
c©

Statecharts composition to model topologically distributed applications

Michele Banci
Istituto di Scienze e Tecnologie dell’Informazione, CNR

Pisa, Italy
Alessandro Fantechi

Dipartimento di Sistemi e Informatica, Universit à di Firenze
Firenze, Italy

Stefania Gnesi
Istituto di Scienze e Tecnologie dell’Informazione, CNR

Pisa, Italy

ABSTRACT:Many real-life systems can be conveniently
modeled by the replication and interconnection of simple
components of a few types: different configurations of the
same system may vary just for the number of components
and for the topology of their interconnections. In indus-
trial practice of formal modeling the tedious work of such a
manual instantiation has to be automated, which allows to
produce at a low cost new configurations of the same prod-
uct.
This paper presents a methodology to build statechart mod-
els of topologically distributed systems by instantiating
generic components; the method is able to replicate as
needed statechart components and to expand the terms that
drive their behavior to create complex interconnection pat-
terns along the required topology. The methodology is
illustrated on the example of a classical distributed algo-
rithm (Byzantine Agreement) to show the potential of deal-
ing with parameterized distributed structures. The proposed
methodology is shown to be able to find several interesting
industrial applications.

Keywords: complex systems, instantiation, formal spec-
ification, statecharts, state diagrams, component based sys-
tems.

I. I NTRODUCTION

Formal modeling of complex systems is more and more
adopted as a way to anticipate, by simulation or formal ver-
ification, the problems that may be faced by the actual im-
plementation. Many complex real-life systems can be con-
veniently modeled by the replication and interconnection of
simple components of a few types: different configurations
of the same system may vary just for the number of compo-
nents and for the topology of their interconnections.

In industrial practice of formal modeling the tedious
work of such a manual instantiation has to be automated,
which allows to produce at a low cost new configurations
of the same product. This paper presents a methodology to
build statechart models of topologically distributed systems

by statically instantiating generic components; the method
is able to replicate as needed statechart components and to
expand the terms that drive their behavior to create complex
interconnection patterns along the required topology.
The methodology we propose is particularly suited to be
applied when modelling afamily of different applications,
which differ among them only for the configuration of com-
ponents, both in number and interconnection, often corre-
sponding to different topological distributions of compo-
nents of a modelled physical system.

If we adopt the terminology used in Product Family en-
gineering [4], [7], the development of a product family is
characterized by two processes:domain engineeringand
application engineering.Domain engineering is the pro-
cess aiming at developing the general concept of a product
line together with all the assets which are common to the
whole product line, whereas application engineering is the
process aiming at designing a specific product.

In the framework we propose, domain engineering pro-
duces a set of generic statecharts, which constitute the basic
components of the architecture of any single product of the
family. The generic statecharts comes accompanied by a set
of general instantiation rules which define how to replicate,
parameterize and interconnect the components to form the
architecture of a single product complying with the family.

Application engineering becomes then an instantiation
process, which is driven by a database containing the
knowledge about the (often topological) configuration of
the architecture of the single product of the family which
is actually built. This instantiation process is therefore con-
ducted by means of queries to such a database, following
the general instantiation rules defined for the family.

Usually, products belonging to a family differ among
them for a limited number of discrete parameters, or for
the optional presence of some functionalities (often called
features). Therefore, the complexity of the application lies
mostly in the complexity of the provided features, and far
less in their configuration and parameterization.

We address instead product families where most of the
complexity lies in the configuration, while basic generic el-

2

ements can have very simple behaviour and functionality.
In particular, the classes of systems that we address share
the possibility to be formalized as follows: a particular sys-
tem of the family is modeled composing patterns of (sim-
ple) statecharts in static configurations. Composition rules
actually depend on the family (domain engineering) . We
do not stick to any particular dialect of statecharts, hence in-
teractions may occur either via events, common variables,
common objects, or remote method calls, whatever is ap-
propriate for the formalism at hand (i.e. Statemate or State-
flow statecharts, UML statecharts,. . .). In fact the method-
ology acts at the syntax level, and therefore it does not in-
troduce any sort of restriction with regard to the semantics
used for the model.

We exemplify the approach over a distributed algorithm
(Interactive Consistency), built by reusing the same basic
components.

This approach may find useful applications in the mod-
elling of several classes of statically configured distributed
systems; in particular we refer here to our experiences on
railway signalling systems [1], but also to systems control-
ling other kinds of physical networks.

This paper is structured as follows: in section II we re-
mind some useful notions about statecharts. Section III dis-
cusses the proposed instantiation process over generic stat-
echarts, while section IV describes the case study and the
proposed process applied to it.

II. H AREL STATECHARTS, UML STATE DIAGRAMS,
STATEFLOW DIAGRAMS

Harel statecharts [5] formalism is an extension of classic
formalism of Finite State Machines (FSM), to allow hierar-
chical parallel interacting state machines to be specified.

One of the main notions of statecharts are that of states
and transitions among them. A transition connects asource
to a target state. The transitions are labelled by a trigger
event, a boolean guard and a sequence of actions.

“System states” are modelled byconfigurations, which
are sets of states. A transition isenabledand can fire if and
only if its source state is in the current configuration, and
the guard is satisfied. In this case, if the transition fires, the
source state is left, the actions are executed, and the target
state is entered.

In the general case, some target sub-states can be explic-
itly specified, and more than one event can be available
in the environment. UML Statechart Diagrams [10] are a
(object-oriented) variant of classical Harel statecharts and
the UML semantics assumes adispatcherwhich selects one
event at a time from the environment, modelled as a queue,
and offers it to the state machine.

When the effects of all such transitions and related ac-
tions are complete a new event is selected by the dispatcher
and a new cycle is started. In this sense the UML seman-
tics does not allow “chain reactions” within the same step:
events generated as a consequence of firing a step are not

available to the machine during the same step, but they are
available for being dispatched to the machine only from the
next step on.

Several dialects of Statecharts are actually used: UML
State Diagrams and Statemate Statecharts [5] are currently
the most popular ones, but other ones like Stateflow [8]
have a large use in several industrial applications.

The statecharts dialects differ among them mainly be-
cause:
1. they give a different semantic interpretation to state-
charts, mainly with respect to priority of transitions firing
and nondeterminism resolution;
2. they adopt different ways to structure a complex system
in a set of statecharts.

III. T HE PROPOSED METHODOLOGY

The methodology we present consists of a formal frame-
work in which developing models of complex systems that
belongs to the same family of applications.

Sometimes in industrial applications there is the need to
build systems in several different configurations: these con-
figurations are distinct systems that actually have a common
core. An example can be found in the field of computer-
based controllers of railway yards, where we can identify
distinct track layouts, which differ each other by their con-
figuration, but the related controllers act using the same ba-
sic control rules: this is what is often called asystem family.

So, instead to redesign a new system every time, the main
idea is to use a template to easily configure a system in order
to design each new system.

The objectives are both human effort reduction in re-
designing “similar” systems and reduction of human errors
because of the use of the same generic model: in this case
the confidence becomes higher at every new design of sys-
tems of the same family.

The proposed methodology is based on the definition of
generalized objects. In these objects all the possible config-
urations have to be embedded.

The objects required by the methodology are:
• a set of generic statecharts, in which basic control rules
about physical and logical components are embedded (see
Sec .III-A);
• a set of instantiation rules (see Sec .III-B);
• a set of expansion rules (see Sec. III-C).

The proposed modeling process consists in the use of in-
stances of the generic statecharts to model identical com-
ponents of the modeled system. The instantiation process
follows two steps: charts instantiation and terms expansion.

Our instantiation approach is actually independent by the
particular dialect of statecharts, since on one hand it oper-
ates at the syntactic level, so ignoring semantic differences,
while on the other, we assume just a flat structure of peer
statecharts, so avoiding dialect-dependent architectural fea-
tures.

3

_OPTION_2 Version:2 Date: 01 - OCT - 2003 14:39:37

STATE_A STATE_B

STATE_C

STC

STATE_A STATE_B

STATE_C

STATE_A STATE_B

STATE_C

STATE_A STATE_B

STATE_C

STC_36

STC_20

STC_1

Instantiation query

Generic Chart

Instances

Instantiation Query Results

Fig. 1. Static instantiation process

A. Generic charts and instantiation process

The main concept on which the framework is based is
that of generic chart. A generic chart is a template, in which
the structure of states is fixed and the transitions can be pa-
rameterized. A generic chart is intended to be instantiated
by proper actualization of parameters.

Furthermore, in our case in addition to having for-
mal/actual parameters we introduce also a further level of
genericity by means of generic terms (see Section III-C).

In the left part of Figure 1 an example of a generic chart
is shown: these kind of charts are representative of the ba-
sic behavior of components. The distinctive features of a
generic chart, which are not immediately apparent from the
figure, are that:
• a generic statechart is a template, rather than the model
of an actual element, hence its name is a generic name;
• a regular statechart defines names for variables, events,
objects, visible to other statecharts; in a generic statechart,
these, referred in the following ascontextual symbols, have
generic names;
• a regular statechart uses names of variables, events, ob-
jects, defined by other statecharts; in a generic chart,
generic termsare used instead, which are placeholders to
be expanded with (possibly complex) expressions over vari-
ables, events, objects defined by other statecharts. Generic
terms provide another dimension of genericity to generic
statecharts, that, since expressions on the transitions define
the interconnections among statecharts, will be modified in
relation to the specific application topology.

B. Chart instantiation

Chart instantiation consists in first replicating, adding
suffixes, each generic chart as many times as needed: usu-
ally this replicationserves to model the presence of a mul-
tiplicity of identical components in the modeled system.

Each replica is given a unique name by adding a proper
suffix. The contextual symbols need to be replicated to-
gether with the chart, and hence the same suffix is appended
to their names (renaming). renaming does not affect non-
contextual symbols and generic terms.

This instantiation is driven by an application database,
which is given as input to the instantiation process, and
which collects all the conditions and interrelations that have
to be satisfied by the application. In general it is the appli-
cation database that embeds the knowledge about the spe-
cific control rules for the developed system. In this way the
instantiated charts maintain the same basic state behavior
of the original one, but differ for the modality to reach the
states.

Figure 1 shows the instantiation process driven by the in-
stantiation query executed on the application database, and
the suffixes added to the instantiated statecharts.

Hence, the definition of a generic chart is completed by
an instantiation querywhich is used to extract the set of in-
stance suffixes from the database, so that the replication and
renaming are driven by this query. For instance, according
to the structure of the application database, we can use a
standard SQL language to formalize the query, as exempli-
fied here by:

SELECT instance_suffix FROM a_table
WHERE something.

Anyway, its complexity depends solely by the adopted
formal structure of the database.

At this step the instances have got the same state struc-
ture and the same transitions of the generic charts, further-
more the contextual symbols have been renamed (see Fig.
2) adding suffixes provided by the instantiation query re-
sults.

4

_OPTION_2 Version:2 Date: 01 - OCT - 2003 14:39:37

_OPTI
ON_2

_OPT
ION_
2 STATE_A STATE_B

[CONTEXTUAL_VAR == value]/CONTEXTUAL_VAR = value

_OPT
ION_
2

STATE_A STATE_B

[CONTEXTUAL_VAR_1 == value]/
CONTEXTUAL_VAR_1 = value

STATE_A STATE_B

[CONTEXTUAL_VAR_36 == value]/
CONTEXTUAL_VAR_36 = value

STATE_A STATE_B

[CONTEXTUAL_VAR_20 == value]/
CONTEXTUAL_VAR_20 = value

Instantiation query

Symbols renaming

Contectual symbols

Instantiation Query Results

Fig. 2. Symbols renaming

Other non-contextual symbols will be left unchanged;
these could belong to either “generic term symbols” or
“global single symbols” which are not interested by the in-
stantiation and expansion process, these represent variables
not directly related to a particular instance but to the whole
application.

C. Terms expansion

While instantiation (replication and renaming) rules pro-
duce effects on the number of charts and on some variable
parameters, theterm expansionsolves the other dimension
of genericity, conveying the information that is missing to
relate generic terms to the actual application topology. A
term expansion is a formalized rule that drives the construc-
tion of an expression related to the specific topology from
a generic term. An expansion rule is based on one or more
queries to the application database, depending on its com-
plexity.

Figure 3 shows the idea on which the expansion is based.
There are represented only two instances, the term expan-
sion rule is the same for a generic term but the queries rep-
resenting it are different from an instance to another, in fact
the suffix of an instance is passed to the term expansion
query as a parameter. Basing on this parameter the term ex-
pansion query provides different results and the terms will
be substituted by different variable names. The example
represented in figure 3 is the following:

Using instance number=1:
GENERIC TERM →

[V AR 7 == value]and[V AR 8 == value]and
[V AR 11 == value]

Using instance number=20:

GENERIC TERM →
[V AR 2 == value]and[V AR 8 == value]

IV. A SIMPLE CASE STUDY: THE INTERACTIVE

CONSISTENCY PROTOCOL

Interactive consistency [2] focuses on the problem of
reaching agreement among multiple processors (nodes) in
presence of faults. The main difficulty to be overcome in
achieving interactive consistency is the possibility of con-
flicting values sent by faulty processors: such a processor
may provide one value to a second processor, but a different
value to a third one, thereby making difficult for the recip-
ients to agree on a common value. Interactive consistency
solves this problem by using several rounds of messages
exchange during which processorp tells processorq what
value it has received from processorr and so on. This prob-
lem is also known as the Byzantine Generals problem [6] in
the literature. Interactive Consistency is a generalization of
the Byzantine Agreement protocol where each node sends
its private value to every other node.
In this section we discuss, in details, an example of the in-
teractive consistency protocol modeled by statecharts; we
show a model representing a system composed by three
nodes interconnected by a network with proprietary links
between couples of nodes (p → q, p 6= q). Then we will
consider a generic solution, that can admit a number ofn
nodes, withn ≥ 3. Obviously, the complexity of such a
system increases rapidly with the number of nodes (e.g. the
three nodes model requires 36 statechart instances).
For simplicity, we have however kept fixed the number of
retransmission rounds to two (following [3],r = 1): this is
another dimension of genericity which could well be dealt
with by our approach.

Moreover, since we are here interested to show concisely

5

_OPTION_2 Version:2 Date: 01 - OCT - 2003 14:39:37

_OPTI
ON_2

E
xp

an
si

on
 q

ue
ry

 (1
)

STC

STC_1

_OPT
ION_
2

STATE_A STATE_B

[GENERIC_TERM]/
CONTEXTUAL_VAR_1 = value

STATE_A STATE_B

[GENERIC_TERM]/
CONTEXTUAL_VAR_20 = value

Ex
pa

ns
io

n
qu

er
y

(2
0)

_OPT
ION_
2

STATE_A STATE_B

[VAR_7 == value] and [VAR_8 == value]
and [VAR_11 == value]/

CONTEXTUAL_VAR_1 = value
_OPT
ION_
2

STATE_A STATE_B

[VAR_2 == value] and
[VAR_8 == value]/

CONTEXTUAL_VAR_20 = value

STC_20

Instances

Term Expansion Queries Results

Fig. 3. Term expansion

how our instantiation process works, to limit the complexity
of the example we consider only the fault-free behaviour.
We have ignored here the modeling of faults, which is any-
way central for the working of the Interactive Consistency
protocol, since it has to guarantee given Validity and Agree-
ment properties even in presence of faults (see [2], [3]). Ac-
tually, modelling faults is just a matter of added complexity
which can be dealt as well in our framework.

A. Principle of the protocol

The protocol is implemented transforming the recursion
which is typical of the Byzantine Agreement algorithm in a
sequence of phases in which a node can send one message
to every other node and simultaneously receiven− 1 mes-
sages (one from each remote node). This solution is based
on the concatenation of n BA phases [2].

Let n be the number of nodes and let the number of
rounds be fixed at two, each node first sends its private value
(round 1) and then successively relays the private values it
receives from other nodes in a circular fashion (round 2).
Making use of the symmetry of the problem justn + 1
phases are needed on each node to implement the proto-
col. Then + 1 phases are distinguished in: a first broadcast
phase,n−1 broadcasted reception phases and a final voting
phase.

S phase1 each node broadcasts its private
value and receives (estimation) the
values sent by the othersn − 1
nodes.

C phasei, for
i = 2..n

one of the received message is re-
layed broadcasting it to the other
n−1 nodes and it also receives (es-
timation) the values sent by the oth-
ersn− 1 nodes.

V phasen+1 all received message are majority
voted by each node.

Having given the basic idea on which the algorithm is
built, and having made some assumption (e.g. the fixed
number of rounds), we have in this way identified a fam-
ily of algorithms which differ each other by the number
of nodes and consequently by the number of phases: we
are hence able to build a generic model for this family, and
some rules to automatically generate new algorithms with a
reduced effort.

Table I shows an example for three nodes where each
node sends its private value to every other node and during
the final phase a voting about the received values is done.
Each row of the table corresponds to a phase of message ex-
changes, within each phases there are three subphases (one
broadcast subphase and two receiving subphases). The re-
ceiving subphases act concurrently inside each node.

6

 NODE P NODE Q NODE R
TX_1 Tx p Tx q Tx r

q1:=Rx Vp(q) r1:=Rx Vq(r) p1:=Rx Vr(p)

S_PHASE_1 RX_1
r1:=Rx Vp(r) p1:=Rx Vq(p) q1:=Rx Vr(q)

TX_2 Tx Vp(q) Tx Vq(r) Tx Vr(p)
r2:=Rx Vp(Vq(r)) p2:=Rx Vq(Vr(p)) q2:=Rx Vr(Vp(q))

C_PHASE_2 RX_2

p1:=Rx Vp(Vr(p)) q1:=Rx Vq(Vp(q)) r1:=Rx Vr(Vq(r))
TX_3 Tx Vp(r) Tx Vq(p) Tx Vr(q)

p2:=Rx Vp(Vq(p)) q2:=Rx Vq(Vr(q)) r2:=Rx Vr(Vp(r))

C_PHASE_3 RX_3
q2:=Rx Vp(Vr(q)) r2:=Rx Vq(Vp(r)) p2:=Rx Vr(Vq(p))
Vote(q1, q2) Vote(r1, r2) Vote(p1, p2)
Vote(r1, r2) Vote(p1, p2) Vote(q1, q2)

V_PHASE_4

Vote

Vote(p1, p2) Vote(q1, q2) Vote(r1, r2)
IC_VOTE Vote(p, q, r) Vote(p, q, r) Vote(p, q, r)

TABLE I

MESSAGE EXCHANGE BETWEEN NODES

Table I Legend:

Action Description
Tx p it broadcasts the proprietary value p

to the others nodes
q1:=Rx Vp(q) it is the estimation made by a node

(p) of a value (q) received from an-
other node (q). The received value
is assigned to a local variable (q1)

Tx Vp(q) it broadcasts the value Vp(q) re-
ceived at previous phase (relayed
value)

r2:=Rx
Vp(Vq(r))

it is the estimation made by a node
(p) of a value (Vq(r)) received from
another node (q). The received
value is assigned to a local variable
(r2)

vote(q1; q2) it votes two previous estimated val-
ues

In the case of a system composed by four nodes the pro-
tocol will be modified adding a relay phase (CPHASE4).

B. The Generic model of Interactive Consistency protocol

The generic charts composing the model template for the
proposed family are the following: TX, RX, vote.
In figure 4 there is the generic chart for a broadcasting
transmitter: we can see that these basic components are ex-
tremely simple: actually the complexity of the overall sys-
tem is obtained by replication and by the expansion of the
generic terms in possibly complex expressions.

The chart has a generic name (STCTX ALL) a con-
textual symbol (TXEND) and two terms (TRX END,
TX VAR2BUS). The same structure is that of a generic
receiver (see Fig. 5), also in this case there are: one
generic name (STCRX), a contextual symbol (RXEND)
and two terms (TTX END, RX BUS2VAR). All these
generic symbols will be renamed or expanded.

The instantiation and expansion rules will be presented
in next sections.

.

STC_TX_ALL

IDLE TX

T_RX_END/TX_VAR2BUS

/TX_END

Contextual Symbol

Contextual Symbol

Terms

Fig. 4. Transmitter generic statechart

.

STC_RX

IDLE RX

T_TX_END/RX_BUS2VAR

/RX_END

Contextual Symbol

Contextual Symbol

Terms

Fig. 5. Receiver generic statechart

C. The instantiation process applied to the case study

Referring to our case study, we need as many transmit-
ters as the number of nodes and phases; it is evident that
the behavior, derived by the states pattern, is the same for
each transmitter, but they differ for conditions and actions,
which depend on some parameters: the specific node in-
stance, phase, number of nodes, and so on. Figure 4 shows
an example of a generic statechart for the function of broad-
cast transmission from a node to the others. Figure 5 shows
the corresponding generic receiver. Similarly we have de-
fined a generic statechart for the voter component.

C.1 First step

Following the process described in section III, the first
step is the replication of charts and contextual symbols re-
naming.

In Figures 4 and 5 we can identify four contextual sym-
bols:

7

Generic contextual symbols:

TX STC TX ALL generic statechart name
TX END a variable

RX STC RX generic statechart name
RX END a variable

In Figures 6 and 7 two instances of statecharts are shown:
one transmitter (nodeq, phase 2) and one receiver (link
from nodeq to nodep, phase 2).

While the instances are replicated contextual symbols are
renamed by adding the proper suffix; at the end of first step
in the example they become (see figures 6 and 7):

Instantiated contextual symbols:

TX STC TX ALL Q 2
TX END Q 2

RX STC RX Q P 2
RX END Q P 2

The added suffixes are one of the results of the following
queries:

SELECT tx_name FROM tx

SELECT rx_name FROM rx
.

STC_TX_ALL_Q_2

IDLE TX

T_RX_END/TX_VAR2BUS

/TX_END_Q_2

Renamed Symbol

Renamed Symbol

Terms

Fig. 6. The nodeq transmitter instantiated statecharts.

The database for the 3 nodes case study is given essen-
tially by the information represented in Table 1, which is
however shown in a more comprehensible style w.r.t. the
actual data in the database.

C.2 Second step

The second step of the methodology consists in expand-
ing terms, also in this step, it is implemented by queries.
These queries are parameterized and their results change
depending on which instance they are applied.

The generic terms are the following:

.

STC_RX_Q_P_2

IDLE RX

T_TX_END/RX_BUS2VAR

/RX_END_Q_P_2

Renamed Symbol

Renamed Symbol

Terms

Fig. 7. The nodeq receiver instantiated statecharts.

Generic terms:

TX T RX END events of termination of
previous reception phase

RX BUS2VAR assign values from links to
local variables

RX T TX END event of termination of pre-
vious transmit phase

TX VAR2BUS assign values from local
variables to links

This expansion process has been driven by structured ex-
pansion rules and implemented by queries.

Here are shown two example of queries we have used to
expand two terms.

T TX END ←
SELECT DISTINCT tx_terms.T_RX_END

FROM tx_terms WHERE

(((tx_terms.Node)=’Q’) AND

((tx_terms.PhaseTX)=’2’));

TX V AR2BUS ←
SELECT DISTINCT tx_terms.TX_VAR2BUS

FROM tx_terms WHERE

(((tx_terms.Node)=’Q’) AND

((tx_terms.PhaseTX)=’2’));

The resulting expansion is (see Figg. 8 and 9):

Generic terms: Expanded terms:

TX T RX END RX END Q R 1 and
RX END Q P 1

RX BUS2VAR P Q=R1; PR=R1

RX T TX END TX END Q 2
TX VAR2BUS R2=Q P

To drive these expansions the following abstract rules

8

.

STC_TX_ALL_Q_2

IDLE TX

RX_END_Q_R_1 and RX_END_Q_P_1/
Q_R=R1; Q_P=R1

/TX_END_Q_2

Renamed Symbol

Renamed Symbol

Expanded Terms

Fig. 8. The nodeq transmitter instantiated statecharts after expansion.
.

STC_RX_Q_P_2

IDLE RX

TX_END_Q_2/R2=Q_P

/RX_END_Q_P_2

Renamed Symbol

Renamed Symbol

Expanded Terms

Fig. 9. The nodeq receiver instantiated statecharts after expansion.

have been used:1

if {this is the first phase} then
{T RX END ← START ALG}
else {T RX END ←

∧
ResQuery[RX END p q i]}

where p, q are nodes andi is a phase, in particular
RX END p q i are the variables signalling the termination
of previous reception phases. For each transmitter in the
first phase the term is expanded in a global variable named
START ALG which commands the start of the algorithm.
Differently, for the following phases the term expansion
substitutes it with more than one variables, these variables
depending on the node and the phase.

RX V AR2BUS ←; [p q = Rj]

wherep, q are nodes andj is a variable index, and the
semicolon indicates the sequencing operator applied to all
its arguments. In this case the sending of the Rj message
over the pq link is generated.

T TX END ← TX END p i

1Actually, the concrete expansion rules are queries to the knowledge
coded in the database.

wherep is a node andi is a phase. The term is substi-
tuted with a variable representing the end of the transmis-
sion phase.

TX BUS2V AR← Rj = p q

wherep, q are nodes andj is a variable index. In this case
the reception of the messages from the pq link is generated.

Parametrization is evident comparing figures 4 and 8, in
fact in figure 4 the labels on the transitions have no refer-
ences to particular objects of the topology. The association
between this generic chart and the final instantiated chart
has been done basing on the topology information which
depends on the particular implemented application. In this
case study the differences between applications of the same
family are mainly related to the number of nodes.

Fig. 8 shows the statechart that has been instantiated for
a transmitter (nodeq, phase 2), according to Table I. The
chart related to one receiver is shown in detail as well (fig-
ure 9).

D. The instantiated model of Interactive Consistency pro-
tocol

The specification of the overall system, that is, the dis-
tributed Interactive Consistency protocol, is obtained com-
bining the instantiated elements. In figure 10 is shown
an architecture we have used to model the instantiated flat
model into the Statemate tool, it uses a hierarchy of nested
activity charts where leaves are the instantiated statecharts.

In the developed model with 3 nodes a set of 36 state-
charts have been instantiated: 9 transmitter charts, 18 re-
ceiver charts and 9 voting charts.

In the case of a model with 4 nodes in each phase a re-
ceiver statechart has to be added. The four nodes model
generated following the methodology will be formed by 80
statecharts: 16 transmitter charts, 48 receiver charts and 16
voting charts.

The obtained statechart specification of the Interactive
Consistency algorithm has the same structure of the one
presented in [3], where a process algebra was used instead,
with the aim of performing a formal verification of the algo-
rithm. In that case, the writing of the specification for both
the three and four node cases were done by hand. Also
in this case, verification tools working on statecharts (such
as the Statemate model checker) can be used on the ob-
tained models if this is desired. Depending on the aim of
the model, using other tools available over statecharts, such
as simulators or code generators, may be of interest: we
were able for instance to simulate the obtained models on
Statemate [9]. Given the ability of this simulator to interact
with the user at run time, injection of faults can be carried
out to verify its behavior under faults scenarios.

9

SYSTEM

NODE_R

NODE_Q

NODE_P

S_PHASE_P_1

C_PHASE_P_2

V_PHASE_P_4

C_PHASE_P_3

TX_ALL_P_1

RX_Q_P_1

VOTE_Q_P_4

VOTE_R_P_4

RX_R_P_1

STC_TX_ALL_P_1

RX_P_1

STC_RX_Q_P_1

STC_RX_R_P_1

STC_VOTE_Q_P_4

STC_VOTE_R_P_4

Fig. 10. Architecture hierarchy.

V. CONCLUSIONS

We have presented a methodology to build statechart
models of topologically distributed systems by instantiat-
ing generic components; the method is able to replicate as
many as needed statechart components and to expand the
terms that drive their behavior to create complex intercon-
nection patterns along the required topology. The method
is particularly suitable for modeling a family of systems
that can be obtained by replicating components of a few
types: different configurations of the system may vary just
for the number of components and for the topology of their
interconnections. We have exemplified the approach over a
classic generic distributed algorithm from the literature (In-
teractive Consistency), of which we have considered two
different instantiations, built by reusing a few basic compo-
nents.

The methodology has however been applied also to an
industrial case study, related to a railway interlocking sys-
tem, such as those identified in [1]. In this case we have
produced a model constiuted by 267 statecharts, building
on a set of basic statecharts (modeling the simplest devices
of a railway interlocking) of 4 statecharts. This exercise
has proved the scalability of the methodology to quite large
designs, and has required the development of a prototype
instantiator tool, capable of taking as input some generic
statecharts and a description of the application topology,
and to produce a statechart model of the system targeted

to the considered topology.
The availability of an instantiator tool is thought to pro-

duce a positive effect of acceptability in an industrial con-
text, due to minimization of manual work. On the basis of
this experience, we believe that the proposed approach may
find many useful industrial applications, in all the cases
where a model of some large statically configured (dis-
tributed) systems is needed, and especially when a family
of products, each depending on a specific (logical or phys-
ical) topology of components, has to be defined, with the
added value of the availability of formal specification and
verification tools.

Ongoing work on the tool is aimed at generalizing to
different application domains, and at achieving a full inte-
gration with commercial specification and verification tools
(such as Statemate, Stateflow, UML tools, . . .) for the var-
ious dialects of statecharts, which provide simulation, veri-
fication, and code generation capabilities.

One of the aim of producing a model of a large system is
to be able to simulate it and to check over the model the sat-
isfaction of some required properties, such as safety prop-
erties, before actually producing the system. Indeed, the
large dimensions that can be achieved for a model produced
following the proposed methodology challenge the current
capability of verification tools. Besides experimenting with
the actual limits of the verification tools, we plan to inves-
tigate the problem of properties preserved in the instantia-
tion process: we would like to establish which properties,
satisfied by the generic statecharts, are (maybe once prop-
erly transformed) preserved in the instantiated model. This
knowledge would allow to address the above mentioned
scalability problems of verification.

REFERENCES

[1] M. Banci, A. Fantechi, Geographical vs. Functional Modelling by
Statecharts of Interlocking Systems. FMICS Ninth Workshop on For-
mal Methods for Industrial Critical Systems, Linz, September 20-21,
2004. Electronic Notes in Computer Science (Elsevier).

[2] C. Bernardeschi, A. Fantechi, S. Gnesi,“Formal verification”,
Chapter 10 of D. Powell ed., “A Generic Fault-Tolerant Architecture
for Real-Time Dependable Systems”, Kluwer Academic Publishers,
Boston, ISBN 0-7923-7295-6, January 2001

[3] C. Bernardeschi, A. Fantechi, S. Gnesi,“Formal validation of the
GUARDS Inter-consistency mechanism”, SAFECOMP’99, Tolosa,
September 1999, Lecture Notes in Computer Science, vol. 1698.

[4] P. C. Clements, L. Northrop.Software Product Lines: Practices and
Patterns. SEI Series in Software Engineering. Addison-Wesley, Au-
gust 2001

[5] D. Harel, M. Politi,Modelling Reactive Systems with Statecharts: The
STATEMATE Approach,McGraw-Hill, 1998

[6] L. Lamport, R. Shostak, M. Pease.The byzantine generals problem.
ACM Transactions on Programming Languages and Systems, 1982;
4(3): 382-401.

[7] F. van der Linden.Software Product Families in Europe: The Esaps
and Caf́e Projects.IEEE Software, 19(4):41–49, July-August 2002.

[8] The Mathworks: Stateflow and Stateflow Coder, Users Guide.Release
13sp1 edn. (2003)

[9] Statemate Magnum Simulation Reference Manual.I-Logix Inc.
Burlington, MA USA, 2003.

[10] Object Management Group,Unified Modelling Language Specifica-
tion, Version 1.5, 1999
http://www.omg.org/technology/documents/formal/uml.htm

