F - B ~ P )  

A + B F  

A(A + BF) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc C- and A(A - BBTP) c C- 



40 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ. STOUSTRUP AND H. H. NIEMANN 

which is always satisfied, since A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ BF is stable by assumption, and P is the stabilizing solution to (D. l), 
which exists according to Theorem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA.2. Note, that in the special case when A is stable, P = 0 is the unique 
solution to (D. l), and consequently P = 0 is the unique solution to the quadratic matrix inequality. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Proof of Lemma zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3.11 

Let the observer gain M be given by: 

where N satisfies A(A + NC) E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA43-. Then N stabilizes A + ME1 since: 

] +A(A+NC)tl !A(A+BF)EC- 
A + N C  

NC A + B F  
A(A + ME') = A  

and both A + NC and A + BF are stable by definition. 
For the norm bound in (73) we have: 

( 1  G,P(SI - AP,Q - MG)-'EP,Q IIm 

-NC s I -A-BF 
SI - A - NC 

= 11 [ -BTP BTP + F] 

= 11 (-B'P + (B'P + F)(SI - A - BF)-'(SI - A))(SI - A - NC)-'B 11- 
= (1 (F + (B'P + F)(sI - A  - BF)-'BF)(sI - A - NC)-'B 11- 

(D.7) 

Hence, if: 

where: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 = 7/11 F + (B'P + F)(d - A - BF)-'BF ) Im (D.lO) 

(D.ll) 

The existence of N satisfying (D.9) is guaranteed by the hypothesis %? = 0, since it is easily seen that this 
implies that (A, B, C, 0) is a minimum phase system, i.e. that the i%f& norm of (sI - A - NC)-'B can be 
made arbitrarily small. 

The 2nth-order controller Q ( s )  in (74) with M = [N' NTIT becomes: 

SI - A + B B ~ P  - NC -BB'P - BF 
Q(s)  = [ -B'P B'P + F] [ -NC $1- A - B F ]  [:] (D.12) 

By introducing the following similarity transformation of the controller states: 

T = [  - I  I '1, I T-'=[: ;] (D. 13) 

we obtain: 

S I - A + B B ~ P - N C  -BB'P-BF 
[ -NC SI - A - BF 

Q ( s ) =  [-B'P BTP+F]T- 'T 

sI - A - BF - NC - BB'P - BF ] - ' [i] 
SI - A + B B ~ P  

(D. 14) 

= [F BTP + F] 

= F(SI - A - BF - NC)-'N 
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This is obviously an nth-order controller, actually a standard full-order observer based controller. 
Applying this controller the sensitivity recovery error becomes: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Es(s) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= F(sI - A - BF)-'B - Q(s)[I - C(SI - A)-'BQ(s)] -'C(SI - A)-'B 
= F(SI - A - BF)-'B - F(SI - A - BF - NC)-'N[I - C ( ~ I  - A)-' 

X BF(s1- A - BF - NC)-'N] -'C(sI - A)-'B 
= (I + F(SI - A - BF)-'B)F(SI - A - NC)-'B (D.15) 

Since (A, B, C, 0) is minimum phase )I (sI - A - NC)-'B I(- can be made arbitrarily small. Especially we 
can choose N such that: 

)I (sI - A - NC)-'B I(- < y( )I (I + F(s1- A - BF)-'B)F I(oJ)-' (D.16) 

or 

11 Es(.) 11- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 I( (sI - A  - NC)-'B l lw}l  (I + F(s1- A - BF)-'B)F 1)- < y (D. 17) 

This completes the proof of Lemma 3.11. 

APPENDIX E 

Proof of Theorem 4.1 

We consider the system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&,Q described by (78). But first we introduce the following auxiliary system: 

X = AX + Bu + O W  

z = c x  + ou 

Since this system is stabilizable and detectable, for y sufficiently large the corresponding quadratic matrix 
inequality has a solution, P. According to Corollary A.4 the quadratic matrix inequality for C* reduced 
to: 

(E.2) A ~ P  + PA + C ~ C  2 o 

which is independent of 7. Also the associated rank conditions are independent of y: 

rank (ATP + PA + CTC) = rank C:,pCz,p = r 

and 

sI-A B 

rank[ c2,p 
= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn + r ,  V S €  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc' 

(E.3) 

Hence, the unique solution to the quadratic matrix inequality for all y is the solution to the dissipation 
inequality for the system C*. (The almost disturbance decoupling problem is solvable for C*, since C* 
is stabilizable and Im E c Im B). We claim that 

- -  
is a solution to the quadratic matrix inequality for CIO,Q. By evaluating F,(P) we get: 

(E.6) 
0 

F,(P)= 0 ATP+PA+CTC 

- -  
--I 0 

For the rank condition (3) in Theorem A.2 we get: rank F,(P) = rank C2.p = r, by (E.3). The other rank 
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condition, Theorem A.2(5), amounts to: 

sI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- K 
rank[ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ z 2 . p  ?] = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn + normrank zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG ,  VSC c' 

SI - A - KC 0 
rank [ - B = 2n + normrank(C(s1- A - BF)- 'B), vs C c' 

0 C2.P 
A 
F 

4 
rank [sI - A - KC] + rank [" -:,; BF -*] = 2n + normrank(C(s1- A - BF)-'B), Vs 6 c' 

0 

rank [sI - A - KC] = n A rank iB] = n + r ,  vs c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC+ 
V 

which follows by (E.4) and stability of A + KC. 

Proof of Lemma 4.5 

Consider the system: 

X = (A + BF + Y-~YZ~CI,PCZ.~)X + BU 

CZ,P x + ou CP,Q: 

The system CP,Q is minimum phase" since: 

rank [ SI - A - BF - ~-2YzzCT,~Cz,p -"I =rank[ski,pA -9 =#+rank CZ,P V s f  C' (E.9) 
C2.P 0 

where the last identity holds according to (81). 

A + BF + Y-~YZZC~,PCZ,P + BL is stable, and 
Thus, by the minimum phase property," ve>O there exists an L such that 

11 CZ.P(SI - A - BF - y-2YzzCl,pCz.~ - BL)-' 11 c E 

Now substituting LI = - F in: 

SI - A - KC 

- BF - BLi 

- Y-zYlzcF,Pcz.P 

SI - A - BF - Y-~YZZCZ,PC~,P - BLz 

(E.9) 

(E. 10) 

we obtain: 

(E.ll) 
The X, norm of this expression can be made arbitrarily small, i.e., especially smaller than 
7/(3 - 11 EP.Q 11 ), hence satisfying (A.12) and eventually proving Lemma 4.5. 

I -' SI - A - KC - r-2Y IZCF,PCZ.P 
SI - A  - BF - y-2Y2zCI,~C2,~ - BLz 

= CZ.P(SI - A  - BF - ~-~YzzCT,pCz,p - BL2)-' 

Proof of Theorem 4.6 

The controller obtained in Lemma 4.5 was; 

sI- A - KC - MiC ] -' x "1 - Y -zY1zcT,Pcz,P 

[ -MzC SI - A - BF - Y-~YZZC:,PCZ,P - BLz M2 
Q@)= [F - 4 1  x 

(E.12) 
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where 

~ I I = ( S I - A - K C - M ~ C ) - ~  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+y-Z(~I-A-KC-M~C)-1Y~~C~,pC~.~A-1M~C(~I-A-KC-M~C)-1 
d12 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= ~ - ' ( s I  - A - KC - MIC)-'Y~ZC;,PCZ,PA-' 

= A-'M~C(SI - A  - KC - M~C)-'  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
dzz = A-' = (sI - A - BF - y-2YzzC:.p - BLz - y-'MZC(~I - A - KC - M ~ c ) - ~ Y ~ ~ c ; , ~ c ~ , ~ ) - ~  

with: 
= * + ~~z~MzC(~~2Y~zCF.~Cz.p9M~C - (sI - A - KC - M 1c))- 1Y12c:.Pc2.P* 

9 = (sI - A - BF - y-2YzzC:,pC2,p - BL2)-' 

In this notation we have 

Q(s) = FdllMl+ Fd~zMz - LzdziMi - LzdzzMz 

Using this we obtain the following expression for MI: 

MI(s) = F ~ K B  + Q(s)CQKB 
=F*KB + Fdi iMiC9~B + F ~ ~ z M z C ~ K B  - LzdzIMlC+KB - L z ~ z z M ~ C ~ K B  
= [F + F(s1- A - KC - MIC)-'MIC 

+ y-'F(sI - A - KC - MIC)-~Y~ZC;,PCZ,PA-'M*C(~I - A - KC - MIC)-'MIC 
+ y-'F(sI - A - KC - MIC)-~YIZC:,~CZ.PA-~MZC 
- LzA-'M~C(SI - A - KC - MlC)-'MiC - LZA-~MZCICPKB 

= (F + y-'F(sI - A - KC - MIC)-~YIZC:,~C~.PA-~MZC - LzA-'MzC) 

= (F + y-'F(sI - A - KC - M~C)-'Y~ZCT,PCZ,PA-~MZC - LzA-'MzC)(sI -A  - KC - MIC)-'B 
= F(sI - A - KC - MlC)-'B + y-'F(sI - A - KC - MIC)-'YIZC:,PCZ.PA-'M~C 

X (I + (sI - A - KC - MIC)-lMIC)*KB 

x (sI - A - KC - MlC)-'B - LzA-'M2C(sI - A - KC - MIC)-'B 
= Fdl1B - L~dz1B 

= [F - L2] x [ dll d12] x [ 9 
d21 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdzz 

SI - A - KC - M1C 
-MzC lxE1 - y-2Y1zc:,Pcz,P 

[ SI - A - BF - y-zYzzC;,pCz,p - BL2 
= [F -Lz] X 

From this recovery matrix, we can immediately write down the parameters listed in Theorem 4.6. 

APPENDIX F zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Proof of Theorem 4.7 

(A, B, CZJ, 0) is a minimum phase system (see Appendix E). 
Let P be the unique matrix satisfying ATP + PA + C'C = C:,pCz,p, with rank CZ,P = r,  and further that 

We claim that 

- P - P  
p = [ - P  PI 

is the solution to the quadratic matrix inequality associated with C1o,st given by (90). Indeed, by 
substituting this P, F,F) becomes: 

ATP+PA+CTC -ATP-PA-CTC O] [ C:p] 
F,(P) = - ATP - PA - CTC ATP + PA + CTC 0 = - C;,P [CZ,P - CZ.P 01 (F.2) - - [  0 0 0 

which is obviously positive semi-definite. Moreover, we have: 
- -  

rank F,(P) = rank [C2.p - C Z , ~ ]  = rank C2.p = r (F.3) 
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and 

rank zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA['I-' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- "1 =rank[.;. s I - ~ A F  !] =rank [s I -A~]  +rank 
F#) 0 C2,P -C2,p 0 

Since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP does not depend on y, neither do F. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Proof zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Lemma zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4.10 

First we choose L = [Ll Lz] = F 01 which satisfies (A.12), since then: 

sI-A-BF 
sI- A - BLI 

= 1) -C(SI - A - BL&' - C(SI - A - BLI)-'BLz(sI - A - BF)-' + C(SI - A - BF)-' llrn = 0 (F.5) 

and 

-BL2 ] =A(A+BF)kJA(A+BF)cC-  
SI - A - BF 

Hence L = [F 01 is an admissible choice. 
We shall show that the gain M can be chosen as: 

M =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[:I 
where N satisfies A(A + NC) E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC, and hence also stabilizes A + MC1: 

] =A(A+NC)kJA(A+BF)cQ=- 
0 A+BF 

a(A + MG) = A  

(F.7) 

For the left-hand side of the norm bound (A.13) we now have: 

11 C~(SI - A - BL)-'BL(sI - A - MCi)-'E 11.. 
sI-A-NC 0 

0 sI-A-BF 
c(sI-A)-~B(I-F(sI-A)-~B)-'[F 01 

= ll 
= 11 C(SI - A)-'B(L - F(sI - A)-'B)-'F(sI - A - NC)-'B [Irn = 11 GFL(s)F(sI - A - NC)-'B /Irn 

< 11 G F L ( ~ ) F  )Irn I1 (sI - A  - NC)-'B 11- (F.9) 

Since (A, B, C, 0) is minimum phase, 11 (sI - A - NC)-'B (Irn can be made arbitrarily small, i.e. we can 
solve the following optimization problem: 

I (  ( ~ 1 -  A - NC)-'B IIrn < Y( II GFL(* IF llrn)-l (F. 10) 

This is guaranteed to satisfy (A.13) by (F.9). The corresponding controller is then given by: 

QO)= [F 01 [sI-A-r-NC SI - A O - BF ]-'[:]-=F(sl-A-BF-NC)'N (F.l l) 

which is an nth-order controller. 
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