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Abstract We present a technique for efficient stateless model checking of programs that exe-

cute under the relaxed memory models TSO and PSO. The basis for our technique is a novel

representation of executions under TSO and PSO, called chronological traces. Chronological

traces induce a partial order relation on relaxed memory executions, capturing dependencies

that are needed to represent the interaction via shared variables. They are optimal in the

sense that they only distinguish computations that are inequivalent under the widely-used

representation by Shasha and Snir. This allows an optimal dynamic partial order reduction

algorithm to explore a minimal number of executions while still guaranteeing full coverage.

We apply our techniques to check, under the TSO and PSO memory models, LLVM assem-

bly produced for C/pthreads programs. Our experiments show that our technique reduces

the verification effort for relaxed memory models to be almost that for the standard model

of sequential consistency. This article is an extended version of Abdulla et al. (Tools and
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algorithms for the construction and analysis of systems, Springer, New York, pp 353–367,

2015), appearing in TACAS 2015.

1 Introduction

Verification and testing of concurrent programs is difficult, since one must consider all the

different ways in which instructions of different threads can be interleaved. To make matters

worse, most architectures implement relaxed memory models, such as TSO and PSO [4,36],

which make threads interact in even more and subtler ways than by standard interleaving. For

example, a processor may reorder loads and stores by the same thread if they target different

addresses, or it may buffer stores in a local queue.

A successful technique for finding concurrency bugs (i.e., defects that arise only under

some thread schedulings), and for verifying their absence, is stateless model checking

(SMC) [18], also known as systematic concurrency testing [24,39]. Starting from a test,

i.e., a way to run a program and obtain some expected result, which is terminating and

threadwisely deterministic (e.g. no data-nondeterminism), SMC systematically explores the

set of all thread schedulings that are possible during runs of this test. A special runtime sched-

uler drives the SMC exploration by making decisions on scheduling whenever such decisions

may affect the interaction between threads, so that the exploration covers all possible execu-

tions and detects any unexpected test results, program crashes, or assertion violations. The

technique is completely automatic, has no false positives, does not suffer from memory explo-

sion, and can easily reproduce the concurrency bugs it detects. SMC has been successfully

implemented in tools such as VeriSoft [19], Chess [28], and Concuerror [12].

There are two main problems for using SMC in programs that run under relaxed memory

models (RMM). The first problem is that already under the standard model of sequential

consistency (SC) the number of possible thread schedulings grows exponentially with the

length of program execution. This problem has been addressed by partial order reduc-

tion (POR) techniques that achieve coverage of all thread schedulings, by exploring only

a representative subset [13,17,30,38]. POR has been adapted to SMC in the form of

Dynamic Partial Order Reduction (DPOR) [16], which has been further developed in recent

years [1,22,24,32,33,37]. DPOR is based on augmenting each execution by a happens-

before relation, which is a partial order that captures dependencies between operations of

the threads. Two executions can be regarded as equivalent if they induce the same happens-

before relation, and it is therefore sufficient to explore one execution in each equivalence

class (called a Mazurkiewicz trace [27]). DPOR algorithms guarantee to explore at least one

execution in each equivalence class, thus attaining full coverage with reduced cost. A recent

optimal algorithm [1] guarantees to explore exactly one execution per equivalence class.

The second problem is that in order to extend SMC to handle relaxed memory models,

the operational semantics of programs must be extended to represent the effects of RMM.

The natural approach is to augment the program state with additional structures, e.g., store

buffers in the case of TSO, that model the effects of RMM [3,5,29]. This causes blow-ups

in the number of possible executions, in addition to those possible under SC. However, most

of these additional executions are equivalent to some SC execution. To efficiently apply

SMC to handle RMM, we must therefore extend DPOR to avoid redundant exploration of

equivalent executions. The natural definition of “equivalent” under RMM can be derived from

the abstract representation of executions due to Shasha and Snir [35], here called Shasha–Snir

traces, which is often used in model checking and runtime verification [7,8,10,11,21,23].
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Shasha–Snir traces consist of an ordering relation between dependent operations, which

generalizes the standard happens-before relation on SC executions; indeed, under SC, the

equivalence relation induced by Shasha–Snir traces coincides with Mazurkiewicz traces. It

would thus be natural to base DPOR for RMM on the happens-before relation induced by

Shasha–Snir traces. However, this relation is in general cyclic (due to reorderings possible

under RMM) and can therefore not be used as a basis for DPOR (since it is not a partial

order). To develop an efficient technique for SMC under RMM we therefore need to find

a different representation of executions under RMM. The representation should define an

acyclic happens-before relation. Also, the induced trace equivalence should coincide with

the equivalence induced by Shasha–Snir traces.

Contribution In this paper, we show how to apply SMC to TSO and PSO in a way that

achieves maximal possible reduction using DPOR, in the sense that redundant exploration

of equivalent executions is avoided. A cornerstone in our contribution is a novel representa-

tion of executions under RMM, called chronological traces, which define a happens-before

relation on the events in a carefully designed representation of program executions. Chrono-

logical traces are a succinct canonical representation of executions, in the sense that there

is a one-to-one correspondence between chronological traces and Shasha–Snir traces. Fur-

thermore, the happens-before relation induced by chronological traces is a partial order,

and can therefore be used as a basis for DPOR. In particular, the Optimal-DPOR algo-

rithm of [1] will explore exactly one execution per Shasha–Snir trace. In particular, for

so-called robust programs that are not affected by RMM (these include data-race-free pro-

grams), Optimal-DPOR will explore as many executions under RMM as under SC: this

follows from the one-to-one correspondence between chronological traces and Mazurkiewicz

traces under SC. Furthermore, robustness can itself be considered a correctness criterion

(as in e.g. [7,8,10,11]), which can also be automatically checked with our method (by

checking whether the number of equivalence classes is increased when going from SC to

RMM).

We show the power of our technique by using it to implement an efficient stateless model

checker, which for C programs with pthreads explores all executions of a test-case or a

program, up to some bounded length. During exploration of an execution, our implementation

generates the corresponding chronological trace. Our implementation employs the source-

DPOR algorithm [1], which is simpler than Optimal-DPOR, but about equally effective.

Our experimental results for analyses under SC, TSO and PSO of a number of intensely

racy benchmarks and programs written in C/pthreads, show that (i) the effort for verification

under TSO and PSO is not much larger than the effort for verification under SC, and (ii)

our implementation compares favourably against CBMC [6] and goto-instrument [5], on a

number of terminating and data-deterministic benchmarks.

2 Overview of main concepts

This section informally motivates and explains the main concepts of the paper. To focus

the presentation, we consider mainly the TSO model. TSO is relevant because it is imple-

mented in the widely used ×86 as well as SPARC architectures. We first introduce TSO and

its semantics. Thereafter we introduce Shasha–Snir traces, which abstractly represent the

orderings between dependent events in an execution. Since Shasha–Snir traces may contain

cycles, we introduce an extended representation of executions, for which a natural happens-

before relation is acyclic. We then describe how this happens-before relation introduces
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Fig. 1 A program implementing

the classic idiom of Dekker’s

mutual exclusion algorithm [15] store: x :=1

load: $r:=y

store: y:=1

load: $s:=x

p q

Fig. 2 An execution of the

program in Fig. 1. Notice that

$r = $s = 0 at the end

p: store: x :=1 // Enqueue store

p: load: $r:=y // Load value 0

q: store: y:=1 // Enqueue store

q: update // y = 1 in memory

q: load: $s:=x // Load value 0

p: update // x = 1 in memory

undesirable distinctions between executions, and how our new representation of chronologi-

cal traces removes these distinctions. Finally, we illustrate how a DPOR algorithm exploits the

happens-before relation induced by chronological traces to explore only a minimal number

of executions, while still guaranteeing full coverage.

TSO: an Introduction TSO relaxes the ordering between stores and subsequent loads to

different memory locations. This can be modelled operationally by equipping each thread

with a store buffer [34], which is a FIFO queue that contains pending store operations. When a

thread executes a store instruction, the store does not immediately affect memory. Instead it is

delayed and enqueued in the store buffer. Nondeterministically, at some later point an update

event occurs, dequeueing the oldest store from the store buffer and updating the memory

correspondingly. Load instructions take effect immediately, without being delayed. Usually

a load reads a value from memory. However, if the store buffer of the same thread contains

a store to the same memory location, the value is instead taken from the most recent such

store in the store buffer.

To see why this buffering semantics may cause unexpected program behaviors, consider

the small program in Fig. 1. It consists of two threads p and q . The thread p first stores 1

to the memory location x, and then loads the value at memory location y into its register $r.

The thread q is similar, but with the roles of x and y reversed. All memory locations and

registers are assumed to have initial values 0. It is easy to see that under the SC semantics, it

is impossible for the program to terminate in a state where both registers $r and $s hold the

value 0. However, under the buffering semantics of TSO, such a final state is possible. Fig. 2

shows one such program execution. We see that the store to x happens at the beginning of the

execution, but does not take effect with respect to memory until the very end of the execution.

Thus the store to x and the load to y appear to take effect in an order opposite to how they

occur in the program code. This allows the execution to terminate with $r = $s = 0.

Shasha–Snir traces for TSO Partial order reduction is based on the idea of capturing the

possible orderings between dependent operations of different threads by means of a happens-

before relation. When threads interact via shared variables, two instructions are considered

dependent if they access the same global variable, and at least one is a write. For relaxed

memory models, Shasha and Snir [35] introduced an abstract representation of executions,

here referred to as Shasha–Snir traces, which captures such dependencies in a natural way.

Shasha–Snir traces induce equivalence classes of executions. Under sequential consistency,

those classes coincide with the Mazurkiewicz traces. Under a relaxed memory model, there
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Fig. 3 The Shasha–Snir trace

corresponding to the execution in

Fig. 2 store: x :=1

load: $r:=y

store: y:=1

load: $s:=x

p q

Fig. 4 A trace for the execution

in Fig. 2 where updates are

separated from stores store: x :=1

load: $r:=y

update

store: y:=1

load: $s:=x

update

qp

are also additional Shasha–Snir traces corresponding to the non-sequentially consistent exe-

cutions.

A Shasha–Snir trace is a directed graph, where edges capture observed event orderings.

The nodes in a Shasha–Snir trace are the executed instructions. For each thread, there are

edges between each pair of subsequent instructions, creating a total order for each thread. For

two instructions i and j in different threads, there is an edge i → j in a trace when i causally

precedes j . This happens when j reads a value that was written by i , when i reads a memory

location that is subsequently updated by j , or when i and j are subsequent writes to the same

memory location. In Fig. 3 we show the Shasha–Snir trace for the execution in Fig. 2.

Making the happens-before relation acyclic Shasha–Snir traces naturally represent the depen-

dencies between operations in an execution, and are therefore a natural basis for applying

DPOR. However, a major problem is that the happens-before relation induced by the edges

is in general cyclic, and thus not a partial order. This can be seen already in the graph in

Fig. 3. This problem can be addressed by adding nodes that represent explicit update events.

That would be natural since such events occur in the representation of the execution in Fig. 2.

When we consider the edges of the Shasha–Snir trace, we observe that although there is a

conflict between p : load: $r := y and q : store: y := 1, swapping their order in the exe-

cution in Fig. 2 has no observable effect; the load still gets the same value from memory.

Therefore, we should only be concerned with the order of the load relative to the update event

q : update.

These observations suggest to define a representation of traces that separates stores from

updates. In Fig. 4 we have redrawn the trace from Fig. 3. Updates are separated from stores,

and we order updates, rather than stores, with operations of other threads. Thus, there are

edges between updates to and loads from the same memory location, and between two updates

to the same memory location. In Fig. 4, there is an edge from each store to the corresponding

update, reflecting the principle that the update cannot occur before the store. There are edges

between loads and updates of the same memory location, reflecting that swapping their

order will affect the observed values. However, notice that for this program there are no

edges between the updates and loads of the same thread, since they access different memory

locations.

Chronological traces for TSO Although the new representation is a valid partial order, it

will in many cases distinguish executions that are semantically equivalent according to the

123



794 P. A. Abdulla et al.

Fig. 5 A program illustrating

buffer forwarding

store: x:=1

load: $r:=x

store: x:=2

p q

store: x:=1

load: $r:=x

update

store: x:=2

update

p q

(a)

store: x:=1

load: $r:=x

update

store: x:=2

update

p q

(b)

store: x:=1

load: $r:=x

update

store: x:=2

update

p q

(c)

Fig. 6 Three redundant happens-before relations for Fig. 5

Shasha–Snir traces. The reason for this is the mechanism of TSO buffer forwarding: When

a thread executes a load to a memory location x, it will first check its store buffer. If the

buffer contains a store to x, then the load returns the value of the newest such store buffer

entry instead of loading the value from memory. This causes difficulties for a happens-before

relation that orders any update with any load of the same memory location.

For example, consider the program shown in Fig. 5. Any execution of this program will

have two updates and one load to x. Those accesses can be permuted in six different ways.

Figure 6a–c shows three of the corresponding happens-before relations. In each of the three

cases, the load reads the value 1, written to x by p. In Fig. 6a, b the load is satisfied by buffer

forwarding, and in Fig. 6c by a read from memory. These three relations all correspond

to the same Shasha–Snir trace, shown in Fig. 7a, and they all have the same observable

behavior, since the value of the load is obtained from the same store. Hence, we should find

a representation of executions that does not distinguish between these three cases.

We can now describe chronological traces, our representation which solves the above

problems, by omitting some of the edges, leaving some nodes unrelated. More precisely,

edges between loads and updates should be omitted in the following cases.

1. A load is never directly related to an update originating in the same thread. This captures

the intuition that swapping the order of such a load and update has no effect other than

changing a load from memory into a load of the same value from buffer, as seen when

comparing Fig. 6b, c.

2. A load ld from a memory location x by a thread p is never directly related to an update

by an another thread q , if the update by q precedes some update to x originating in a store

by p that precedes ld. This is because the value written by the update of q is effectively

hidden to the load ld by the update to x by p. When we compare Fig. 6a, b, we see that

the order between the update by q and the load is irrelevant, since the update by q is

hidden by the update by p (note that the update by p originates in a store that precedes

the load).

When we apply these rules to the example of Fig. 5, all of the three representations in

Fig. 6a–c merge into a single representation shown in Fig. 7b. In total, we reduce the number

of distinguished cases for the program from six to three. This is indeed the minimal number

of cases that must be distinguished by any representation, since the different cases result in
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store: x:=1

load: $r:=x

store: x:=2

p q

(a)

store: x:=1

load: $r:=x

update

store: x:=2

update

p q

(b)

Fig. 7 Traces that capture all three Fig. 6a–c. a A Shasha–Snir trace corresponding to all three traces of Fig. 6.

b The three traces can be merged into this single trace

different values being loaded by the load instruction or different values in memory at the end

of the execution. We show in Theorem 1 of Sect. 3 that our proposed representation is in

general optimal.

Chronological traces for PSO The TSO and PSO memory models are very similar. The

difference is that PSO does not enforce program order between stores by the same thread to

different memory locations. To capture this, chronological traces are constructed differently

under TSO and PSO. In particular, under TSO there will always be edges between all updates

of the same thread, but under PSO we omit those edges when the updates access different

memory locations. In Sect. 5 we describe in more detail how to adapt the chronological traces

described above to the PSO memory model.

DPOR based on chronological traces Here, we illustrate how stateless model checking

performs DPOR based on chronological traces, in order to explore one execution per chrono-

logical trace. As example, we use the small program of Fig. 5. This example shows only the

intuition of the process, and is intentionally vague. A detailed description of the algorithm is

given in Sect. 4.

The algorithm initially explores an arbitrary execution of the program, and simultaneously

generates the corresponding chronological trace. In our example, this execution can be the

one shown in Fig. 8a, along with its chronological trace. The algorithm then finds those

edges of the chronological trace that can be reversed by changing the thread scheduling of

the execution. In Fig. 8a, the reversible edges are the ones from p : update to q : update,

and from p : load: $r := x to q : update. For each such edge, the program is executed

with this edge reversed. Reversing an edge can potentially lead to a completely different

continuation of the execution, which must then be explored.

In the example, reversing the edge from p : load: $r := x to q : update will generate

the execution and chronological trace in Fig. 8b. Notice that the new execution is observably

different from the previous one: the load reads the value 2 instead of 1.

The chronological traces in both Fig. 8a, b display a reversible edge from p : update to

q : update. The algorithm therefore initiates an execution where q : update is performed

before p : update. The algorithm will generate the execution and chronological trace in

Fig. 8c.

Notice that the only reversible edge in Fig. 8c is the one from q : update to p : update.

However, traces where p : update is executed before q : update, have already been explored

in Fig. 8a, b. Since there are no other edges that can be reversed, SMC terminates, having

examined precisely the three chronological traces that exist for the program of Fig. 5.
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p: store: x:=1

p: update

p: load: $r:=x

q: store: x:=2

q: update

store: x:=1

load: $r:=x

update

store: x:=2

update

p q

(a)

p: store: x:=1

p: update

q: store: x:=2

q: update

p: load: $r:=x

store: x:=1

load: $r:=x

update

store: x:=2

update

p q

(b)

p: store: x:=1

q: store: x:=2

q: update

p: update

p: load: $r:=x

store: x:=1

load: $r:=x

update

store: x:=2

update

p q

(c)

Fig. 8 How SMC with DPOR explores the program of Fig. 5

3 Formalization

In this section we summarize our formalization of the concepts of Sect. 2. We introduce our

representation of program executions, define chronological traces, formalize Shasha–Snir

traces for TSO, and prove a one-to-one correspondence between chronological traces and

Shasha–Snir traces.

Preliminaries For a function f , we use the notation f [x ←֓ v] to denote the function f ′

such that f ′(x) = v and f ′(y) = f (y) whenever y �= x . We use w · w′ to denote the

concatenation of the words w and w′.

Parallel programs We consider parallel programs consisting of a number of threads that run

in parallel, each executing a deterministic code, written in an assembly-like programming

language. The language includes instructions store: x :=$r, load: $r := x, and fence. Other

instructions do not access memory, and their precise syntax and semantics are ignored for

brevity. Here, and in the remainder of this text, x, y, z are used to name memory locations,

u, v, w are used to name values, and $r, $s, $t are used to name processor registers. We use

the short forms st(x) and ld(x) to denote some store and load of x respectively, where the

value is not interesting. We use TID to denote the set of all thread identifiers, and MemLoc
to denote the set of all memory locations.

Formal TSO semantics We formalize the TSO model by an operational semantics. Define

a configuration as a pair (L, M), where M maps memory locations to values, and L maps

each thread p to a local configuration of the form L(p) = (R, B). Here R is the state of local

registers (their valuation denoted R($r)) and program counter of p, and B is the contents

of the store buffer of p. This content is a word over pairs (x, v) of memory locations and

values. We let the notation B(x) denote the value v such that (x, v) is the rightmost (i.e., most

recently inserted) pair in B of form (x, _). If there is no such pair in B, then B(x) =⊥.

In order to accommodate memory updates in our operational semantics we will intro-

duce the notion of auxiliary threads. For each thread p ∈ TID, we assume that there is

an auxiliary thread upd(p). The auxiliary thread upd(p) will nondeterministically per-

form memory updates from the store buffer of p, when the buffer is non-empty. We use
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AuxTID = {upd(p)
∣

∣p ∈ TID} to denote the set of auxiliary thread identifiers. We will use

p and q to refer to real or auxiliary threads in TID ∪ AuxTID as convenient.

For configurations c = (L, M) and c′ = (L′, M
′), we write c

p
−→ c′ to denote that from

configuration c, thread p can execute its next instruction, thereby changing the configuration

into c′. We define the transition relation c
p
−→ c′ depending on what the next instruction op

of p is in c. In the following we assume c = (L, M) and c′ = (L′, M
′) and L(p) = (R, B).

Let Rpc be obtained from R by advancing the program counter after p executes its next

instruction. Depending on this next instruction op, we have the following cases.

Store If op has the form store: x :=$r, then c
p
−→ c′ iff L

′ = L[p ←֓ (Rpc, B · (x, v))] where

v = R($r) and M
′ = M and. Intuitively, under TSO, instead of updating the memory with

the new value v, we insert the entry (x, v) at the end of the store buffer of the thread.

Load If op has the form load: $r := x, then c
p
−→ c′ iff M

′ = M and either

1. (From memory) B(x) =⊥ and L
′ = L[p ←֓ (Rpc[$r ←֓ M(x)], B)], or

2. (Buffer forwarding) B(x) �=⊥ and L
′ = L[p ←֓ (Rpc[$r ←֓ B(x)], B)].

Intuitively, in the first case there is no entry for x in the thread’s own store buffer, so the

value is read from memory. In the second case, we read the value of x from its latest entry in

the store buffer of the thread.

Fence If op has the form fence, then c
p
−→ c′ iff B = ε and L

′ = L[p ←֓ (Rpc, B)] and

M
′ = M. A fence can only be executed when the store buffer of the thread is empty.

Update In addition to instructions which are executed by the threads, at any point when a

store buffer is non-empty, an update event may nondeterministically occur. The memory is

then updated according to the oldest (leftmost) letter in the store buffer, and that letter is

removed from the buffer. To formalize this, we will assume that the auxiliary thread upd(p)

executes a pseudo-instruction u(x). We say that c
upd(p)
−−−−→ c′ iff B = (x, v) · B

′ for some x, v,

B
′ and M

′ = M[x ←֓ v] and L
′ = L[p ←֓ (R, B

′)].

Program executions Based on the operational semantics defined above, a program execution

can be defined as a sequence c0
p0
−→ c1

p1
−→ · · ·

pn−1
−−→ cn of configurations related by

transitions labelled by actual or auxiliary thread IDs. Since each transition of each program

thread (including the auxiliary threads of form upd(q)) is deterministic, a program run is

uniquely determined by its sequence of thread IDs. Formally, we will therefore define each

execution as a word of events. Each event is a triple (p, i, j) which represents one transition

in the run. Here the thread p ∈ TID ∪ AuxTID is a regular or auxiliary thread, executing an

instruction i (which may be an update u(x)). The natural number j is used to disambiguate

events. We let j be such that (p, i, j) is the j :th event of p in the execution (counting from

1). For an event e = (p, i, j), we define tid(e) = p. We will use Event to denote the set of

all possible events. Figure 9 shows three sample executions.

For an execution τ and two events e, e′ in τ , we say that e <τ e′ iff e strictly precedes e′

in τ . We define two dummy events e0 = (⊥,⊥, 0) and e∞ = (⊥,⊥,∞), and we extend <τ

such that for every event e /∈ {e0, e∞} we have e0 <τ e <τ e∞.

For an execution τ and an event e = (p, st(x), j) in τ , we define updst(e) to be the

update event in τ corresponding to the store event e. Formally, let k be the number of events

ew = (p′, st(y), j ′) for any memory location y in τ such that p′ = p and j ′ ≤ j . Then
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(p,st(x),1)es:

(p,st(y),2)

(q,st(z),1)

(p,ld(x),3)el:

(upd(p),u(x),1)eu:

(upd(q),u(z),1)

(upd(p),u(y),2)

(a) updst(es) = updld(el) = eu

Here eu is the update corresponding to the store

es. Since es is the latest store to x, which

precedes el in program order, we have that

updld(el) = eu.

(p,st(x),1)es:

(q,st(z),1)

(p,ld(x),2)el:

(upd(q),u(z),1)

(b) updst(es) = updld(el) = e∞

Here the update of es is still pending. Therefore we de-

fine updst(es) as e∞. Since the same pending update

originates in a store preceding el in program order, we

also have updld(el) = e∞.

(p,st(z),1)es:

(p,ld(x),2)el:

(upd(p),u(z),1)eu:

(c) updst(es) = eu updld(el) = e0

Here es corresponds to eu as in Figure 9(a). The load

el is not preceded by any store to the same memory

location. Therefore, we define updld(el) = e0.

Fig. 9 Illustration of the definitions of updst and updld

updst(e) = (upd(p), u(x), k) if there is such an event in τ . Otherwise updst(e) = e∞,

denoting that the update is still pending at the end of τ . Figure 9a illustrates the typical

case, where the store es is eventually followed by its corresponding update updst(es) = eu .

Figure 9b shows the case when the update corresponding to the store es is still pending at

the end of the execution, and therefore updst(es) = e∞.

For an execution τ and an event e = (p, ld(x), j) in τ , we define updld(e) to be the

update event of the latest store to x, which precedes e in the same thread. The intuition is

that updld(e) is the update from which e would get its value in the case of buffer forwarding.

Formally, if there is an event ew = (p, st(x), k) in τ such that k < j and there is no event

(p, st(x), l) in τ with k < l < j , then updld(e) = updst(ew). Otherwise updld(e) = e0.

Figure 9a, b shows the typical case, where updld(el ) is taken to be the update corresponding

to the latest preceding store by the same thread to the same memory location. Figure 9c shows

the case when there is no such preceding store, and updld(el ) is taken to be the dummy event

e0. (Notice that the store es is to a different memory location.)

Chronological traces We can now introduce the main conceptual contribution of the paper,

viz. chronological traces. For an execution τ we define its chronological trace TC (τ ) as

a directed graph 〈V, E〉. The vertices V are all the events in τ ; both events representing

instructions and events representing updates. The set of edges E is the union of six relations:

E =→
po
τ ∪ →su

τ ∪ →uu
τ ∪ →src-ct

τ ∪ →cf-ct
τ ∪ →uf

τ .

We will illustrate the definition on an execution of the program in Fig. 10a, which contains

an idiom that occurs in the mutual exclusion algorithm of Peterson [31]. It is mostly the

same as that from Dekker’s mutual exclusion algorithm. But it has two additional accesses

in each thread to a separate memory location z. These provide an opportunity to display

buffer forwarding. Figure 10c shows an example of an execution and Fig. 10b shows its

corresponding chronological trace.

We define the edge relations of chronological traces as follows, for two arbitrary events

e = (p, i, j) ∈ V and e′ = (p′, i ′, j ′) ∈ V :
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p q

A: store: x:=1 E: store: y:=1
B: store: z:=1 F : store: z:=0
C: load: $r:=z G: load: $r:=z

D: load: $s:=y H: load: $s:=x

(a) A small program illustrating the idiom
of Peterson’s mutual exclusion algorithm.

A: st(x)

B: st(z)

C: ld(z)

D: ld(y)

A : u(x)

B : u(z)

E: st(y)

F : st(z)

G: ld(z)

H: ld(x)

E : u(y)

F : u(z)

p upd(p) qupd(q)

po

po

po

su

su
po

po

po

po

su

su
po

uu

src-ct

cf-ct

cf-ct

(b) The chronological trace TC(τ) corresponding to the exe-
cution in Figure 10(c). Notice that there is no edge between

the load G from z and either of the updates to z.

A: (p, st(x),1)
E: (q, st(y),1)

B: (p, st(z),2)
C: (p, ld(z),3)
D: (p, ld(y),4)

E : (upd(q), u(y),1)
F : (q, st(z),2)
G: (q, ld(z),3)

A : (upd(p), u(x),1)
H: (q, ld(x),4)

B : (upd(p), u(z),2)
F : (upd(q), u(z),2)

(c) An execution τ .

A: st(x)

B: st(z)

C: ld(z)

D: ld(y)

E: st(y)

F : st(z)

G: ld(z)

H: ld(x)

qp

po

po src-ss

po

po

posrc-ss

po

st

src-ss

cf-ss

cf-ss

(d) The Shasha-Snir trace T (τ) corresponding to the execu-
tion in Figure 10(c).

Fig. 10 Traces illustrated by the idiom of Peterson’s mutual exclusion algorithm

Program order e →
po
τ e′ iff p = p′ and j ′ = j + 1. For example, we see in Fig. 10b that

there is a program order edge from the store instruction A (i.e., the event (p, st(x), 1)) to the

store instruction B (i.e., the event (p, st(z), 2)) which immediately follows it in the program

of thread p. Similarly, the updates of each thread are program ordered. E.g., A′ →
po
τ B ′.

Store to update e →su
τ e′ iff i = st(x) for some x and updst(e) = e′. I.e., e′ is the update

corresponding to the store e. This is illustrated in Fig. 10b where there is an su-edge from

each store, to its corresponding update. E.g., A →su
τ A′.

Update to update e →uu
τ e′ iff i = u(x) and i ′ = u(x) for some x and e <τ e′ and there is

no event e′′ = (p′′, u(x), j ′′) such that e <τ e′′ <τ e′. I.e., →uu
τ chronologically orders all

updates for each memory location. In Fig. 10b we see that the two updates B ′ and F ′ to z
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are uu-ordered with each other in the same order as they appear in the execution in Fig. 10c.

However, they are not uu-ordered with the updates A′ and E ′ to x and y.

Source e →src-ct
τ e′ iff for some x it holds that i = u(x) and i ′ = ld(x) and updld(e′) <τ

e <τ e′ and there is no update e′′ = (p′′, u(x), j ′′) to x such that e <τ e′′ <τ e′. I.e., if

the source of the value read by e′ is an update e from a different process, then e →src-ct
τ e′.

Otherwise, there is no incoming →src-ct
τ edge to e′. Since the definition forces the strict order

updld(e′) <τ e <τ e′, it excludes the possibility of the update e originating in the same

thread as the load e′ (as no update from p′ can come after updld(e′) but before e′). Therefore

a load is never src-ct-related to an update from the same thread. In Fig. 10b we see that

the load H takes its value from the update A′. Therefore the events are src-ct-related. But

the loads C and G to z both read the value written by their own thread, and therefore have

no src-ct-relation. The “ct” in the name of the relation stands for “chronological trace”,

and serves to distinguish the relation →src-ct
τ for chronological traces from the similar, but

different relation →src-ss
τ for Shasha–Snir traces (introduced below).

Conflict e →cf-ct
τ e′ iff i = ld(x) and i ′ = u(x) for some x and e′ is the first (w.r.t. <τ ) event

eu of the form (_, u(x), _) such that both e <τ eu and updld(e) <τ eu . The intuition here

is that e →cf-ct
τ e′ when e′ is the first update which succeeds e in the coherence order of x.

Equivalently, e′ is the update that overwrites the value that was read by e. In Fig. 10b, the

load D to y by p reads the initial value of y, which is then overwritten by the update E ′ to y

by q . Therefore we have D →cf-ct
τ E ′. The load C reads the value of the update B ′ by buffer

forwarding. That value is later overwritten in memory by the update F ′. Therefore we have

C →cf-ct
τ F ′.

Update to fence e →uf
τ e′ iff i = u(x) for some x, and i ′ = fence and p = upd(p′) and

e <τ e′ and there is no event e′′ = (p, u(y), j ′′) for any y such that e <τ e′′ <τ e′. The

intuition here is that the fence cannot be executed until all pending updates of the same thread

have been flushed from the buffer. Hence the updates are ordered before the fence.

Shasha–Snir traces We will now formalize Shasha–Snir traces, and prove that chronological

traces are equivalent to Shasha–Snir traces, in the sense that they induce the same equivalence

relation on executions. We first recall the definition of Shasha–Snir traces. We follow the

formalization by Bouajjani et al. [8].

First, we introduce the notion of a completed execution. We say that an execution τ is

completed when all stores have reached memory, i.e., when for every event e = (p, st(x), j)

in τ we have updst(e) �= e∞. In the context of Shasha–Snir traces, we will restrict ourselves

to completed executions.

For a completed execution τ , we define the Shasha–Snir trace of τ as the graph T (τ ) =

〈V, E〉 where V is the set of all non-update events (p, i, j) in τ where i �= u(x) for all x.

The edges E is the union of four relations E =→
po
τ ∪ →st

τ ∪ →src-ss
τ ∪ →cf-ss

τ .

For two arbitrary events e = (p, i, j) ∈ V and e′ = (p′, i ′, j ′) ∈ V , we define the

relations as follows:

Program order e →
po
τ e′ iff p = p′ and j ′ = j + 1. This is the same program order as for

chronological traces.

Store order e →st
τ e′ iff i = st(x) and i ′ = st(x) for some x and the corresponding updates are

ordered in τ s.t. updst(e) <τ updst(e
′) and there is no other update event e′′ = (p′′, u(x), j ′′)
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such that updst(e) <τ e′′ <τ updst(e
′). I.e., for each memory location x, the transitive

closure →st
τ

∗
is a total order on all stores to x based on the order in which they reach

memory.

Source e →src-ss
τ e′ iff i ′ = ld(x) and e is the maximal store event e′′ = (p′′, st(x), j ′′) with

respect to →st
τ

∗
such that either updst(e

′′) <τ e′ or e′′→
po
τ

∗
e′. I.e., e →src-ss

τ e′ when e′ is

a load which reads its value from e, via memory or by buffer forwarding.

Conflict e →cf-ss
τ e′ iff i = ld(x) and i ′ = st(x) and if there is an event e′′ such that

e′′ →src-ss
τ e then e′′ →st

τ e′, otherwise e′ has no predecessor in →st
τ . I.e., e′ is the store

which overwrites the value that was read by e.

The definition of Shasha–Snir traces is illustrated in Fig. 10d. We are now ready to state

the equivalence theorem.

Theorem 1 (Equivalence of Shasha–Snir traces and chronological traces) For a given pro-

gram P with two completed executions τ, τ ′, it holds that T (τ ) = T (τ ′) iff TC (τ ) = TC (τ ′).

We decompose the theorem into the following two lemmas, which are proven separately.

Lemma 1 (Equivalence of Shasha–Snir traces and chronological traces ⇒ direction) For a

given program P with two completed executions τ, τ ′, it holds that if T (τ ) = T (τ ′) then

TC (τ ) = TC (τ ′).

Lemma 2 (Equivalence of Shasha–Snir traces and chronological traces ⇐ direction) For a

given program P with two completed executions τ, τ ′, it holds that if TC (τ ) = TC (τ ′) then

T (τ ) = T (τ ′).

Proof of Lemma 1 Let two completed executions τ and τ ′ be given. Let

T (τ ) = 〈VSS,→po
τ ∪ →st

τ ∪ →src-ss
τ ∪ →cf-ss

τ 〉 and

T (τ ′) = 〈V ′
SS,→

po
τ ′ ∪ →st

τ ′ ∪ →src-ss
τ ′ ∪ →cf-ss

τ ′ 〉 and TC (τ )

= 〈VC ,→po
τ ∪ →su

τ ∪ →uu
τ ∪ →src-ct

τ ∪ →cf-ct
τ ∪ →uf

τ 〉 and

TC (τ ′) = 〈V ′
C ,→

po
τ ′ ∪ →su

τ ′ ∪ →uu
τ ′ ∪ →src-ct

τ ′ ∪ →cf-ct
τ ′ ∪ →uf

τ ′〉.

Furthermore, assume that T (τ ) = T (τ ′).

First, we determine that the events are the same in both chronological traces: VC = V ′
C .

From VSS = V ′
SS we have that the non-update events in τ are the same as the ones in τ ′.

Since τ and τ ′ contain the same stores for each thread in the same per-thread order, it follows

from the completedness of τ and τ ′, and from the TSO semantics that τ and τ ′ also have the

same update events. Hence VC = V ′
C .

We see that the definitions of program order and store to update order in chronological

traces are entirely determined by which events exist in the execution for each thread. Since

both executions have the same events, we conclude that →
po
τ =→

po
τ ′ and →su

τ =→su
τ ′ . The

equality →uf
τ =→uf

τ ′ of update to fence order follows similarly.

Let us consider the definitions of update to update order for chronological traces and store

order for Shasha–Snir traces. We see that there is a one-to-one mapping between relations

e →st
τ e′ for stores in Shasha–Snir traces to relations updst(e) →uu

τ updst(e
′) in chronolog-

ical traces. Since the store orders are the same for τ and τ ′, we thus conclude that the update

to update orders are also the same: →uu
τ =→uu

τ ′ .
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We now turn our attention to proving that →src-ct
τ =→src-ct

τ ′ . We will first prove that

→src-ct
τ ⊆→src-ct

τ ′ . From symmetry it then follows that →src-ct
τ ′ ⊆→src-ct

τ , and hence that

→src-ct
τ =→src-ct

τ ′ . Let us assume that the relation e →src-ct
τ e′ exists in →src-ct

τ for

some events e = (p, u(x), j) and e′ = (p′, ld(x), j ′). We will prove that the same

relation e →src-ct
τ ′ e′ exists in →src-ct

τ ′ . From the definition of →src-ct
τ we have that

updld(e′) <τ e <τ e′ and there is no update e′′ = p′′, u(x), i ′′) to the same memory

location such that e <τ e′′ <τ e′. Since e′ is preceded in τ by at least one update to x,

there must be a store event ew such that ew →src-ss
τ e′ in τ . From the definition of →src-ss

τ

we have that ew is the maximal event (p′′, st(x), j ′′) with respect to →st
τ

∗
such that either

updst(ew) <τ e′ or ew→
po
τ

∗
e′. If ew→

po
τ

∗
e′, then updst(ew) = updld(e′). But then the

maximality of ew contradicts updld(e′) <τ e <τ e′. Hence we have updst(ew) <τ e′. Maxi-

mality of ew now gives that updst(ew) = e. Since →src-ss
τ =→src-ss

τ ′ we have that in τ ′ also

ew →src-ss
τ ′ e′. From the definition of →src-ss

τ ′ and ¬(ew→
po
τ ′

∗
e′) we know that updst(ew)

is the store-order-maximal update to x that precedes e′ in τ ′. Since the store order is the

same for τ and τ ′ we have updld(e′) <τ ′ e. But then e = updst(ew) satisfies the criteria for

e →src-ct
τ ′ e′.

Finally, we will show that →cf-ct
τ =→cf-ct

τ ′ . Similarly to the proof for →src-ct
τ =→src-ct

τ ′ , it

suffices here to show that →cf-ct
τ ⊆→cf-ct

τ ′ . Assume therefore that er →cf-ct
τ eu for some events

er = (p, ld(x), j), eu = (p′, u(x), j ′). We will show that er →cf-ct
τ ′ eu . The definition of

→cf-ct
τ gives that eu is the first (w.r.t. <τ ) event e of the form (_, u(x), _) such that both

er <τ e and updld(er ) <τ e. Let ew be the store event such that updst(ew) = eu . We will

split the proof in cases depending on whether or not there exists a source event for er in the

Shasha–Snir traces.

Assume therefore first (i) that there is no event esrc such that esrc →src-ss
τ er . Then there

is no update to x that precedes er in <τ . Furthermore updld(er ) = e0. This tells us that ew

has no predecessor in →st
τ . Since →st

τ =→st
τ ′ , we also have that ew has no predecessor in

→st
τ ′ . Furthermore, since er has no source event in τ ′, it must be the case that er <τ ′ eu . But

then, eu is the first update event in τ ′ which is after both er and updld(er ). And so we have

er →cf-ct
τ ′ eu .

Next assume (ii) that there is an event esrc with esrc →src-ss
τ er and that tid(esrc) = tid(er ).

Then it must be the case that updst(esrc) = updld(er ). Since →src-ss
τ =→src-ss

τ ′ , we have

that esrc →src-ss
τ ′ er . There can be no update event e to the same memory location x such

that updld(er ) <τ e <τ er . If there were such an e, then esrc wouldn’t be the source

of er . The same argument goes in τ ′. This tells us that eu is the immediate store order

successor of updld(er ), i.e., updld(er ) →uu
τ eu and esrc →st

τ ew. Since →uu
τ =→uu

τ ′ , we have

updld(er ) →uu
τ ′ eu . Hence eu is the first update event which succeeds both er and updld(er )

in <τ ′ . Thus er →cf-ct
τ ′ eu .

Lastly, we assume (iii) that there is an event esrc such that esrc →src-ss
τ er and that

tid(esrc) �= tid(er ). Then it is the case in τ that updld(er ) <τ updst(esrc) <τ er . And there

is no update event e to x such that updst(esrc) <τ e <τ er . The same holds in τ ′. Since eu

is the first update to x after er in τ , this means that we have updst(esrc) →uu
τ eu . We have

→uu
τ =→uu

τ ′ , so updst(esrc) →uu
τ ′ eu . Now it must be the case that er <τ ′ eu . Otherwise,

esrc wouldn’t be the source of er in τ ′, and we know esrc →src-ss
τ ′ er . Hence eu is an update

event that succeeds both er and updld(er ) in <τ ′ . It remains to show that it is the first such

update. Suppose e �= eu is an update event to x such that er <τ e <τ eu . Then it would be

the case that updst(esrc) <τ ′ e <τ ′ eu . But this would contradict updst(esrc) →uu
τ ′ eu . Thus

we have er →cf-ct
τ ′ eu .
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This concludes the proof of TC (τ ) = TC (τ ′). ⊓⊔

Proof of Lemma 2 Let two completed executions τ and τ ′ be given. Let

T (τ ) = 〈VSS,→po
τ ∪ →st

τ ∪ →src-ss
τ ∪ →cf-ss

τ 〉 and

T (τ ′) = 〈V ′
SS,→

po
τ ′ ∪ →st

τ ′ ∪ →src-ss
τ ′ ∪ →cf-ss

τ ′ 〉 and

TC (τ ) = 〈VC ,→po
τ ∪ →su

τ ∪ →uu
τ ∪ →src-ct

τ ∪ →cf-ct
τ ∪ →uf

τ 〉 and

TC (τ ′) = 〈V ′
C ,→

po
τ ′ ∪ →su

τ ′ ∪ →uu
τ ′ ∪ →src-ct

τ ′ ∪ →cf-ct
τ ′ ∪ →uf

τ ′〉.

Furthermore, assume that TC (τ ) = TC (τ ′).

We will prove that T (τ ) = T (τ ′). We know that VSS (respectively V ′
SS) is precisely the

non-updates of VC (respectively V ′
C ). Since VC = V ′

C we have VSS = V ′
SS .

For the relations →
po
τ and →st

τ , a reasoning analogue to that in the ⇒ direction gives that

→
po
τ =→

po
τ ′ and →st

τ =→st
τ ′ .

We will show that →src-ss
τ ⊆→src-ss

τ ′ . Symmetry then gives →src-ss
τ ′ ⊆→src-ss

τ , and hence

→src-ss
τ =→src-ss

τ ′ . Assume therefore that ew →src-ss
τ er holds for some events ew =

(p, st(x), j) and er = (p′, ld(x), j ′). Then by the definition of →src-ss
τ we have that ew is the

maximal event e = (p′′, st(x), j ′′) with respect to →st
τ

∗
such that either updst(e) <τ er or

e→
po
τ

∗
er . We will separate the proof by cases: either tid(ew) = tid(er ) or tid(ew) �= tid(er ).

Assume first (i) that tid(ew) = tid(er ). Then it holds that ew→
po
τ

∗
er , since the events

must be program ordered, and the other direction implies er <τ updst(ew). Program order

is the same in τ ′ as in τ , so we also have ew→
po
τ ′

∗
er . It remains to show that ew is maximal

in τ ′. First we conclude that there can be no store event e such that ew →st
τ ′ e and e→

po
τ ′

∗
er .

This is because both the program order and the store order are the same in τ ′ as in τ , and

hence such an event e would contradict the assumed maximality of ew w.r.t. τ . As a corollary

we have updld(er ) = updst(ew). Next we need to conclude that there is no event e such that

ew →st
τ ′ e and updst(e) <τ ′ er . We know that there is no such event in τ : i.e., there is no

event e such that ew →st
τ e and updst(e) <τ er . Hence by the definition of →src-ct

τ there is

no event eC
src which is source related with er in the chronological trace: eC

src →src-ct
τ er . Since

→src-ct
τ =→src-ct

τ ′ , the same holds in τ ′. Now if there were an event such as e in τ ′, then er

would have a source according to →src-ct
τ ′ . This is a contradiction, and so there can be no such

e in τ ′. Hence, ew is the maximal store event w.r.t. →st
τ ′

∗
which is either updated <τ ′ -before

er or program order-before er . That concludes the proof for the case that tid(ew) = tid(er ).
Next assume (ii) that tid(ew) �= tid(er ). Clearly ew is not program ordered with er . Hence

the definition of →src-ss
τ gives that updst(ew) <τ er . The maximality of ew gives that

updld(er ) <τ updst(ew), and that there is no update event e = (p′′, u(x), j ′′) such that

updst(ew) <τ e <τ er . Then by the definition of →src-ct
τ we have updst(ew) →src-ct

τ er . By

→src-ct
τ =→src-ct

τ ′ we also have updst(ew) →src-ct
τ ′ er . By the definition of →src-ct

τ ′ we now

have that ew is the greatest (w.r.t. <τ ′ ) store event with updst(ew) <τ ′ er . We also have that

updld(er ) <τ ′ updst(ew). Since there can be no event e = (_, st(x), _) such that e→
po
τ ′

∗
er

and updld(er ) <τ ′ updst(e), we have that ew is the maximal event e = (_, st(x), _) with

respect to →st
τ

∗
such that either updst(e) <τ ′ er or e→

po
τ ′

∗
er . Hence ew →src-ss

τ ′ er . This

concludes the proof for →src-ss
τ =→src-ss

τ ′ .

Since →cf-ss
τ (respectively →cf-ss

τ ′ ) is entirely determined by →src-ss
τ and →st

τ (respec-

tively →src-ss
τ ′ and →st

τ ′ ), and we know that →src-ss
τ =→src-ss

τ ′ and →st
τ =→st

τ ′ , we

immediately get that →cf-ss
τ =→cf-ss

τ ′ . This concludes the proof. ⊓⊔

Proof of Theorem 1 The theorem follows directly from Lemmas 1 and 2. ⊓⊔

123



804 P. A. Abdulla et al.

4 DPOR algorithm for TSO

A DPOR algorithm can exploit chronological traces to perform stateless model checking of

programs that execute under TSO (and PSO), as illustrated at the end of Sect. 2. The explored

executions follow the semantics of TSO in Sect. 3. For each execution, its happens-before

relation is computed, which is the transitive closure of the edge relation →ct
τ =→

po
τ ∪ →su

τ

∪ →uu
τ ∪ →src-ct

τ ∪ →cf-ct
τ ∪ →uf

τ of the corresponding chronological trace. This happens-

before relation can in principle be exploited by any DPOR algorithm to explore at least one

execution per equivalence class induced by Shasha–Snir traces. In this section, we will show

concretely how to compute the happens-before relation, and how to use it to instantiate a

DPOR algorithm. To do so, we will first need to introduce some further concepts.

The happens-before relation →ct
τ is computed on the fly, using vector clocks, while taking

the particular structure of chronological traces into account. The main difference from com-

puting happens-before relations for sequentially consistent executions (see, e.g., [32]) is that

load events which get their value by store forwarding are not immediately synchronized with

the vector clock of the memory location. Instead, the load is associated with the store buffer

entry from which it got its value. The load is then synchronized with the memory location at

the time when the store buffer entry is updated to memory.

Formally, we extend the TSO configurations described in Sect. 3 to keep track of the

necessary information about relations between different events. Below we need vector clocks.

A vector clock is a function C : (TID ∪ AuxTID) �→ N. The intuition is that C captures a set

of observed events. For every thread p, the first C(p) events by p have been observed. We

let VecClocks = ((TID ∪ AuxTID) �→ N) denote the set of vector clocks.

For two vector clocks v, v′ we use the notation v ⊔ v′ to denote the vector clock v′′ such

that v′′(p) = max(v(p), v′(p)) for all p. For two vector clocks v, v′ we say that v ≤ v′

when v(p) ≤ v′(p) for all p. We say that v < v′ if at least one of the inequalities is strict. For

an event e and a set E of events we define E ⊕ e = {e′ ∈ E |tid(e′) �= tid(e)} ∪ {e}, i.e. E ⊕ e

is E where e replaces the previous event e′ ∈ E s.t. tid(e′) = tid(e). We use the shorthand

f [x0, x1, · · · , xn ←֓ v] to denote f [x0 ←֓ v][x1 ←֓ v] · · · [xn ←֓ v], i.e., an assignment

of the same value to multiple function arguments.

An extended configuration is a quintuple (L, M, C, B, M), where (L, M) is a TSO con-

figuration as described in Sect. 3.

C : (TID ∪ AuxTID ∪ Event ∪ {⊥}) �→ VecClocks
maps each (real or auxiliary) thread identifier p to a vector clock representing which parts

of the execution have been seen by p. Also, C maps each event e to the value of C(tid(e))
at the time immediately after executing e. We fix that C(⊥) = (λx .0) is a zeroed clock.

B : TID �→ (MemLoc × Event × (Event ∪ {⊥}))∗

maps each real (not auxiliary) thread ID p to a word of letters (x, es, el), each of which

keeps an auxiliary state for the corresponding letter in the store buffer in L(p). Here x

is the accessed memory location, es is the store event that produced that letter, and el is

the latest buffer forwarded load event for which the letter has been the source (if there is

no such event then el =⊥).

M : MemLoc �→ ((Event ∪ {⊥}) × 2Event)

maps each memory location x to a pair (eu, El), where eu is the latest update event that

accessed x (or ⊥ if x has never been updated), and where El is a set which for each thread

p that has read x contains the latest event of p that read the value of x.

Initially all clocks in C are zeroed, all buffers in B are empty, and for all memory locations

x we have M(x) = (⊥,∅).
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The idea here is that as we execute memory accesses, we update the vector clock of the

executing thread to reflect which new events have been observed.

For example, when we execute an update ex corresponding to a buffer entry (x, es, el),

we look to the memory M(x) = (eu, El). We know that the update event is ordered after the

previous update eu , as well as the previous loads in El and the store event es which enabled

the update ex . We update the vector clock C(tid(ex)) of the auxiliary thread to include all

these newly observed events.

The procedure for a load from memory is similar, except that we do not observe previous

loads. More interesting are loads that are satisfied by buffer forwarding. When we execute a

buffer forwarded load el to x, we do not observe any new event, since the load was not able

to reach and synchronize with the memory. Instead we save the load event with the buffer

entry from which it read its value. When that entry is updated to memory, by the update event

updld(el ), we move el to the set of loads that have been observed by M(x). By this scheme

the load event el becomes available for observation by precisely the update events which

succeed updld(el ). In the remainder of this section we will make this intuition formal.

4.1 Instantiating Source-DPOR for chronological traces

We are now ready to show an instantiation of the Source-DPOR algorithm of [1] using chrono-

logical traces. In Fig. 11, we give the main DPOR algorithm TSO-Source-DPOR, explained

in this section. The algorithm makes a call to the auxiliary algorithm TSO-post in order to

compute the next configuration according to the TSO semantics, compute the corresponding

chronological trace, and identify events which race with each other. The algorithm TSO-post

is given in Fig. 12, and explained in Sect. 4.2.

The DPOR algorithm takes three parameters: the current execution τ , the current extended

state (L, M, C, B, M) and a sleep set Sleep of threads which are currently blocked from being

executed. The algorithm recursively explores executions which are continuations of τ . On

line 1 we pick a thread p that can be executed in the current state, and which is not in the sleep

set. The next instruction of p will be the first continuation of τ which is explored. As races

are discovered between events during the exploration, new alternative continuations will be

added to the set backtrack. Such alternatives will be explored in subsequent iterations

through the loop on lines 3–30.

For each event e that is added to τ in one iteration of the loop, three main steps are

performed: On line 7, the configuration is updated to reflect the effect of executing e, as

well as the new edges in the happens-before relation →ct
τ . At the same time, we compute

the set cnf of earlier events which race with e. On lines 8–16, we add new branches to

backtrack, corresponding to the races that have been detected and collected in the set

cnf. On lines 17–27 we update the sleep set in order to unblock those threads whose next

instruction races with e.

The first step is handled by the auxiliary algorithm in Fig. 12. It is explained in Sect. 4.2

below.

In the next step, on lines 8–16, we add new branches to the setbacktrack, corresponding

to each of the races that have been collected in cnf. For each event ec which is in a race with

e, we want to add an alternative branch, where ec is delayed, allowing the possibility for e to

execute before ec. Therefore, at line 9, we identify the position in τ where ec was executed,

and the sub-executions τ0 and τ1 preceding and succeeding ec. We then identify the set I of

events in τ1 which may be the first executed event after τ0 in a hypothetical other execution

where e executes before ec. We make certain at lines 12–15 that at least one of the events in

I is represented as an alternative branch to explore after τ0.
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TSO-Source-DPOR(τ ,(L, M, C, B, M),Sleep)
1: if(∃p ∈ (TID ∪ AuxTID) \ Sleep. p is enabled){
2: backtrack(τ) := {p};
3: while(∃p ∈ backtrack(τ) \ Sleep){
4: op := the next instruction of p in (L, M);
5: i := 1 + the number of events by p in τ;
6: e := (p, op, i); // The new event

7: ((L , M , C , B , M ),cnf) := TSO-post((L, M, C, B, M),e);
// Add branches to backtrack for each detected race in cnf

8: for(ec ∈ cnf){
9: τ0 · ec · τ1 := τ; // Identify position of ec in τ

10: τ1 := τ1 · e with all events e s.t. C (ec) ≤ C (e ) removed;

// Set I to the set of initial events in τ1
11: I := {ei ∈ τ1 ei ∈ τ1.C (ei) ≤ C (ei)};
12: if(I ∩ backtrack(τ0) = ∅){ // No initial in the backtrack set

13: ei := pick an element in I;
14: backtrack(τ0) := backtrack(τ0) ∪ {tid(ei)};
15: }
16: }

// Remove racing threads from the sleep set.

17: Sleep := Sleep;
18: if(∃x. op accesses x){ // e is a memory access

19: Sleep := ∅;

20: for(q ∈ Sleep){
21: op’ := the next instruction of q in (L , M );
22: y := the memory location accessed by op’;

23: if
y = x or (both op and op’ are loads) or (q = upd(p)) or

(op’ is a load and B(q) contains a letter of the form (y, , ))
{

24: Sleep := Sleep ∪ {q};
25: }
26: }
27: }
28: TSO-Source-DPOR(τ · e,(L , M , C , B , M ),Sleep );

29: Sleep := Sleep ∪ {p};
30: }
31: }

global backtrack = λτ.∅ : Event∗ �→ 2TID∪AuxTID

Fig. 11 The source-DPOR algorithm of [1], adapted to TSO using chronological traces. The initial call is TSO-

Source-DPOR(ε, (L0, M0, λp.λq.0, λp.ε, λx(⊥, ∅)), ∅), where (L0, M0) is an initial TSO configuration

When we explore a new branch, like the ones introduced above, we use a sleep set to

ensure that events that are supposed to be delayed are delayed for sufficiently long. Thus

when exploration of a new branch like the one above starts, the thread identifier of the

previously racing event (ec) is inserted into the sleep set Sleep (on line 29) and the event

may not be executed until the thread is removed from that set. A thread should be removed

from the sleep set when the execution has proceeded such that executing its next event would

have a different effect than previously explored. This happens as soon as an event is executed

that would be in a race with the sleeping thread’s next event. Therefore, on lines 17–27, we

identify which of the sleeping threads race with e, and remove them from Sleep.

Example exploration Recall the program given in Fig. 5. In the example of Fig. 8 in the

preliminaries, we gave a high-level explanation of how DPOR with chronological traces
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TSO-post((L, M, C, B, M),e)
1: (p, op, i) := e;

2: (R, B) := L(p);
3: Rpc := advance the program counter of p in R;

4: cnf := ∅; // Events racing with e

5: cp := C(p)[p ← i]; // Tick the clock for p

6: (L , M , C , B , M ) := (L[p ← (Rpc, B)], M, C[e, p ← cp], B, M);
// Case split based on instruction type

7: if(∃x, $r.op = store: x:=$r){ // Store

8: L := L [p ← (Rpc, B · (x, R($r)))]; // Add new store to buffer
9: B := B[p ← B(p) · (x, e, ⊥)]; // Aux info for new buffer entry

10: }else if(∃x.op = u(x)){ // Update

11: (x, v) · B := B;

12: L := L[p ← (Rpc, B )]; // Remove store from buffer

13: M := M[x ← ]; // Update memory
14: (x, es, er) · bp := B(p); // Get aux info for store

15: B := B[p ← bp]; // Remove store from aux buffer

16: (eu, L) := M(x);
17: if(er =⊥){
18: M := M[x ← (e, L)];
19: }else{
20: M := M[x ← (e, L ⊕ er)];
21: }
22: C := C[p, e ← cp (es) (eu) el∈L s.t. upd(tid(el))=p C(el)];

23: cnf := e ∈ L ∪ {eu}
e =⊥ and C(e ) cp (es) and
tid(e ) = p and upd(tid(e )) = p

;

24: }else if(∃x, $r.op = load: $r:=x and B(x) =⊥){ // Load from memory

25: L := L[p ← (Rpc[$r ← M(x)], B)];
26: (eu, L) := M(x);
27: M := M[x ← (eu, L ⊕ e)];
28: if(eu =⊥ and tid(eu) = upd(p)){
29: C := C[e, p ← cp (eu)];
30: cnf := {eu};
31: }
32: }else if(∃x, $r, v.op = load: $r:=x and B(x) = v =⊥){ // Load from buffer
33: L := L[p ← (Rpc[$r ← B(x)], B)];

34:
bp · (x, es, er) · bp := B(p) where

bp contains no elements of the form (x, , );
35: B := B[p ← bp · (x, es, e) · bp ];
36: }else if(op = fence){ // Fence

37: C := C[e, p ← cp (upd(p))];
38: }else{ // Some local instruction

39: (L , M , C , B , M ) := perform appropriate local modifications;

40: }
41: return ((L , M , C , B , M ),cnf);

Fig. 12 An algorithm which computes the extended configuration reached by executing the event e from the

extended configuration (L, M, C, B, M). The algorithm returns the new configuration, as well as a set cnf,

which contains the earlier events which race with e

would proceed to explore that program. In Fig. 13, we revisit that exploration, and point to

how it is achieved by the algorithm given in Fig. 11.

At first, the sleep set is empty, as well as the backtrack set of the current execution τ = ε.

At this point the threads p and q are enabled, but not the auxiliary threads upd(p) and
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A : (p, st(x), 1)

A : (upd(p), u(x), 1)

B : (p, ld(x), 2)

C : (q, st(x), 1)

C : (upd(q), st(x), 1)

slp : ∅ bt : {p}

slp : ∅ bt : {upd(p), q}

slp : ∅ bt : {p, q}

slp : ∅ bt : {q}

slp : ∅ bt : {upd(q)}

slp : ∅ bt : ∅

C : (q, st(x), 1)

C : (upd(q), st(x), 1)

B : (p, ld(x), 2)

slp : {p} bt : {p, q}

slp : {p} bt : {upd(q), p}

slp : ∅ bt : {p}

slp : ∅ bt : ∅

C : (q, st(x), 1)

C : (upd(q), st(x), 1)

A : (upd(p), u(x), 1)

B : (p, ld(x), 2)

slp : {upd(p)} bt : {upd(p), q}

slp : {upd(p)}

bt : {upd(q), upd(p)}

slp : ∅ bt : {upd(p)}

slp : ∅ bt : {p}

slp : ∅ bt : ∅

store: x:=1

load: $r:=x

update

store: x:=2

update

p q

store: x:=1

load: $r:=x

update

store: x:=2

update

p q

store: x:=1

load: $r:=x

update

store: x:=2

update

p q

Fig. 13 An exploration by TSO-Source-DPOR of the program in Fig. 5

upd(q). On line 1 of the algorithm, we pick the enabled thread p, and proceed to insert p

into the backtrack set of τ and execute the first instruction A of p. In Fig. 13, we see the

execution of A at the top left. The slp : ∅ and bt : {p} above A indicate that the sleep set at

this point is empty, and the backtrack set is the singleton set containing p.

We continue arbitrarily scheduling the instructions of the enabled threads in the sequence

A′, B, C, C ′, down along the left-most column of Fig. 13. This gives us the first execution.

As we execute each event, the call to TSO-post on line 7 identifies the earlier events with

which the current event has a conflict. During the first execution, two conflicts are identified:

When the update C ′ is executed, we will have M(x) = (A′, {B}), and we will find a conflict

from A′ to C ′ and one from B to C ′. Hence on line 7 when C ′ is executed, cnf will be

assigned {A′, B}. When we enter the loop on lines 8-16, with ec = A′ we will first split the

execution τ = AA′ BC into τ0 = A and τ1 = BC on line 9. Then we will identify the events

in τ1 ·e = BCC ′ which are initial. Notice that C precedes C ′ in the happens-before order, but

no events in BCC ′ precede B or C . Hence we assign I = {B, C}. On lines 12–15 we make

certain that either B or C is in the backtrack set corresponding to the position immediately

before A′ was executed. In this case we choose to insert tid(C) = q into backtrack(A).

Similarly in the next iteration of the loop on lines 8–16, we insert q into backtrack(AA′).

As the first execution has been completely explored, the algorithm now starts to backtrack.

After C ′ has been explored, on the bottom left in Fig. 13, its thread upd(q) is added to the

sleep set on line 29. Since the only thread in the backtrack set (upd(q)) is also in the sleep

set, the loop on lines 3–30 terminates, and the call to TSO-Source-DPOR returns. The call

to TSO-Source-DPOR which executed C immediately returns in the same way. In the call

which executed B however, the backtrack set now contains one additional thread q which

should be explored. Therefore, the algorithm takes an extra lap in the loop on lines 3-30, this

time exploring the instruction C of q . This new branch is illustrated in Fig. 13 as the middle

column. Notice that p is present in the sleep set, which prevents us from scheduling the load

B until some other conflicting event has been executed.
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As the update C ′ is executed in the middle execution, we again identify that it has a conflict

with the earlier update A′. Again we find that C is an initial event along the execution between

A′ and C ′. But since tid(C) = q is already present in the backtrack set where A′ is executed,

we do not need to insert it again (i.e., I∩backtrack(τ0) �= ∅ on line 12 in the algorithm).

We also identify that the update C ′ conflicts with the event B which is the next event of the

thread p which is in the sleep set. Therefore, we remove p from the sleep set on lines 17–27

in the algorithm.

This leaves the algorithm free to schedule B as the next and last event of the middle

execution. As we execute the load B, we have M(x) = (C ′,∅), we therefore detect a conflict

from the update C ′ to the load B. As a result, tid(B) = p is inserted into the backtrack set

backtrack(AA′C) immediately before C ′.

As before, we now start to backtrack. When we reach the call to TSO-Source-DPOR

where C ′ was executed, we find both upd(q) and p in the backtrack set. However, both are

also in the sleep set, and so the call returns without starting a new branch. The next call returns

similarly, and we return to the left-most column in Fig. 13. On the call which executed A′,

we find the thread q in the backtrack set but not in the sleep set. We then start the new branch

corresponding to the right-most column in Fig. 13.

The thread upd(p) corresponding to the update A′ is added to the sleep set and cannot be

scheduled until the conflicting update C ′ has been executed. This effectively ensures that the

order of the two updates is reversed in the last execution. As A′ is executed, we identify that

it is in conflict with the earlier C ′, and therefore add tid(A′) = upd(p) to the backtrack set

backtrack(AC). When the last event, the load B, is executed, we have M(x) = (A′,∅).

Since the update A′ originates in the same thread as the load B, there is no conflict from A′

to B, and so we do not update any backtrack sets.

When backtracking after the last execution, at no point do we have a thread which is

present in the backtrack set but not in the sleep set. Therefore, no new branches are initiated,

and the algorithm terminates.

4.2 Computing the next configuration and happens-before relation

We call the algorithm TSO-post((L, M, C, B, M),e), shown in Fig. 12, to compute the

extended configuration which is reached by executing the event e from the configuration

(L, M, C, B, M). The algorithm performs a case split based on the type of instruction that is

being executed. We will here pay some attention to the case of updates, and leave the other

cases undescribed, since they are similar. The update case is covered on lines 10–23. First,

on lines 11–13 we remove the oldest store from the store buffer, and update the memory, as

described in the TSO semantics above. On the next two lines, we remove the corresponding

entry from the buffer B in the extended configuration. At the same time, we take note that

the event es is the store corresponding to this update, and that er is the latest load to which

this store has been buffer forwarded. On lines 16–21, we update the information about the

memory location x in the extended configuration. We change it such that e is recorded as the

latest update for x. Furthermore, if the update e has been buffer forwarded to any load er , then

that load is recorded as the latest load of x by p. By recording er in M(x) at this point, rather

than at the point when the load itself was executed, we ensure that the load is recorded as

racing with updates which succeed e, but not with “hidden” updates which precede e. Next,

on line 22, we assign a new vector clock to both the thread p and the event e. The new vector

clock is the pointwise maximum of the vector clocks of all events that precede e in the →ct
τ

order. The new clock includes cp , which captures the program order →
po
τ , and C(es) which

captures the relation →su
τ to e from the store es from which it originates. It includes C(eu)
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which captures the relation →uu
τ to e from the last previous update to x, and it includes C(el)

for all previous loads el to x, capturing the conflict relation →cf-ct
τ . Finally, on line 23, we

record the previous memory accesses which are in a race with e, i.e., the events originating

in different threads, and which immediately precede e in →uu
τ ∪ →src-ct

τ ∪ →cf-ct
τ . Hence,

we select events from the update eu and the loads in L which have not already been ordered

in →ct
τ with e or its corresponding store es , and which have different thread identifiers.

4.3 Correctness of the DPOR algorithms

We state the following theorem of correctness for DPOR applied to chronological traces.

Theorem 2 (Correctness of DPOR algorithms) The Source-DPOR and Optimal-DPOR

algorithms of [1], based on the happens-before relation induced by chronological traces,

explore at least one execution per equivalence class induced by Shasha–Snir traces. More-

over, Optimal-DPOR explores exactly one execution per equivalence class.

Proof of Theorem 2 The proof of Theorem 2 mainly uses the correctness of Source-DPOR,

which is proven in [1]. More precisely, in [1] it is proven that Source-DPOR is correct

whenever it is based on an assignment of happens-before relations to executions, which is

valid. An assignment of happens-before relations →τ to executions τ is valid if it satisfies

the following natural properties (from [1]).

1. →τ is a partial order on the events in τ , which is included in <τ ,

2. the events of each thread are totally ordered by →τ ,

3. if τ ′ is a prefix of τ , then →τ and →τ ′ are the same on τ ′.

4. the assignment of happens-before relations to executions partitions the set of executions

into equivalence classes; i.e., if τ ′ is a linearization of the happens-before relation on

τ , then τ ′ is assigned the same happens-before relation as τ ; we use ≃ to denote the

corresponding equivalence relation,

5. whenever τ and τ ′ are equivalent then they end up in the same global program state,

6. for any sequences τ , τ ′ and τ ′′, such that τ · τ ′′ is an execution, we have τ ≃ τ ′ if and

only if τ · τ ′′ ≃ τ ′ · τ ′′, and

7. if τ · (p, i, j) is an execution, whose last event is performed by thread p, and q , r are

different threads, such that (p, i, j) would “happen before” a subsequent event by r but

not a subsequent event by q , then (p, i, j) would also “happen before” (r, i ′′, j ′′) in the

execution τ · (p, i, j) · (q, i ′, j ′) · (r, i ′′, j ′′).

A consequence of these definitions is that that if e and e′ are two consecutive events in τ

with e �→ τe′, then e and e′ can be swapped without affecting the (global) state after the two

events.

The theorem can now be proven by establishing that the happens-before assignment

induced by chronological traces is valid. Conditions 1, 2, 3, and 6 follow straight-forwardly

from definitions Condition 4 follows by observing that changing the order between non-

related events does not affect the definition of the chronological trace. Condition 5 follows

by observing that the chronological trace captures all dependences that are needed for deter-

mining which values are read and written by loads and stores. Finally, Condition 7 follows

by noting that an arrow between (p, i, j) and (r, i ′′, j ′′) in a chronological trace cannot

be removed by inserting an event that is independent with p. This concludes the proof of

Theorem 2.
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p q

store: x:=1 load: $r:=y

store: y:=1 load: $s:=x

(a)

(p, st(x), 1)
(p, st(y), 2)
(upd(p, y), u(y), 1)

(q, ld(y), 1)
(q, ld(x), 2)

(upd(p, x), u(x), 1)

(b)

st(x)

ld(y) u(x)

u(y) ld(y)

ld(x)

po posu su

src-ct

cf-ct

p qupd(p, x) upd(p, y) upd(q, x) upd(q, y)

(c)

Fig. 14 A behavior allowed under PSO but not under TSO. a The mp idiom. Possible in the final configuration

under PSO: $r = 1, $s = 0. b An execution τ where $r = 1, $s = 0 holds in the final configuration.

c The chronological trace of τ under PSO

5 Adaptation for PSO

In this section, we show how our techniques can be adapted to the PSO memory model with

minor changes. Before we see how to apply our methods to it, we give an informal description

of the PSO memory model.

5.1 PSO semantics

PSO is a strictly more relaxed model than TSO. As described previously, TSO allows reorder-

ing of stores with subsequent loads. PSO allows the same reordering, but also allows the

reordering of stores with subsequent stores to different memory locations.

This behavior can be modelled by an operational semantics similar to the one described in

Sect. 3 for TSO, but where each thread has a separate store buffer for each memory location.

Each store buffer is FIFO-ordered, so stores to the same memory location by the same thread

cannot be reordered. But there is no order maintained between stores in different buffers, so

stores by the same thread to different locations may update in reversed order.

In Fig. 14a we give an example of a program where PSO allows more behaviors than

TSO. The execution in Fig. 14b shows how the stores by p to x and y update to memory

in reversed order. This allows the thread q to read first y = 1 then x = 0, which would be

impossible both under SC and TSO.

In the operational semantics for PSO we introduce one auxiliary thread upd(p, x) for

each pair of a thread p and a memory location x. Each such auxiliary thread is responsible

for the updates to x by p, similarly to how upd(p) under TSO is responsible for all updates

of p.

5.2 Chronological traces for PSO

The adaptation of chronological traces to PSO is straightforward. The following simple

adjustment suffices: Since stores from the same thread p to different memory locations x and
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y are updated by different auxiliary threads upd (p,x) and upd (p,y), there is no program

order edge between the update events for different memory locations under PSO.

Formally, we reuse the definition of chronological traces for TSO, from Sect. 3, with some

minor changes:

We need to reformulate the definition of updst to reflect that there are now multiple store

buffers per thread: For an execution τ and an event e = (p, st(x), j) in τ , let k be the

number of events ew = (p′, st(x), j ′) in τ such that p′ = p and j ′ ≤ j . Then updst(e) =

(upd(p, x), u(x), k) if there is such an event in τ . Otherwise updst(e) = e∞. This new

definition of updst replaces the old one in the definition of chronological traces for PSO.

We can then define chronological traces for PSO in the same way as for TSO, except that

the definition of →uf
τ needs to be reformulated as follows:

For two events e = (p, i, j) and e′ = (p′, i ′, j ′) we say that e →
uf-pso
τ e′ iff i = u(x)

for some x, and i ′ = fence and p = upd(p′, x) and e <τ e′ and there is no event e′′ =

(p, u(x), j ′′) such that e <τ e′′ <τ e′. I.e., under PSO, we put an edge in →
uf-pso
τ to the

fence from the last preceding update by the thread for each memory location, rather than as

under TSO only from the single last preceding update by the thread to any memory location.

A chronological trace for PSO is illustrated in Fig. 14c. Notice that there is no program

order edge from (upd(p, x), u(x), 1) to (upd(p, y), u(y), 1). Had there been one, the trace

would be cyclic.

6 Implementation

To show the effectiveness of our techniques we have implemented a stateless model checker

for C programs. The tool, called Nidhugg, is available as open source at https://github.com/

nidhugg/nidhugg. Major design decisions have been that Nidhugg: (i) should not be bound

to a specific hardware architecture and (ii) should use an existing, mature implementation of

C semantics, not implement its own. Our choice was to use the LLVM compiler infrastruc-

ture [26] and work at the level of its intermediate representation (IR). LLVM IR is low-level

and allows us to analyze assembly-like but target-independent code which is produced after

employing all optimizations and transformations that the LLVM compiler performs till this

stage.

Nidhugg detects assertion violations and robustness violations that occur under the

selected memory model. We implement the Source-DPOR algorithm from Sect. 5 in Abdulla

et al. [1], adapted to relaxed memory in the manner described in this paper. Before applying

Source-DPOR, each spin loop is replaced by an equivalent single load and assume statement.

This substantially improves the performance of Source-DPOR, since a waiting spin loop may

generate a huge number of improductive loads, all returning the same wrong value; all of these

loads will cause races, which will cause the number of explored traces to explode. Exploration

of program executions is performed by interpretation of LLVM IR, based on the interpreter

lli which is distributed with LLVM. We support concurrency through the pthreads library.

This is done by hooking calls to pthread functions, and executing changes to the execution

stacks (adding new threads, joining, etc.) as appropriate within the interpreter.

7 Experimental results

We have applied our implementation to several intensely racy benchmarks, all implemented

in C/pthreads. They include classical benchmarks, such as Dekker’s, Lamport’s (fast) and
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Peterson’s mutual exclusion algorithms. Other programs, such as indexer.c, are designed

to showcase races that are hard to identify statically. Yet others (stack_safe.c) use pthread

mutexes to entirely avoid races. Lamport’s algorithm and stack_safe.c originate from the

TACAS Competition on Software Verification (SV-COMP). Some benchmarks originate

from industrial code: apr_1.c, apr_2.c, pgsql.c and parker.c.

We show the results of our tool Nidhugg in Table 1. For comparison we also include the

results of two other analysis tools, CBMC [6] and goto-instrument [5], which also target

C programs under relaxed memory. The techniques of goto-instrument and CBMC are

described in more detail in Sect. 8.

Since both SMC and BMC require that all runs of the analyzed program terminate within

some finite bound, we apply loop bounding when analyzing the benchmarks. The bound is

indicated in the LB column of Table 1. Furthermore, all benchmarks are data-deterministic,

since this is a requirement for SMC, as mentioned earlier.

All experiments were run on a machine equipped with a 3 GHz Intel i7 processor and 6

GB RAM running 64-bit Linux. We used version 4.9 of goto-instrument and CBMC. The

benchmarks have been tweaked to work for all tools, in communication with the developers of

CBMC and goto-instrument. All benchmarks are available at https://github.com/nidhugg/

benchmarks_tacas2015.

Table 1 shows that our technique performs well compared to the other tools for most of

the examples. We will briefly highlight a few interesting results.

We see that in most cases Nidhugg pays a very modest performance price when going

from sequential consistency to TSO and PSO. The explanation is that the number of execu-

tions explored by our stateless model checker is close to the number of Shasha–Snir traces,

which increases very modestly when going from sequential consistency to TSO and PSO for

typical benchmarks. Consider for example the benchmark stack_safe.c, which is robust,

and therefore has equally many Shasha–Snir traces (and hence also chronological traces)

under all three memory models. Our technique is able to benefit from this, and has almost

the same run time under TSO and PSO as under SC.

The effect of the optimization to replace each spin loop by a load and assume statement

can be seen in the pgsql.c benchmark. For comparison, we also include the benchmark

pgsql_bnd.c, where the spin loop has been modified such that Nidhugg fails to automatically

replace it by an assume statement.

The only other benchmark where Nidhugg is not faster is fib_true.c. The benchmark has

two threads that perform the actual work, and one separate thread that checks the correctness

of the computed value, causing many races, as in the case of spin loops. We show with the

benchmark fib_true_join.c that in this case, the problem can be alleviated by forcing the

threads to join before checking the result.

Most benchmarks in Table 1 are small program cores, ranging from 36 to 118 lines

of C code, exhibiting complicated synchronization patterns. To show that our technique is

also applicable to real life code, we include the benchmarks apr_1.c and apr_2.c. They

each contain approximately 8000 lines of code taken from the Apache Portable Runtime

library, and exercise the library primitives for thread management, locking, and memory

pools. Nidhugg is able to analyze the code within a few seconds. We notice that despite the

benchmarks being robust, the analysis under PSO suffers a slowdown of about three times

compared to TSO. This is because the benchmarks access a large number of different memory

locations. Since PSO semantics require one store buffer per memory location, this affects

analysis under PSO more than under SC and TSO.
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8 Related work

To the best of our knowledge, our work, together with the work by Zhang et al. [41] are the first

to apply stateless model checking techniques to the setting of relaxed memory models; see

e.g. [1] for a recent survey of related work on stateless model checking and dynamic partial

order reduction techniques. The work by Zhang et al. [41] was developed independently and

concurrently with the work presented in this paper, and shares many similarities with it.

There have been many previous works dedicated to the verification and checking of pro-

grams running under RMM (e.g., [3,7–11,21,23,25,40]). Some of them propose precise

analyses for checking safety properties or robustness of finite-state programs under TSO

(e.g., [3,8]). Others describe monitoring and testing techniques for programs under RMM

(e.g., [10,11,25]). There are also a number of efforts to design bounded model checking

techniques for programs under RMM (e.g., [9,40]) which encode the verification problem in

SAT.

The two closest works to ours are those presented in [5,6]. The first of them [6] develops

a bounded model checking technique that can be applied to different memory models (e.g.,

TSO, PSO, and Power). That technique makes use of the fact that the trace of a program under

RMM can be viewed as a partially ordered set. This results in a bounded model checking

technique aware of the underlying memory model when constructing the SMT/SAT formula.

The second line of work reduces the verification problem of a program under RMM to

verification under SC of a program constructed by a code transformation [5]. This technique

tries to encode the effect of the RMM semantics by augmenting the input program with

buffers and queues. This work introduces also the notion of Xtop objects. Although an Xtop

object is a valid acyclic representation of Shasha–Snir traces, it will in many cases distinguish

executions that are semantically equivalent according to the Shasha–Snir traces. This is never

the case for chronological traces.

There has also been some recent work on SAT-directed stateless model checking [20],

including consideration of RMM [14]. The main idea is to encode some key parts of the

concurrent program into a SAT formula and hand it over to a general purpose SMT solver

to produce additional interleavings. For the most relevant tool, SATCheck [14], the authors

claim that this approach scales better with the length of program execution, basing their

evaluation on increasing the length of the traces by increasing the number of iterations of

a small program core. We were not able to evaluate SATCheck on our own benchmark set,

as the tool is currently at a prototype level and requires preprocessing by an expert user in

order to handle arbitrary programs. Nevertheless, experimentation on one of our benchmark

programs (dekker.c) confirms that performance of Nidhugg and SATCheck are similar

for small programs.

9 Concluding remarks

We have presented a technique for efficient stateless model checking which is aware of the

underlying relaxed memory model. To this end, we have introduced chronological traces

which are novel representations of executions under the TSO and PSO memory models, and

induce a happens-before relation that is a partial order and can be used as a basis for DPOR.

Furthermore, we have established a strict one-to-one correspondence between chronological

and Shasha–Snir traces. Nidhugg, our publicly available tool, detects bugs in LLVM assembly
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code produced for C/pthreads programs and can be instantiated to the SC, TSO, and PSO

memory models.

We plan to extend Nidhugg to more memory models such as Power, ARM, and the C/C++

memory model. This will require adapting the definition of chronological traces to those

models in order to guarantee the one-to-one correspondence with Shasha–Snir traces.
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