
STATEMATE:t A Working Environment
for the Development of Complex Reactive Systems

D. Harel’*‘, H. Lachover, A. Naamad, A. Pnueli’,

M. Politi, R. Sherman3 and A. Shtul-Trauring

i-Logix Inc., Burlington, MA 01803

and

Ad Cad Ltd., Rehovot, Israel

Abstract: This paper provides a brief overview of the STATE
MATE system, constructed over the past three years by i-Logix

- r - .,

Inc., and Ad Cad Ltd. STATEMATE is a graphical working en-

vironment, intended for the specification, analysis, design and
documentation of large and complex reactive systems, such as

real-time embedded systems, control and communication sys-
tems, and interactive software. It enables a user to prepare,
analyze and debug diagrammatic, yet precise, descriptions of
the system under development from three inter-related points
of view, capturing, structure, functionality and behavior. These

views are represented by three graphical languages, the most

intricate of which is the language of statecharts used to depict

reactive behavior over time. In addition to the use of state-
charts, the main novelty of STATEMATE is in the fact that

it ‘understands’ the entire descriptions perfectly, to the point
of being able to analyze them for crucial dynamic properties,
to carry out rigorous animated executions and simulations of
the described system, and to create running code automatically.
These features are invaluable when it comes to the quality and

reliability of the final outcome.

Keywords: code generation, computable specifications, func-

tional decomposition, reactive systems, statecharts, STATEM-

ATE.

t STATEMATE is a registered trademark of i-Logix, Inc.

’ Also with the Department of Applied Mathematics,

The Weizmann Institue of Science, Rehovot, Israel

2 This author’s work partially carried out at the

Computer Science Department, Carnegie-Mellon Univer-

sity, Pittsburgh, PA.
3 This author’s work partially carried out at the Uni-

versity of Southern California’s Information Sciences Insti-

tute, Marina del-Ray, CA.

1. Introduction

Reactive systems (see [P, HP]) are characterized as ow-

ing much of their complexity to the intricate nature of re-

actions to discrete occurrences. The computational and

continuous parts of such systems are assumed to be dealt
with using other means, and it is their reactive, control-

driven parts that are considered here to be the most prob-

lematic. Examples of reactive systems include most kinds

of real-time computer embedded systems, control plants,
communication systems, interactive software of varying na-

ture, and even VLSI circuits. Common to all of these is

the notion of reactive behavior, whereby the system is not

adequately described by a simple relationship that specifies

outputs as a function of inputs, but, rather, requires relat-
ing outputs to inputs through their allowed combinations

in time. Typically, such descriptions involve complex se-

quences of events, actions, conditions and information flow,

often with explicit timing constraints, that combine to form

the system’s overall behavior.

It is fair to say that the problem of finding good meth-

ods to aid in the development of such systems has not been

satisfactorily solved. Standard structured design methods

do not adequately deal with the dynamics of reactive sys-

tems, since they were proposed to deal primarily with non-

reactive, data-driven applications, in which a good func-

tional decomposition and data-flow description are suffi-

cient. As to commercially available tools for real-time

system design, most are, by and large, but sophisticated

graphics editors, in which one can model certain aspects
of reactive systems but in which a user can do little with

the resulting descriptions beyond testing them for syntactic

consistency and completeness and producing various kinds
of output reports. These systems are often helpful in or-

ganizing a designer’s thoughts and in communicating those

thoughts to others, but they are vastly inadequate when it

comes to the more difficult task of preparing reliable spec-

ifications and designs that satisfy the initial requirements,

that behave over time as expected, and from which a rea-
sonable final system can be constructed with relative ease.

If we were to draw an analogy with the discipline of

conventional programming, there is an acute need for the

reactive system’s analog of a programming environment

027%5257/88/0000/0396!$01 .OO 0 4 988 IEEE
396

Recommended by: K. Ochimizu and T. Matsubara

that comes complete, not only with a programming lan-

guage, a useful program editor and a syntax checker, but

also with a working compiler and/or interpreter with de-

bugging facilities, so that programs can be not only written
but also run, tested, debugged and analyzed. As it turns

out, the problems confronting a team out to design a re-

active system are far more difficult than those confronting

a programmer out to write a conventional program. Typi-

cal reactive systems are highly concurrent and distributed;

they fall quite naturally into multiple levels of detail, and

usually display unpredictable, often catastrophic, behavior

under unanticipated circumstances. More often than not,

the development phases of such systems are laden with mis-

understandings between customers, designers and users, as

well as among the various members of the design team it-

self, and their life-cycle is replete with trouble-shooting,

modifications and enhancements.

of hardware in some systems to the subroutines and blocks

in the software parts of others.

The languages in which reactive systems are specifed
ought to be clear and intuitive, and thus amenable to gen-

eration, inspection and modification by humans, as well as

precise and rigorous, and thus amenable to maintenance,

analysis and simulation by computers. Such languages

The dominant conceptual decomposition of the SUD is
carried out via the functional view, where one identifies a

hierarchy of activities, complete with the details of the data

items and control signals that flow between them. This is

essentially what is often called the functional decomposi-
tion of the SUD. However, in the functional view we do not

specify dynamics: we do not say when the activities will

be activated, whether or not they terminate on their own,

and whether they can be carried out in parallel. The same

is true of the data-flow: in the functional view we specify
only that data can flow, and not whether and when it will.

For example, if we have identified that two of the subactivi-

ties of an Automatic Teller Machine we are describing are
identify-customer and report-balance, and that the data
item account-number can flow from the former to the lat-

ter, then no more and no less than that is implied; we still

ought to make it possible to move easily, and with sufficient

semantic underpinnings, from the initial stages of require-

ments and specification to prototyping and design, and to

form the basis for modifications and maintenance at later

stages. One of the underlying principles adopted in this pa-
per is such specifications, the behavioral aspects included,

should be based to a large extent on visual formalisms,

@;-/--

i.e., on languages that are highly visual in nature, depend-
I

ing on a small number of carefully chosen diagrammatic I

paradigms, yet which, at the same time, admit a formal

\,

il

SUD
/

semantics that provides each feature, graphical and non- /
graphical alike, with a precise and unambiguous meaning.

1

/
For reactive systems this means that it should be possible /
to prepare intuitive and comprehensible specifications that

can be analyzed, simulated and debugged at any stage with

the aid of a computerized support system. J/

This paper describes the ideas behind STATEMATE, a RUCTURE

computerized working environment for the development of
$,,&A decomposition

fcI3

&

reactive systems, which adheres to these principles. information 0OW

2. STATEMATE at a Glance Figure 1: Three views of the system under description (SUJJ)

The underlying premise of STATEMATE is the need to

specify and analyze the system under development (SUD
in the sequel) from three closely related points of view:

structural, functional and behavioral. These are illustrated

in Figure 1.

In the structuraI view one provides a hierarchical de-
composition of the SUD into its physical components, called

modules here, and identifies the information that flows be-

tween them; that is, the ‘chunks’ of data and control signals

that flow through whatever physical links exist between the

modules. The word ‘physical’ should be taken as rather
general, with a module being anything from an actual piece

have not specified when that item will flow, how often will

it flow, and in response to what, and indeed whether the

flow will be initiated by the former activity or requested by
the latter. In.other words, the functional view provides the

decomposition into activities and the possible flow of in-

formation, but it says little about how those activities and

their associated inputs and outputs are controlled during

the continued behavior of the SUD.

It is the behavioral view, our third, that is responsi-

ble for specifying control. This is achieved by allowing a

397

control activity to be present on each level of the activity

hierarchy, controlling that particular level. It is these con-

trollers that are responsible for specifying when, how and

why things happen as the SUD reacts over time. Among

other things, a controlling statechart can start and stop ac-

tivities, can generate new events, and can change the values

of variables. It can also sense whether activities are active

or data has flown, and it can respond to events and test
the values of variables. These connections between activi-

ties and control will be seen in Section 3 to involve a rather

elaborate set of events, conditions and actions, whereas the
relationship between modules and activities is far simpler,

and consists essentially of specifying which modules imple-
ment which activities. (Some of our ideas as to the way

functionality and control are related, are similar to those

appearing independently in (Ht, LK, WI.)

For each of these three views, the structural, functional

and behavioral, STATEMATE provides a graphical, dia-

grammatic language, complete with a rule-based graphics

editor that checks for syntactic validity as the appropri-

ate specifications are developed. These languages, module-

charts, activity-charts and statecharts, respectively, are all

based on a common set of simple graphical conventions (see

[H2]) and come complete with formal semantics that are

embedded into STATEMATE . They are described in more

detail in Section 3.
Statecharts

Activity-charts
FOIlU.3

- Module-charts

Administrator or
Project Manager

Instructions

Figure 2 illustrates the overall structure of STATEM-

ATE. The database is central, and obtains much of its input

from the three graphics editors, and also from an editor for

a forms language, in which the nongraphical information is

specified.

Perhaps the most interesting parts of STAT’EMATE are

the queries, testing and simulation (i.e., execution) pack-

ages, described in Section 4, and the code-generation and

protoyping capabilities, described in Section 5. As men-

tioned, the entire approach is governed by the desire to

enable the user to run, debug and analyze the specifica-

tions and designs that result from the graphical languages.

To this end, the database has been constructed to make

it possible to rigorously execute the specification and to

retrieve information of a variety of kinds from the overall

three-sided description of the SUD provided by the user.

Two of the special tools provided by STATEMATE for these

purposes are the object list generator (OLG), a language

for querying the database and retrieving information from

it, and the simulation control language (SCL), which al-

lows the user to emulate the SUD’s environment, execute

the specifications with animated response, and track errors

and run-time problems. In addition, STATEMATE provides

a number of dynamic tests, such as reachability and the de-

tection of deadlock and nondeterminism.

STATEMATE provides an automatic translation of the

entire specification into Ada*, yielding code that can be

linked to real or simulated environment modules, and en-

riched by additional code describing the bottom-level ac-
tivities that were left unspecified in the specification itself.

This results in a prototypical version of the final system

that can be run much faster than the animated simulation.

STATEMATE was constructed by a team of around 25

people over a period of three years. The currently avail-
able version runs on a color6 VaxStation (or a network of

such) with a VMS operating system, and its database is

DEC’s Rdb. Unix0 versions running on Sun and Apollo
workstations will become available in the Summer of 1988.

Additional

User Code

We should note that most of the ideas and

methods embodied in STATEMATE have

been field-tested successfully in a number

of large real-world development projects,
. . .

among which is the mission-specific avion-

its system for the Lavi fighter aircraft de-

signed by the Israel Aircraft Industries.

Simulation

Reports

Working Reports,
Documents

&

Plots

Analysis
ReptS

Ada Code

4 Ada is a trademark of the US Department of Defense.

’ While color appears to siznificantlv enhance the anneal ” _*
l7:-..x.r. 3. n.,,,,ll .+rrv+,.rq of STATEMATE of STATEMATE, a monochrome version of STATEMATE is

also available.

6 Unix is a registered trademark of AT&T Bell Labs.

398

J : SHARED- ’

:

I
limits

Fieure 3: Module-chart of the early warning system

3. The Modelling Languages of STATEMATE

In this section we present the highlights of the three
graphical languages and the forms language that the user

of STATEMATE employs to specify the SUD. No formal

syntax or semantics are given here, neither are all of the

features presented. The reader is referred to [i-L11 for a

more comprehensive description, and to [Hl, HPSS] for a
detailed treatement of the language of statecharts. The

languages are described with the help of a simple example
of an Early Warning System (EWS in the sequel), which

has the ability to take measurements from an external sen-
sor, compare them with some prespecified upper and lower

limits and warn the user when the measured value exceeds

these limits.

The structural view of the SUD is described using

the language of module-charts, which describe SUD mod-
ules (i.e., its physical components), environment modules

(i.e., those parts that for the purpose of specification are

deemed to be external to the SUD), and the clusters of data

and/or control signals that may flow among them. Mod-

ules are depicted as rectilinear shapes, with storage mod-

ules having dashed sides and with encapsulation capturing

the sub-module relationship. Environment modules appear
as dashed-line rectangles external to that of the SUD it-

self. Information flow is represented by labelled arrows or

hyperarrows’. Various kinds of connectors cau appear in

these charts, both to abbreviate lengthy arrows and to de-

note compound chunks of data.

Figure 3 is (part of) the module-chart of our early

warning system. It specifies in a self-explanatory fashion

that the modules, or subsystems, of the EWS are a main

component, a man-machine-interface (MMI) and a signal-

handler, and that the sensor, timer and alarm are consid-

ered to be external to the system. The MM1 is further

A hyperarrow has more than two endpoints.

r

1

operator 1

Fipure 4: An activity-chart

decomposed into submodules, as shown. The information

flowing between the modules is specified too.

The functional view of the SUD is captured by the lan-

guage of activity-charts. Graphically, these are very similar

to module-charts, but here the rectilinear shapes stand for

the activities, or the functions, carried out by the system.

Solid arrows represent the flow of data items and dashed

arrows capture the flow of control items.*

A typical activity will accept input items and produce

output items during its active time-spans, its inner work-
ings being specified by its own lower level decomposition.

Activities that are basic (i.e., on the lowest level) are as-

sumed to be described as simple input/output transforma-

tions using other means. More about this in Sections 4 and

5.

8 In displaying module-charts and activity-charts on the

screen STATEMATE employs different conventions regard-
ing color and arrow type, so that a user can distinguish

between them quite easily. Thus, for example, the arrows
in module-charts are drawn using rectilinear segments par-
allel to the axes, whereas in activity-charts they are drawn

using smooth spline functions.

399

Activity-charts may contain two additional kinds of

objects: data-stores and control activities. Data-stores can
be thought of as representing databases, data structures,

buffers of various kinds, or even physical containers or re-

serviors, and typically correspond to the storage modules

in the module-chart. They represent the ability to store the

data items that flow into them and to produce those items

as outputs upon request.

The control activities constitute the behavioral view of

the system and they appear in the activity-chart as empty

boxes only, one (at most) within each non-basic activity,

aa shown in Figure 4. The contents of the control activi-

ties are described in the third of our graphical languages,
statecharts, which are discussed below. In general, a con-

trol activity has the ability to control its sibling activities

by essentially sensing their status’ and issuing commands

to them. Thus, for example, in Figure 4 the control activ-

ity & can, among other things, perform actions that cause

sub-activities A,B and R to start and stop, and can sense
whether those subactivities have started or stopped by ap-

propriate events and conditions. Various consequences of

such occurences are integrated into the semantics of the

activity-charts language, such as the fact that all sub-

activities stop (respectively, suspend) upon the stopping
(respectively, suspension) of the parent activity.

We now turn to the behavioral view. Statecharts,

which were introduced in [Hl] (see also [H2, HPSS]), are an

extension of conventional finite-state machines (FSM’S) and

their visual counterpart, state-transition diagrams. Con-

ventional state diagrams are inappropriate for the behav-
ioral description of complex control, since they suffer from

being flat and unstructured, are inherently sequential in

nature, and give rise to an exponential blow-up in the num-
ber of states (Le., small extensions of a system cause un-

acceptable growth in the number of states to be consid-
ered). These problems are overcome in statecharts by sup-

porting decomposition of states in an AND/OR fashion,

combined with an instantaneous broadcast communication

mechanism. A rather important facet, of these extensions

is the ability to have transitions leave and enter states on

any level.

U

(a)

(a) (b)

Fipure 5: OR-decomposition in a statechart

Consider Figure 5, in which (a) and (b) are equivalent.

In 5(b) states S and T have been clustered into a new state,

U, so that to be in U is to be either in S or in T. The f-
arrow leaving U denotes a high-level interrupt, and has the

effect of prescribing an exit from U, i.e., from whichever of

S or T the system happens to be in, to the new state V.

The h-arrow entering U would appear to be underspecified,

as it must cause entry to S or T; in fact, its meaning relies

on the internal default arrow attached to T to indeed effect

an entrance to T.

Turning to AND decomposition, consider Figure 6, in

which, again, (a) and (b) are equivalent. Here, to be in
state U the system must be in both S and T. An unspec-

ified entrance to U relies on both default arrows to enter

the pair {V,W}, from which an occurrence of e, for exam-

ple, would lead to the new pair {X,Y}, and k would lead

to {V, 2). The meaning of the other transitions appear-

ing therein, including entrances and exits, can be deduced

by comparing 6(a) and 6(b). It is worth mentioning that

this AND decomposition, into what we call otthogonal state
components, can be carried out on any level of states and

is therefore more convenient than allowing only single-level

sets of communicating FSM’s. Orthogonality is the feature

statecharts employ to solve the state blow-up problem; see

[Hl, H2]. (Clearly, orthogonal state decomposition also re-

places the need to allow multiple control activities within
a single activity, as is done, e.g., in [WI.)

(b)

Figure 6: AND-decomposition in a statechart

400

The general syntax of an expression labelling a transi-
tion in a statechart is

4f-A / P

where a! is the event that triggers the transition, C is a

condition that guards the transition from being taken un-

less it is true when (Y occurs, and p is an action that is

carried out if, and precisely when, the transition is taken.
Any of these can be omitted. Events and conditions can be

considered as inputs, and actions as outputs, except that

here this correspondence is more subtle, due to the intricate

nature of the statecharts themselves and their relationship

with the activities. For example, if p appears as an ac-

tion along one transition and also as a triggering event on

a transition in an orthogonal component of the same stat-

echart, then executing the action will immediately cause
the transition to be taken simultaneously. Moreover, in

the expression o! / /?, rather than being simply a primitive

action that might cause other transitions, /? might be the

special action start(A) that causes the activity A to start,

and similarly, rather than being simply an external, prim-

itive event, cr might be the special even t stopped(B) that

occurs (and hence causes the transition to take place) when

B stops or is stopped. Table 1 shows a selection of some of

the special events, conditions and actions that can appear

as part of the labels along a transition. It should be noted
that the syntax is also closed under Boolean combinations,

so that, for example, the following is a legal label:

entered(S) [in(T) and not active(C)] /

suspend(C) ; X:= Y+7

Notice that conventional variables can be used too,

with changing values allowed as events, standard compar-

isons as conditions and assignment statements as actions.

Besides allowing actions to appear along transitions

they can also appear associated with the entrance to or

exit from a state (any state, of course, on any level).g This
association is specified in a form in the forms language dis-

cussed below. Thus, if we associate the action resume(A)
with the entrance to state S, activity A will be resumed

whenever 5’ is entered.

Some of the special constructs appearing in Table 1

thus serve to link the control activities with the other ob-

jects appearing in an activity-chart, and, as such, are part

of the way behavior is associated with functionality and

data-flow. There are other facets to this association, one of
which is the ability to specify an activity A as taking place

throughout a state S, which is the same as saying that A is

started upon entering S and stopped upon leaving it. This

connection is also stated via forms.

The power to control and sense the status of activities

is limited by a scoping rule to the control activity appearing

’ In this way, statecharts can be seen to generalize both
Mealy and Moore automata; see [HU].

r
in

statechart

connecting

statechart

to

activities

information

items

time

EVENTS

entered(S)

exited(S)

started(A)

stopped(A)

read(D)

written(D)

true(c)

f&e(C)

CONDITIONS

in(S)

active(A)

hanging(A)

D=exp

D <exp

D >exp

-I ACTIONS 1

start(A)

stop(A)

suspend(A)

resume(A)

D:=exp

made-true(C)

make ralse(C)

schedule(Ac,n) timeout(E,n)

Table 1: Some special events, conditions and actions

on the same level as the activities and flow in question.

Thus, in Figure 4, for example, some of the events and

actions that can appear in the statechart S1 are St(A),

rs!(B) and wr!(d), but ones referring to, say, H and K,

such as at!(H), cannot, and would appear only in Sz.”
This scoping mechanism for hiding information is intended

to help in making STATEMATE specifications modular and

amenable to the kind of division of work that is required in

large projects. There are ways of utilizing primitive events
and actions to override this scoping rule, but we shall not

describe them here.

Figure 7 shows the activity-chart of the early warning
system. The user, via the operator terminal, can send com-

mands to the control activity, a structured data item which,

via a form, is specified to consist of set-up, execute and re-

set instructions. The operator can also send the upper and

lower required limits to the get&check subactivity of set-

up. These limits can be stored in the data-store range, to

be sent upon request to the compare and report-fault ac-

tivities. (The item req-limits is also structured, and stands
for the pair containing the required upper and lower lim-

its.) A special activity, get-measurements can receive the

signal from the sensor and a clock reading from the timer,

and translates these into a time-stamped digital value sam-

pie, which can be sent to the comparing activity. If out of

range, a signal and value can be sent to the controller and

lo Here, and also in the Figure 8, we are using abbre-

viations of the elements appearing in Table 1, such as at

instead of started, rs! instead of resume and tm instead
of timeout. STATEMATE recognizes these abbreviations

too.

401

r
---1

operator- L,
I terminal 1

i-- -J 2

msgs

\
r ---1 I

I sensor y

I- ----I
I timer I
I
L

b
--,-I

EWS-activities

,., commands
.----___ EWS-conrra ---

G--J

no-response
--.

connect _ / - - - \
“q- “--

\

rnits ,/

, /i S&-Up

(set-up-conlrol)

‘\ 4
get-measurements

\ _
, compare

sampI>

Fivure 7: Activity-chart of the early warning system

EWS-control

P

idle

halt

-----I
&erator- I
, terminal I

Jt J ----

$‘T]

- -

Figure 8: Statechart for the high-level activity of the early warning system

402

the report-fault activity, respectively. The latter is respon-

sible for sending out an alarm and formatting and sending

the user an appropriate message. The second level of Fig-

ure 7 is self explanatory.

It is important to emphasize the recurring word ‘can’

in the previous paragraph. Figure 7 is not required to pro-

vide dynamic, behavioral information about the EWS; that

is the role of the controlling statecharts. Figure 8, for ex-

ample, shows one possible statechart for the high-level con-

trol activity of Figure 7, i.e., EWS-control, and the reader

should be able to comprehend it quite easily.

While the connections between activity-charts and
statecharts are rather intricate, those between module-
charts and activity-charts are more straightforward. Using

forms, one indicates the module that implements a given

activity, and the storage module that implements a given
data store. In our example, some of these associations are

that the MAIN module implements the EWS-control ac-

tivity, SIGNAL-HANDLER implements get-measurements

and compare, and MMI implements set-up and report-

fault. Within the latter association the send-err subactiv-
ity is implemented by the output-proc submodule and the

other three by set-up-main.

We now turn to the forms language. It maintains a

special form for each of the elements in the description, in

which additional information can be input. This includes

details that do not normally show up in the graphics, such

as lengthy definitions of compound events and conditions,

as well as elements that are nongraphical in nature, such

as the type and structure of data items. Figure 9 shows
an example of the form for a data item, in which most

items are self-explanatory. The ‘Consists of’ field therein

makes it possible to structure data items into components,
and the ‘Attribute’ fields make it possible to associate at-

tributes with the items (e.g., units and precision for certain

kinds of data-items, or the names of the personnel respon-

sible for the specification for certain high-level elements).

DATA-REM

Name: Synonym : ,‘-------

cescriolion :
,...-.-- ----P-M
, .., . .:.,-,l.:..Lb.B~rr.. *as+. .

7
-L---l-.-

Definition :
! -- ._. .- _- ..- .-. .-- _- __ __- .-. -_ _- --. ..- .

..- _. I.-.- m .n. . a.. 4c -.-- -I

Structure (Record. List. Group, tine-of) or Type (Inteperl Float I String) : q
Consists of :
~--_----B-q

Attribute Name : Attribute Value :
---- .---m.-

-~- --1

L .I .,.
! :

,A’--&

Fivure 9: The form for a data item

The attributes are recognizable by the query language and

therefore able to be part of the criteria for retrieving infor-

mation about the SUD.

The color graphical editors for all three charts lan-

guages are rule-driven, continuously checking the input for

syntactic soundness, and the database of STATEMATE is

updated as graphical elements are introduced. They are

mouse- and menu-based, and support a wide range of pos-

sibilities, including move, copy, stretch,hide,reveal and

zoom options, all applicable to single or multiple elements

in the charts, that can be selected in a number of ways. The
form for a selected element can be viewed and updated not

only from STATEMATE’s special forms editor but from

the appropriate graphical editor too.

Extensive consistency and completeness tests, as well

as more subtle static logic tests can be carried out during a

STATEMATE session. Examples include checking whether
the hierarchy of modules is consistent with that of the ac-

tivities, listing modules that have no outputs or activities

that are never started, and identifying cyclic definitions of

nongraphical elements (e.g., events and conditions).

4. Queries, Executions and Dynamic Tests

In this section we describe some of the tools that

STATEMATE supplies for debugging and analyzing the

specification of the SUD as provided by the user via the

modelling languages.

STATEMATE provides a query language, the object list

generator (OLG), with which the user can retrieve infor-

mation from the database, effectively querying the model

of the SUD as described in the modelling languages. The

OLG works by generating lists of elements that satisfy cer-
tain criteria. At all times it keeps a pending list that gets

modified as the user refines the criteria or asks for a list

of elements of another type. For example, starting with

an empty pending list, one can ask for all states in the

controlling statechart of activity A, and the resulting list
promptly becomes the new pending list. This list might

then be refined by asking for those states therein that con-

tain a substate named ‘off’. Then one might ask for all

activities that are started within any of those states, and

so on. This query language, on the face of it, might appear

to be bounded in its expressive power by that of the con-

junctive queries of [CM]. However, since the OLG supports

certain kinds of transitive closures (such as the ancestor and

descendent relationships between states or activities), it is

not directly comparable with the conjunctive queries, and

can be shown to be a subset of the more general fixpoint

queries of [CH].

Turning to the execution and simulation capabilities,

the heart of these is STATEMATE’s ability to carry out
a step of the SUD’s dynamic behavior, with all its conse-
quences taken into account. Thus, the semantics of all of

our modelling languages (in particular, that of the state-

403

charts) are fully incorporated into STATEhIATE’s software.

A step, briefly, is one unit of dynamic behavior, at the

beginning and at the end of which the SUD is in some

legal status. A status captures the system’s currently ac-

tive states and activities, the current values of variables

and conditions, etc. During a step the environment activ-

ities can generate external events, change the truth values
of conditions, and update variables and other data items.

Given the potentially intricate form that STATEMATE’s

description of the SUD might take on, such changes can

have a profound effect on the status, triggering transitions

in statecharts, activating and deactivating activities, fur-
ther updating data items, and so on. Clearly, each of these

changes, in turn, can possibly cause many others. The por-

tion of STATEMATE that is responsible for calculating the

effect of a step contains involved algorithmic procedures,
which, among many other things, implement a formal se-

mantics of statecharts similar to that described, e.g., in

(HPSS].

STATEMATE supports two basic ways of ‘running’ the

SUD: interactive and batch. In the first, the user speci-

fies some initial status of the SUD and thereafter proceeds

to generate external events, change conditions and carry

out other actions (such as changing the values of variables)

at will, and STATEMATE considers all these to have oc-

curred within a single step. When the user gives the GO

command STATEMATE responds by transforming the SUD

into the new resulting status. Typically, there will be a stat-

echart on the screen while this is happening, and also an

activity-chart, and the currently active states and activities

will be highlighted with special coloring.” Batch simula-

tion (or execution), can be described as the ability to carry

out many steps in order, controlled by a simulation control
program (SCP in the sequel) written in STATEMATE’s spe-

cially tailored simulation control language (SCL). During a

batch execution, the same color codes are used to continu-

ously update the displayed charts. The result is a visually
pleasing discrete animation of the behavior of the SUD.

The SCPs themselves look a little like conventional

programs in a high-level language; they employ variables
and support several control structures that can be nested

and indented. They are used to control the simulation
by reading events and changes from previously prepared

files and/or generating them using, say, random sampling

from a variety of probability distributions. Several kinds of

breakpoints can be incorporated into the program, causing
the execution to stop and take certain actions when par-

ticuIar situations come up. These actions can range from

adding 1 to a counter (e.g. to accumulate statistics about

performance), through switching to interactive mode (from
which the user can return to batch mode by a simple com-

mand), and all the way to executing a lengthy calculation

that might constitute the inners of a basic, unspecified, ac-

tivity.

l1 Actually, the system will highlight only those states

and activities that are on the lowest level visible.

Executions can thus be stopped and restarted, and in-

tervening changes can be made; the effects of events gener-

ated with prescribed probabilities can be checked, and the

computational parts of the SUD and its environment can

be emulated. Moreover, during such simulated executions
a truce database is maintained, which records all changes

made in the status of the SUD. The trace database can
later be reviewed, filed away, printed or discarded, and, of

course, is an invaluable tool for analyzing the execution and

its effects. A variety of simulation reports can be produced,

in which parts of the information are gathered as the execu-

tion proceeds, via instructions in the SCP, and other parts

are taken from the trace database after the execu.tion ends.

The part of the SUD that is simulated in either inter-

active or batch modes can be restricted in scope., For ex-

ample, one can simulate any part of the description that is

identifiable by the name of some state or activity, and the

rest of the STATEMATE specification is considered to be

nonexistent for the duration of that simulation. Moreover,

there is no need to wait until the entire SUD is specified be-

fore initiating executions and simulations; a user can start

simulating, or running, a description from the moment the

portion that is available is syntactically intact. In the simu-

lation the user will typically provide those events and other

items of information that are external to the specified por-

tion, even though later they might become internal to the

specification.

In general, then, a carefully prepared SCP can be used

to test the specification of the SUD under a wide range of

test data, to emulate both the environment and the as-of-

yet unspecifed parts of the SUD, to check the specification

for time-critical performance and efficiency, and, in general,

to debug it and identify subtle run-time errors. Needless
to say, the kinds of errors and misconceptions that can be

discovered in this way are quite different from the syntactic

completeness and consistency checks that form the high-

lights of most of the other available tools for system design,

and which STATEMATE carries out routinely.

Since STATEMATE can fully execute specifications, it

becomes tempting to provide the ability to test, quite rig-
orously, for some of the crucial dynamic properties of the

SUD - those we desire it to satisfy as well as those we

want to make sure it does not. Accordingly, STATEMATE

has been programmed to provide several kinds of dynamic

tests, essentially by carrying out exhaustive, brute-force,
sets of executions. These include reachability, nondeter-

minism, deadlock and usage of transitions. For the first

of these the user inputs final conditions and STATEMATE

will seek sequences of external events and other occurrences

that lead from an initial status to one that satisfies these

conditions, producing them if they exist and stating that

there are none otherwise. It is important to stress that this

is run-time, dynamic, reachability, not merely a test for

whether two boxes in a diagram are connected by arrows.
The same applies to the other dynamic tests too.

404

5. Code-Generation and Rapid Prototyping

An additional feature recently added to the basic

STATEMATE system is the code-generation capability. The

user can request that the specification of the SUD (or some

portion thereof) be translated automatically into Ada. The

system will apply a fixed translation scheme to convert the
specified activity-chart and statecharts into Ada. More-

over, code can be added by the user to emulate the envi-

ronment and/or to supply meanings for the bottom-level

basic activities. All of this results in a prototypical ver-

sion of the final system, and will typically run much faster

than the animated simulation. This Ada prototype has the

ability to form the basis of a realistic simulation of the sys-

tem itself, with simulated graphics representing the various

physical interfaces with the user. STATEMATE might be
extended in this direction in the future.

The rigid nature of the translation sheme prevents a

user from incorporating his or her own design decisions into

the code, except insofar as such decisions were incorporated

already into the STATEMATE specification, For this reason

the Ada code that STATEMATE produces is of prototype

quality only and will not necessarily be as efficient or as fine-

tuned as production code. Future plans call for enhancing
the code generator with the ability to incorporate decisions

made interactively by the human designer, as well as with

various further optimization features.

6. Reports and Document Generation

STATEh4ATE can be asked to plot the charts that con-

stitute the SUD’s description. The user has control over

the portion of the chart that will be plotted, as we11 as
its size and depth. In addition, the user can ask for sev-

eral kinds of fixed-format reports that are compiled directly

from the description of the SUD in the database, and which

can be displayed on the workstation screen or output to an

alphanumeric terminal or printer. Each of these can be pro-
jected, so to speak, on any part of the description that is

retrievable by the OLG. In other words, the user may first

use the OLG to capture, say, a set of activities of particular

interest, and then request the report; it will be applied only

to the activities in the list. Among the reports currently

implemented a,re data dictionaries of various kinds, textual

protocols of states or activities containing all the informa-

tion relevant to them, interface diagrams, tree versions of

the various hierarchies, and the so-called N2 -diagrams. Us-

ing a number of parameters, the user can control various

aspects of the reports produced, such as the depth of the

trees in the tree reports, and the keys by which the dictio-

naries will be sorted.

In late 1988 STATEUTE will be able to generate doc-
umentation to comply with the requirements of the Dod

Standard 2167. This will not be a stand-alone feature, but,

rather, part of a more general approach that involves a

language for user-specified document generation. In this
language the user constructs his or her own document tem-

plate, complete with the queries whose responses will serve

to fill in the required information, and thereafter the doc-
ument will be generated automatically, projected on any
retrievable portion of the description of the SUD.

7. Conclusions

In conclusion we might say that the STATEMATE sys-
tem combines two principles, or theses,which we feel should

guide future attempts to design support tools for system

development. The first is the long-advocated need for ez-

ecutable specifications, and the second is the advantage of

using visual formalisms.

As far as the first of these goes, the development of

complex systems must not allow for design and construction
of the final product from untested requirements or specifi-

cations. Rather, ways should be found to model the SUD

on any desired level of detail in a manner that is fully ex-

ecutable, or simulatable, and which allo ws for deep and

comprehensive testing and debugging prior to building the

system itself.

As to the second principle, we believe that visual for-

malisms will turn out to be a crucial ingredient in the next

stage of the continuous search for more natural and power-

ful ways to exploit computers. It is our feeling that the ever-

falling prices and ever-rising quality of graphical computers

and workstations, combined with the incredible capabilities

of the human visual system, will result in a revolution in

the way we carry out many of our conceptually complex

engineering activities. The surviving approaches will be,

to a very large extent, of diagrammatic nature, yet will be
formal and rigorous, in both syntax and semantics.

AcknowledEments: We are grateful to all the staff members

of Ad-Cad Ltd., the research and development branch of i-Lo&

Inc., who have been indispensible in turning the ideas described

here into a real working system. Ido Lachover deserves special

thanks for being the most pleasant manager imaginable, con-

tributing his experience and expertise to all phases of the work.
We would also like to thank Jonah Lavi and his group at the

Israel Aircraft Industries for their constructive criticism during

the period in which the system was developed.

References

[CHI A. K. Chandra and D. Harel, “Structure and Com-

plexity of Relational Queries”, J. Comput. Syst.

Sci. 25 (1982), 99-128.

PM1 A. K. Chandra and P. Merlin, “Optimal Imple

mentation of Conjunctive Queries in Relational

Databases*, Proc. 0th ACM Symp. on Theory

of Computing, Boulder Co., 1977, pp.77-90.

PI D. Harel, “Statecharts: A Visual Formalism for
Complex Systems,” Science of Computer Pro-

Vamming 8 (1987), 231-274.

405

w4

WI

[HPSS]

WI

WI

[i-L11

[i-L21

ILKI

PI

[WI

D. Hare& “On Visual Formalisms”, Communica-
tions of the ACM, to appear, June 1987.

D. Hare1 and A. Pnueli, “On the Development of

Reactive Systems,” in Logics and Models of Con-

current Systems (K. R. Apt, ed.), Springer-Verlag,

New York, 1985, pp. 477-498.

D. Harel, A. Pnueli, J. P. Schmidt and R. Sher-

man, “On the Formal Semantics of Statecharts,”

Proc. 2nd IEEE Symp. on Logic in Computer

Science, Ithaca, NY, 1987, pp. 54-64.

D. J. Hatley, uA Structured Analysis Method for

Real-Time Systems”, Proc. DECUS Symp., Dec.

1985.

J. E. Hopcroft and J. D. Ullman, Wroduction to
Automata Theory, Languages, and Computation,

Addison-Wesley, 1979.

“The Languages of STATEMATE”, Technical Re-
port, i-Logix Inc., Burlington, MA, 1987.

“Methodologies of Building Specifications Using

the STATEMATE System”, Technical Report, i-

Logix Inc., Burlington, MA, 1987.

J. Z. Lavi and E. Kessler, “An Embedded Com-

puter Systems Analysis Method”, Manuscript, Is-

rael Aircraft Industries, November 1986.

A. Pnueli, “Applications of Temporal Logic to the

specification and Verification of Reactive Systems:

A Survey of Current Trends”, in Current Trends

in Coneurreney (de Bakker et al. eds.), Lect.

Notes in Comput. Sci., Vol. 224, Springer-Verlag,

Berlin, 1986, pp. 510-584.

P. Ward, “The Transformation Schema: An Ex-

tension of the Data Flow Diagram to Represent

Control and Timing”, IEEE Transactions on Soft-

ware Engineering 12 (1986), 198-210.

406

