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Abstract

In this paper, the aeroelastic static response of flexible wings with arbitrary cross-section geometry via a coupled CUF-

XFLR5 approach is presented. Re�ned structural one-dimensional (1D) models, with a variable order of expansion for the 

displacement �eld, are developed on the basis of the Carrera Uni�ed Formulation (CUF), taking into account cross-sectional 

deformability. A three-dimensional (3D) Panel Method is employed for the aerodynamic analysis, providing more accuracy 

with respect to the Vortex Lattice Method (VLM). A straight wing with an airfoil cross-section is modeled as a clamped beam, 

by means of the finite element method (FEM). Numerical results present the variation of wing aerodynamic parameters, 

and the equilibrium aeroelastic response is evaluated in terms of displacements and in-plane cross-section deformation. 

Aeroelastic coupled analyses are based on an iterative procedure, as well as a linear coupling approach for different free 

stream velocities. A convergent trend of displacements and aerodynamic coefficients is achieved as the structural model 

accuracy increases. Comparisons with 3D �nite element solutions prove that an accurate description of the in-plane cross-

section deformation is provided by the proposed 1D CUF model, through a signi�cant reduction in computational cost.
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1. Introduction

�e in-depth understanding of aeroelastic e�ects on 

deformable lifting bodies (LBs), due to steady and unsteady 

aerodynamic loadings, is a typical challenging issue for the 

current design of aerospace vehicles [1]. Furthermore, with 

the forthcoming employment of composite materials in next-

generation aircraft con�gurations, such as High-Altitude 

Long Endurance aircraft (HALE) [2], and strut-braced wings 

[3], accurate evaluation of the aeroelastic response becomes 

even more crucial [4].

Recently, special attention has been directed to the 

pro�table exploitation of the aeroelastic phenomena 

comprehension , by studying the concept of morphing wings, 

which are able to adapt and optimize their shape depending 

on the speci�c �ight conditions and mission pro�les [5, 6]. 

�e smart wing is very �exible and could allow a number of 

advantages, such as drag reduction and aeroelastic vibrations 

suppression by means of adaptive control [7] and di�erent 

solutions, such as compliant structures [8], bi-stable laminate 

composites [9], piezoelectric [10] and shape memory alloy 

actuation [11].

In order to develop aeroelastic tools that are able to work 

in any regime and with any LB geometry, the literature from 

the last decades has been widely in�uenced by research 

devoted to build reliable methods, to couple computational 

�uid dynamics (CFD) or classical aerodynamic methods with 

the �nite element method (FEM) for structural modeling [12]. 

This is an Open Access article distributed under the terms of the Creative Com-

mons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-

nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduc-

tion in any medium, provided the original work is properly cited.

       * Research assistant, corresponding author: alberto.varello@polito.it

  ** Ph.D. student

 *** Professor of Aerospace Structures and Aeroelasticity 



311

Alberto Varello    Static Aeroelastic Response of Wing-Structures Accounting for In-Plane Cross-Section Deformation 

http://ijass.org

Valuable examples are in the review articles by Dowell and 

Hall [13], and Henshaw et al. [14]. Reduced approaches, for 

instance panel methods, are widely used for the classical 

aerodynamics of wings under some limitations [15], 

allowing a sizeable reduction in terms of computational 

cost [16, 17]. �e assumption of undeformable airfoil-cross-

sections [18] is typically not proper for recent con�gurations, 

since the weight reduction makes wings more �exible and 

highly-deformable. Hence, two-dimensional (2D) plate/

shell and three-dimensional (3D) solid methods are usually 

employed for the structural modeling, instead of classical 

one-dimensional (1D) theories, such as the Euler-Bernoulli, 

Timoshenko, or Vlasov theories [19].

With the advent of smart wings, detailed structural 

and aeroelastic models are even more essential to fully 

exploit the non-classical e�ects in wing design, due to the 

properties characterizing advanced composite materials, 

such as anisotropy, heterogeneity and transverse shear 

�exibility. Beam-like components can be analyzed by means 

of re�ned one-dimensional (1D) formulations, which have 

the main advantage of a lower computational cost required 

compared with 2D and 3D models. A detailed review of the 

recent development of re�ned beam models can be found 

in [20]. El Fatmi [21] improved the displacement �eld over 

the beam cross-section, by introducing a warping function, 

to re�ne the description of normal and shear stress of the 

beam. Generalized beam theories (GBT) originated with 

Schardt’s work [22] and improved classical theories, by 

using a piecewise beam description of thin-walled sections 

[23]. An asymptotic type expansion, in conjunction with 

variational methods, was proposed by Berdichevsky et al. 

[24], where a commendable review of prior works on beam 

theory development was given. An alternative approach to 

formulating re�ned beam theories, based on asymptotic 

variational methods (VABS), has led to an extensive 

contribution in the last few years [25].

A considerable amount of research activity devoted to 

aeroelastic analysis and optimization was undertaken in 

the last decades, by using reduced 1D models. A review 

was carried out by Patil [26], who investigated the variation 

of aeroelastic critical speeds with the composite ply lay-

up of box beams, via the unsteady �eodorsen’s theory. A 

thin-walled anisotropic beam model in-corporating non-

classical e�ects was introduced by Librescu and Song [27] 

to analyze the sub-critical static aeroelastic response, and 

the divergence instability of swept-forward wing structures. 

Qin and Librescu [28] developed an aeroelastic model 

to investigate the in�uence of the directionality property 

of composite materials, and non-classical e�ects on the 

aeroelastic instability of thin-walled aircraft wings. Among 

the several composite rotor blades applications, the work 

done by Jeon and Lee [29] concerning the steady equilibrium 

de�ections, via a large de�ection type beam theory with 

small strains, is worth mentioning. An example of the use of a 

re�ned beam theory for aeroelastic analysis can be found in 

[30], where the static and dynamic responses of a helicopter 

rotor blade are evaluated by means of a YF/VABS model.

Higher-order 1D models with generalized displacement 

variables, based on the Carrera Uni�ed Formulation, have 

recently been proposed by Carrera and co-authors, for the 

static and dynamic analysis of isotropic and composite 

structures [31]. �e CUF is a hierarchical formulation, 

which considers the order of the model as a free-parameter 

of the analysis. In other words, models of any order can be 

obtained, with no need for ad hoc formulations, by exploiting 

a systematic procedure. Structural 1D CUF models were used 

to analyze the structural response of isotropic aircraft wings, 

under aerodynamic loads computed through the Vortex 

Lattice Method (VLM), in [32]. �e aeroelastic CUF-VLM 

coupling was preliminarily formulated in [33] for isotropic �at 

plates, and then extended to instability divergence detection 

and the evaluation of composite material lay-up e�ects on 

the aeroelastic response of moderate and high-aspect ratio 

wing con�gurations, in [34]. Flutter analyses of composite 

lifting surfaces were also presented in [35], by coupling the 

CUF approach with the Doublet Lattice Method.

�e present work couples a re�ned one-dimensional �nite 

element model based on CUF to an aerodynamic 3D Panel 

Method, implemented in the software XFLR5. Two potential 

methods are here compared: the VLM and the 3D Panel 

Method. �e aeroelastic static response of a straight wing 

is computed through a coupled iterative procedure, and a 

linear coupling approach. Particular attention is drawn to 

the in-plane deformation of the wing airfoil cross-sections, 

as well as the aeroelastic in�uence of free stream velocity.

2.  Numerical models: re�ned 1D CUF model 
and panel methods

2.1 Variable kinematic 1D CUF FE model

For the sake of completeness, some details about the 

formulation of CUF �nite elements are here retrieved from 

previous works [32, 34]. A structure with axial length L and 

cross-section Ω is discretized through a mesh of NEL 1D �nite 

elements. A cartesian coordinate system is de�ned with axes 

x and z parallel to the cross-section, whereas y represents 

the longitudinal coordinate. According to the displacement-

based framework of CUF [31], the displacement �eld is 
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assumed to be an expansion of a certain class of functions  

Fτ, which depend on the cross-section coordinates x 

and z. Introducing the shape functions Ni and the nodal 

displacement vector ���, �, �� � ����x, z����������� � � �,� , ��� � �,� , �� � ���� � ���������� ��� ��� �� �� � �� � ���
���� � � �� � ���� � ��� ����� � ��

����� � � ������� � ������� �� �� ����� � ����
���� ����

� � ���� ����� ������� ���, �� , �������������� � ���� � ����� �� �� � � ����� ����� ��� , ��� �� ��� � �
�� �� ��� ��� ��� ����� � ����� � ����������� �� � ����� � ������� � ����� � �����

����� ����� ��� � ����� ���

, the displacement vector ���, �, �� � ����x, z����������� � � �,� , ��� � �,� , �� � ���� � ���������� ��� ��� �� �� � �� � ���
���� � � �� � ���� � ��� ����� � ��

����� � � ������� � ������� �� �� ����� � ����
���� ����

� � ���� ����� ������� ���, �� , �������������� � ���� � ����� �� �� � � ����� ����� ��� , ��� �� ��� � �
�� �� ��� ��� ��� ����� � ����� � ����������� �� � ����� � ������� � ����� � �����

����� ����� ��� � ����� ���

 with 

components ux, uy, and uz becomes:���, �, �� � ����x, z����������� � � �,� , ��� � �,� , �� � ���� � ���������� ��� ��� �� �� � �� � ���
���� � � �� � ���� � ��� ����� � ��

����� � � ������� � ������� �� �� ����� � ����
���� ����

� � ���� ����� ������� ���, �� , �������������� � ���� � ����� �� �� � � ����� ����� ��� , ��� �� ��� � �
�� �� ��� ��� ��� ����� � ����� � ����������� �� � ����� � ������� � ����� � �����

����� ����� ��� � ����� ���

(1)

where ���, �, �� � ����x, z����������� � � �,� , ��� � �,� , �� � ���� � ���������� ��� ��� �� �� � �� � ���
���� � � �� � ���� � ��� ����� � ��

����� � � ������� � ������� �� �� ����� � ����
���� ����

� � ���� ����� ������� ���, �� , �������������� � ���� � ����� �� �� � � ����� ����� ��� , ��� �� ��� � �
�� �� ��� ��� ��� ����� � ����� � ����������� �� � ����� � ������� � ����� � �����

����� ����� ��� � ����� ���

 contains the degrees of freedom of the τ-th 

expansion term corresponding to the i-th element node. �e 

compact expression in Eq. 1 is based on Einstein’s notation: 

repeated subscripts τ and i indicate summation. Multivariate 

Taylor’s polynomials of the x and z variables are employed 

here as cross-section functions Fτ, and N is de�ned as the 

expansion order, which is a free parameter of the formulation. 

Elements with number of nodes NN=4 are formulated in the 

present work, and named B4, using third-order Lagrange 

polynomials as shape functions [19]. �e number of degrees 

of freedom (DOFs) used through the proposed approach is:

���, �, �� � ����x, z����������� � � �,� , ��� � �,� , �� � ���� � ���������� ��� ��� �� �� � �� � ���
���� � � �� � ���� � ��� ����� � ��

����� � � ������� � ������� �� �� ����� � ����
���� ����

� � ���� ����� ������� ���, �� , �������������� � ���� � ����� �� �� � � ����� ����� ��� , ��� �� ��� � �
�� �� ��� ��� ��� ����� � ����� � ����������� �� � ����� � ������� � ����� � �����

����� ����� ��� � ����� ���

(2)

�e variational statement employed is the Principle of 

Virtual Displacements:

���, �, �� � ����x, z����������� � � �,� , ��� � �,� , �� � ���� � ���������� ��� ��� �� �� � �� � ���
���� � � �� � ���� � ��� ����� � ��

����� � � ������� � ������� �� �� ����� � ����
���� ����

� � ���� ����� ������� ���, �� , �������������� � ���� � ����� �� �� � � ����� ����� ��� , ��� �� ��� � �
�� �� ��� ��� ��� ����� � ����� � ����������� �� � ����� � ������� � ����� � �����

����� ����� ��� � ����� ���

(3)

where Lint is the internal strain energy, and Lext is the work 

of external loadings variationally consistent with the 

present method, and here derived for the case of a generic 

concentrated load 

���, �, �� � ����x, z����������� � � �,� , ��� � �,� , �� � ���� � ���������� ��� ��� �� �� � �� � ���
���� � � �� � ���� � ��� ����� � ��

����� � � ������� � ������� �� �� ����� � ����
���� ����

� � ���� ����� ������� acting on ���, �� , �������������� � ���� � ����� �� �� � � ����� ����� ��� , ��� �� ��� � �
�� �� ��� ��� ��� ����� � ����� � ����������� �� � ����� � ������� � ����� � �����

����� ����� ��� � ����� ���

, acting on the 

arbitrary load application point (xP, yP, zP), which does not 

necessarily lie along the 1D �nite element mesh, unlike 

standard 1D FE models. δ stands for the virtual variation. By 

using Eq. 1, δLext becomes:

���, �, �� � ����x, z����������� � � �,� , ��� � �,� , �� � ���� � ���������� ��� ��� �� �� � �� � ���
���� � � �� � ���� � ��� ����� � ��

����� � � ������� � ������� �� �� ����� � ����
���� ����

� � ���� ����� ������� ���, �� , �������������� � ���� � ����� �� �� � � ����� ����� ��� , ��� �� ��� � �
�� �� ��� ��� ��� ����� � ����� � ����������� �� � ����� � ������� � ����� � �����

����� ����� ��� � ����� ���

(4)

where Fτ is evaluated in (xP, zP)  and Ni is calculated in yP. In 

the case of small displacements with respect to the length 

L, the in-plane (subscript p) and out-of-plane (subscript n) 

cross-section stress and strain vectors in Eq. 3 are related 

to the displacement vector via linear di�erential matrix 

operators 

���, �, �� � ����x, z����������� � � �,� , ��� � �,� , �� � ���� � ���������� ��� ��� �� �� � �� � ���
���� � � �� � ���� � ��� ����� � ��

����� � � ������� � ������� �� �� ����� � ����
���� ����

� � ���� ����� ������� ���, �� , �������������� � ���� � ����� �� �� � � ����� ����� ��� , ��� �� ��� � �
�� �� ��� ��� ��� ����� � ����� � ����������� �� � ����� � ������� � ����� � �����

����� ����� ��� � ����� ���
p, 

���, �, �� � ����x, z����������� � � �,� , ��� � �,� , �� � ���� � ���������� ��� ��� �� �� � �� � ���
���� � � �� � ���� � ��� ����� � ��

����� � � ������� � ������� �� �� ����� � ����
���� ����

� � ���� ����� ������� ���, �� , �������������� � ���� � ����� �� �� � � ����� ����� ��� , ��� �� ��� � �
�� �� ��� ��� ��� ����� � ����� � ����������� �� � ����� � ������� � ����� � �����

����� ����� ��� � ����� ���
n, and material sti�ness matrices 

���, �, �� � ����x, z����������� � � �,� , ��� � �,� , �� � ���� � ���������� ��� ��� �� �� � �� � ���
���� � � �� � ���� � ��� ����� � ��

����� � � ������� � ������� �� �� ����� � ����
���� ����

� � ���� ����� ������� ���, �� , �������������� � ���� � ����� �� �� � � ����� ����� ��� , ��� �� ��� � �
�� �� ��� ��� ��� ����� � ����� � ����������� �� � ����� � ������� � ����� � �����

����� ����� ��� � ����� ���
pp, 

���, �, �� � ����x, z����������� � � �,� , ��� � �,� , �� � ���� � ���������� ��� ��� �� �� � �� � ���
���� � � �� � ���� � ��� ����� � ��

����� � � ������� � ������� �� �� ����� � ����
���� ����

� � ���� ����� ������� ���, �� , �������������� � ���� � ����� �� �� � � ����� ����� ��� , ��� �� ��� � �
�� �� ��� ��� ��� ����� � ����� � ����������� �� � ����� � ������� � ����� � �����

����� ����� ��� � ����� ���
pn,  

���, �, �� � ����x, z����������� � � �,� , ��� � �,� , �� � ���� � ���������� ��� ��� �� �� � �� � ���
���� � � �� � ���� � ��� ����� � ��

����� � � ������� � ������� �� �� ����� � ����
���� ����

� � ���� ����� ������� ���, �� , �������������� � ���� � ����� �� �� � � ����� ����� ��� , ��� �� ��� � �
�� �� ��� ��� ��� ����� � ����� � ����������� �� � ����� � ������� � ����� � �����

����� ����� ��� � ����� ���
np, 

���, �, �� � ����x, z����������� � � �,� , ��� � �,� , �� � ���� � ���������� ��� ��� �� �� � �� � ���
���� � � �� � ���� � ��� ����� � ��

����� � � ������� � ������� �� �� ����� � ����
���� ����

� � ���� ����� ������� ���, �� , �������������� � ���� � ����� �� �� � � ����� ����� ��� , ��� �� ��� � �
�� �� ��� ��� ��� ����� � ����� � ����������� �� � ����� � ������� � ����� � �����

����� ����� ��� � ����� ���
nn, as follows:

���, �, �� � ����x, z����������� � � �,� , ��� � �,� , �� � ���� � ���������� ��� ��� �� �� � �� � ���
���� � � �� � ���� � ��� ����� � ��

����� � � ������� � ������� �� �� ����� � ����
���� ����

� � ���� ����� ������� ���, �� , �������������� � ���� � ����� �� �� � � ����� ����� ��� , ��� �� ��� � �
�� �� ��� ��� ��� ����� � ����� � ����������� �� � ����� � ������� � ����� � �����

����� ����� ��� � ����� ���
(5)

Using Eq. 5, Eq. 3 can be rewritten in terms of virtual nodal 

displacements:

���, �, �� � ����x, z����������� � � �,� , ��� � �,� , �� � ���� � ���������� ��� ��� �� �� � �� � ���
���� � � �� � ���� � ��� ����� � ��

����� � � ������� � ������� �� �� ����� � ����
���� ����

� � ���� ����� ������� ���, �� , �������������� � ���� � ����� �� �� � � ����� ����� ��� , ��� �� ��� � �
�� �� ��� ��� ��� ����� � ����� � ����������� �� � ����� � ������� � ����� � �����

����� ����� ��� � ����� ��� (6)

where, the 3 x 3 and 3 x 1 fundamental nuclei 

���, �, �� � ����x, z����������� � � �,� , ��� � �,� , �� � ���� � ���������� ��� ��� �� �� � �� � ���
���� � � �� � ���� � ��� ����� � ��

����� � � ������� � ������� �� �� ����� � ����
���� ����

� � ���� ����� ������� ���, �� , �������������� � ���� � ����� �� �� � � ����� ����� ��� , ��� �� ��� � �
�� �� ��� ��� ��� ����� � ����� � ����������� �� � ����� � ������� � ����� � �����

����� ����� ��� � ����� ��� and 

���, �, �� � ����x, z����������� � � �,� , ��� � �,� , �� � ���� � ���������� ��� ��� �� �� � �� � ���
���� � � �� � ���� � ��� ����� � ��

����� � � ������� � ������� �� �� ����� � ����
���� ����

� � ���� ����� ������� ���, �� , �������������� � ���� � ����� �� �� � � ����� ����� ��� , ��� �� ��� � �
�� �� ��� ��� ��� ����� � ����� � ����������� �� � ����� � ������� � ����� � �����

����� ����� ��� � ����� ���  
are introduced. From Eq. 6, the governing equation of motion 

can be derived through a �nite element assembly procedure:

� ൈ � � ൈ � ������ ����
� � � � (� �

,��ࢂ �, �� ׏ ൈ ࢂ � ૙ࢂ��, �, �� ߶׏߶ � ࢂ

(7)

where 

� ൈ � � ൈ � ������ ����
� � � �� �

,��ࢂ �, �� ׏ ൈ ࢂ � ૙ࢂ��, �, �� ߶׏߶ � ࢂ

 is the structural sti�ness matrix, and 

� ൈ � � ൈ � ������ ����
� � � � (� �

,��ࢂ �, �� ׏ ൈ ࢂ � ૙ࢂ��, �, �� ߶׏߶ � ࢂ

 is the 

vector of equivalent nodal forces. It should be noted that no 

assumptions on the expansion order have so far been made. 

�erefore, it is possible to obtain higher-order 1D models 

without changing the formal expression of the nuclei 

components, as well as classical beam models, such as 

Euler-Bernoulli’s and Timoshenko’s. Higher-order models 

provide an accurate description of the shear mechanics, 

the in-plane and out-of-plane cross-section deformation, 

Poisson’s e�ect along the spatial directions, and the 

torsional mechanics, in more detail than classical models 

do. �anks to the CUF, the present hierarchical approach is 

invariant with respect to the order of the displacement �eld 

expansion. More details are not reported here, but can be 

found in the work of [31].

2.2  A numerical approach for wing aerodynamic 

analysis

2.2.1 Preliminaries

�e evaluation of aerodynamic loads can be typically 

carried out through a CFD code, which solves, for example, 

either Navier-Stokes equations or Euler equations 

numerically. �is kind of analysis has a high computational 

cost, but under some assumptions it is possible to employ 

simpli�ed approaches. In the wing cases considered in the 

present work, the �ow �eld is assumed to be steady, and the 

�uid viscosity is not decisive since the viscous e�ects can 

be con�ned into a small region (boundary layers and wake 

regions). �e �uid can be thus considered as inviscid, and 

the �ow �eld is irrotational, since the curl of the velocity 

vector 

� ൈ � � ൈ � ������ ����
� � � �� �

,��ࢂ �, �� ׏ ൈ ࢂ � ૙ࢂ��, �, �� ߶׏߶ � ࢂ
(x, y, z) is equal to zero:

� ൈ � � ൈ � ������ ����
� � � �� �

,��ࢂ �, �� ׏ ൈ ࢂ � ૙ (ࢂ��, �, �� ߶׏߶ � ࢂ
(8)

In this case, the velocity vector 

� ൈ � � ൈ � ������ ����
� � � �� �

,��ࢂ �, �� ׏ ൈ ࢂ � ૙ࢂ��, �, �� ߶׏߶ � ࢂ
(x, y, z) can be considered 

as the gradient of a potential function 

� ൈ � � ൈ � ������ ����
� � � �� �

,��ࢂ �, �� ׏ ൈ ࢂ � ૙ࢂ��, �, �� nction ߶:׏߶ � ࢂ :

� ൈ � � ൈ � ������ ����
� � � �� �

,��ࢂ �, �� ׏ ൈ ࢂ � ૙ࢂ��, �, �� ߶׏߶ � ) ࢂ (9)

Hence, the analysis of a wing or an airfoil under these 

conjectures can be performed by potential methods. �e 

potential function describing the �ow �eld around an object 

���, �, �� � ����x, z����������� � � �,� , ��� � �,� , �� � ���� � ������ ���� ��� ��� �� �� � �� � ���
���� � � �� � ���� � ��� ����� � ��

����� � � ������� � ������� �� �� ����� � ����
���� ����

� � ���� ����� ������� ���, �� , �������������� � ���� � ����� �� �� � � ����� ����� ��� , ��� �� ��� � �
�� �� ��� ��� ��� ����� � ����� � ����������� �� � ����� � ������� � ����� � �����

����� ����� ��� � ����� ���
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can be de�ned as a combination of singularities, such as 

doublets, vortices, sources, or uniform �ux over the external 

body surface. According to the detailed exposition in [36], 

the equation to be used to compute the solution of the 

aerodynamic problem is Laplace’s equation: ׏�Ԅ � �

�ࢂ �࢔
�ࢂ � �࢔ � �

(10)

Laplace’s equation describes a potential �ow �eld only 

if the compressibility e�ects can be neglected, as occurs 

for the results presented afterwards, where the free stream 

velocity is rather low. Otherwise, some corrections, e.g. the 

Prandtl-Glauert transformation, are necessary, as explained 

in [37]. �e assumptions here introduced lead to an integral-

di�erential equation, which expresses the potential function 

in an arbitrary point of the �uid domain as a combination 

of singularities. For the sake of brevity, this equation is not 

reported here, but more details can be found in [36]. Among 

the potential methods, the panel methods can be formulated 

following a low-order, or a high-order approach. �e low-

order (�rst-order) panel method employs triangular or 

quadrilateral panels having constant values of singularities’ 

strength, such as the Hess and Smith approach. �e higher-

order panel methods instead use higher than �rst-order 

panels (e.g. paraboloidal panels) and a varying singularity 

strength over each panel.

2.2.2  XFLR5: an implementation of aerodynamic potential 

methods

XFLR5 is a software developed by Andre Deperrois. It 

performs viscous and inviscid aerodynamic analysis on 

airfoils and wings, using three potential methods: the Lifting 

Line �eory (LLT), the VLM, and the 3D Panel Method. 

�e LLT method derives from Prandtl’s wing theory and 

considers the wing as a linear distribution of vortices. �e 

VLM considers a wing as an in�nitely thin lifting surface, 

via a distribution of vortices placed over a wing reference 

surface. �is method requires the non-penetration condition 

on the reference surface as a boundary condition. Hence, the 

normal component of the induced velocity 

Ԅ�׏ � �

�ࢂ �࢔
�ࢂ � �࢔ � �on the generic 

i-th aerodynamic panel with normal vector 

Ԅ�׏ � �

�ࢂ �࢔
�ࢂ � �࢔ � � is equal to 

zero:

Ԅ�׏ � �

�ࢂ �࢔
�ࢂ � �࢔ � � (11)

Further details on this method can be found in [15]. 

�e 3D Panel Method schematizes the wing surface as a 

distribution of doublets and sources. �e strength of the 

doublets and sources is calculated to meet the appropriate 

boundary conditions (BCs), which may be of Dirichlet- or 

Neumann-type. According to the creator of the program, 

after a trial and error process, the best results can be 

obtained by using just the Dirichlet BC type [38]. �e 3D 

Panel Method employs a low-order panel method. �e LLT 

approach is not able to evaluate the pressure coe�cients on 

the wing surface, but only the lifting loads along the lifting 

line. �e VLM is able to analyze the pressure coe�cients, 

but only on the reference surface, which is de�ned as 

the mean surface between the upper and the lower wing 

surfaces. �e 3D Panel Method is able to calculate the 

pressure coe�cients on both the upper and the lower wing 

surfaces. �erefore, this method o�ers the most realistic 

description of the aerodynamic �eld.

3.  Aeroelastic static response analysis via 
the CUF-XFLR5 approach

In this work the aeroelastic static response of the wing 

is computed through an iterative procedure, based on a 

coupled CUF-XFLR5 method. Hence, the aerodynamic 

analysis is performed through the potential methods 

available in XFLR5, as previously mentioned; whereas, 

variable kinematic 1D CUF models provide the structural 

wing deformation with a variable expansion order N. 

3.1 Iterative procedure

Figure 1 shows in detail the aeroelastic iterative process, 

which starts with the evaluation of the pressure coe�cients 

for the undeformed wing con�guration. �e further steps to 

be repeated for each iteration are: 

1. post-processing calculation of the aerodynamic forces;

2.  structural analysis of the wing, subject to the 

aerodynamic forces previously computed;

3.  new calculation of the aerodynamic pressure 

coe�cients for the new deformed con�guration;

4.  post-processing evaluation of the wing deformation 

and cross-section distortion.

Structural displacements are evaluated in speci�c sections 

distributed regularly along the wing span. �e cross-section 

distortion s is de�ned as the in-plane displacement, i.e. a 

quantity that expresses the in-plane di�erence between the 

deformed shape and the “undeformed” shape of the airfoil 

cross-section:

� � ටοݑ�� � οݑ௭�οݑ� οݑ௭ ο�
(12)

where △ux and △uz are the cartesian components of the 

relative displacement vector △���, �, �� � ����x, z����������� � � �,� , ��� � �,� , �� � ���� � ���������� ��� ��� �� �� � �� � ���
���� � � �� � ���� � ��� ����� � ��

����� � � ������� � ������� �� �� ����� � ����
���� ����

� � ���� ����� ������� ���, �� , �������������� � ���� � ����� �� �� � � ����� ����� ��� , ��� �� ��� � �
�� �� ��� ��� ��� ����� � ����� � ����������� �� � ����� � ������� � ����� � �����

����� ����� ��� � ����� ���

 along the chord direction 

x and the transversal direction z, respectively, between 
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the deformed cross-section and the base section. Given 

a structural model, the base section corresponds to the 

undeformed cross-section, shifted and rotated in such a way 

that its leading edge and trailing edge points correspond to 

the leading edge and trailing edge points, respectively, of the 

deformed cross-section obtained by such a structural model. 

�e iterative process in Fig. 1 is stopped once the 

convergences of the lifting coe�cient CL, the moment 

coe�cient CM, and the cross-section distortion of the wing 

sections are achieved simultaneously. �e description of 

a similar iterative process can also be found in [12]. �e 

convergence controls are thus:

����
���� � ��������� � ���� � ���� � ��������� � ����

���� � ��������� � ����
���� ���� ��� ��� ���

��
�

�� � �� � �� � ��� � �� � ���
�� �� �������� �

�

(13)

����
���� � ��������� � ���� � ���� � ��������� � ����

���� � ��������� � ����
���� ���� ��� ��� ���

��
�

�� � �� � �� � ��� � �� � ���
�� �� �������� �

�

(14)

where toll is equal to 10-4, 

����
���� � ��������� � ���� � ���� � ��������� � ����

���� � ��������� � ����
���� ����, ��� , ��� , and ��� are the lifting coefficient, the m

��
�

�� � �� � �� � ��� � �� � ���
�� �� �������� �

�

 are the lifting 

coe�cient, the moment coe�cient, and the average cross-

section distortion for the generic i-th iteration, respectively. 

�e average distortion 

����
���� � ��������� � ���� � ���� � ��������� � ����

���� � ��������� � ����
���� ���� ��� ��� ���

�� is defined in

�

�� � �� � �� � ��� � �� � ���
�� �� �������� �

�

 is de�ned in Eq. 18. A linear 

approach is adopted as usual in classical aeroelasticity: for 

each iteration, the aerodynamic loads computed for the 

deformed wing con�guration are applied to the undeformed 

con�guration, without changing the structural sti�ness 

matrix 

� ൈ � � ൈ � ������ ����
� � � �� �

,��ࢂ �, �� ׏ ൈ ࢂ � ૙ࢂ��, �, �� ߶׏߶ � ࢂ

 of Eq. 7.

3.2 Aerodynamic loads computation

�e aerodynamic load computed by XFLR5 is a distributed 

pressure, and in this work it is modeled as distributed forces. 

�e generic force acting on the j-th aerodynamic panel is 

evaluated as:

����
���� � ��������� � ���� � ���� � ��������� � ����

���� � ��������� � ����
���� ���� ��� ��� ���

��
�

�� � �� � �� � ��� � �� � ���
�� �� �������� �

�

(15)

where 

����
���� � ��������� � ���� � ���� � ��������� � ����

���� � ��������� � ����
���� ���� ��� ��� ���

��
�

�� � �� � �� � ��� � �� � ���
where ��  is the free stream �� �������� �

�

 is the free stream velocity, and 

����
���� � ��������� � ���� � ���� � ��������� � ����

���� � ��������� � ����
���� ���� ��� ��� ���

��
�

�� � �� � �� � ��� � �� � ���
��  velocity and ��  �������� �

�

 is the air 

density. Aj is the area of the j-th aerodynamic panel, which 

the pressure coe�cient 

����
���� � ��������� � ���� � ���� � ��������� � ����

���� � ��������� � ����
���� ���� ��� ��� ���

��
�

�� � �� � �� � ��� � �� � ���
�� �� ��

ficient ���  refers to. According to��� �
�

 refers to. According to XFLR5 

notation, normal vectors are considered positive when 

����
���� � ��������� � ���� � ���� � ��������� � ����

���� � ��������� � ����
���� ���� ��� ��� ���

��
�

�� � �� � �� � ��� � �� � ���
�� �� ��

ficient ���  refers to. According to��� �
�

 is negative, and their verse is outer-pointing. Each 

aerodynamic force is transferred from the aerodynamic 

model to the structural model, following the approach 

described in section 2.1 for the generic concentrated load 

���, �, �� � ����x, z����������� � � �,� , ��� � �,� , �� � ���� � ���������� ��� ��� �� �� � �� � ���
���� � � �� � ���� � ��� ����� � ��

����� � � ������� � ������� �� �� ����� � ����
���� ����

� � ���� ����� ������� ���, �� , �������������� � ���� � ����� �� �� � � ����� ����� ��� , ��� �� ��� � �
�� �� ��� ��� ��� ����� � ����� � ����������� �� � ����� � ������� � ����� � �����

����� ����� ��� � ����� ���

.

For each iteration, the three-dimensional deformed 

con�guration of the wing is built using 11 airfoils along the 

half-wing span, at a distance of 0.5 m from each other. �e �rst 

section lies at the wing root. �e wing is discretized through 

a lattice of quadrilateral aerodynamic panels. Let mic panels. Let ����  be the nu���� ��� �� � ���� � � ������� �� � ���� � � ���� �� �� � ������ � ���� � � ���� � ��� � ����

���� � �� ���� � �� �� � ��������� � �������� ��⁄
 ��

 be the 

number of panels along the chord line, and let 

����
and let ����  be ��� �� � ���� � � ������� �� � ���� � � ���� �� �� � ������ � ���� � � ���� � ��� � ����

���� � �� ���� � �� �� � ��������� � �������� ��⁄
 ��

 be the 

number of panels along the half-wing span. When the VLM 

is employed, the total number of aerodynamic panels NAP is 

equal to 

본문 내 수식 밑에 문장

�������� ��� is equal to ������ ����� . For ��� ������ ����� �� ������ ������ ����� �
�������

. For the 3D Panel Method, NAP must be 

calculated as 

본문 내 수식 밑에 문장

�������� ��� ������ �������� culated as ������ ����� �� ������ , where the ������ ����� �
�������

, where the term 

본문 내 수식 밑에 문장

�������� ��� ������ �������� ������ ����� �� ������  term ������ ����� � 
�������

 

is the number of panels along the wing span, on the upper 

and lower surfaces of the wing. In addition, the term 

본문 내 수식 밑에 문장

�������� ��� ������ �������� ������ ����� �� ������ ������ ����� �
term �������  is the 

is the number of panels placed on the tip lateral cross-

sections. For the sake of convenience, only the half-wing is 

analyzed, since the aerodynamic loads are considered to be 

symmetric with respect to the wing root.

28 

Fig. 1. Aeroelastic iterative procedure, with controllers on aerodynamic coe�cients and wing deformation.
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4. Numerical results

4.1 Aerodynamic assessment

Firstly, an aerodynamic assessment of the VLM and the 

3D Panel Method, which are able to evaluate the pressure 

coe�cients on the wing surface, is performed analyzing 

the e�ects of two typical geometrical parameters: the airfoil 

thickness and the camber line. A straight wing is considered: 

the wing span is 10 m, and the airfoil chord is 1 m long, as 

drawn in Fig. 2a, where the right half-wing is depicted. �is 

wing con�guration is also used in the following structural 

and aeroelastic analyses. �e e�ect of the camber line on 

the aerodynamic �eld is evaluated, using NACA 2415, 3415 

and 4415 airfoils. �e analysis of the in�uence of the airfoil 

thickness is then carried out, using the symmetric NACA 

0005, 0010 and 0015 airfoils. �e number of aerodynamic 

panels is chosen as a compromise between the limit number 

of panels that can be used in XFLR5 (= 5,000) [38], and the 

number of panels required, in order to achieve convergence 

in the aerodynamic results. In the following analyses, the 

choice of 

�������� ��� �� � ���� � � ������� �� � ���� � � ���� �� �� � ������ � ���� � � ���� � ��� � ����

���� � �� and ���� � �� �� � ��������� � �������� ��⁄
 ��

 and 

�������� ��� �� � ���� � � ������� �� � ���� � � ���� �� �� � ������ � ���� � � ���� � ��� � ����

���� � �� and ���� � �� re �� � ��������� � �������� ��⁄
 ��

 remains the same.

For the present assessment analysis, the free stream velocity 

is assumed to be 

����
���� � ��������� � ���� � ���� � ��������� � ����

���� � ��������� � ����
���� ���� ��� ��� ���

��
�

�� � �� � �� � ��� � �� � ���
where ��  is the free stream �� �������� �

�

=50m/s, such that the compressibility 

e�ects can be neglected. �e air density is assumed to be 

����
���� � ��������� � ���� � ���� � ��������� � ����

���� � ��������� � ����
���� ���� ��� ��� ���

��
�

�� � �� � �� � ��� � �� � ���
��  velocity and ��  �������� �

�

=1.225kg/m3. �e angle of attack α of the wing is equal to 3 

deg. In all the following analyses, the air density 

����
���� � ��������� � ���� � ���� � ��������� � ����

���� � ��������� � ����
���� ���� ��� ��� ���

��
�

�� � �� � �� � ��� � �� � ���
��  velocity and ��  �������� �

�

 and the 

angle of attack α will be invariable parameters. �e results 

focus on the variation of the spanwise local lifting coe�cient 


ient �� �along t

����� � ������ � �� � ��� � � � ���� � �������� ������������ �
��

�� �

 along the wing span, de�ned as:

 �� �
����� � ������ � �� � ��� � � � ���� � �������� ������������ �

��
�� �

(16)

where, c(y) and L(y) are the chord and the Lift Force, 

respectively, generated by the pressure acting on the panels 

with span-length 2e(y), placed at the y coordinate. More 

details can be found in [32]. As a �rst result, the trend of 



ient �� �along t

����� � ������ � �� � ��� � � � ���� � �������� ������������ �
��

�� �

 

along the y axis (right half-wing) is reported in Fig. 3a. �is 

analysis is carried out, considering the variation of the airfoil 

thickness. As expected, the VLM is not able to take into 

account the variation of airfoil thickness, since it computes 

29 

         

29 
                              (a) Plan view of the straight half-wing                                    (b) NACA 2415 airfoil cross-section, with variable thickness and 2 cells 

Fig. 2. Geometrical con�guration of the straight wing.

      

30 

                                       (a) E�ect of the airfoil thickness                                                                                  (b) E�ect of the airfoil camber line

Fig. 3.  E�ects of the (a) airfoil thickness and (b) camber line on the spanwise local lifting coe�cient Cl of the straight wing, along the y axis. Com-

parison of the VLM and the 3D Panel Method. �� � ������ ��� � �������� ��⁄ ���� � �� ����� � ���������
���������� � � � �������� � � � �������� � � � �������� � � � ����

=50m/s, �� � ������, ��� � �������� ��⁄ ���� � �� ����� � ���������
���������� � � � �������� � � � �������� � � � �������� � � � ����

=1.225kg/m
3
, α=3

o
.



DOI:10.5139/IJASS.2013.14.4.310 316

Int’l J. of Aeronautical & Space Sci. 14(4), 310–323 (2013)

aerodynamic pressures on the wing reference surface, and 

underestimates Cl with respect to the 3D Panel Method. In 

contrast, the 3D Panel Method is able to evaluate the change 

of the lifting coe�cient as the airfoil thickness increases, as 

can be seen in Fig. 3a. 

Figure 3b reports the trend of the spanwise local lifting 

coe�cient Cl as the camber line changes. It is evident that 

both aerodynamic methods are able to analyze the in�uence 

of the camber line. Comparing Figs. 3a and 3b, it should be 

noted that the spanwise local lifting coe�cient, and thus the 

aerodynamic pressures, are a�ected more by the camber line 

change than the airfoil thickness change. It can be concluded 

that the 3D Panel Method is able to provide a more realistic 

evaluation of the pressure distribution on the wing than 

the VLM. Moreover, the 3D Panel Method a�ords pressure 

loads on the actual wing surface, which are fundamental 

for an accurate study of the actual wing deformation and 

airfoil distortion, in lieu of loads applied on a �ctitious 

wing reference surface, as for the VLM case. �ese reasons 

make the 3D Panel Method the recommended classical 

aerodynamic tool for the following aeroelastic wing analyses. 

4.2 Structural assessment

In order to validate the results given by the proposed 

higher-order 1D CUF approach, a comparison of the static 

structural wing response is here performed, with MSC 

Nastran. Only the right half-wing of the straight con�guration 

introduced in the previous aerodynamic assessment (see Fig. 

2a) is considered here, due to loads and structural symmetry. 

A clamped boundary condition is taken into account for the 

root cross-section (at y=0), whereas the tip cross-section is 

free. �e cross-section employed is a 2415 NACA airfoil, with 

constant thickness equal to 2 mm. A spar with a thickness 

equal to 2 mm is inserted along the spanwise direction, 

at 25% of the chord. �e isotropic material adopted is 

aluminum: Young’s modulus E=69GPa, and Poisson’s ratio 

v=0.33. 

Due to the small thickness and the well-known aspect 

ratio restrictions typical of solid elements, this wing is 

modeled in MSC Nastran by 214,500 solid Hex8 elements 

and 426,852 nodes, corresponding to 1,280,556 degrees of 

freedom (DOFs). �e same structure is analyzed through 

CUF models with a variable expansion order up to N=14, and 

discretized through a 1D mesh of 10 B4 �nite elements (31 

nodes). �e number of DOFs depends on N, as expressed in 

Eq. 2; for instance, with 10 B4 elements and N=14, the DOFs 

are 11,160. However, an analysis of the present structure is 

also carried out through a Nastran shell FE model, but it is 

not reported herein, for the sake of brevity. Nonetheless, 

the error obtained between 1D CUF and shell results is 

comparable with the error obtained between 1D CUF and 

31 

      

32 

                                                     (a) Airfoil upper surface                                                                                                  (b) Airfoil lower surface

Fig. 4.  Percent error obtained by di�erent 1D CUF models in the computation of the distortion along the airfoil (a) upper and (b) lower surfaces, at 

the wing tip cross-section (y=5m). Structural assessment: static wing response to a variable pressure distribution. Reference solution: Nas-

tran solid.

Table 1.  Pressure distribution on the wing along the spanwise direc-

tion, for the structural assessment. �� � ������ ��� � �������� ��⁄ ���� � �� ����� � ���������
���������� � � � �������� � � � �������� � � � �������� � � � ����

=50m/s, �� � ������, ��� � �������� ��⁄ ���� � �� ����� � ���������
���������� � � � �������� � � � �������� � � � �������� � � � ����

=1.225kg/

m
3
, �� � ������ ��� � �������� ��⁄ , ���� � �� ����� � ���������.

���������� � � � �������� � � � �������� � � � �������� � � � ����

�� � ������ ��� � �������� ��⁄ ���� � �� ����� � ���������
y [m] ���������� � � � ���� 1.00 ���� � � � ���� 0.75 ���� � � � ���� 0.50 ���� � � � ���� 0.25 

������ ��������� ���� ����

��� � � ��

���� � ����

������ ������ ��������� ����
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solid results.

A variable pressure distribution step-like along the 

spanwise direction is applied to the upper and lower wing 

surfaces, in order to simulate a real pressure distribution, see 

Table 1. �e static structural response of the wing is evaluated 

in terms of the distortion s at the tip cross-section. For the 

upper and lower surfaces, Figs. 4a and 4b show the percent 

error e obtained by computing the distortion through 1D 

CUF models and the Nastran solid model, which is taken as 

reference:

� � �
ܧ � ͸ͻ�ܩ�� ߥ � ����

� � ��� ��௔���௔� � ��஽ �௎ி��௔���௔� (17)

As depicted in Figs. 4a and 4b, the proposed 1D FEs 

provide a convergent solution, by gradually approaching 

the Nastran solid results, as the expansion order increases 

from 8 to 14, according to the conclusions made in previous 

CUF works [39]. For N=14, the maximum percent error is 

about 3% for the upper surface, and about 2.7% for the lower 

surface. For the wing con�guration considered, the choice of 

N=14 seems hence to be accurate enough to detect the cross-

section distortion with an acceptable error with respect to 

the Nastran 3D results, and with a remarkable reduction in 

terms of DOFs (about a 91% reduction, 11,160 vs. 1,280,556).

4.3 Aeroelastic coupling

�is section focuses on the results regarding the 

equilibrium aeroelastic response of a wing exposed to a 

free stream velocity 

����
���� � ��������� � ���� � ���� � ��������� � ����

���� � ��������� � ����
���� ���� ��� ��� ���

��
�

�� � �� � �� � ��� � �� � ���
where ��  is the free stream �� �������� �

�

=30m/s, via the iterative CUF-XFLR5 

procedure. �is analysis aims at evaluating the in�uence of 

the CUF expansion order N on the aeroelastic behavior of 

the structure, as the accurate description of the cross-section 

distortion depends on N. �e same material and straight 

wing con�guration as those considered in the previous 

assessment are employed here, see Fig. 2a. In this case, the 

cross-section is the NACA 2415 airfoil, depicted in Fig. 2b. �e 

spar thickness t3 is constant and equal to 2 mm; whereas, the 

skin thickness of upper and lower surfaces varies gradually, 

from 2 mm (t1 in Fig. 2b) to 1 mm (t2 in Fig. 2b), in the zone 

between 40% and 45% of the chord. �is particular choice is 

coherent with the purpose of studying a highly-deformable 

nonclassical cross-section. 

�e 1D structural mesh consists of 10 B4 elements. For the 

sake of brevity, a convergent study on the number of mesh 

elements is not reported here. In fact, the choice of 10 B4 

elements yields a good evaluation of displacements for all the 

points of the structure, as detailed in [32, 34], where a similar 

structural case in terms of wing con�guration and applied 

aerodynamic loads was studied via the present structural 

model, and successfully assessed with a commercial FE solid 

model. 

�e aeroelastic analysis is now carried out following the 

iterative coupled procedure CUF-XFLR5 described in Fig. 

1, and varying N. �e convergence process on the lifting 

and moment coe�cients is drawn in Fig. 5a, by means 

of a dimensionless parameter 

�� � ������

��
�� ��

eter ��������� and in Fig. 5b, ������ ������

������ ���������� ����

��������������

, and in Fig. 5b, 

32 

 (a) Relative lifting coefficient                    (b) Moment coefficient 
                                                      (a) Relative lifting coe�cient                                                                                (b) Moment coe�cient

Fig. 5.  Convergence of lifting and moment coe�cients in the iterative aeroelastic analysis, for structural models with di�erent accuracy. Aerody-

namic method: 3D Panel. �� � ������ ��� � �������� ��⁄ ���� � �� ����� � ���������
���������� � � � �������� � � � �������� � � � �������� � � � ����

=30m/s.

Table 2.  Convergent values of lifting coefficient efficient ������ and m ��������� ���� ����
������ ������ ��������� ����

 and moment 

coe�cient ������ nt coefficient ������ for different��� ���� ����
������ ������ ��������� ����

, for di�erent structural models. �� � ������ ��� � �������� ��⁄ ���� � �� ����� � ���������
���������� � � � �������� � � � �������� � � � �������� � � � ����

=30 m/s, 
������ ��������� /s, ���� = 0.46 ����

������ ������ ��������� ����
=0.4637, 

������ ��������� ���� 37, ���� = - 0.1

������ ������ ��������� ����
=- 0.1629.

�� � ������ ��� � �������� ��⁄ ���� � �� ����� � ������������������� � � � �������� � � � �������� � � � �������� � � � ����
������ ��������� ���� ����

��� � � ��

���� � ����

Model ������ ������ ��������� ���� DOFs 

N = 1 0.4643 - 0.1633 2 279 

N = 4 0.4641 - 0.1634 2 1,395 

N = 8 0.4667 - 0.1659 3 4,185 

N = 9 0.4877 - 0.1823 6 5,115 

N = 10 0.4953 - 0.1886 8 6,138 

N = 12 0.5034 - 0.1950 9 8,463 

N = 14 0.5090 - 0.1994 10 11,160 
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respectively. 

�� � ������

��
�� ��

��������������� is the final convergent val ������

������ ���������� ����

��������������

 is the �nal convergent value of the lifting 

coe�cient, which is di�erent for each expansion order 

employed, as well as the �nal convergent moment coe�cient  

�� � ������

��
�� ��

���������������
ment coefficient ������, as reported in Table 2.

������ ���������� ����

��������������

, as reported in Table 2.

Hence, a di�erent choice of N in�uences the structural 

response of the wing to the aerodynamic loads, and 

consequently also a�ects the aerodynamic analysis, due to 

the aeroelastic coupling. �e higher the expansion order 

employed, the more di�erence appears between 

�� � ������

��
�� ��

��������������� is the final convergent val ������

������ ���������� ����

��������������

(

�� � ������

��
�� ��

���������������
ment coefficient ������, as reported in Table 2.

������ ���������� ����

��������������

) and the initial value 

�� � ������

��
�� ��

��������������� ������

������ ������
lue ���� (����) evaluated for the undeform

��������������

 evaluated for the 

undeformed wing. For the cases presented in this work, the 

number of iterations required to achieve the convergence 

of the lifting coe�cient is the same as that required to 

achieve the convergence of the moment coe�cient. It can 

be seen that the increase of N corresponds to the increasing 

number of iterations 

�� � ������

��
�� ��

��������������� ������

������ ���������� ����

erations ��������������  required  required to achieve the 

convergence of aerodynamic coe�cients. �is tendency 

will be clearly explained afterwards, as a consequence 

of the introduction of higher-order terms in the model 

formulation, which enriches the displacement �eld. 

An average cross-section distortion 

���
tion ���is defined as: 

�� � � � � ��� ��� � ���

� � �
��

����������� ��

�����������

 is now introduced 

in order to evaluate the aeroelastic deformation of the cross-

section shape along the wing span. Given an airfoil cross-

section, the average distortion 

���
tion ���is defined as: 

�� � � � � ��� ��� � ���

� � �
��

����������� ��

�����������

 is de�ned as:

���
���

�� � � � � ��� ��� � ���

� � �
��

����������� ��

�����������

(18)

where l is the curvilinear coordinate along the external 

airfoil surface, and s is the distortion of the single point of 

the external airfoil surface de�ned in Eq. 12. It is noteworthy 

that s is a positive quantity, and a null value for the average 

distortion 

���
tion ���is defined as: 

�� � � � � ��� ��� � ���

� � �
��

����������� ��

�����������

 means no distortion. Figure 6 plots the trend of 

the average distortion along the wing span, showing which 

are the most in-plane deformed airfoil cross-sections in 

the static aeroelastic equilibrium response. A remarkable 

variation in the trend of the average distortion appears, 

depending on the accuracy of the structural model chosen. 

Models with an expansion order higher than 9 reveal that 

the section at y=4 m appears to be the most distorted 

section.

For this cross-section, Table 3 presents the numerical 

values of average distortion 

���
tion ���is defined as: 

�� � � � � ��� ��� � ���

� � �
��

����������� ��

�����������

 in the iterative aeroelastic 

analysis, for di�erent structural theories. As occurred for 

the convergence of aerodynamic coe�cients, the number 

33 

Fig. 6.  Spanwise distribution of the average distortion  distortion �� of the �� � ������  of the airfoil 

cross-sections, for di�erent structural models. �� � ������ ��� � �������� ��⁄ ���� � �� ����� � ���������
���������� � � � �������� � � � �������� � � � �������� � � � ����

=30m/s.

34 Fig. 7.  Deformation of the airfoil cross-section at y=4m, computed for 

structural models with di�erent accuracy. �� � ������ ��� � �������� ��⁄ ���� � �� ����� � ���������
���������� � � � �������� � � � �������� � � � �������� � � � ����

=30m/s.

Table 3.  Convergence of the average distortion tion �� [mm]� � � ��

���� � ����

 [mm] in the iterative aeroelastic analysis, for di�erent structural models. Airfoil cross-section at 

y=4m. �� � ������ ��� � �������� ��⁄ ���� � �� ����� � ���������
���������� � � � �������� � � � �������� � � � �������� � � � ����

=30m/s.

�� � ������ ��� � �������� ��⁄ ���� � �� ����� � ������������������� � � � �������� � � � �������� � � � �������� � � � ����
������ ��������� ���� ����

��� � � ��

“-“ : convergence achieved with a tolerance ���� � ����.

������ ������ ��������� ����

Model 
Iteration

1 2 3 4 5 6 7 8 9 10 11 12 13 

N = 1 0.0402 0.0403 0.0403 - - - - - - - - - - 

N = 4 0.0135 0.0136 0.0136 - - - - - - - - - - 

N = 8 0.1729 0.1816 0.1820 0.1821 0.1821 - - - - - - - - 

N = 9 1.1441 1.4721 1.5624 1.5868 1.5934 1.5951 1.5956 1.5958 - - - - - 

N = 10 1.4177 1.9198 2.1159 2.1930 2.2234 2.2353 2.2400 2.2419 2.2426 2.2429 - - - 

N = 12 1.6738 2.2852 2.5542 2.6774 2.7340 2.7600 2.7719 2.7774 2.7799 2.7811 2.7816 2.7818 - 

N = 14 1.7925 2.4670 2.7867 2.9456 3.0250 3.0646 3.0844 3.0941 3.0990 3.1014 3.1027 3.1033 3.1035

�� � ������ ��� � �������� ��⁄ ���� � �� ����� � ������������������� � � � �������� � � � �������� � � � �������� � � � ����
������ ��������� ���� ����

��� � � ��

“-“ : convergence achieved with a tolerance ���� � ����.

������ ������ ��������� ����



319

Alberto Varello    Static Aeroelastic Response of Wing-Structures Accounting for In-Plane Cross-Section Deformation 

http://ijass.org

of iterations 

���
���

�� � � � � ��� ��� � ���

� � �
��

iterations ����������� required ��

�����������

 required to achieve the convergence 

of 

���
tion ���is defined as: 

�� � � � � ��� ��� � ���

� � �
��

����������� ��

�����������

 increases as N, and consequently DOFs, increase. In 

fact, increasing the expansion order N, the structural model 

becomes, in general, more deformable, approaching the 

real structural behavior. �is means that a complete three-

dimensional displacement �eld, as well as local e�ects, 

are evaluated with increasing accuracy, especially for 

structures with highly-deformable cross-sections, see Figs. 

4a and 4b. Since the model accuracy increases, the structural 

deformation is therefore more sensitive to the variations of 

aerodynamic loads, which are di�erent for each iteration, 

following the convergent trend in Figs. 5a and 5b, leading 

to an increasing 

���
���

�� � � � � ��� ��� � ���

� � �
��

iterations ����������� required ��

�����������

. �e numerical results in Table 3 

highlight that, given an expansion order, a higher number of 

iterations is necessary to achieve convergence on structural 

distortion than convergence on aerodynamic coe�cients 

ic coefficients (����������� ൐ ��������������), althoug

�� � �

, although the tolerance employed is 

the same.

For N>8, the displacement �eld becomes accurate enough 

to relevantly take into account a cross-section distortion for 

the airfoil case considered, as can also be seen in Fig. 7. As 

previously explained, given a structural model, the distortion 

is computed by comparing the deformed cross-section to the 

corresponding base section. For the sake of simplicity, only 

the base section for N=1 is plotted in Fig. 7.

As expected, low-order models provide a correct 

evaluation of the bending and torsional structural 

behavior, but not an exhaustive description of the in-plane 

deformation. �is conclusion is con�rmed by Fig. 8, where 

the airfoil distortion s computed by variable kinematic 

models is depicted along the upper surface, at y=4m. �e 

maximum distortion value is reached in the part of the 

cross-section next to the trailing edge, since the sti�ening 

e�ect due to the spar at 25% of the chord limits the cross-

section distortion. Nonetheless, the chordwise position of 

the maximum distortion points on the airfoil upper and 

lower surfaces changes, depending on the accuracy of the 

structural model, see Table 4. As a consequence, it is worth 

pointing out that the increase of N is relevant, not only for 

an accurate detection of distortion values, but also of the 

accurate shape-type deformation.

In general, improvements of the structural theory 

yield more realistic deformations of the wing, until a 

good convergence is achieved for N=14, according to the 

conclusions made for Figs. 4a and 4b in the structural 

assessment. In other words, the di�erence between the 

results obtained through the generic (N-1)-th and N-th 

expansion orders decreases and becomes minimal for N=14. 

For this reason, it is possible to consider the fourteenth-

order model su�ciently accurate to describe the aeroelastic 

35 Fig. 8.  Distortion of the airfoil upper surface of the cross-section at 

y=4m, computed for di�erent structural models. �� � ������ ��� � �������� ��⁄ ���� � �� ����� � ���������
���������� � � � �������� � � � �������� � � � �������� � � � ����

=30m/s.

36 

       
                                                 (a) Relative lifting coe�cient                                                                                  (b) Relative moment coe�cient

Fig. 9.  Convergence of lifting and moment coe�cients in the iterative aeroelastic analysis, for di�erent free stream velocities. Structural model: N 

=14. Aerodynamic method: 3D Panel.
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behavior of the structure here considered.

4.4 Free stream velocity in�uence

�is analysis aims at establishing the in�uence of the free 

stream velocity on the wing distortion. �e wing con�guration 

employed for this analysis is the same as that used in the 

previous study. According to the previous conclusion, 

the structural model considered is N=14. �e free stream 

velocities considered are 25, 30, and 35 m/s. As in the previous 

analysis, the aerodynamic convergence process is presented 

through the dimensionless parameter meter ���������, as illustrated in F��������������� ��������
�������������� ��

� � � ��
������ ����������� ൐ ��������������

�� ������� � � �

�௠௔��௎ௌ �௠௔��௎ௌ �௠௔���ௌ �௠௔���ௌ ��

, as illustrated 

in Fig. 9a. �e convergence of the moment coe�cient is also 

shown in Fig. 9b, through the parameter 

���������
 the parameter ���������.������ ��������

�������������� ��

� � � ��
������ ����������� ൐ ��������������

�� ������� � � �

�௠௔��௎ௌ �௠௔��௎ௌ �௠௔���ௌ �௠௔���ௌ ��

. 

37 

Fig. 10.  Deformation of the airfoil cross-section at y=4m, computed 

for di�erent free stream velocities. Structural model: N=14.

38 

Fig. 11.  Distortion of the airfoil upper and lower surfaces of the cross-

section at y=4m, computed for different free stream veloci-

ties. Structural model: N=14.

Table 4.  Convergent average distortion Table 4. Convergent average distortion �� ����� [mm] ��௠௔�௎ௌ �௠௔��ௌ��
�� ����� ������������ �௠௔�௎ௌ ��೘ೌ�ೆೄ �� �௠௔��ௌ ��೘ೌ��ೄ ��

 [mm] of the cross-section at y=4m, for di�erent structural models. Values and chordwise positions 

of the maximum distortions 

�� ����� �
distortions �௠௔�௎ௌ  [mm] �௠௔��ௌ��

�� ����� ������������ �௠௔�௎ௌ ��೘ೌ�ೆೄ �� �௠௔��ௌ ��೘ೌ��ೄ ��
 [mm] and 

�� ����� ��௠௔�௎ௌ and �௠௔��ௌ��
�� ����� ������������ �௠௔�௎ௌ ��೘ೌ�ೆೄ �� �௠௔��ௌ ��೘ೌ��ೄ ��

 [mm], on the airfoil upper and lower surfaces. 

�� ����� ��௠௔�௎ௌ �௠௔��ௌ
lower surfaces. ��= 30 m

�� ����� ������������ �௠௔�௎ௌ ��೘ೌ�ೆೄ �� �௠௔��ௌ ��೘ೌ��ೄ ��
=30m/s.

�� ����� ��௠௔�௎ௌ �௠௔��ௌ��
Model �� ����� ������������ �௠௔�௎ௌ ��೘ೌ�ೆೄ �� �௠௔��ௌ ��೘ೌ��ೄ �� DOFs 

N = 1 0.0403 3 0.0718 0.33 0.0439 0.24 279 

N = 4 0.0136 3 0.0103 0.33 0.0251 0.23 1,395 

N = 8 0.1821 5 0.5267 0.74 0.4797 0.75 4,185 

N = 9 1.5958 8 4.6073 0.74 4.1253 0.75 5,115 

N = 10 2.2429 10 6.9936 0.73 5.1626 0.79 6,138 

N = 12 2.7818 12 9.5341 0.73 5.7456 0.82 8,463 

N = 14 3.1035 13 10.7482 0.73 6.0178 0.82 11,160 

������ �������� ����� � � � ������ ����
�� ������ ������ ��������� ���� �� ���� ������������

Table 5.  Convergent values of lifting coe�cient efficient ������, m �������� ����� � � � ������ ����
�� ������ ������ ��������� ���� �� ���� ������������

, moment coe�cient ������ ient ������, and average dis-�� ����� � � � ������ ����
�� ������ ������ ��������� ���� �� ���� ������������

, and average distortion Table 4. Convergent average distortion �� ����� [mm] ��௠௔�௎ௌ �௠௔��ௌ��
�� ����� ������������ �௠௔�௎ௌ ��೘ೌ�ೆೄ �� �௠௔��ௌ ��೘ೌ��ೄ ��

 [mm] of cross-section at y=4m, for 

di�erent free stream velocities 

�� ����� ��௠௔�௎ௌ �௠௔��ௌ
lower surfaces. ��= 30 m

�� ����� ������������ �௠௔�௎ௌ ��೘ೌ�ೆೄ �� �௠௔��ௌ ��೘ೌ��ೄ ��
 [m/s]. Structural model: N=14. 

������ �������� ����� � � � ��
 14. ���� = 0.46 ����

�� ������ ������ ��������� ���� �� ���� ������������
=0.4637, 

������ �������� ����� � � � ������ 37, ���� =

�� ������ ������ ��������� ���� �� ���� ������������
=-0.1629.

�� ����� ��௠௔�௎ௌ �௠௔��ௌ��
�� ����� ������������ �௠௔�௎ௌ ��೘ೌ�ೆೄ �� �௠௔��ௌ ��೘ೌ��ೄ ��

������ �������� ����� � � � ������ ����
�� ������ ������ ��������� ���� �� ���� ������������
25 0.4879 -0.1827 7 1.7269 9 

30 0.5090 -0.1994 10 3.1035 13 

35 0.5608 -0.2394 18 6.3296 22 

Table 6.  Values and chordwise positions of the maximum distortions  distortions �௠௔��௎ௌ , �௠௔��௎ௌ , �௠௔���ௌ , �௠௔���ௌ���
�� �௠௔��௎ௌ ��೘ೌ�భೆೄ �� �௠௔��௎ௌ ��೘ೌ�మೆೄ �� �௠௔���ௌ ��೘ೌ�భ�ೄ �� �௠௔���ௌ ��೘ೌ�మ�ೄ ��

 [mm] on the airfoil upper and lower surfaces of 

the cross-section at y=4m, for di�erent free stream velocities 

�� ����� ��௠௔�௎ௌ �௠௔��ௌ
lower surfaces. ��= 30 m

�� ����� ������������ �௠௔�௎ௌ ��೘ೌ�ೆೄ �� �௠௔��ௌ ��೘ೌ��ೄ ��
 [m/s]. Structural model: N=14.

�௠௔��௎ௌ �௠௔��௎ௌ �௠௔���ௌ �௠௔���ௌ���
�� �௠௔��௎ௌ ��೘ೌ�భೆೄ �� �௠௔��௎ௌ ��೘ೌ�మೆೄ �� �௠௔���ௌ ��೘ೌ�భ�ೄ �� �௠௔���ௌ ��೘ೌ�మ�ೄ ��
25 6.0892 0.72 0.8670 0.29 3.0324 0.83 1.6285 0.46 

30 10.7482 0.73 1.5540 0.30 6.0178 0.82 2.6232 0.45 

35 21.2323 0.74 3.1618 0.31 13.9437 0.81 4.5026 0.43 
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In this case, 

��������� ���������
se, ������ and ��������

�������������� ��

� � � ��
������ ����������� ൐ ��������������

�� ������� � � �

�௠௔��௎ௌ �௠௔��௎ௌ �௠௔���ௌ �௠௔���ௌ ��

 and 

��������� ��������������� and ������ represent ��
�������������� ��

� � � ��
������ ����������� ൐ ��������������

�� ������� � � �

�௠௔��௎ௌ �௠௔��௎ௌ �௠௔���ௌ �௠௔���ௌ ��

 represent the �nal 

convergent values of the lifting and moment coe�cients 

for a given  

��������� ��������������� ������
given ��. As occurred for the previous aeroelastic anal

�������������� ��

� � � ��
������ ����������� ൐ ��������������

�� ������� � � �

�௠௔��௎ௌ �௠௔��௎ௌ �௠௔���ௌ �௠௔���ௌ ��

, respectively. As occurred for the previous 

aeroelastic analysis, the trends do not show any numerical 

problems, such as oscillations. From Figs. 9a and 9b, it is 

important to note that the number of iterations 

��������� ��������������� ��������
of iterations ��������������  required to a ��

� � � ��
������ ����������� ൐ ��������������

�� ������� � � �

�௠௔��௎ௌ �௠௔��௎ௌ �௠௔���ௌ �௠௔���ௌ ��

 

required to achieve the aerodynamic convergence increases 

as 

��������� ��������������� ������
given ��. As occurred for the previous aeroelastic anal

�������������� ��

� � � ��
������ ����������� ൐ ��������������

�� ������� � � �

�௠௔��௎ௌ �௠௔��௎ௌ �௠௔���ௌ �௠௔���ௌ ��

 increases, and the �nal convergent values are much 

di�erent from the initial values, as summarized in Table 4. 

�e reason for this behavior is easily explained by the fact 

that an increasing free stream velocity means increasing 

aerodynamic loads, and consequently higher structural 

deformations, and lastly, a more relevant coupling e�ect on 

the aeroelastic response of the wing. In fact, an increasing 

airfoil distortion for the most deformed cross-section at y=4 

m is obtained with 

��������� ��������������� ������
given ��. As occurred for the previous aeroelastic anal

�������������� ��

� � � ��
������ ����������� ൐ ��������������

�� ������� � � �

�௠௔��௎ௌ �௠௔��௎ௌ �௠௔���ௌ �௠௔���ௌ ��

, according to the numerical results 

in Table 5 and airfoil deformed pro�les in Fig. 10. Also for 

velocity values di�erent from 30m/s, a higher number of 

iterations is necessary to achieve convergence on structural 

distortion than convergence on the aerodynamic lifting 

coe�cient 

��������� ��������������� ��������
�������������� ��

� � � ��
������

c lifting coefficient (����������� ൐ ��������������), see T �� ������� � � �

�௠௔��௎ௌ �௠௔��௎ௌ �௠௔���ௌ �௠௔���ௌ ��

, see Table 5.

�e limitation of distortion close to the airfoil leading 

edge, due to the spar, is enhanced for 

��������� ��������������� ������
given ��. As occurred for the previous aeroelastic anal

�������������� ��

� � � ��
������ ����������� ൐ ��������������

�� ������� � � �

�௠௔��௎ௌ �௠௔��௎ௌ �௠௔���ௌ �௠௔���ௌ ��

=35m/s. �e trends 

of distortion on the airfoil upper and lower surfaces, which 

are indicated as US and LS, respectively, are depicted in 

Fig. 11 at y=4, for di�erent velocities. It is important to note 

that deformations of the upper and lower surfaces also 

remarkably di�er, because of di�erent aerodynamic pressure 

distributions. Table 6 shows that not only the maximum 

distortion values on the airfoil upper 

��������� ��������������� ��������
�������������� ��

� � � ��
������ ����������� ൐ ��������������

�� ������� � � �

upper (�௠௔��௎ௌ , �௠௔��௎ௌ ) and lower (�௠௔���ௌ �௠௔���ௌ �� and 

lower 

��������� ��������������� ��������
�������������� ��

� � � ��
������ ����������� ൐ ��������������

�� ������� � � �

�௠௔��௎ௌ �௠௔��௎ௌ ) and lower (�௠௔���ௌ , �௠௔���ௌ ) surface �� surfaces changes as 

��������� ��������������� ������
given ��. As occurred for the previous aeroelastic anal

�������������� ��

� � � ��
������ ����������� ൐ ��������������

�� ������� � � �

�௠௔��௎ௌ �௠௔��௎ௌ �௠௔���ௌ �௠௔���ௌ ��

 varies, but 

also their corresponding chordwise positions. �is aspect 

highlights the importance of higher-order models, in 

particular for an accurate evaluation of the in-plane cross-

section distortion of highly-deformable structures.

5. Conclusions

Variable kinematic 1D �nite elements were formulated 

on the basis of the Carrera Uni�ed Formulation (CUF) and 

coupled to an aerodynamic 3D panel method, implemented 

in XFLR5. �e aeroelastic static response of a straight wing 

with a highly-deformable airfoil cross-section was computed 

through a coupled iterative procedure, for increasing 

structural accuracy and for di�erent free stream velocities. 

An aerodynamic assessment con�rmed that the 3D Panel 

Method provides a more realistic evaluation of the pressure 

distribution on the wing, than the Vortex Lattice Method 

(VLM). As far as the use of 1D higher-order models is 

concerned, the following main conclusions can be drawn:

1.  �e introduction of higher-order terms in the 

displacement �eld is even more important for 

the aeroelastic analysis, due to the �uid-structure 

coupling.

2.  In the case that the wing is rather �exible, the in-plane 

cross-section deformation has a great impact on the 

alteration of the aerodynamic loadings.

3.  �e higher the free stream velocity, the more marked 

the in-plane distortion e�ect.

As far as the present hierarchical one-dimensional 

approach is concerned, the results point out that:

a.  �e CUF is an ideal tool to easily compare di�erent 

higher-order theories, since the model accuracy is a 

free parameter of the analysis.

b.  �e in-plane airfoil cross-section deformation is well-

described by the proposed 1D structural model, in 

good agreement with a three-dimensional FE solution, 

and with a remarkable reduction in terms of DOFs. 

c.  A convergent trend of displacements and aerodynamic 

coe�cients is achieved as the structural model 

accuracy increases. �is proves that the proposed 1D 

higher-order approach does not introduce additional 

numerical problems in the aeroelastic analysis of 

wings with arbitrary cross-section geometry.

d.  A higher number of iterations is necessary to achieve 

convergence on structural distortion than for 

convergence on aerodynamic coe�cients.

�ese reasons make the future use of the proposed CUF-

XFLR5 approach appear promising for a versatile �ight 

optimization tool.
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