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A morphing trailing-edge (TE) wing is an important morphing mode in aircraft design. In order to explore the static aeroelastic
characteristics of a morphing TE wing, an efficient and feasible method for static aeroelastic analysis has been developed in this
paper. A geometrically exact vortex lattice method (VLM) is applied to calculate the aerodynamic forces. Firstly, a typical model
of a morphing TE wing is chosen and built which has an active morphing trailing edge driven by a piezoelectric patch. Then,
the paper carries out the static aeroelastic analysis of the morphing TE wing and corresponding simulations were carried out.
Finally, the analysis results are compared with those of a traditional wing with a rigid trailing edge using the traditional
linearized VLM. The results indicate that the geometrically exact VLM can better describe the aerodynamic nonlinearity of a
morphing TE wing in consideration of geometrical deformation in aeroelastic analysis. Moreover, out of consideration of the
angle of attack, the deflection angle of the trailing edge, among others, the wing system does not show divergence but
bifurcation. Consequently, the aeroelastic analysis method proposed in this paper is more applicable to the analysis and design
of a morphing TE wing.

1. Introduction

Morphing aircraft can change the shape of air vehicles and
vehicle components to adapt to a changing mission environ-
ment and achieve the best flight performance in a variety of
missions. Compared with other morphing aircraft designs,
a morphing TE wing outstandingly improves the aerody-
namic characteristics of the aircraft. It also has a remarkable
influence on low-speed cruise and on the take-off and land-
ing of aircrafts. There are many structural forms of morphing
TE wings such as a traditional morphing TE wing which is a
hinged structure driven by a motor and a smart structure TE
morphing wing based on smart materials [1]. Each morphing
TE wing has its own advantages and disadvantages.

A growing body of research is dedicated to the applica-
tion of piezoelectric materials to a morphing wing. FlexSys
Inc. of USA designed a wing structure that can achieve con-
tinuous variable camber, with a trailing-edge deflection of
-10°~+10°. The wing based on a piezoelectric ceramic driver
serves to achieve high frequency wing rapid deformation
[2]. Kansas University has conducted research on a novel pie-

zoelectric actuator to drive tip deformation of microaircraft
[3]. Flight tests showed excellent roll control of the piezoelec-
tric actuator for the microaircraft. In the same year, the
Canadian National Research Council Institute of Aeronau-
tics developed a flexible curved wing with MFCs [4]. The
MFCs were employed to drive the trailing edge of the wing
to bend. Moreover, Onur Bilgen from Virginia Tech Univer-
sity (USA) designed a control system for wingtip torsional
deformation of microaircraft by virtue of a macrofiber com-
posite (MFC) and tested the driving performance of MFC
for glass fiber composite patches [5]. Wind tunnel tests were
conducted to study the difference between the trailing-edge
control and the MFC driving wing. The results demonstrated
that the resistance of theMFC-driven compositewing is lower,
and the driving bandwidth is wider. The flight test was suc-
cessfully carried out then. Afterward, the German Aerospace
Center conducted an active torsional rotor research [6] by
embedding piezofiber composite actuators with different lay
angles in the rotor. Furthermore, a span-wise morphing
trailing-edge concept was proposed by Pankonien and
Inman in a modular design of 12 alternating active and
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passive aileron sections [7]. The active ailerons were driven
by macrofiber composites which bent the trailing edge to
cause a smooth chord-wise camber change of airfoils. Also,
wind tunnel tests at a flow speed of 10m/s were carried
out by virtue of a hardware demonstrator. Results indi-
cated that the developed span-wise morphing trailing edge
led to excellent aerodynamic and structural performance.
In addition, Ohanian et al. and Kochersberger et al. com-
pared a novel morphing control surface design employing
piezoelectric MFC actuators with a servo-actuated system
[8–10]. A comprehensive comparison including aerody-
namics, size, weight, power, bandwidth, and reliability has
been extended to include flight test comparisons. The
morphing actuation scheme demonstrated a control band-
width that was an order of magnitude greater than for the
servo-actuated system, but showed a 12% decrease in roll
rate when compared to the servo-actuated baseline aircraft.
Flight tests are planned to fully prove the benefits of
the morphing actuation which achieved 1 million cycles
without failure and minimal degradation over a servo-
actuated design.

However, there are still deficiencies in these studies.
Firstly, the aerodynamic forces in the previous studies are
all calculated based on CFD, which can inarguably generate
accurate aerodynamic results but not lend itself to structure
optimization and control system design of the morphing
wing due to its time-consuming nature. Secondly, most
previous researches concentrated on the realization of a
deformation mechanism without giving equal prominence
to the effects of wing deformation on the aerodynamics.
At last, in these studies, the aeroelastic characteristics were
examined only after the design had been completed, which
renders it difficult to remedy potential design flaws. Differ-
ent from the above research, Li et al. made an investigation
into the nonlinear aeroelastic behavior of a composite wing
with morphing trailing edge actuated by curved beams
[11]. In the analysis, a doublet lattice method was used to
calculate unsteady aerodynamic force. Results suggested
that wing deformation was correlated with aeroelastic
responses of the composite wing. In addition, the aeroelas-
tic method based on VLM is very mature. Stanford and
Beran optimized the design of a flapping wing in forward
flight with active shape morphing using an inviscid three-
dimensional unsteady vortex-lattice method [12]. Xie
et al. used a nonplanar VLM to compute the nonplanar
aerodynamics of flexible wings with large deformation
[13]. The VLM boasts a moderate level of fidelity and a rel-
atively inexpensive cost of computation. However, as a
result of the linearization of boundary conditions, the tradi-
tional linear VLM loses sight of the influence of geometric
deformation on an aerodynamic influence coefficient
matrix. This method is not applicable to the aeroelastic
analysis of a morphing wing, especially when the aerody-
namic shape is changed significantly compared with the ini-
tial one. To offset the aforementioned deficiencies, a new
aerodynamic calculation method based on nonplanar VLM
is proposed herein to serve as a static aeroelastic analysis
method for a morphing TE wing. This new method can play
a better role in shedding light on the aerodynamic charac-

teristics of the 2D wing with the control surface than the
conventional linearized VLM, hereinafter referred to as geo-
metrically exact VLM.

In Section 2, a 2D wing with an active morphing trailing
edge driven by a piezoelectric patch was chosen as the
research object to analyze its static aeroelastic characteristics.
In Section 3, a set of numerical validations are carried out and
the analysis results are compared with traditional wings with
a rigid trailing edge by the traditional linearized VLM. The
results not only theoretically deepen the understanding of
the aerodynamic and aeroelastic characteristics of a morph-
ing TE wing, but they also provide the theoretical basis for
further research on a comprehensively optimized design of
a morphing TE wing.

2. Methodology

2.1. Morphing Piezoelectric Wing Model. The main purpose
of this paper is to establish a clear and accurate aeroelastic
formulation of the morphing TE wing and shed light on
its aeroelastic properties by virtue of the geometrically exact
VLM. Thus, a typical and simple model of the morphing TE
wing is chosen and analyzed which has an active morphing
trailing edge driven by a piezoelectric patch, hereinafter
referred to as the morphing piezoelectric wing. In particular,
there is no gap between the wing and the active morphing
trailing edge, as opposed to traditional wings with a rigid
trailing edge. The morphing piezoelectric wing is modeled
as a beam, as shown in Figure 1. X-0-Y is a rectangular
coordinate system on the ground. x-0-y is the rectangular
coordinate system for the rigid part of the wing, while s-0-
n is the rectangular coordinate system for the elastic bending
part of the wing. The piezoelectric patch covers the trailing
edge of the wing which is taken as the active morphing trail-
ing edge, and the length of the trailing edge is denoted as l2,
while the length of the other part of the wing is denoted
as l1. According to the characteristics of the piezoelectric
patches, the bending moment MP is generated to deform
the beam when a voltage is added to both ends of the patch.
The voltage is denoted as piezoelectric voltage U , and the
trailing-edge deflection angle is denoted as β. A torsion
spring is installed, of which the stiffness is equivalent to
the pitch stiffness Kθ. The angle of attack is α, and the pitch
angle is θ. It is generally considered that the wing profile is
rigid. And all deformation of the beam is assumed to be
caused by piezoelectric torque. The entire wing rotates
around the torsion spring under aerodynamic load. This is
therefore a simple rigid-elastic coupling dynamics model.
Meanwhile, the simulation does not take into account the
piezoelectric voltage limit, the installation form of the piezo-
electric patches, and the nonlinear factors of the piezoelec-
tric patches.

2.2. Piezoelectric Trailing Edge Deformation. The geometrical
deformation of the trailing-edge may be considerable under
the action of piezoelectric moments in Figure 1. Therefore,
a small deformation assumption is not used when describing
wing deformation in this paper. This is a geometric nonlinear
problem with large deformation and small strain. The
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bending strain ε in the cross section can be obtained through
the linear constitutive equation:

ε =
n

ρ
, ð1Þ

where ρ represents the radius of curvature of the trailing-
edge and n represents the distance from the neutral layer.

The upper surface bending strain εs is as follows:

εs =
H

2ρ
, ð2Þ

where H represents the thickness of the trailing-edge.
The relationship between the bending moment of the

beam Ms and the deformation of the beam can be
expressed as

1

ρ
=

Ms

EsIs
, ð3Þ

where Es represents the elastic modulus of the beam and
Is represents the section moment of inertia.

Notably, the piezoelectric constitutive equation can be
expressed as [14]:

σpx = Ep εpx − d31Ee

� �
, ð4Þ

where Ep stands for the elastic modulus of the piezoelectric

patch, d31 is the piezoelectric constant, Ee stands for the
strength of an electric field around the piezoelectric patch,
σpx stands for the stress of the piezoelectric patch, and εpx
stands for the strain of the piezoelectric patch, respectively.
The piezoelectric patches are assumed as very thin, conse-
quently σpx and εpx can be constant. No change occurs to

the neutral layer of the beam after the piezoelectric patch is
attached to the beam surface. The strain of the piezoelectric

patch along the x direction is equal to the strain of the beam
on the upper surface as follows:

εpx = εs: ð5Þ

For ease of calculations, it is assumed that the neutral
layer of the beam does not change while the thickness of
the piezoelectric patch cannot be ignored. Accordingly,
the bending moment of the piezoelectric patch can be
written as

Mp = b

ðH/2ð Þ+h

H/2

σpxzdz = b

ðH/2ð Þ+h

H/2

Ep d31Ee −
z

ρ

� �
zdz, ð6Þ

where h represents the thickness of the piezoelectric patch
and Mp represents the bending moment of the piezoelec-

tric patch. Mp and Ms refer to the relationships between

internal forces, which can be expressed as

Mp = −Ms: ð7Þ

Finally, by assembling equations (1), (2), (3), (4), (5),
(6) and (7), the trailing-edge deflection angle can be calcu-
lated by the following equation:

β =
1

1 + 2h/Hð Þ + 4h2/3H2
� �

+ AsEs/3ApEp

� �

⋅ d31U
1

H
+
1

h

� �
⋅
2l2
H

:

ð8Þ

As to the aerodynamic calculation, the thin-airfoil
camberline is divided into n distributed subpanels where
the piezoelectric trailing edge is equally divided into n2
distributed subpanels and the other part is equally divided
into n1 distributed subpanels. It is notable that the trailing
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Figure 1: The morphing piezoelectric wing model.
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edge deflection angle and piezoelectric voltage are linearly
dependent; accordingly, a discrete expression of equation
(8) is defined as

βi = KpiU , ð9Þ

where

2.3. Aerodynamic Force Calculation of Morphing Wing. The
present study considers the aerodynamic force of the 2D
wing as a thin airfoil with a significantly different configura-
tion, regardless of the actual conditions of its airfoil. The
position vector of the camberline can be expressed as a para-
metric equation as follows:

r = x sð ÞeX + y sð ÞeY , ð11Þ

where eX and eY are the basis of X-0-Y .
The expressions of the total aerodynamic lift L and the

total aerodynamic moment M are as follows [15]:

where q represents the dynamic pressure around the wing, S
represents the reference wing area, Cp represents the aerody-

namic pressure coefficient distribution at s, x0 and y0 repre-
sent the coordinates of the positions of the torsion spring,
and φ represents the local downwash angle.

VLM is a numerical method for solving the steady aero-
dynamic loads of a 2D wing. Herein, the thin-airfoil camber-
line is divided into n equally distributed subpanels, and the n
vortex points are placed at the quarter-chord point of each
panel. Accordingly, the aerodynamic force can be written as

L = 〠
n

i=1

qSCpi cos φiΔsi,

M = 〠
n

i=1

qSCpi ⋅ xi − x0ð Þ cos φi − yi − y0ð Þ sin φið ÞΔsi,

8
>>>><

>>>>:

ð13Þ

where Cpi represents the aerodynamic pressure coefficient

distribution at the ith panel. Δsi represents the length of
the ith panel, and φi represents the local downwash angle.
The aerodynamic force obtained by equation (13) is based
on the real aerodynamic shape considered as the aerody-
namic force obtained by the geometrically exact VLM in
this context.

When the traditional linear VLM is used in aeroelastic
analysis, the aerodynamic force is independent of the local
downwash angle. The aerodynamic solution formula of tra-
ditional linear VLM can be simplified by equation (13) as

L = 〠
n

i=1

qSCpiΔsi,

M = 〠
n

i=1

qSCpi ⋅ xi − x0ð ÞΔsi:

8
>>>><

>>>>:

ð14Þ

In addition to the difference in the aerodynamic solution
formula, the difference between the two VLMs is also reflected
in the solution of pressure coefficient distribution.

When the aerodynamic force is calculated by traditional
linearized VLM, the aerodynamic influence coefficient matrix
is regarded as constant. Besides, the boundary conditions are
linearized. Consequently, the aerodynamic forces mentioned
above are linear, whose coefficients are constant. The Cp can

be defined in equation (15) [15] as follows:

Cp1

⋮

CpN

0

BB@

1

CCA = −
2n

l
A−1
0

α + θ + β1

⋮

α + θ + βn

0

BB@

1

CCA, ð15Þ

Kpi =

0, 1 ≤ i ≤ n1,

1

1 + 2h/Hð Þ + 4h2/3H2
� �

+ AsEs/3ApEp

� � ⋅ d31
1

H
+
1

h

� �
⋅
2l2 i − n1ð Þ

Hn2
, n1 + 1 ≤ i ≤ n1 + n2:

8
><

>:
ð10Þ

L = qS

ðl

0

Cp

dx sð Þ

ds
ds = qS

ðl

0

Cp cos φds,

M =

ðl

0

qSCp

dr

ds
× r − r0ð Þ

� �
ds = qS

ðl

0

Cp x sð Þ − x0ð Þ cos φ + y sð Þ − y0ð Þ sin ϕð Þφds,

8
>>>>>>>><

>>>>>>>>:

ð12Þ
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where A0 denotes the aerodynamic influence coefficient
matrix before deformation.

Substitute equation (15) into equation (14), and we can
obtain

L = −2qSWA−1
0 NT ,

M = −2qSD0A
−1
0 NT ,

(
ð16Þ

where N = ½α + φ1,⋯, α + φn�, φi = θ + βi, W = ½1,⋯, 1�,
D0 = ½d1,⋯, dN �, and di denotes the distance from the center
of the ith panel to the torsion spring before deformation.

It can be seen from equation (16) that there is a linear
relationship between the airfoil pitch angle θ and the aerody-
namic moment. So the traditional linearized VLM is very effi-
cient in terms of analyzing the aeroelastic characteristic of the
morphing piezoelectric wing. But its accuracy is still inade-
quate, which is demonstrated in the following two aspects.
Firstly, the influence coefficient matrix of the aerodynamic
force cannot reflect the influence of the trailing edge control
surface. Secondly, the real boundary conditions are not
implemented where α and sin α are considered as equivalent.
In order to offset the deficiencies, the geometrically exact
VLM is proposed to calculate the aerodynamic forces of
morphing wings.

The calculation of the pressure coefficient of the morph-
ing piezoelectric wing by virtue of the geometrically exact
VLM is as follows:

Cp1

⋮

CpN

0

BB@

1

CCA = −
2n

l
A Uð Þ−1

sin α0 + θ + β1ð Þ

⋮

sin α0 + θ + βNð Þ

0

BB@

1

CCA, ð17Þ

where AðUÞ denotes the influence coefficient matrix of the
aerodynamic force which is a matrix function of piezoelectric
voltage. This matrix function represents the relationship
between wing deformation and influence coefficient matrix.

Substitute equation (17) into equation (13), the aerody-
namic lift and moment are shown as

�L = −2qS �WA Uð Þ−1 N + N̂
� �T

,

�M = −2qS�DA Uð Þ−1 N + N̂
� �T

,

8
<

:
ð18Þ

where N̂ = ½bφ1,⋯, bφn�, bφ i = −ð1/6Þðα0 + φiÞ
3
+ o3ðα0 + φiÞ,

�W = ½cos φ1,⋯, cos φn�, and
�D = ½d1 cos θ,⋯, dN cos θ�.

Figure 2 shows the different discrete vortex representa-
tions of the morphing wing after deformation using different
VLMs. At this phase, the camberline is divided into n sub-
panels, whose length is Δsi. In Figure 2(a), the blue line rep-
resents the actual aerodynamic surface before deformation.
And the red line represents the real aerodynamic surface after
deformation. In Figures 2(b) and 2(c), the dots represent the
vortex points and the forks represent the control points. The
vector ni is the normal vector of the ith panel in the aerody-
namic surface after deformation which represents the zero
normal flow boundary condition. It can be seen from

Figures 2(b) and 2(c) that when the aerodynamic force is cal-
culated by the traditional linear VLM in the presence of
deformation of the aerodynamic surface, the positions of
the control point and vortex point remain unchanged, and
only the boundary condition is changed. When the geometri-
cally exact VLM is employed to calculate the aerodynamic
force, the position of the control point and my point will be
changed correspondingly with the deformation of the aero-
dynamic surface. Obviously, it can be seen that the vortex
distribution points change significantly when the trailing-
edge deflects, so the aerodynamic influence coefficient matrix
calculated by VLM cannot be considered as constant.

2.4. Aeroelastic Analysis Using Traditional Linearized VLM.
The morphing piezoelectric wing balance equation is defined
as follows:

M = Kθθ: ð19Þ

Based on equations (16) and (19), when the system is in a
state of equilibrium, the pitch angle of the airfoil θ ∗ can be
obtained as follows:

θ∗ =
−2qSD0A

−1
0 αWT +UKT

P

� �

Kθ + 2qSD0A
−1
0 WT

, ð20Þ

where KP = ½Kp1,⋯KpN �.

The denominator of equation (20) will become zero when
the dynamic pressure reaches a certain value, which makes
θ ∗ approach infinity and the 2D wing becomes unstable.
The certain dynamic pressure is denoted by divergent
dynamic pressure qdiv . It is a crucial aeroelastic parameter
for the wing in that it represents the highest dynamic pres-
sure that the wing can sustain before being destroyed. The
qdiv can be obtained by the following equation using tradi-
tional linearized VLM:

qdiv =
Kθ

−2SD0A
−1
0 WT

: ð21Þ

It can be seen from equation (21) that the divergent
dynamic pressure calculated by traditional linearized VLM
is proportional to Kθ and is related to the aerodynamic arm
D0. Therefore, increasing the torsional stiffness of the wing
or reducing the aerodynamic arm can both improve qdiv .

The downward deflection of the control surface increases
the lift while it produces a negative pitching moment, which
makes the 2Dwing rotate in the direction of reducing the angle
of attack, thereby diminishing the control surface efficiency.
The efficiency keeps decreasing with the increase of the
dynamic pressure, which even leads to aileron reversal. Aileron
reversal is defined as the concurrence of the increase of the
trailing edge deflection angle and the decrease of the total lift.

Considering that the airfoil rotated under the aerody-
namic load, the lift is given by

Lθ =
L0Kθ − L0 ∂M/∂θð Þ +M0 ∂L/∂θð Þ

Kθ − ∂M/∂θð Þ
, ð22Þ
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where L0 andM0 represent the aerodynamic lift and moment
prior to aeroelastic deformation which can be obtained by
equation (16) when θ is set to zero.

When the lift becomes zero, the control surface fails to
work, thus the efficiency of the control surface is reduced to
zero. The dynamic pressure in the presence of control rever-
sal is called the control reversal dynamic pressure, denoted by
qR. When the numerator of equation (22) is set as zero, we
substitute equations (16) and (21) into equation (22) to
obtain qR, which is written as

qR =
DA−1

0 WT +UKT
P

� �
Kθ

2SD0A
−1
0 UKT

PWA−1
0 WT − 2SD0A

−1
0 WTWA−1

0 UKT
P

:

ð23Þ

Besides, the efficiency of the control surface is defined as
the ratio of the aerodynamic lift after aeroelastic deformation
to that before aeroelastic deformation, as in

η =
Lθ
L0

= 1 +
−2qsWA−1

0 WT

K + 2qsD0A
−1
0 WT

D0A
−1
0 UKT

P +WT
� �

WA−1
0 UKT

P +WT
� � : ð24Þ

2.5. Aeroelastic Analysis Using Geometrically Exact VLM. The
morphing piezoelectric wing balance equation using aerody-
namic moments in equation (18) is defined as follows:

�M = Kθθ: ð25Þ

It is worth noting that equation (25) is a nonlinear
transcendental equation. In fact, equation (25) is an aero-
elastic equation, whose nonlinearity appears in the process

of structural and aerodynamic coupling. Although VLM is a
linear aerodynamic method, the relationship between aero-
dynamic moment and pitch angle θ obtained by the geomet-
rically accurate VLM is not linear through the analysis in
Section 2.4.

Through the following equations, we can obtain the pitch
angle θ of the 2D wing in balance through an iterative solu-
tion, as in

θn+1 = θn −
�M θnð Þ − Kθθn

∂ �M/∂θ
� �

∣θ=θn − Kθ

: ð26Þ

There is some difference in the static aeroelastic stability
of the 2D wing between the use of the geometrically exact
VLM and traditional linearized VLM. Because unlike equa-
tion (19), equation (25) has multiple solutions in some con-
ditions, which warrants analysis of the stability of each
solution. According to the energy criterion [16], the 2D wing
is in a stable equilibrium state when the variation of elastic
potential energy is less than the variation of aerodynamic
work in the presence of a slight disturbance. Besides, when
the variation of elastic potential energy is equal to the varia-
tion of aerodynamic work in the presence of a slight distur-
bance, the system is in a critical equilibrium state while the
corresponding aerodynamic load is a critical load.

Under a slight disturbance of the pitch angle δθ, the
variation of aerodynamic work can be defined as follows:

ΔWa =

ðθ∗+δθ

θ∗

�M θð Þdθ = �M θ∗ð Þδθ +
∂ �M

∂θ θ=θ∗θ
∗δθ +

1

2

∂ �M

∂θ

����

����
θ=θ∗

δθ2:

ð27Þ

After  deformation

Before  deformation
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(a) Aerodynamic surface before and after deformation
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(b) Discrete vortex representation using traditional linear VLM
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(c) Discrete vortex representation using geometrically exact VLM

Figure 2: The different discrete vortex representations using different VLMs.
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And the variation of spring elastic potential energy can
be defined as

ΔU =
1

2
Kθδθ

2 + Kθθ
∗δθ: ð28Þ

When ΔU = ΔWa, the system is in neutral equilibrium.
Applying equations (27) and (28) to it, the following sim-
plified critical equilibrium state is reached:

∂ �M

∂θ

����
θ=θ∗

= Kθ: ð29Þ

Traditional aeroelastic analysis is based on linear aero-
dynamic theory. As a result, the critical equilibrium solu-
tion of the linear 2D wing system can be obtained as the
divergence dynamic pressure. However, when using the
geometrically exact VLM, the 2D wing system becomes
nonlinear. Thus, it becomes inappropriate to discuss the
divergence dynamic pressure of the nonlinear system.
Instead, the number and stability of equilibrium solutions
should be analyzed. Due to the complexity of solving
equation (25), the numerical solution of the static aero-
elastic stability of the piezoelectric wing is obtained for
theoretical analysis instead of the analytical solution.

There is also some difference between the control surface
efficiency of the 2D wing by the geometrically exact VLM and
that by the traditional linearized VLM. Unlike the linear
solution, the aerodynamic forces are related to the pitch angle
θ and the trailing edge deflection angle β. Therefore, it is
inappropriate to define control reversal dynamic pressure
when aerodynamic lift reaches 0. Instead, the control reversal
occurs when the lift decreases with the increase of β, and the
corresponding dynamic pressure is called reverse dynamic
pressure qr which can be obtained by the following equation:

∂�L

∂U

����
θ=θ∗

= 0: ð30Þ

Also, the control surface efficiency is defined similar to
equation (22) as

η =
�L
�L0

: ð31Þ

In this study, both equations (30) and (31) were solved by
the nonlinear equation solution function of the MATLAB
R2014a software.

3. Numerical Validation

In this paper, the piezoelectric constant d31 is always set to be
3:85 × 1014V ⋅m/N and all the structure parameters are listed
in Table 1. The parameters of the piezoelectric patch are
determined by real MFC.

In addition, the traditional wing with a rigid trailing edge
is introduced to compare with the morphing piezoelectric
wing. These two wings have the same chord length of control

surface and the same vertical displacement of the trailing
edge, as shown in Figure 3. Both the wings are considered
to have the equivalent deflection angle, β.

3.1. Aerodynamic Characteristics of the Morphing
Piezoelectric Wing. The aerodynamic loads of the morphing
piezoelectric wing were calculated by both traditional linear-
ized VLM and geometrically exact VLM. The lift coefficient
and the moment coefficient with respect to the angle of attack
are plotted in Figure 4. The angles of attack range from 0° to
12°. The torsion spring is set at 35% of chord-wise length and
the control surface is 30% of chord. According to equation
(8), the trailing edge of the morphing piezoelectric wing is
deflected by 3.585 degrees per kilovolt.

It can be seen from Figure 4 that at the same angle of
attack, the greater the driving voltage, the greater the aerody-
namic force and the smaller the aerodynamic moment. The
reason behind this is that a greater driving voltage creates a
larger deflection of the trailing edge which leads to a bigger
increment of angle of attack at the trailing edge, while the
aerodynamic lift increased with the angle of attack. However,
it shortens the mean aerodynamic chord of the wing, which
makes the trailing edge deflect downward at greater driving
voltage, resulting in the decrease of the aerodynamic
moment. This conclusion is consistent with both traditional
linearized VLM and geometrically exact VLM.

In addition, although the aerodynamic lifts and moments
increase with the angle of attack, a slight difference exists
between these two VLMs. For one thing, when the angle of
attack α ranges from 0° to 6°, the aerodynamic coefficient cal-
culated by the two VLMs are almost the same. In contrast,
when α is above 6°, Cl and Cm calculated by the geometrically
exact VLM are smaller than those calculated by the tradi-
tional linearized VLM. For another, with the increase of α
and driving voltage, the differences between the two aerody-
namic coefficients become larger, which is mainly attributed
to the limitation of the traditional linearized VLM. When the
2D wing has a large angle of attack or a large trailing edge
deflection angle, the boundary conditions cannot be linear-
ized and the corresponding aerodynamic influence coeffi-
cient matrix cannot be considered as a constant matrix. As
a result, the traditional linearized VLM is inapplicable for
analyzing the aerodynamic characteristics of the 2D wing in
this context. In contrast, the geometrically exact VLM
exhibits considerable accuracy in calculating the aerody-
namic coefficients at a large angle of attack and the trailing
edge deflection angle. Results are consistent with the aerody-
namic characteristics of the thin airfoil.

Consequently, a case is set to explore the influence of
control surface length on aerodynamic coefficients. With
the angle of attack kept as 0° and the equivalent deflection
angle (β = 7:17°) of the different trailing edge unchanged,
the starting location of the control surface was changed to
calculate the aerodynamic coefficient. The results are shown
in Figure 5.

Figure 5 shows that as the starting location of the control
surface moves backward, the lift coefficient and moment
coefficient caused by the trailing edge deflection decrease,
which can be attributed to the lowered effective area of the
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control surface. In addition, both Cl and Cm obtained by the
geometrically exact VLM are smaller than those obtained by
the traditional linearized VLM, which is consistent with the
above conclusion. In Figure 5(a), the Cl of the morphing pie-
zoelectric wing is higher than that of the wing with a rigid
trailing edge. According to Figure 5(b), the aerodynamic

moment of the morphing piezoelectric wing is higher than
that of the traditional wing. Concurrently, the moment peaks
when the starting location of control surface is around 70%
chord. Besides, the Cm of the traditional wing with a rigid
trailing edge airfoil decreases monotonically with the starting
location going backward. It can be concluded that the

Table 1: Geometric parameters of the wing and the piezoelectric patch.

Modulus of elasticity (Gpa) Length (mm) Width (mm) Height (mm)

Rigid part of the wing — 700 — —

Elastic bending part of the wing 200 300 36 1.5

Piezoelectric patch 74 300 36 1

Original airfoil

Morphing piezoelectric wing

Traditional airfoil wing rigid trailing edge

𝛽

Figure 3: Wings with the equivalent deflection angle.

0 2 4 6 8 10 12

Angle of attack (deg)

0

0.5

1

1.5

2

2.5

3

L
ift

 c
o

effi
ci

en
t

0 V, geometrically exact VLM

1 kV, geometrically exact VLM

2 kV, geometrically exact VLM

3 kV, geometrically exact VLM

0 V, traditional linearized VLM

1 kV, traditional linearized VLM

2 kV, traditional linearized VLM

3 kV, traditional linearized VLM

(a) Aerodynamic lift coefficient

0 2 4 6 8 10 12

Angle of attack (deg)

−0.05

0

0.05

0.1

0.15

0.2

0.25

M
o

m
en

t 
co

effi
ci

en
t

0 V, geometrically exact VLM

1 kV, geometrically exact VLM

2 kV, geometrically exact VLM

3 kV, geometrically exact VLM

0 V, traditional linearized VLM

1 kV, traditional linearized VLM

2 kV, traditional linearized VLM

3 kV, traditional linearized VLM

(b) Aerodynamic moment coefficient

Figure 4: Effect of angle of attack and driving voltages on aerodynamic coefficient.
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morphing piezoelectric wing has a larger lift coefficient and a
larger negative pitching moment coefficient than the tradi-
tional wing with the same trailing edge deflection.

The chord-wise location of the torsion spring also has an
effect on the aerodynamic moment versus piezo actuation.

Another case is planned to research it. In this case, the two
VLMs are used to calculate the aerodynamic moment of the
morphing piezoelectric wing with different voltage and tor-
sion spring locations at 5° angle of attack. The result is shown
in Figure 6.

As Figure 6 illustrates, the aerodynamic moment
increases as the torsion spring location moves backwards.
Furthermore, the aerodynamic moment obtained by the geo-
metrically exact VLM is larger than that obtained by the tra-
ditional linear VLM under the same driving voltages. This is
because the geometrically exact VLM can fully consider the
influence of the change of the downwash angle and aerody-
namic arm caused by the wing deformation on the aerody-
namic moment, while the traditional linear VLM ignores
this point. It is worth noting that, the aerodynamic moments
calculated by the two VLMs are the same at 0 driving voltage
and the aerodynamic moments are 0 at the quarter-chord
length. This can be interpreted that the camberline of
the morphing piezoelectric wing is a straight line at 0 driv-
ing voltage whose aerodynamic center is also located at a
quarter-chord length.

3.2. Aerodynamic Load Redistribution of Morphing TE Wing.
In this section, different wings are considered and their prop-
erties are listed in Table 2 in order to investigate the effects of
aeroelastic deformation on the changes of aerodynamic
loads. The aerodynamic load redistribution is then plotted in
Figure 7 and the overall lifts using the traditional linearized
VLM or the geometrically exact VLM are listed in Table 3.

As shown in Figure 7(a), the airfoil without a control sur-
face rotates upward under the current aerodynamic load
resulting in an increase (3.2°) of the angle of attack. Thus,
the overall aerodynamic lifts increase under an aeroelastic
effect. Figure 7(b) shows the aerodynamic load distribution
of the morphing piezoelectric wing. Due to the deflection of
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Figure 5: Effects of control surface length on aerodynamic coefficient.
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Table 2: Properties of different airfoils.

l2 (/c) l0 (/c) Kθ (N·m/rad) q (Pa) α (deg) β (deg)

Airfoil without control surface — 0.33 10 200 5 —

Morphing piezoelectric wing 0.3 0.33 10 200 5 10

Traditional wing with rigid trailing edge 0.3 0.33 10 200 5 10
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the trailing edge, the aerodynamic load on the trailing edge is
significantly increased. When it comes to the aeroelastic
effect, the airfoil rotates downward under aerodynamic load,
bringing about a decrease of overall aerodynamic lift. The
reason is that when the trailing edge deflected downward, it
generated a negative pitching moment which decreased the
angle of attack. Figure 7(c) shows the aerodynamic load dis-
tribution of the traditional wing with a rigid trailing edge, in
which the aerodynamic load sees a sudden change at the start
point of the rigid trailing edge. This is because the additional
angle of attack is noncontinuous when the trailing edge
deflects downward, and the airfoil also rotated downward
under aerodynamic load, as in Figure 7(b).

Table 3 indicates that with the same equivalent deflec-
tion angle (β = 10°), the lift coefficient of the morphing
piezoelectric wing is higher than that of the traditional wing.
Furthermore, aeroelastic deformation is demonstrated to sig-
nificantly change the lift coefficient. Moreover, at the same
trailing edge rotation angle, the negative pitching moment
of the morphing piezoelectric wing is larger than that of the
traditional wing. As a result, the Cl of the morphing piezo-
electric wing declines to a larger extent than that of the tradi-
tional wing. Notably, the origin lift calculated by the
geometrically exact VLM is 4% lower than the lift calculated
by the traditional linearized VLM. This is because the
induced velocity in the traditional linearized VLM is larger
than that in the geometrically exact VLM. In contrast, the lift
calculated by the geometrically exact VLM is larger than the
lift calculated by the traditional linearized VLM as a result of
aeroelastic deformation when the trailing edge deflected
downward. This is because the aeroelastic pitch angle calcu-
lated by the geometrically exact VLM is smaller, which leads
to a larger angle of attack in this case.

3.3. Static Aeroelastic Stability of Morphing TE Wing. In this
section, some cases are set to reflect the influence of the angle
of attack, trailing edge deflection angle, trailing edge deflec-
tion mode, and torsion axis location on the static aeroelastic
stability of the morphing TE wing using the geometrically
exact VLM. In this section, the parameters of the morphing
piezoelectric wing and the traditional wing with a rigid trail-
ing edge are set as the same as those in Section 3.2. The rela-
tionship between dynamic pressure and airfoil pitch angle θ
of the piezoelectric morphing wing is obtained under differ-
ent conditions, which are shown in Figure 8. In addition,
qdiv is the diverging dynamic pressure of the wing in the cur-
rent state calculated by the traditional linear VLM. The x-axis
of Figure 8 is the ratio of dynamic pressure to divergence

dynamic pressure qdiv using the traditional linearized
VLM, and the y-axis is the pitch angle θ. The solid lines
represent stable solutions, while the dotted lines represent
unstable solutions.

Figure 8(a) shows the equilibrium state of a 2D wing with
a 0° angle of attack and a 0° trailing edge deflection angle. The
solution of the equilibrium state is achieved by solving the
nonlinear transcendental equation, as in equation (25). It
can be seen that when the dynamic pressure is less than qdiv,
the equilibrium equation has only one stable solution. This
indicates that the 2D wing is in static stability in this situa-
tion. Nevertheless, when dynamic pressure is greater than
qdiv, there are three solutions to the equilibrium with the
same dynamic pressure: (1) a stable solution with a pitch
angle of more than 0°; (2) a stable solution with a pitch angle
of less than 0°; and (3) an unstable solution with a pitch angle
of 0°. This is a typical static bifurcation of a nonlinear system
and is part of pitchfork bifurcation. The bifurcation value is
qdiv. This indicates that the zero solution of the nonlinear
2D wing system is consistent with the linear condition. The
final position of the 2D wing depends on the disturbance.

Figures 8(b)–8(d) show the equilibrium states of the 2D
wing with varying angles of attack and 0° trailing edge
deflection angle. In the case of Figure 8(b), the angle of
attack is set as 1°. Figure 8(b) shows that only when the
dynamic pressure is less than qdiv can the system achieve a
stable equilibrium solution with a positive pitch angle.
When the dynamic pressure exceeds qdiv , saddle knot bifur-
cation occurs in the system. In this context, there are three
solutions when the original equilibrium solution maintains
nonlinear development. There are two new equilibrium
solutions with a negative pitch angle. The one with a smaller
pitch angle is unstable and is referred to as saddle point,
while the other is stable and is referred to as stable knot.
In addition, the bifurcation value is 1.115 qdiv. In the case
of Figure 8(c), the angle of attack is set as 5°. Figure 8(c)
shares the same topology with Figure 8(b). But its bifurca-
tion value is 1.3563 qdiv . In the case of Figure 8(d), the angle
of attack is set as -1°. Figures 8(d) and 8(b) are mirror
images of the x-axis and share the same bifurcation value.
It can be concluded that by means of the geometrically exact
VLM, the angle of attack has a great impact on the static sta-
bility of the 2D wing, which is mainly embodied in three
aspects. Firstly, a nonzero angle of attack changes the type
of bifurcation diagram of the system. Secondly, the bifurca-
tion value increases along with the increase of the angle of
attack. Thirdly, the sign of the angle of attack is independent
of the bifurcation value.

Table 3: Total aerodynamic lift.

Airfoil without
control surface

Morphing
piezoelectric wing

Traditional wing with
rigid trailing edge

Origin, traditional linearized VLM 3.5793 11.3167 9.9551

Origin, geometrically exact VLM 3.2547 10.8865 9.4613

Aeroelastic deformation, traditional linearized VLM 6.1865 8.5917 7.8819

Aeroelastic deformation, geometrically exact VLM 5.9250 8.9471 8.1935
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Figure 8(e) shows the equilibrium state of the morphing
piezoelectric wing with a 0° angle of attack and a 1000V pie-
zoelectric voltage which generates a 4.88° trailing edge deflec-
tion angle. It can be seen that the topology of the bifurcation
diagram is the same as the one with a negative angle of attack.
Meanwhile, the bifurcation value is 1.489 qdiv. Figure 8(f)
shows the equilibrium state of the morphing piezoelectric
wing with a 0° angle of attack and a 2000V piezoelectric volt-
age which generates a 9.76° trailing edge deflection angle.
Likewise, the topology of the bifurcation diagram is the same
as that of Figure 8(e) but the bifurcation value increases to
1.893 qdiv . It can be concluded that the bifurcation value
increases along with the trailing edge deflection angle. This
can be attributed to the fact that the trailing edge deflection
downward causes a negative pitching moment on the 2D
wing, which is similar to the wing with a negative angle of
attack. Figure 8(g) shows the equilibrium state of the tradi-
tional wing with a rigid trailing edge with a 0° angle of attack
and a 4.88° trailing edge deflection angle. The topology of
Figure 8(g) is the same as that of Figure 8(e), but the bifurca-
tion value is reduced to 1.296 qdiv . It can be concluded that
bifurcation value increases along with the trailing edge

deflection angle. Furthermore, the traditional wing with a
rigid trailing edge has a smaller bifurcation value than the
morphing piezoelectric wing with the same trailing edge
deflection angle. This is because the morphing piezoelectric
wing generates a larger negative pitching moment than the
traditional wing. Similar to the previous conclusion, the
morphing piezoelectric wing has a larger equivalent angle
of attack which leads to a higher bifurcation value.

Figures 8(h) and 8(i) show the equilibrium states of the
morphing piezoelectric wing with a 1° angle of attack and a
1000V driving voltage at different torsion spring locations,
29% chord length (0.29c), and 30% chord length (0.3c).
Figures 8(h) and 8(i) have the same topology of the bifurca-
tion diagramwhich is similar to Figure 8(b) but with different
bifurcation value. The bifurcation value (1120.09 Pa) in
Figure 8(h) is larger than that (896.07 Pa) in Figure 8(i). This
is because in the case of Figure 8(h), the torsion spring loca-
tion is closer to the aerodynamic center which leads to a
smaller aerodynamic arm. Under the same aerodynamic
load, a small aerodynamic arm means a small aerodynamic
moment, which makes the system difficult to bifurcate.
Therefore, a reasonable arrangement of the torsion axis
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Figure 8: Relationship between dynamic pressure and pitch angle θ in equilibrium state using the geometrically exact VLM.
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location can significantly improve the bifurcation value by
reducing the aerodynamic arm of the wing.

In the numerical validation, it can be seen that there is
always a solution in equation (25), indicating that there is
no divergent dynamic pressure of the 2D wing using the geo-
metrically exact VLM. This can be attributed to the fact that
the aerodynamic moments cannot keep increasing with the
pitch angle due to the decrease of the aerodynamic arm.
But this does not mean that the wing can sustain a gigantic
dynamic pressure since the wing has strength constraints
and may be destroyed before it reaches equilibrium.

3.4. Control Reversal Dynamic Pressure of Morphing TE
Wing. In this section, some cases with different angles of
attack and torsion spring stiffness are set to identify the fac-
tors related to the control reversal dynamic pressure. The
results are given in Figure 8. In this section, the parameters
of the morphing piezoelectric wing and the traditional wing
with a rigid trailing edge are set the same as those in the
Section 3.2.

Figure 9(a) shows the effect of the angle of attack on the
control reversal dynamic pressure. In Figure 9(a), it can be
seen that the control reversal dynamic pressure calculated
by the traditional linearized VLM is not related to the angle
of attack, while the control reversal dynamic pressure calcu-
lated by the geometrically exact VLM increases with the
angle of attack. The qR of the traditional wing is 21% larger
than that of the morphing piezoelectric wing, since the tra-
ditional wing has a lower negative pitching moment and a
lighter impact on aeroelastic deformation than the morph-
ing piezoelectric wing. Figure 9(b) illustrates that qR
increases along with the increase of the pitch stiffness of
the airfoil. This is due to the fact that high pitching stiffness
of the airfoil leads to smaller aeroelastic deformation in the
same aerodynamic load, which results in higher control
reversal dynamic pressure.

4. Conclusion

Morphing trailing-edge wings, which can change their
shape during flights, have the potential to improve the aero-
dynamic characteristics of aircraft, which warrants aeroelas-
tic analysis for the morphing TE wings. Committed to the
static aeroelastic characteristics of the morphing TE wings,
this paper has developed a static aeroelastic analysis method
using the geometrically exact VLM which gives equal prom-
inence to both efficiency and medium accuracy. Firstly, the
morphing piezoelectric wing was chosen and analyzed as a
typical and simple model for morphing TE wings, and the
relationship between piezoelectric voltage and trailing-edge
deflection was tested. Then, the paper has established a set
of cases for aeroelastic analysis of morphing TE wings using
the geometrically exact VLM and shed light on their non-
linear aeroelastic characteristics. Finally, a series of simula-
tions with different aerodynamic conditions were carried
out on both the morphing piezoelectric wing and the wing
with a rigid trailing edge. This paper has only explored the
mechanism of the morphing TE wing without achieving
any precise and detailed design. Based on the existing calcu-
lation results, some important conclusions can be summa-
rized as follows:

(1) This paper has demonstrated the influence of aerody-
namic nonlinearity on the static stability of the 2D
wing system using the geometrically exact VLM.
The system does not show divergence but bifurca-
tion. Besides, the angle of attack, trailing-edge deflec-
tion angle, trailing-edge deflection mode, and torsion
axis location all affect the bifurcation value and
topology of the bifurcation diagram. Although this
conclusion is conditional due to the limitation of
the geometrically exact VLM, a general conclusion
can be attained

0 2 4 6 8

Angle of attack (deg)

220

240

260

280

300

320

340

C
o

n
tr

o
l r

ev
er

sa
l d

yn
am

ic
 p

re
ss

u
re

 (
P

a)

Piezoelectric wing, traditional linearized VLM

Traditional wing, traditional linearized VLM

Piezoelectric wing, geometrically exact VLM

Traditional wing, geometrically exact VLM

(a) Angle of attack vs. control reversal dynamic pressure

10.5 11 11.5 12 12.5

Torsion spring sti�ness (N·m/rad)

220

240

260

280

300

320

340

360

380

400

420

C
o

n
tr

o
l r

ev
er

sa
l d

yn
am

ic
 p

re
ss

u
re

 (
P

a)

Piezoelectric wing, traditional linearized VLM

Traditional wing, traditional linearized VLM

Piezoelectric wing, geometrically exact VLM

Traditional wing, geometrically exact VLM

(b) Torsion spring stiffness vs. control reversal dynamic pressure

Figure 9: Factors related to the control reversal dynamic pressure.

14 International Journal of Aerospace Engineering



(2) The characteristics of this method are verified by
numerical examples. The geometrically exact VLM
is more accurate than the traditional linearized
VLM in calculating aerodynamic forces of a 2D wing
with control surface in aeroelastic analysis. The influ-
ences of angle of attack, trailing-edge deflection
angle, among others on static aeroelastic characteris-
tics are taken into consideration, which play a signif-
icant role in engineering

(3) A morphing wing is inarguably a fluid-solid and con-
trol coupling system. As a result, by taking aerody-
namic, structure, and control coupling into account,
the method used in this paper can serve as an effec-
tive basic tool for morphing wing analysis and design
optimization owing to its accuracy, adequate calcula-
tion, and inheritability of traditional methods

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this paper.

References

[1] S. Barbarino, O. Bilgen, R. M. Ajaj, M. I. Friswell, and D. J.
Inman, “A review of morphing aircraft,” Journal of Intelligent
Material Systems and Structures, vol. 22, no. 9, pp. 823–877,
2011.

[2] S. Kota, J. A. Hetrick, R. Osborn et al., “Design and application
of compliant mechanisms for morphing aircraft structures,” in
Smart Structures and Materials 2003: Industrial and Commer-
cial Applications of Smart Structures Technologies, pp. 24–34,
San Diego, CA, USA, 2003.

[3] P. Boschetti, A. Amerio, and E. Cárdenas, “Aerodynamic
performance as a function of local twist in an unmanned air-
plane,” in 47th AIAA Aerospace Sciences Meeting including
The New Horizons Forum and Aerospace Exposition, p. 1481,
Orlando, FL, USA, 2009.

[4] V. Wickramasinghe, Y. Chen, M. Martinez, F. Wong, and
R. Kernaghan, “Design and verification of a smart wing for
an extremely-agile micro-air-vehicle,” in 50th AIAA/AS-
ME/ASCE/AHS/ASC Structures, Structural Dynamics, and
Materials Conference, p. 2132, Palm Springs, CA, USA, 2009.

[5] O. Bilgen, K. B. Kochersberger, D. J. Inman, and O. J. Ohanian
III, “Novel, bidirectional, variable-camber airfoil via macro-
fiber composite actuators,” Journal of Aircraft, vol. 47, no. 1,
pp. 303–314, 2010.

[6] H. Monner, J. Riemenschneider, S. Opitz, and M. Schulz,
“Development of active twist rotors at the German Aerospace
Center (DLR),” in 52nd AIAA/ASME/ASCE/AHS/ASC Struc-
tures, Structural Dynamics and Materials Conference, p. 1824,
Denver, CO, USA, 2011.

[7] A. Pankonien and D. J. Inman, “Experimental testing of span-
wise morphing trailing edge concept,” in Active and Passive

Smart Structures and Integrated Systems 2013, p. 868815,
San Diego, California, USA, 2013.

[8] O. J. Ohanian, C. Hickling, B. Stiltner et al., “Piezoelectric
morphing versus servo-actuated MAV control surfaces,” in
53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural
Dynamics and Materials Conference, p. 1512, Honolulu,
Hawaii, 2012.

[9] O. J. Ohanian, B. David, S. Taylor et al., “Piezoelectric morph-
ing versus servo-actuated MAV control surfaces, part II: flight
testing,” in 51st AIAA Aerospace Sciences Meeting including the
New Horizons Forum and Aerospace Exposition, p. 0767, Dal-
las, TX, USA, 2013.

[10] K. B. Kochersberger, O. J. Ohanian III, T. Probst, and P. A.
Gelhausen, “Design and flight test of the generic micro-aerial
vehicle (GenMAV) utilizing piezoelectric conformal flight
control actuation,” Journal of Intelligent Material Systems
and Structures, vol. 28, no. 19, pp. 2793–2809, 2017.

[11] D. Li, S. Guo, and J. Xiang, “Modeling and nonlinear aeroelas-
tic analysis of a wing with morphing trailing edge,” Proceedings
of the Institution of Mechanical Engineers, Part G: Journal of
Aerospace Engineering, vol. 227, no. 4, pp. 619–631, 2013.

[12] B. K. Stanford and P. S. Beran, “Analytical sensitivity analysis
of an unsteady vortex-lattice method for flapping-wing opti-
mization,” Journal of Aircraft, vol. 47, no. 2, pp. 647–662, 2010.

[13] C. Xie, L. Wang, C. Yang, and Y. Liu, “Static aeroelastic analy-
sis of very flexible wings based on non-planar vortex lattice
method,” Chinese Journal of Aeronautics, vol. 26, no. 3,
pp. 514–521, 2013.

[14] R. L. Clark, M. R. Flemming, and C. R. Fuller, “Piezoelectric
actuators for distributed vibration excitation of thin plates: a
comparison between theory and experiment,” Journal of vibra-
tion and acoustics, vol. 115, no. 3, pp. 332–339, 1993.

[15] J. Katz and A. Plotkin, Low-Speed Aerodynamics, vol. 13,
Cambridge University Press, 2001.

[16] R. E. Melchers and A. T. Beck, Structural Reliability Analysis
and Prediction, John Wiley & Sons, 2017.

15International Journal of Aerospace Engineering



International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive  
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer 
Engineering

Journal of

Advances in

OptoElectronics

Hindawi

www.hindawi.com

Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi

www.hindawi.com

 Journal of

Engineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi

www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi

www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and 
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in 

Multimedia

Submit your manuscripts at

www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

