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We show that every state ω on a lattice effect algebra E induces a uniform topology
on E. If ω is subadditive this topology coincides with pseudometric topology induced

by ω. Further, we show relations between the interval and order topology on E and

topologies induced by states.
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1. Introduction and basic definitions

A model for an effect algebra is the standard effect algebra of positive self-adjoint
operators dominated by the identity on a Hilbert space. In general an effect algebra
is a partial algebra satisfying very simple axioms.

Effect algebras [6] (or, equivalent in some sense, D-posets [13], [14]) were in-
troduced as carriers of states or probability measures in the quantum (or fuzzy)
probability theory (see [10], [11], [13]). Thus elements of these structures represent
quantum effects or fuzzy events which have yes-no character that may be unsharp or
imprecise. Unfortunately, there are even finite effect algebras admitting no states
hence also no probabilities [19]. Moreover, a state on an effect algebra need not
be subadditive. It was proved in [20] that a state on a lattice effect algebra is
subadditive iff it is a valuation. Further, if a faithful (i.e., non-zero at non-zero
elements) valuation on an effect algebra E exists then E is modular and separable
[20]. Conversely, on every complete modular atomic effect algebra there exists an
(o)-continuous state [18], [21]. The aim of this paper is to bring some topological
properties of lattice (or complete) effect algebras on which states, order-continuous
states or valuations exist. Namely, we study properties of order and interval topolo-
gies of such effect algebras. Further we show relations of these topologies to uniform
or metric topologies induced by states or valuations on them.

1



2 States, Uniformities and Metrics on Lattice Effect Algebras

Definition 1.1. A structure (E;⊕, 0, 1) is called an effect-algebra if 0, 1 are two
distinguished elements and ⊕ is a partially defined binary operation on P which
satisfies the following conditions for any a, b, c ∈ E:

(i) b⊕ a = a⊕ b if a⊕ b is defined,
(ii) (a⊕ b)⊕ c = a⊕ (b⊕ c) if one side is defined,
(iii) for every a ∈ P there exists a unique b ∈ P such that a ⊕ b = 1 (we put

a′ = b),
(iv) if 1⊕ a is defined then a = 0.

We often denote the effect algebra (E;⊕, 0, 1) briefly by E. In every effect algebra
E we can define the partial operation 	 and the partial order ≤ by putting

a ≤ b and b	 a = c iff a⊕ c is defined and a⊕ c = b.

Since a ⊕ c = a ⊕ d implies c = d, the 	 and the ≤ are well defined. If E with
the defined partial order is a lattice (a complete lattice) then (E;⊕, 0, 1) is called a
lattice effect algebra (a complete effect algebra). It is well known that a lattice effect
algebra is a common generalization of orthomodular lattices and MV -algebras (see
[4] and [14]).

Lemma 1.2. Elements of an effect algebra (E;⊕, 0, 1) satisfy the properties:
(i) a⊕ b is defined iff a ≤ b′,
(ii) a ≤ a⊕ b,
(iii) if a⊕ b and a ∨ b exist then a ∧ b exists and a⊕ b = (a ∧ b)⊕ (a ∨ b),
(iv) a⊕ b ≤ a⊕ c iff b ≤ c and a⊕ c is defined,
(v) a	 b = 0 iff a = b,
(vi) a ≤ b ≤ c implies that c	 b ≤ c	 a and b	 a = (c	 a)	 (c	 b).

If E is a lattice effect algebra then
(vii) c ≤ a, b =⇒ (a∨ b)	 c = (a	 c)∨ (b	 c) and (a∧ b)	 c = (a	 c)∧ (b	 c),
(viii) a, b ≤ c =⇒ c	 (a∨ b) = (c	 a)∧ (c	 b) and c	 (a∧ b) = (c	 a)∨ (c	 b),
(ix) a, b ≤ c′ =⇒ (a⊕ c)∨ (b⊕ c) = (a∨ b)⊕ c and (a∧ b)⊕ c = (a⊕ c)∧ (b⊕ c).

It is worth noting that if (E;⊕, 0, 1) is an effect algebra then (E;	, 0, 1) with the
partial binary operation 	 defined above is a D-poset introduced by Kôpka and
Chovanec [14], and vice versa.

Definition 1.3. Let (E;⊕, 0, 1) be an effect algebra. Q ⊆ E is called a sub-effect
algebra iff

(i) 1 ∈ Q,
(ii) if from elements a, b, c ∈ E with a ⊕ b = c at least two are elements of Q

then a, b, c ∈ Q.

For more details on D-posets and efefct algebras we refer the reader to [4].

Definition 1.4. Assume that (E;⊕, 0, 1) is an effect algebra. A map m : E → [0, 1]
is called a (finitely additive) state on E if m(1) = 1 and a ≤ b′ =⇒ m(a ⊕ b) =
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m(a) + m(b). We say that m is faithful if m(a) = 0 =⇒ a = 0.
A state m on a lattice effect algebra E is called a valuation if for a, b ∈ E,

a ∧ b = 0 =⇒ m(a ∨ b) = m(a) + m(b).

Note that if m is a state on an effect algebra E then for a, b ∈ E with a ≤ b

we have b = a ⊕ (b 	 a), which implies m(b) = m(a) + m(b 	 a). Thus a ≤ b =⇒
m(a) ≤ m(b) and m(b	 a) = m(b)−m(a).

If ω is a valuation on a lattice effect algebra E then evidently ω(a∨ b) ≤ ω(a) +
ω(b) for all a, b ∈ E (we say that ω is subadditive). On the other hand a state on a
lattice effect algebra need not be subadditive.

Theorem 1.5. [20] Assume that E is a lattice effect algebra.
(i) Every subadditive state ω on E is a valuation.
(ii) A state ω on E is a valuation iff ω(a ∨ b) + ω(a ∧ b) = ω(a) + ω(b) for all

a, b ∈ E.
(iii) If there exists a faithful valuation ω on E then E is modular and separable.

The existence of (o)-continuous states or valuations on some families of lattice effect
algebras has been proved in [18], [21], [22].

2. Uniform topologies induced by states on lattice effect algebras

If a net (xα)α∈E of elements of a topological space (X, τ) converges to a point
x ∈ X we will write xα

τ−→ x. Here τ denotes also the collection of all open subsets
of X.

Theorem 2.1. Every state ω on a lattice effect algebra E induces a uniform
topology τω such that for a net (xα)α∈E of elements of E

xα
τ−→ x iff ω(xα ∨ y) → ω(x ∨ y) and ω(xα ∧ y) → ω(x ∧ y) for all y ∈ E .

Proof. Consider the function family Φ = {ωy∨ | y ∈ E} ∪ {ωy∧ | y ∈ E}, where
ωy∧ : E → [0, 1] and ωy∨ : E → [0, 1] are defined by putting ωy∨(x) = ω(y ∨ x) and
ωy∧(x) = ω(y ∧ x) for all x ∈ E. Further, consider the family of pseudometrics on
E: ΣΦ = {ρy∨ | y ∈ E} ∪ {ρy∧ | y ∈ E}, where ρy∨(a, b) = |ωy∨(a) − ωy∨(b)| and
ρy∧(a, b) = |ωy∧(a)−ωy∧(b)| for all a, b ∈ E. Let us denote by UΦ the uniformity on
E induced by the family of pseudometrics ΣΦ. Further denote by τω the topology
compatible with the uniformity UΦ. Then for every net (xα)α∈E of elements of E

xα
τω−→ x iff ω(xα ∨ y) → ω(x ∨ y) and ω(xα ∧ y) → ω(x ∧ y) for all y ∈ E .
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For a deeper discuss a topology induced by a function family Φ we refer the reader
to [3]. In [15] functions on D-posets with values in arbitrary uniform space with-
out algebraic operations were treated and a Nikodym boundedness theorem and a
convergence theorem were proved.

3. Pseudometric topologies on lattice effect algebras induced by
subadditive states

For elements a, b of a lattice effect algebra E we set a4 b = (a∨ b)	 (a∧ b). Then
the triangle inequality a 4 b ≤ (a 4 b) 	 (a ∧ b) fails to be true in general but it
does so for every valuation ω on E.

Lemma 3.1. For every valuation ω on a lattice effect algebra E and for all a, b, c ∈
E, ω(a4 b) ≤ ω(a4 c) + ω(c4 b).

Proof. For any a, b, c ∈ E we have ω(a∧c)+ω(b∧c) = ω((a∧c)∨(b∧c))+ω(a∧b∧c).
Moreover, (a∧c)∨(b∧c) ≤ c ≤ (c∨a)∧(c∨b) which gives ω((a∧c)∨(b∧c))−ω((c∨
a)∧(c∨b)) ≤ 0. Therefore ω(a4b) = ω(a∨b)−ω(a∧b) ≤ ω(a∨b∨c)−ω(a∧b∧c) =
ω(a∨ c) + ω(b∨ c)−ω((a∨ c)∧ (b∨ c))−ω(a∧ c)−ω(b∧ c) + ω((a∧ c)∨ (b∧ c)) =
ω(a4 c) + ω(b4 c) + ω((a∧ c)∨ (b∧ c))−ω((a∨ c)∧ (b∨ c)) ≤ ω(a4 c) + ω(b4 c).

Assume that (E ;≺) is a directed set and (P ;≤) is a poset. A net of elements of P

is denoted by (aα)α∈E . If aα ≤ aβ for all α, β ∈ E such that α ≺ β then we write
aα ↑. If moreover a =

∨
{aα | α ∈ E} we write aα ↑ a. The meaning of aα ↓ and

aα ↓ a is dual. For instance, a ↑ uα ≤ vα ↓ b means that uα ≤ vα for all α ∈ E and
uα ↑ a and vα ↓ b. We will write b ≤ aα ↑ a if b ≤ aα for all α ∈ E and aα ↑ a.

A net (aα)α∈E of elements of a poset (P ;≤) order converges to a point a ∈ P if
there are nets (uα)α∈E and (vα)α∈E of elements of P such that

a ↑ uα ≤ aα ≤ vα ↓ a .

We write aα
(o)−−→ a in P (or briefly aα

(o)−−→ a).

Lemma 3.2. In every lattice effect algebra E

xα
(o)−−→ x iff xα 4 x

(o)−−→ 0 ; xα, x ∈ E .

Proof (1) Evidently xα
(o)−−→ x =⇒ xα ∨ x

(o)−−→ x and xα ∧ x
(o)−−→ x. By the

definition of (o)-convergence there are nets (uα)α∈E , (vα)α∈E such that x ↑ uα ≤
xα∧x ≤ xα∨x ≤ vα ↓ x which implies that xα4x = (xα∨x)	(xα∧x) ≤ vα	uα ↓ 0

(see [16]) and hence xα 4 x
(o)−−→ 0
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(2) Assume that xα4x
(o)−−→ 0. As (xα∨x)	x ≤ xα4x and x	(xα∧x) ≤ xα4x

we obtain that (xα∨x)	x
(o)−−→ 0 and x	(xα∧x)

(o)−−→ 0. It follows that xα∨x
(o)−−→ x

and xα ∧ x
(o)−−→ x (see [16]). Because for every α we have xα ∧ x ≤ xα ≤ xα ∨ x, we

conclude that xα
(o)−−→ x.

Theorem 3.3. For a state ω on a lattice effect algebra E the following conditions
are equivalent:

(i) ω is subadditive,
(ii) ω is a valuation,
(iii) ρω : E × E → [0, 1] defined by ρω(a, b) = ω(a4 b) is a pseudometric.

Proof For a proof of (i) ⇐⇒ (ii) we refer to [20].
(ii) =⇒ (iii): By Lemma 3.1, ρω(a, b) ≤ ρω(a, c)+ρω(b, c) for all a, b, c ∈ E. The

rest is trivial.
(iii) =⇒ (ii): If ρω is a pseudometric then ω(a 4 b) = ω(a ∨ b) − ω(a ∧ b) =

ρω(a, b) ≤ ρω(a, a∧ b) + ρω(a∧ b, b) = ω(a)− ω(a∧ b) + ω(b)− ω(a∧ b) which gives
ω(a ∨ b) ≤ ω(a) + ω(b).

In the sequel, we will denote by τρω
the pseudometric topology compatible with ρω.

It is easy to check that ρω has the following properties:
(1) ρω(0, a) = ρω(b, a⊕ b), for all b ≤ a′

(2) 0 ≤ a ≤ b =⇒ ρω(0, b) = ρω(0, a) + ρω(a, b)
(3) ρω(a, b) = ρω(a ∧ b, a ∨ b) = ρω(a′, b′)

which gives
(4) aα

τρω−−→ a iff a′α
τρω−−→ a′

(5) aα
τρω−−→ 0 iff aα ⊕ b

τρω−−→ b for all aα ≤ b′.
By (5) we obtain

(6) If b ≤ bα ≤ c′ then bα
τρω−−→ b iff bα 	 b

τρω−−→ 0 iff bα ⊕ c
τρω−−→ b⊕ c.

Theorem 3.4. For every valuation ω on a lattice effect algebra E, τρω
= τω.

Proof (1) Assume aα
τω−→ a. Then for every x ∈ E we have ω(aα ∨ x) → ω(a ∨ x)

and ω(aα∧x) → ω(a∧x), hence ω(aα4a) = ω(aα∨a)−ω(aα∧a) → ω(a)−ω(a) = 0
which is equivalent to aα

τρω−−→ a.
(2) Conversely, let aα

τρω−−→ a. Then ω(aα 4 a) = (ω(aα ∨ a) − ω(a))+
(ω(a) − ω(aα ∧ a)) → 0 which gives ω(aα ∨ a) → ω(a) and ω(aα ∧ a) → ω(a).
It follows that also ω(aα) → ω(a). Let x ∈ E be arbitrary. Then ω(a ∨ x) ≤
ω(aα ∨ a) + ω(x) − ω(a ∧ x) → ω(a) + ω(x) − ω(a ∧ x) = ω(a ∨ x), which gives
ω(aα ∨ a∨ x) → ω(a∨ x). Further, ω(aα ∧ a) + ω(x)−ω(a∧ x) ≤ ω((aα ∧ a)∨ x) ≤
ω(aα ∨ x) ≤ ω(aα ∨ a ∨ x) → ω(a ∨ x) and hence ω(aα ∨ x) → ω(a ∨ x) because
also ω(aα ∧ a) + ω(x)− ω(a ∧ x) → ω(a) + ω(x)− ω(a ∧ x) = ω(a ∨ x). Moreover,
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ω(aα ∧ x) = ω(aα) + ω(x)− ω(aα ∨ x) → ω(a) + ω(x)− ω(a ∨ x) = ω(a ∧ x).

4. Relations between topologies τi, τo, τρω and τω

Recall that the interval topology τi on a bounded poset P is a coarsest topology
in which every interval [a, b] is a closed set. Hence complements of finite unions of
closed sets generate an open base of τi. The order topology τo on P is the finest

topology in which xα
(o)−−→ x =⇒ xα

τo−→ x. Hence a set F ⊆ P is a closed set in τo

iff for every net (xα)α∈E of elements of F : xα
(o)−−→ x =⇒ x ∈ F . Further τi ⊆ τo,

and if τi is Hausdorff then τi = τo (see [5]). By Frink [7] the interval topology on a
lattice P is compact iff P is complete.

Definition 4.1. A lattice effect algebra (E;⊕, 0, 1) is called order continuous ((o)-
continuous for brevity) if for any net of elements of E and x, y ∈ E: xα ↑ x =⇒
xα ∧ y ↑ x ∧ y.

It is easily seen that in an (o)-continuous lattice effect algebra we have:

xα
(o)−−→ x, yα

(o)−−→ y =⇒ xα ∨ yα
(o)−−→ x ∨ y and xα ∧ yα

(o)−−→ x ∧ y. We need only
consider that xα ↑ x iff x′α ↓ x′ and that in every lattice xα ∨ yα ↑ x ∨ y. Note that
(o)-continuous lattice effect algebras were also called meet continuous lattices [8].

Theorem 4.2. Let E be a lattice effect algebra and let ω : E → [0, 1] be a state on
E. Then

(i) ω is faithful =⇒ τω is T2,
(ii) ω is faithful =⇒ τi ⊆ τω,
(iii) ω is subadditive and faithful =⇒ τω = τρω is a metric topology,
(iv) ω is subadditive and faithful =⇒ (τρω ⊆ τo iff ω is (o)-continuous),
(v) E and ω are (o)-continuous =⇒ τω ⊆ τo.

Proof (i) Assume that xα
τω−→ x1 and xα

τω−→ x2. If x1 6= x2 then either x1∧x2 < x1

or x1 ∧ x2 < x2. Let x1 ∧ x2 < x1. Then ω(x1 ∧ x2) < ω(x1). By definition of τω

we have ω(xα ∧ x1) → ω(x1) and ω(xα ∧ x1) → ω(x2 ∧ x1), a contradiction. Hence
x1 = x2, which gives that τω is T2.

(ii) Let a ≤ xα ≤ b and let xα
τω−→ x. Then xα = xα∨a = xα∧b and by definition

of τω we have ω(xα) = ω(xα ∨ a) = ω(xα ∧ b) → ω(x) = ω(x ∨ a) = ω(x ∧ b). As
x ∧ b ≤ x ≤ x ∨ a and ω is faithful we conclude that x ∧ b = x = x ∨ a which gives
x ∈ [a, b].

(iii) As ω is a faithful valuation, we have τω = τρω and ω(x4y) = 0 iff x4y = 0
iff (x∨ y)	 (x∧ y) = 0 iff x∧ y = x∨ y iff x = y, which gives ρω(x, y) = 0 iff x = y.

(iv) Assume that ω is (o)-continuous. Then by Lemma 3.2, xα
(o)−−→ x =⇒

xα 4 x
(o)−−→ 0 =⇒ ω(xα 4 x) → ω(0) = 0 =⇒ xα

τρω−−→ x. It follows by definition
of τo that τρω

⊆ τo.
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Conversely, if τρω
⊆ τo then xα

(o)−−→ x =⇒ xα
τo−→ x =⇒ xα

τρω−−→ x. As
ω is τω-continuous and τω = τρω , we conclude that ω(xα) → ω(x), hence ω is
(o)-continuous.

(v) Assume that xα
(o)−−→ x. Then by (o)-continuity of E we have xα∨y

(o)−−→ x∨y

and xα ∧ y
(o)−−→ x ∧ y for all y ∈ E. By (o)-continuity of ω we obtain ω(xα ∨ y) →

ω(x ∨ y) and ω(xα ∧ y) → ω(x ∧ y), for all y ∈ E, which gives xα
τω−→ x. It follows

τω ⊆ τo by definition of τo.

Definition 4.3. We say that a bounded lattice L has separated intervals if given
any two disjoint intervals [a, b], [c, d] ⊆ L, the lattice L can be covered by finite
number of closed intervals each of which is disjoint with at least one of [a, b] and
[c, d].

In [17] it was proved that the interval topology τi on a complete lattice L is Hausdorff
iff L has separated intervals.

Since the partial operation ⊕ on an effect algebra E is associative, the existence
and the meaning of a1⊕a2⊕· · ·⊕an for elements of E is defined recurrently. M ⊆ E

is called an orthogonal set if for every finite set {a1, a2, . . . , an} ⊆ M, a1⊕a2⊕· · ·⊕an

is defined. Q ⊆ E is called a set of mutually orthogonal elements if any two different
elements a, b ∈ Q are orthogonal; i.e., a ≤ b′. Evidently, every orthogonal set is a
set of mutually orthogonal elements but not conversely.

Definition 4.4. An effect algebra (E;⊕, 0, 1) is called Archimedean if for no
nonzero element e ∈ E, ne = e ⊕ e ⊕ · · · ⊕ e (n-times) exists for every n ∈ N .
E is called separable if it is Archimedean and every orthogonal set of elements in E

is at most countable.

It was proved in [20] that if there exists a faithful state m on an effect algebra
(E;⊕, 0, 1) then E is separable.

Theorem 4.5. Let E be a complete effect algebra with separated intervals.
(i) If there exists a faithful, subadditive and (o)-continuous state ω on E then

τi = τω = τρω
= τo

and (E, τρω
) is a compact metric space. Moreover, E is (o)-continuous, mod-

ular and separable.
(ii) If there exists an (o)-continuous state on E and E is (o)-continuous then

τi = τω = τo

and τω is a compact Hausdorff topology on E.
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Proof (i) By Theorem 4.2 we have τi ⊆ τω = τρω ⊆ τo. As E is a complete
lattice with separated intervals, the topology τi is T2 [17]. It follows that τi = τo

and by the Frink theorem τi is compact as E is complete. For the proof that E is
(o)-continuous, modular and separable, we refer the reader to [20].

(ii) By Theorem 4.2, τi ⊆ τω ⊆ τo and by [17] τi = τo.

Remark 4.6. Note that the (o)-continuity of a state ω on a separable lattice effect
algebra E is equivalent with σ-additivity of ω, i.e., ω(

⊕∞
n=1 xn) =

∑∞
n=1 ω(xn),

where
⊕∞

n=1 xn =
∨∞

n=1(
⊕n

k=1 xk) for every sequence (xn)∞n=1 in E for which∨∞
n=1(

⊕n
k=1 xk) is defined.

In [22] it was proved that on every Archimedean atomic distributive effect alge-
bra E (e.g., every Archimedean atomic MV -algebra) there exists an (o)-continuous
subadditive state. By [18] on every separable complete modular atomic effect al-
gebra E there exists an (o)-continuous faithful state. Moreover, by a generalzation
of the Kaplansky theorem [18] every complete modular atomic effect algebra is an
(o)-continuous lattice.

Acknowledgments

This research was supported by Grant 1/7625/20 of the Ministry of Education of
the Slovak Republic.

References

1. C.C. Chang, “Algebraic analysis of many-valued logics”, Trans. Amer. Math. Soc. 88
(1958) 467–490.

2. R. Cignoli and I.M.L. D’Ottaviano, D. Mundici, Algebraic Foundations of Many-valued
Reasoning (Kluwer Academic Publishers, Dordrecht, 2000).

3. A. Császár, General Topology (Akadémiai Kiadó, Budapest, 1978).
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