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Abstract: This paper provides a brief overview of the STATE 
MATE system, constructed over the past three years by i-Logix 
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Inc., and Ad Cad Ltd. STATEMATE is a graphical working en- 

vironment, intended for the specification, analysis, design and 
documentation of large and complex reactive systems, such as 

real-time embedded systems, control and communication sys- 
tems, and interactive software. It enables a user to prepare, 
analyze and debug diagrammatic, yet precise, descriptions of 
the system under development from three inter-related points 
of view, capturing, structure, functionality and behavior. These 

views are represented by three graphical languages, the most 

intricate of which is the language of statecharts used to depict 

reactive behavior over time. In addition to the use of state- 
charts, the main novelty of STATEMATE is in the fact that 

it ‘understands’ the entire descriptions perfectly, to the point 
of being able to analyze them for crucial dynamic properties, 
to carry out rigorous animated executions and simulations of 
the described system, and to create running code automatically. 
These features are invaluable when it comes to the quality and 

reliability of the final outcome. 
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1. Introduction 

Reactive systems (see [P, HP]) are characterized as ow- 

ing much of their complexity to the intricate nature of re- 

actions to discrete occurrences. The computational and 

continuous parts of such systems are assumed to be dealt 
with using other means, and it is their reactive, control- 

driven parts that are considered here to be the most prob- 

lematic. Examples of reactive systems include most kinds 

of real-time computer embedded systems, control plants, 
communication systems, interactive software of varying na- 

ture, and even VLSI circuits. Common to all of these is 

the notion of reactive behavior, whereby the system is not 

adequately described by a simple relationship that specifies 

outputs as a function of inputs, but, rather, requires relat- 
ing outputs to inputs through their allowed combinations 

in time. Typically, such descriptions involve complex se- 

quences of events, actions, conditions and information flow, 

often with explicit timing constraints, that combine to form 

the system’s overall behavior. 

It is fair to say that the problem of finding good meth- 

ods to aid in the development of such systems has not been 

satisfactorily solved. Standard structured design methods 

do not adequately deal with the dynamics of reactive sys- 

tems, since they were proposed to deal primarily with non- 

reactive, data-driven applications, in which a good func- 

tional decomposition and data-flow description are suffi- 

cient. As to commercially available tools for real-time 

system design, most are, by and large, but sophisticated 

graphics editors, in which one can model certain aspects 
of reactive systems but in which a user can do little with 

the resulting descriptions beyond testing them for syntactic 

consistency and completeness and producing various kinds 
of output reports. These systems are often helpful in or- 

ganizing a designer’s thoughts and in communicating those 

thoughts to others, but they are vastly inadequate when it 

comes to the more difficult task of preparing reliable spec- 

ifications and designs that satisfy the initial requirements, 

that behave over time as expected, and from which a rea- 
sonable final system can be constructed with relative ease. 

If we were to draw an analogy with the discipline of 

conventional programming, there is an acute need for the 

reactive system’s analog of a programming environment 
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that comes complete, not only with a programming lan- 

guage, a useful program editor and a syntax checker, but 

also with a working compiler and/or interpreter with de- 

bugging facilities, so that programs can be not only written 
but also run, tested, debugged and analyzed. As it turns 

out, the problems confronting a team out to design a re- 

active system are far more difficult than those confronting 

a programmer out to write a conventional program. Typi- 

cal reactive systems are highly concurrent and distributed; 

they fall quite naturally into multiple levels of detail, and 

usually display unpredictable, often catastrophic, behavior 

under unanticipated circumstances. More often than not, 

the development phases of such systems are laden with mis- 

understandings between customers, designers and users, as 

well as among the various members of the design team it- 

self, and their life-cycle is replete with trouble-shooting, 

modifications and enhancements. 

of hardware in some systems to the subroutines and blocks 

in the software parts of others. 

The languages in which reactive systems are specifed 
ought to be clear and intuitive, and thus amenable to gen- 

eration, inspection and modification by humans, as well as 

precise and rigorous, and thus amenable to maintenance, 

analysis and simulation by computers. Such languages 

The dominant conceptual decomposition of the SUD is 
carried out via the functional view, where one identifies a 

hierarchy of activities, complete with the details of the data 

items and control signals that flow between them. This is 

essentially what is often called the functional decomposi- 
tion of the SUD. However, in the functional view we do not 

specify dynamics: we do not say when the activities will 

be activated, whether or not they terminate on their own, 

and whether they can be carried out in parallel. The same 

is true of the data-flow: in the functional view we specify 
only that data can flow, and not whether and when it will. 

For example, if we have identified that two of the subactivi- 

ties of an Automatic Teller Machine we are describing are 
identify-customer and report-balance, and that the data 
item account-number can flow from the former to the lat- 

ter, then no more and no less than that is implied; we still 

ought to make it possible to move easily, and with sufficient 

semantic underpinnings, from the initial stages of require- 

ments and specification to prototyping and design, and to 

form the basis for modifications and maintenance at later 

stages. One of the underlying principles adopted in this pa- 
per is such specifications, the behavioral aspects included, 

should be based to a large extent on visual formalisms, 

@;-/-- 

i.e., on languages that are highly visual in nature, depend- 
I 

ing on a small number of carefully chosen diagrammatic I 

paradigms, yet which, at the same time, admit a formal 

\, 
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SUD 
/ 

semantics that provides each feature, graphical and non- / 
graphical alike, with a precise and unambiguous meaning. 

1 

/ 
For reactive systems this means that it should be possible / 
to prepare intuitive and comprehensible specifications that 

can be analyzed, simulated and debugged at any stage with 

the aid of a computerized support system. J/ 

This paper describes the ideas behind STATEMATE, a RUCTURE 

computerized working environment for the development of 
$,,&A decomposition 

fcI3 

& 

reactive systems, which adheres to these principles. information 0OW 

2. STATEMATE at a Glance Figure 1: Three views of the system under description (SUJJ) 

The underlying premise of STATEMATE is the need to 

specify and analyze the system under development (SUD 
in the sequel) from three closely related points of view: 

structural, functional and behavioral. These are illustrated 

in Figure 1. 

In the structuraI view one provides a hierarchical de- 
composition of the SUD into its physical components, called 

modules here, and identifies the information that flows be- 

tween them; that is, the ‘chunks’ of data and control signals 

that flow through whatever physical links exist between the 

modules. The word ‘physical’ should be taken as rather 
general, with a module being anything from an actual piece 

have not specified when that item will flow, how often will 

it flow, and in response to what, and indeed whether the 

flow will be initiated by the former activity or requested by 
the latter. In.other words, the functional view provides the 

decomposition into activities and the possible flow of in- 

formation, but it says little about how those activities and 

their associated inputs and outputs are controlled during 

the continued behavior of the SUD. 

It is the behavioral view, our third, that is responsi- 

ble for specifying control. This is achieved by allowing a 
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control activity to be present on each level of the activity 

hierarchy, controlling that particular level. It is these con- 

trollers that are responsible for specifying when, how and 

why things happen as the SUD reacts over time. Among 

other things, a controlling statechart can start and stop ac- 

tivities, can generate new events, and can change the values 

of variables. It can also sense whether activities are active 

or data has flown, and it can respond to events and test 
the values of variables. These connections between activi- 

ties and control will be seen in Section 3 to involve a rather 

elaborate set of events, conditions and actions, whereas the 
relationship between modules and activities is far simpler, 

and consists essentially of specifying which modules imple- 
ment which activities. (Some of our ideas as to the way 

functionality and control are related, are similar to those 

appearing independently in (Ht, LK, WI.) 

For each of these three views, the structural, functional 

and behavioral, STATEMATE provides a graphical, dia- 

grammatic language, complete with a rule-based graphics 

editor that checks for syntactic validity as the appropri- 

ate specifications are developed. These languages, module- 

charts, activity-charts and statecharts, respectively, are all 

based on a common set of simple graphical conventions (see 

[H2]) and come complete with formal semantics that are 

embedded into STATEMATE . They are described in more 

detail in Section 3. 
Statecharts 

Activity-charts 
FOIlU.3 

- Module-charts 

Administrator or 
Project Manager 

Instructions 

Figure 2 illustrates the overall structure of STATEM- 

ATE. The database is central, and obtains much of its input 

from the three graphics editors, and also from an editor for 

a forms language, in which the nongraphical information is 

specified. 

Perhaps the most interesting parts of STAT’EMATE are 

the queries, testing and simulation (i.e., execution) pack- 

ages, described in Section 4, and the code-generation and 

protoyping capabilities, described in Section 5. As men- 

tioned, the entire approach is governed by the desire to 

enable the user to run, debug and analyze the specifica- 

tions and designs that result from the graphical languages. 

To this end, the database has been constructed to make 

it possible to rigorously execute the specification and to 

retrieve information of a variety of kinds from the overall 

three-sided description of the SUD provided by the user. 

Two of the special tools provided by STATEMATE for these 

purposes are the object list generator (OLG), a language 

for querying the database and retrieving information from 

it, and the simulation control language (SCL), which al- 

lows the user to emulate the SUD’s environment, execute 

the specifications with animated response, and track errors 

and run-time problems. In addition, STATEMATE provides 

a number of dynamic tests, such as reachability and the de- 

tection of deadlock and nondeterminism. 

STATEMATE provides an automatic translation of the 

entire specification into Ada*, yielding code that can be 

linked to real or simulated environment modules, and en- 

riched by additional code describing the bottom-level ac- 
tivities that were left unspecified in the specification itself. 

This results in a prototypical version of the final system 

that can be run much faster than the animated simulation. 

STATEMATE was constructed by a team of around 25 

people over a period of three years. The currently avail- 
able version runs on a color6 VaxStation (or a network of 

such) with a VMS operating system, and its database is 

DEC’s Rdb. Unix0 versions running on Sun and Apollo 
workstations will become available in the Summer of 1988. 

Additional 

User Code 

We should note that most of the ideas and 

methods embodied in STATEMATE have 

been field-tested successfully in a number 

of large real-world development projects, 
. . . 

among which is the mission-specific avion- 

its system for the Lavi fighter aircraft de- 

signed by the Israel Aircraft Industries. 

Simulation 

Reports 

Working Reports, 
Documents 

& 

Plots 

Analysis 
ReptS 

Ada Code 

4 Ada is a trademark of the US Department of Defense. 

’ While color appears to siznificantlv enhance the anneal ” _* 
l7:-..x.r. 3. n.,,,,ll .+rrv+,.rq of STATEMATE of STATEMATE, a monochrome version of STATEMATE is 

also available. 

6 Unix is a registered trademark of AT&T Bell Labs. 
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Fieure 3: Module-chart of the early warning system 

3. The Modelling Languages of STATEMATE 

In this section we present the highlights of the three 
graphical languages and the forms language that the user 

of STATEMATE employs to specify the SUD. No formal 

syntax or semantics are given here, neither are all of the 

features presented. The reader is referred to [i-L11 for a 

more comprehensive description, and to [Hl, HPSS] for a 
detailed treatement of the language of statecharts. The 

languages are described with the help of a simple example 
of an Early Warning System (EWS in the sequel), which 

has the ability to take measurements from an external sen- 
sor, compare them with some prespecified upper and lower 

limits and warn the user when the measured value exceeds 

these limits. 

The structural view of the SUD is described using 

the language of module-charts, which describe SUD mod- 
ules (i.e., its physical components), environment modules 

( i.e., those parts that for the purpose of specification are 

deemed to be external to the SUD), and the clusters of data 

and/or control signals that may flow among them. Mod- 

ules are depicted as rectilinear shapes, with storage mod- 

ules having dashed sides and with encapsulation capturing 

the sub-module relationship. Environment modules appear 
as dashed-line rectangles external to that of the SUD it- 

self. Information flow is represented by labelled arrows or 

hyperarrows’. Various kinds of connectors cau appear in 

these charts, both to abbreviate lengthy arrows and to de- 

note compound chunks of data. 

Figure 3 is (part of) the module-chart of our early 

warning system. It specifies in a self-explanatory fashion 

that the modules, or subsystems, of the EWS are a main 

component, a man-machine-interface (MMI) and a signal- 

handler, and that the sensor, timer and alarm are consid- 

ered to be external to the system. The MM1 is further 

A hyperarrow has more than two endpoints. 

r 

--- 
1 

operator 1 

Fipure 4: An activity-chart 

decomposed into submodules, as shown. The information 

flowing between the modules is specified too. 

The functional view of the SUD is captured by the lan- 

guage of activity-charts. Graphically, these are very similar 

to module-charts, but here the rectilinear shapes stand for 

the activities, or the functions, carried out by the system. 

Solid arrows represent the flow of data items and dashed 

arrows capture the flow of control items.* 

A typical activity will accept input items and produce 

output items during its active time-spans, its inner work- 
ings being specified by its own lower level decomposition. 

Activities that are basic (i.e., on the lowest level) are as- 

sumed to be described as simple input/output transforma- 

tions using other means. More about this in Sections 4 and 

5. 

8 In displaying module-charts and activity-charts on the 

screen STATEMATE employs different conventions regard- 
ing color and arrow type, so that a user can distinguish 

between them quite easily. Thus, for example, the arrows 
in module-charts are drawn using rectilinear segments par- 
allel to the axes, whereas in activity-charts they are drawn 

using smooth spline functions. 
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Activity-charts may contain two additional kinds of 

objects: data-stores and control activities. Data-stores can 
be thought of as representing databases, data structures, 

buffers of various kinds, or even physical containers or re- 

serviors, and typically correspond to the storage modules 

in the module-chart. They represent the ability to store the 

data items that flow into them and to produce those items 

as outputs upon request. 

The control activities constitute the behavioral view of 

the system and they appear in the activity-chart as empty 

boxes only, one (at most) within each non-basic activity, 

aa shown in Figure 4. The contents of the control activi- 

ties are described in the third of our graphical languages, 
statecharts, which are discussed below. In general, a con- 

trol activity has the ability to control its sibling activities 

by essentially sensing their status’ and issuing commands 

to them. Thus, for example, in Figure 4 the control activ- 

ity & can, among other things, perform actions that cause 

sub-activities A,B and R to start and stop, and can sense 
whether those subactivities have started or stopped by ap- 

propriate events and conditions. Various consequences of 

such occurences are integrated into the semantics of the 

activity-charts language, such as the fact that all sub- 

activities stop (respectively, suspend) upon the stopping 
(respectively, suspension) of the parent activity. 

We now turn to the behavioral view. Statecharts, 

which were introduced in [Hl] (see also [H2, HPSS]), are an 

extension of conventional finite-state machines (FSM’S) and 

their visual counterpart, state-transition diagrams. Con- 

ventional state diagrams are inappropriate for the behav- 
ioral description of complex control, since they suffer from 

being flat and unstructured, are inherently sequential in 

nature, and give rise to an exponential blow-up in the num- 
ber of states (Le., small extensions of a system cause un- 

acceptable growth in the number of states to be consid- 
ered). These problems are overcome in statecharts by sup- 

porting decomposition of states in an AND/OR fashion, 

combined with an instantaneous broadcast communication 

mechanism. A rather important facet, of these extensions 

is the ability to have transitions leave and enter states on 

any level. 

U 

(a) 

(a) (b) 

Fipure 5: OR-decomposition in a statechart 

Consider Figure 5, in which (a) and (b) are equivalent. 

In 5(b) states S and T have been clustered into a new state, 

U, so that to be in U is to be either in S or in T. The f- 
arrow leaving U denotes a high-level interrupt, and has the 

effect of prescribing an exit from U, i.e., from whichever of 

S or T the system happens to be in, to the new state V. 

The h-arrow entering U would appear to be underspecified, 

as it must cause entry to S or T; in fact, its meaning relies 

on the internal default arrow attached to T to indeed effect 

an entrance to T. 

Turning to AND decomposition, consider Figure 6, in 

which, again, (a) and (b) are equivalent. Here, to be in 
state U the system must be in both S and T. An unspec- 

ified entrance to U relies on both default arrows to enter 

the pair {V,W}, from which an occurrence of e, for exam- 

ple, would lead to the new pair {X,Y}, and k would lead 

to {V, 2). The meaning of the other transitions appear- 

ing therein, including entrances and exits, can be deduced 

by comparing 6(a) and 6(b). It is worth mentioning that 

this AND decomposition, into what we call otthogonal state 
components, can be carried out on any level of states and 

is therefore more convenient than allowing only single-level 

sets of communicating FSM’s. Orthogonality is the feature 

statecharts employ to solve the state blow-up problem; see 

[Hl, H2]. (Clearly, orthogonal state decomposition also re- 

places the need to allow multiple control activities within 
a single activity, as is done, e.g., in [WI.) 

(b) 

Figure 6: AND-decomposition in a statechart 
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The general syntax of an expression labelling a transi- 
tion in a statechart is 

4f-A / P 

where a! is the event that triggers the transition, C is a 

condition that guards the transition from being taken un- 

less it is true when (Y occurs, and p is an action that is 

carried out if, and precisely when, the transition is taken. 
Any of these can be omitted. Events and conditions can be 

considered as inputs, and actions as outputs, except that 

here this correspondence is more subtle, due to the intricate 

nature of the statecharts themselves and their relationship 

with the activities. For example, if p appears as an ac- 

tion along one transition and also as a triggering event on 

a transition in an orthogonal component of the same stat- 

echart, then executing the action will immediately cause 
the transition to be taken simultaneously. Moreover, in 

the expression o! / /?, rather than being simply a primitive 

action that might cause other transitions, /? might be the 

special action start(A) that causes the activity A to start, 

and similarly, rather than being simply an external, prim- 

itive event, cr might be the special even t stopped(B) that 

occurs (and hence causes the transition to take place) when 

B stops or is stopped. Table 1 shows a selection of some of 

the special events, conditions and actions that can appear 

as part of the labels along a transition. It should be noted 
that the syntax is also closed under Boolean combinations, 

so that, for example, the following is a legal label: 

entered(S) [in(T) and not active(C)] / 

suspend(C) ; X:= Y+7 

Notice that conventional variables can be used too, 

with changing values allowed as events, standard compar- 

isons as conditions and assignment statements as actions. 

Besides allowing actions to appear along transitions 

they can also appear associated with the entrance to or 

exit from a state (any state, of course, on any level).g This 
association is specified in a form in the forms language dis- 

cussed below. Thus, if we associate the action resume(A) 
with the entrance to state S, activity A will be resumed 

whenever 5’ is entered. 

Some of the special constructs appearing in Table 1 

thus serve to link the control activities with the other ob- 

jects appearing in an activity-chart, and, as such, are part 

of the way behavior is associated with functionality and 

data-flow. There are other facets to this association, one of 
which is the ability to specify an activity A as taking place 

throughout a state S, which is the same as saying that A is 

started upon entering S and stopped upon leaving it. This 

connection is also stated via forms. 

The power to control and sense the status of activities 

is limited by a scoping rule to the control activity appearing 

’ In this way, statecharts can be seen to generalize both 
Mealy and Moore automata; see [HU]. 

r 
in 

statechart 

connecting 

statechart 

to 

activities 

information 

items 

time 

EVENTS 

entered(S) 

exited(S) 

started(A) 

stopped(A) 

read(D) 

written(D) 

true(c) 

f&e(C) 

CONDITIONS 

in(S) 

active(A) 

hanging(A) 

D=exp 

D <exp 

D >exp 

-I ACTIONS 1 

start(A) 

stop(A) 

suspend(A) 

resume(A) 

D:=exp 

made-true(C) 

make ralse( C) 

schedule(Ac,n) timeout(E,n) 

Table 1: Some special events, conditions and actions 

on the same level as the activities and flow in question. 

Thus, in Figure 4, for example, some of the events and 

actions that can appear in the statechart S1 are St(A), 

rs!(B) and wr!(d), but ones referring to, say, H and K, 

such as at!(H), cannot, and would appear only in Sz.” 
This scoping mechanism for hiding information is intended 

to help in making STATEMATE specifications modular and 

amenable to the kind of division of work that is required in 

large projects. There are ways of utilizing primitive events 
and actions to override this scoping rule, but we shall not 

describe them here. 

Figure 7 shows the activity-chart of the early warning 
system. The user, via the operator terminal, can send com- 

mands to the control activity, a structured data item which, 

via a form, is specified to consist of set-up, execute and re- 

set instructions. The operator can also send the upper and 

lower required limits to the get&check subactivity of set- 

up. These limits can be stored in the data-store range, to 

be sent upon request to the compare and report-fault ac- 

tivities. (The item req-limits is also structured, and stands 
for the pair containing the required upper and lower lim- 

its.) A special activity, get-measurements can receive the 

signal from the sensor and a clock reading from the timer, 

and translates these into a time-stamped digital value sam- 

pie, which can be sent to the comparing activity. If out of 

range, a signal and value can be sent to the controller and 

lo Here, and also in the Figure 8, we are using abbre- 

viations of the elements appearing in Table 1, such as at 

instead of started, rs! instead of resume and tm instead 
of timeout. STATEMATE recognizes these abbreviations 

too. 
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, compare 
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Fivure 7: Activity-chart of the early warning system 

EWS-control 

P 

idle 

halt 

-----I 
&erator- I 
, terminal I 

Jt J ---- 

---- 
$‘T ] 

- - 

Figure 8: Statechart for the high-level activity of the early warning system 
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the report-fault activity, respectively. The latter is respon- 

sible for sending out an alarm and formatting and sending 

the user an appropriate message. The second level of Fig- 

ure 7 is self explanatory. 

It is important to emphasize the recurring word ‘can’ 

in the previous paragraph. Figure 7 is not required to pro- 

vide dynamic, behavioral information about the EWS; that 

is the role of the controlling statecharts. Figure 8, for ex- 

ample, shows one possible statechart for the high-level con- 

trol activity of Figure 7, i.e., EWS-control, and the reader 

should be able to comprehend it quite easily. 

While the connections between activity-charts and 
statecharts are rather intricate, those between module- 
charts and activity-charts are more straightforward. Using 

forms, one indicates the module that implements a given 

activity, and the storage module that implements a given 
data store. In our example, some of these associations are 

that the MAIN module implements the EWS-control ac- 

tivity, SIGNAL-HANDLER implements get-measurements 

and compare, and MMI implements set-up and report- 

fault. Within the latter association the send-err subactiv- 
ity is implemented by the output-proc submodule and the 

other three by set-up-main. 

We now turn to the forms language. It maintains a 

special form for each of the elements in the description, in 

which additional information can be input. This includes 

details that do not normally show up in the graphics, such 

as lengthy definitions of compound events and conditions, 

as well as elements that are nongraphical in nature, such 

as the type and structure of data items. Figure 9 shows 
an example of the form for a data item, in which most 

items are self-explanatory. The ‘Consists of’ field therein 

makes it possible to structure data items into components, 
and the ‘Attribute’ fields make it possible to associate at- 

tributes with the items (e.g., units and precision for certain 

kinds of data-items, or the names of the personnel respon- 

sible for the specification for certain high-level elements). 

DATA-REM 

Name: Synonym : ,‘------- 

cescriolion : 
,...-.-- ----P-M 
, .., . .:.,-,l.:..Lb.B~rr.. *as+. . 

7 
-L---l-.- 

Definition : 
! -- ._. .- _- ..- .-. .-- _- __ __- .-. -_ _- --. ..- . 

..- _. I.-.- m .n. . a.. 4c -.-- -I 

Structure (Record. List. Group, tine-of) or Type (Inteperl Float I String) : q 
Consists of : 
~--_----B-q 

Attribute Name : Attribute Value : 
_---- .-_--m.- 

-~- --1 

L .I .,. 
! : 

,A’--& 

Fivure 9: The form for a data item 

The attributes are recognizable by the query language and 

therefore able to be part of the criteria for retrieving infor- 

mation about the SUD. 

The color graphical editors for all three charts lan- 

guages are rule-driven, continuously checking the input for 

syntactic soundness, and the database of STATEMATE is 

updated as graphical elements are introduced. They are 

mouse- and menu-based, and support a wide range of pos- 

sibilities, including move, copy, stretch,hide,reveal and 

zoom options, all applicable to single or multiple elements 

in the charts, that can be selected in a number of ways. The 
form for a selected element can be viewed and updated not 

only from STATEMATE’s special forms editor but from 

the appropriate graphical editor too. 

Extensive consistency and completeness tests, as well 

as more subtle static logic tests can be carried out during a 

STATEMATE session. Examples include checking whether 
the hierarchy of modules is consistent with that of the ac- 

tivities, listing modules that have no outputs or activities 

that are never started, and identifying cyclic definitions of 

nongraphical elements (e.g., events and conditions). 

4. Queries, Executions and Dynamic Tests 

In this section we describe some of the tools that 

STATEMATE supplies for debugging and analyzing the 

specification of the SUD as provided by the user via the 

modelling languages. 

STATEMATE provides a query language, the object list 

generator (OLG), with which the user can retrieve infor- 

mation from the database, effectively querying the model 

of the SUD as described in the modelling languages. The 

OLG works by generating lists of elements that satisfy cer- 
tain criteria. At all times it keeps a pending list that gets 

modified as the user refines the criteria or asks for a list 

of elements of another type. For example, starting with 

an empty pending list, one can ask for all states in the 

controlling statechart of activity A, and the resulting list 
promptly becomes the new pending list. This list might 

then be refined by asking for those states therein that con- 

tain a substate named ‘off’. Then one might ask for all 

activities that are started within any of those states, and 

so on. This query language, on the face of it, might appear 

to be bounded in its expressive power by that of the con- 

junctive queries of [CM]. However, since the OLG supports 

certain kinds of transitive closures (such as the ancestor and 

descendent relationships between states or activities), it is 

not directly comparable with the conjunctive queries, and 

can be shown to be a subset of the more general fixpoint 

queries of [CH]. 

Turning to the execution and simulation capabilities, 

the heart of these is STATEMATE’s ability to carry out 
a step of the SUD’s dynamic behavior, with all its conse- 
quences taken into account. Thus, the semantics of all of 

our modelling languages (in particular, that of the state- 
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charts) are fully incorporated into STATEhIATE’s software. 

A step, briefly, is one unit of dynamic behavior, at the 

beginning and at the end of which the SUD is in some 

legal status. A status captures the system’s currently ac- 

tive states and activities, the current values of variables 

and conditions, etc. During a step the environment activ- 

ities can generate external events, change the truth values 
of conditions, and update variables and other data items. 

Given the potentially intricate form that STATEMATE’s 

description of the SUD might take on, such changes can 

have a profound effect on the status, triggering transitions 

in statecharts, activating and deactivating activities, fur- 
ther updating data items, and so on. Clearly, each of these 

changes, in turn, can possibly cause many others. The por- 

tion of STATEMATE that is responsible for calculating the 

effect of a step contains involved algorithmic procedures, 
which, among many other things, implement a formal se- 

mantics of statecharts similar to that described, e.g., in 

(HPSS]. 

STATEMATE supports two basic ways of ‘running’ the 

SUD: interactive and batch. In the first, the user speci- 

fies some initial status of the SUD and thereafter proceeds 

to generate external events, change conditions and carry 

out other actions (such as changing the values of variables) 

at will, and STATEMATE considers all these to have oc- 

curred within a single step. When the user gives the GO 

command STATEMATE responds by transforming the SUD 

into the new resulting status. Typically, there will be a stat- 

echart on the screen while this is happening, and also an 

activity-chart, and the currently active states and activities 

will be highlighted with special coloring.” Batch simula- 

tion (or execution), can be described as the ability to carry 

out many steps in order, controlled by a simulation control 
program (SCP in the sequel) written in STATEMATE’s spe- 

cially tailored simulation control language (SCL). During a 

batch execution, the same color codes are used to continu- 

ously update the displayed charts. The result is a visually 
pleasing discrete animation of the behavior of the SUD. 

The SCPs themselves look a little like conventional 

programs in a high-level language; they employ variables 
and support several control structures that can be nested 

and indented. They are used to control the simulation 
by reading events and changes from previously prepared 

files and/or generating them using, say, random sampling 

from a variety of probability distributions. Several kinds of 

breakpoints can be incorporated into the program, causing 
the execution to stop and take certain actions when par- 

ticuIar situations come up. These actions can range from 

adding 1 to a counter (e.g. to accumulate statistics about 

performance), through switching to interactive mode (from 
which the user can return to batch mode by a simple com- 

mand), and all the way to executing a lengthy calculation 

that might constitute the inners of a basic, unspecified, ac- 

tivity. 

l1 Actually, the system will highlight only those states 

and activities that are on the lowest level visible. 

Executions can thus be stopped and restarted, and in- 

tervening changes can be made; the effects of events gener- 

ated with prescribed probabilities can be checked, and the 

computational parts of the SUD and its environment can 

be emulated. Moreover, during such simulated executions 
a truce database is maintained, which records all changes 

made in the status of the SUD. The trace database can 
later be reviewed, filed away, printed or discarded, and, of 

course, is an invaluable tool for analyzing the execution and 

its effects. A variety of simulation reports can be produced, 

in which parts of the information are gathered as the execu- 

tion proceeds, via instructions in the SCP, and other parts 

are taken from the trace database after the execu.tion ends. 

The part of the SUD that is simulated in either inter- 

active or batch modes can be restricted in scope., For ex- 

ample, one can simulate any part of the description that is 

identifiable by the name of some state or activity, and the 

rest of the STATEMATE specification is considered to be 

nonexistent for the duration of that simulation. Moreover, 

there is no need to wait until the entire SUD is specified be- 

fore initiating executions and simulations; a user can start 

simulating, or running, a description from the moment the 

portion that is available is syntactically intact. In the simu- 

lation the user will typically provide those events and other 

items of information that are external to the specified por- 

tion, even though later they might become internal to the 

specification. 

In general, then, a carefully prepared SCP can be used 

to test the specification of the SUD under a wide range of 

test data, to emulate both the environment and the as-of- 

yet unspecifed parts of the SUD, to check the specification 

for time-critical performance and efficiency, and, in general, 

to debug it and identify subtle run-time errors. Needless 
to say, the kinds of errors and misconceptions that can be 

discovered in this way are quite different from the syntactic 

completeness and consistency checks that form the high- 

lights of most of the other available tools for system design, 

and which STATEMATE carries out routinely. 

Since STATEMATE can fully execute specifications, it 

becomes tempting to provide the ability to test, quite rig- 
orously, for some of the crucial dynamic properties of the 

SUD - those we desire it to satisfy as well as those we 

want to make sure it does not. Accordingly, STATEMATE 

has been programmed to provide several kinds of dynamic 

tests, essentially by carrying out exhaustive, brute-force, 
sets of executions. These include reachability, nondeter- 

minism, deadlock and usage of transitions. For the first 

of these the user inputs final conditions and STATEMATE 

will seek sequences of external events and other occurrences 

that lead from an initial status to one that satisfies these 

conditions, producing them if they exist and stating that 

there are none otherwise. It is important to stress that this 

is run-time, dynamic, reachability, not merely a test for 

whether two boxes in a diagram are connected by arrows. 
The same applies to the other dynamic tests too. 
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5. Code-Generation and Rapid Prototyping 

An additional feature recently added to the basic 

STATEMATE system is the code-generation capability. The 

user can request that the specification of the SUD (or some 

portion thereof) be translated automatically into Ada. The 

system will apply a fixed translation scheme to convert the 
specified activity-chart and statecharts into Ada. More- 

over, code can be added by the user to emulate the envi- 

ronment and/or to supply meanings for the bottom-level 

basic activities. All of this results in a prototypical ver- 

sion of the final system, and will typically run much faster 

than the animated simulation. This Ada prototype has the 

ability to form the basis of a realistic simulation of the sys- 

tem itself, with simulated graphics representing the various 

physical interfaces with the user. STATEMATE might be 
extended in this direction in the future. 

The rigid nature of the translation sheme prevents a 

user from incorporating his or her own design decisions into 

the code, except insofar as such decisions were incorporated 

already into the STATEMATE specification, For this reason 

the Ada code that STATEMATE produces is of prototype 

quality only and will not necessarily be as efficient or as fine- 

tuned as production code. Future plans call for enhancing 
the code generator with the ability to incorporate decisions 

made interactively by the human designer, as well as with 

various further optimization features. 

6. Reports and Document Generation 

STATEh4ATE can be asked to plot the charts that con- 

stitute the SUD’s description. The user has control over 

the portion of the chart that will be plotted, as we11 as 
its size and depth. In addition, the user can ask for sev- 

eral kinds of fixed-format reports that are compiled directly 

from the description of the SUD in the database, and which 

can be displayed on the workstation screen or output to an 

alphanumeric terminal or printer. Each of these can be pro- 
jected, so to speak, on any part of the description that is 

retrievable by the OLG. In other words, the user may first 

use the OLG to capture, say, a set of activities of particular 

interest, and then request the report; it will be applied only 

to the activities in the list. Among the reports currently 

implemented a,re data dictionaries of various kinds, textual 

protocols of states or activities containing all the informa- 

tion relevant to them, interface diagrams, tree versions of 

the various hierarchies, and the so-called N2 -diagrams. Us- 

ing a number of parameters, the user can control various 

aspects of the reports produced, such as the depth of the 

trees in the tree reports, and the keys by which the dictio- 

naries will be sorted. 

In late 1988 STATEUTE will be able to generate doc- 
umentation to comply with the requirements of the Dod 

Standard 2167. This will not be a stand-alone feature, but, 

rather, part of a more general approach that involves a 

language for user-specified document generation. In this 
language the user constructs his or her own document tem- 

plate, complete with the queries whose responses will serve 

to fill in the required information, and thereafter the doc- 
ument will be generated automatically, projected on any 
retrievable portion of the description of the SUD. 

7. Conclusions 

In conclusion we might say that the STATEMATE sys- 
tem combines two principles, or theses,which we feel should 

guide future attempts to design support tools for system 

development. The first is the long-advocated need for ez- 

ecutable specifications, and the second is the advantage of 

using visual formalisms. 

As far as the first of these goes, the development of 

complex systems must not allow for design and construction 
of the final product from untested requirements or specifi- 

cations. Rather, ways should be found to model the SUD 

on any desired level of detail in a manner that is fully ex- 

ecutable, or simulatable, and which allo ws for deep and 

comprehensive testing and debugging prior to building the 

system itself. 

As to the second principle, we believe that visual for- 

malisms will turn out to be a crucial ingredient in the next 

stage of the continuous search for more natural and power- 

ful ways to exploit computers. It is our feeling that the ever- 

falling prices and ever-rising quality of graphical computers 

and workstations, combined with the incredible capabilities 

of the human visual system, will result in a revolution in 

the way we carry out many of our conceptually complex 

engineering activities. The surviving approaches will be, 

to a very large extent, of diagrammatic nature, yet will be 
formal and rigorous, in both syntax and semantics. 
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