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Abstract Computer-Go programs have high computational costs for static analysis, even 

though most intersections of the board remain unchanged after one move. There­

fore, we introduced the method of incremental computation as an essential feature 

in Go programming. This paper explores how incremental computation is ap­

plied to the static analysis in Go programs, and describes two types of analysis 

and pattern recognition. One type is determination in cases where the territories 

of groups are almost determined. This includes (1) the methods of determining 

the life and death of a group by numeri cal features and (2) the method of finding 

the numbers of regions enclosed by the groups based on Euler's formula. The 

other type is estimation of groups of stones and territories by analysing the in­

fiuence of stones using an "electric charge model" in cases where the density of 

stones is rather low. In the analysis, operations on sets of intersections are used 

for mathematical descriptions when applying incremental computation as well 

as definitions of the notions on the Go board. 

Keywords: incremental computation, Euler's formula, life and death, potential distribution, 

electric charge model 

1. lntroduction 

The strength of computer-Go programs is generally considered as a begin­

ners' level despite ali efforts by many researchers. Many Go players in Japan 

estimate the current best Go programs as playing at around 4 or 5 kyu in amateur 

rating, although the Japan Go Association recently certified some Go programs 

as one dan. This is stronger than 5 kyu; the difference is 5 handicap stones. 

The progress in playing strength is considered rather slow compared to that of 

computer Shogi. The latter game is also considered very difficult, but appar­

ently the Shogi programs are steadily improving. We assume that investigating 

the theoretical and mathematical foundations of the game as well as applying 

the results in practica! Go programming are significant for computer Go. 
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It is widely accepted that an efficient static analysis is essential to improve 

the playing strength of computer-Go programs. However, the costs of such an 

analysis are much higher than those of chess and Shogi. The static analysis 

needs to be repeated not only at every move, but also at every step in the search 

tree. 

In this paper, we explore how the incremental computation can be applied to 

static analysis. We discuss two types of static analysis and pattern recognition 

in computer Go: determination and estimation. The first type, determination, 

contains the analysis of cases where the territories of the groups have been 

almost determined. This includes ( 1) the methods of determining the life and 

death of a group by the numerica! features and (2) the method of finding the 

numbers of regions enclosed by the groups based on Euler's formula. The other 

type, estimation, deals with the estimation of groups of stones and territories 

on the board when the density of stones is rather low by analyslng the influence 

of stones using an electric charge model. 

The aim of the static analysis is to obtain the phase of the board, which is 

a collection of overall aspects of the board configuration, such as territories of 

black and white stones, influence of stones, and life and death of the groups. In 

most cases, the change in board configurations is restricted to one intersection 

except for capturing, which seldom occurs. The largest part ofthe phase usually 

remains unchanged for one move, although there are cases where the phase 

changes vastly by one move. By using incremental computation for obtaining 

the phase of the board, we can restrict the evaluation process to the parts changed 

without repeating the same process for any unchanged part of the configuration. 

Since the game of Go requires high computational costs for the static analysis, 

incremental computation is especially effective for computer Go. 

In most previous publications on static analysis in computer Go, the main 

subject dealt with determining the life and death of groups of stones. Those 

works include: the theoretical study of static life (Benson, 1976); determining 

the life and death of groups by some local features including perimeters of the 

empty regions (Chen and Chen, 1999) and by tactica! analysis and eye values 

(Fotland, 2002); and static analysis by position evaluation (Miiller, 2002). The 

application of combinatorial game theory to yose problems (Berlekamp and 

Wolfe, 1994) is another theoretical result. Nakamura (2000, 2001) presented 

basic approaches to the life-and-death problem, which included estimating the 

number of eyes based on Euler's formula for connected planar graphs and 

analysing capturing races by semeai graphs. 

There are few papers that discuss the method of incremental computation in 

computer Go so far. Most Go-playing programs seem to have some mechanism 

for incremental computation. Klinger and Mechner (1996) and Bouzy (1997) 

describe some methods for incremental updating of data in Go programs. These 
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two publications contain elements of the basics of incremental computation 

since they take into account the knowledge maintenance and backtracking. 

Since the early program by Zobrist (1969), most Go programs, including 

INDIGO (Bouzy, 1995), Go INTELLECT (Chen, 1989), HANDTALK (Chen, 

2002), EXPLORER (Miiller, 2002), and JIMMY 5.0 (Yan and Hsu, 2001) em­

ploy mechanisms for evaluating the inftuence of stones and determining terri­

tories. An important feature of our electric charge model is the computation of 

the potential distribution which is based on incremental computation. Another 

feature is that some aspects of Go boards can be described in detail by potential 

distributions. 

This paper is organized as follows. In Section 2, we describe operations on 

the set of intersections on the board, which are used for representing features 

of pattern analysis as well as mathematical descriptions of incremental com­

putation. Section 3 describes methods of recognizing blocks 'and groups based 

on the set operations, and discusses a method of identifying the life and death 

of a group enclosing a region by the numerica! features of the regions detined 

by the set operations. Section 4 shows an improved method of estimating the 

number of regions enclosed by the groups based on Euler's formula for planar 

graphs. Section 5 outlines another approach of static analysis for recognizing 

groups and tinding the inftuence of stones based on the electric charge model 

and on incremental computation. 

2. Set Operations and Incremental Computation 

In this section, we detine several constants and some operations on the sets 

of intersections. We show the relation of the operations with incremental com­

putation. Our intention is not to use the sets of intersections and the operations 

directly for the analysis, but to detine basic notions on Go boards and to use 

incremental computation only for the parts that changed in every move. 

2.1 Operations on Sets of Intersections 

The Board is the set B = {(i,j) Jl ~ i,j ~ N} of intersections. In the 

standard rule N is 19. A contiguration is represented by two disjoint sets B ~ B 

and W ~ B of intersections occupied by black and white stones, respectively. 

The intersections in B or W are called black or white stones, respectively. The 

other elements of Board, B- B - W, are empty intersections. An intersection 

(i,j) isadjacenttoanintersection (m, n), ifandonlyifJi-mJ+Jj-nJ = 1. An 

intersection ( i, j) is adjacent to a set S of intersections, if and only if ( i, j) fj. S 
and there is ( m, n) E S such that ( i, j) is adjacent to ( m, n). 

The board B and the empty set 0 are constants. Another constant is Edge D· 
detined by 

D ~ {(i,j)J i = l,i = N,j = 1 or j = N}. 
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Figure 1. An example of a configuration and the results of extended operations. 

We have three types of operations: Boolean, shift, and extended operations. 

The Boolean operations include union U, intersection n and set difference 
<-

-. There are four shift operations. The operation Shift Left A is defined by 

A~ {(i- l,j) 1 (i,j) EA, i 2: 2}. The value of A is the set ofintersections 

which are shifted left from the intersections in A. The intersections on the left 
--+ 

edge in A are eliminated. Other shift operations are: Shift Right A, Shift Down 

Al and Shift Up A j; they are defined analogously. 

For a set X, it holds that lXI is the number of elements inS. The following 

extended operations are used for representing features of enclosed regions in 

Subsection 3.3. 

exterior(X) ~ {(i,j) 1 (i,j) is adjacent to X} 

thicken(X) ~X U exterior(X) 
/:;. --+ 

#adjacent(X) = jXn X 1 + IX n X li 

Some examples of these operations are shown in Figure 1. We represent 

a configuration (Figure 1(a)) by sets B (Figure 1(b)) and W (Figure 1(c)) of 

black and white stones, respectively. The value of #adjacent(B) is 11, and 

that of #adjacent(W) is 3. 

2.2 Operations and Incremental Computation 

Let Y be any set of stones of the same colour, and A be a set of one stone 

of the same colour, such that Y n A = 0. Incremental computation of an 

operation Op for Y U A means finding the result Op(Y U A) from the value 



Static Analysis by Incremental Computation in Go Programming 179 

Op(Y) and the operations on the neighbour intersections of A. The costs of 

incremental computation are generally lower than those of a full computation, 

since the change caused by adding a stone in A is restricted to the neighbour 

intersections of this stone. The results of incremental computation for the basic 

operations are as follows. 

X U (Y U A)= (X U Y) U A 

X n (Y U A) = (X n Y) U (X n A) 

X- (Y U A)= (X- Y)- A 

(Y U A)- X= (Y- X) U (A- X) 
~ -> -> 

YUA =Y U A 

Incremental computation for other shift operations is defined· analogously. We 

note that the rightmost terms in the equations represent the changes. We also 

note that A - X = 0, if A c X, and otherwise A - X = A. The results of 

the method for the extended operations are shown below, with ISI being the 

number of elements in a set S. 

thicken(Y U A) = thicken(Y) U thicken(A) 

exterior(Y U A) = thicken(Y) U thicken(A) '_ (Y U A) 

= (exterior(Y) -A) U (exterior(A) - Y) 

#adjacent(Y U A) 
-> -> 

= I(Y uA) n (Y u A)l + I(YuA) n (Y l uAl)! 

= #adjacent(Y) + IY n exterior(A)I 

3. Static Analysis Based on Set Operations 

In this section, we define blocks and groups, and discuss a method of deter­

mining the life and death of a group that depends on the shape of the enclosed 

region and on the positions of the opponent stones in the region. We imple­

mented and tested most of the methods in Sections 3 and 4 in Prolog. 

3.1 Blocks and Group 

A connected set of intersections is defined by the following recursive rules. 

1 A set of one intersection is connected. 

2 For any set of T of intersections, if a subset S ~ T is connected, then 

thicken(S) n T is connected. 

We represent a board configuration by sets B and W of black and white 

stones. The set E of empty intersections is given by E = B - B - W. A black 
block is a connected set Bx ~ B such that thicken(Bx) n B = Bx. White 
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blocks are defined analogously. An empty region is a connected set Ex ~ E 

such that thicken( Ex) n E = Ex. 

A liberty, or dame, of a black (or white) block Bx (W x) is an empty inter­

section in the exterior of the block. Hence we have 

liberty(Bx, W) ~ exterior(Bx) nE= exterior(Bx)- W. 

We note that every block has non-empty liberties, since any block without the 

liberty is dead and removed from the board. 

The configurati ou in Figure 1 (a) contains two black blocks, two white blocks 

and three small empty regions. The inner black block has two liberties. The two 

black blocks enclose the region of fi ve white stones and fi ve empty intersections. 

A group is an important notion that is defined to be either a block or a union 

of blocks of the same colour such that the blocks are "dynamically" connected, 

i.e., the opponent cannot cut, or separate, the blocks. Although some groups, 

such as blocks connected by kosumi (diagonal) relations, can be recognized 

by static analysis, precise recognition needs dynamic analysis, as discussed 

in Nakamura (2002), We call the group in this narrow sense the linked group, 

which is a set of stones connected by adjacent-to or kosumi relations. In Section 

5 it is shown that most of the groups in the broad sense are recognized by static 

analysis based on the electric charge model. 

A group is alive, if the opponent player cannot capture it, and dead otherwise. 

Practically, a group is alive, if it has two eyes (i.e., small enclosed regions), it 

can be changed to form two eyes or a seki, or the group side wins the capturing 

race relating this group. There is a case where the life and death depends on a 

ko in the group. 

3.2 Life and Death of Groups Enclosing Regions 

Following Berlekamp and Wolfe (1994) and Chen and Chen (1999), we 

represent the types of enclosed regions related to the life and death of groups 

by pairs { ai,B} of symbols, where a represents the state, if fue group side 

moves next, and (3, if the opponent moves next. The symbol of the state is 

either L, O, S, or K. Symbol L denotes that the group is alive in the sense 

that the enclosed region can form two eyes, whereas S denotes that the group 

enclosing the region can form a seki. Although the group is alive in the both 

cases, we distinguish S from L, because the opponent group in the region is 

also alive in the seki. Symbol O denotes that the region cannot be two eyes 

but only one eye. Symbol K denotes that the region can be changed to have 

a ko such that it can have two eyes, if the group side wins the ko, and one eye 

otherwise. Possible combinations in this section are {LJL}, {LJS}, {LJO}, 

{SJO}, {OJO}, {LJK}, and {KJO}. In some cases, life anddeath depends on 

the outer liberties of the group as well as the features of the region. Note that 

{LJL} corresponds to 2.0 eyes, {LJO} 1.5 eyes, and {OJO} 1.0 eye in other 
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Feature 

size of region R 

perimeter of R 

num. of adjacent-to relations in X 

max. neighbours in X 

num. of opponent stones in R 

max. liberties of one stone in B n R 

total num. of opponent stones in R 

num. of intersections in R on the edge 

outer liberties of the group 

Definition 

IRI 
1 exterior( R) 1 

#adjacent(X) 
max_neighbour(X) 

IBnRI 
maxJiberties(B n R) 
exterior(R n B) 

IRnDI 
lliberty(W)I-IE n liberty(W)I 

Table 1. Features for determining the life and death of a group enclosing a region. 
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publications (Chen and Chen, 1999; Fotland, 2002). Since we discuss only 

the states of closed regions enclosed by groups and exclude the case where the 

region contains an opponent group with two eyes, we do not use the symbols 

for the states of half eyes or empty eyes. 

Table 1 shows the list of features used for determining the life and death 

of the groups. In this table, R denotes the region, i.e., the set of intersections 

enclosed by a group, E the set of empty intersections, and B the set of opponent 

stones. We assume that the white group encloses the region ~n the figures. This 

table contains two features defined as follows. 

max_neighbour(X) ~ rnax IX n exterior( {p}) 1 
pE X 

max_liberties(X) ~ max lE n exterior( {p}) 1 
pEE 

We tested this set of features for various pattems of the enclosed regions, 

and found that the features are effective to identify the types of life and death 

of the regions with the size of fi veto eight including those in the comers and 

those containing opponent stones. 

Chen and Chen (1999) have shown that the life and death of a group enclosing 

an empty region R can be determined by the features, the perimeters of R, and 

the existence of square ţţ , which is given by #adjacent(R) - IRI + 1 2 1 

in our terminology. Another possible set of features for this recognition is IRI, 
#adjacent(R), and max_neighbour(R). · 

Figure 2 shows typical empty regions in the comer with { LIK} or {LIS}, if 

the groups have a few outer liberties. For example, the bent four in the comer 

(a) is in {LIL }, ifthe white group bas two or more outer liberties, and {LIK} 

otherwise. White can choose {LIK} or {LIS} in (e), if the outer liberties 

are zero or one. These pattems can be identified by the features, the number 

of intersections on the edge, the perimeters of R, and the number of squares, 

#adjacent(R) - IRI + 1. 
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(a) (b) (c) (d) (e) 

Figure 2. Patterns of groups with {LIK} and/or {LIS} when the white groups have a few 

outer liberties. 

(a) (b) (c) (d) (e) 

Pattern in Figure 3 (a) (b) (c) (d) (e) 

num. of opponent stones 2 2 2 2 3 3 3 

#adjacent(B n R) 1 1 o o 1 1 1 

totalliberties of B n R 2 3 3 3 2 2 2 

max. liberties of one stone 1 2 2 2 1 2 2 

outer liberties - - >1 o - >1 o 
Life and Death LIO OIO LIL LIS LIL LIL SIS 

Figure 3. Regions with prisoners in size 5 enclosed by white groups. 

Figure 3 shows examples of patterns of the enclosed regions containing two 

or three opponent stones (prisoners). We can identify each of the patterns by 

the five features in the table. Note that the groups enclosing the J?atterns (c) and 

(e) are alive by squashing (oshitsubushi), if the group has one or more outer 

liberties, otherwise the group is in seki. 

A characteristic of our method is that the recognition is based on numerica! 

features of the regions and groups, to which incremental computation can be ap­

plied. The method does not use pattern matching as used in many Go programs, 

which we consider inefficient and inappropriate for incremental computation. 

The method shown in this section is only applicable to the groups enclos­

ing closed regions. To analyse patterns with incompletely closed regions, or 

patterns with half eyes or open eyes, severa! methods have been proposed such 

as those by eye values and eye regions in Chen and Chen (1999) and Fotland 

(2002) and by position evaluation in Chen (2002) . We are working on extend­

ing our methodology so that it can be applied to incompletely closed regions or 

loosely connected groups, e.g., those connected by bamboo joints. 
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Euler's Formula 
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The regions enclosed by groups are important for deciding the life and death 

of the group, since the eyes are small enclosed regions and a group enclosing a 

region can be alive as discussed in the previous section. Nakamura (2000, 2002) 

proposed a method of using a formula to tind the number regions enclosed by 

the groups. In this section, we show an improved method of tinding the number 

of enclosed regions based on the method of incremental computation. The term 

"group" in this section refers to the linked group. 

For any connected planar graph, the number N of regions enclosed by edges, 

or minimalloops, is given by Euler's formula N = n- k + 1, where n and k are 

the numbers of edges and vertices, respectively. This formul~ has been applied 

in computer graphics to tind the number of enclosed open regions in digital 

tigures, which are represented by bit arrays (Gray, 1971). Euler's formula is 

also applied in tinding "holes" in the game Lines of Action (LoA) (Winands, 

Uiterwijk, and Van den Herik, 2001). 

4.1 Application of Euler's Formula to Go 

For the application ofEuler's formula to graphs to tind the number of enclosed 

regions in Go, we consider each stone in a group as a vertex, and each "link" 

between the stones as an edge. The link is either the "adjacent-to" relation or 

the diagonal relation of two stones in the group. 

6 ~ ~ 

#link(G) = #adjacent(G) + IG n GJ 1 + IG n GJ 1 

It is remarked that we assume that every stone in a group is connected t6 at least 

an other stone in the group by the link. 

The group may contain closed loops of stones composed of three stones and 

three links, e.g., ~· and le. To tind the number of enclbsed regions (or 

the number of open loops), the number of the closed loops #closedJoop( G) 

should be subtracted from the number of the minimalloops. The number of 

regions enclosed by the group G, is given by 

#empty_region(G) ~ #link(G) -IGI- #closedJoop(G) + 1. 

A group may contain a closed loop of the form 11 , which contains two 

diagonallinks. In this case, only one ofthe diagonallinks is valid, since Euler's 

formula applies only to planar graphs. For example, the black group in Figure 

4 has 16 links including 8 diagonallinks, 12 stones and 4 closed loop. The 

number of enclosed regions is calculated as 16- 12- 4 + 1 = 1. When the 

intersection A is occupied by a black stone, the numbers of links, stones and 
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(a) (b) 

Figure 4. Black groups enclosing one region (a) and two regions (b). 

(a) 
earth 

(b) 

Figure 5. A group in the corner enclosing one region (a) and two regions (b). 

closed loops increase by 3, 1 and 1, respectively, and the number of enclosed 

regions changes to 19 - 13 - 5 + 1 = 2. 

To apply this method to the groups in the peripherals and comers, we consider 

that there are links between stones on the edge of the board and a special virtual 

stone called earth as shown in Figure 5. To find the number ofthe virtuallinks, 

we first assign the set of stones on the edge G n D to a variable X. The 

number ofvirtuallinks is lXI, and the number of closed loops with the earth is 
---+ 

IX n X li+ jXnx j. We say that the group G is earthed, if X =f 0. Since the 

group in Figure 5 (a) has 11links including 3 virtuallinks, 8 stones including 

earth and 3 closed loops, the number of open loops is N = 11 -, 8 - 3 + 1 = 1. 

After placing a black stone atA, the number changes to N = 13-9-3 + 1 = 2. 

4.2 Incremental Computation 

For an effective incremental computation of the number of enclosed regions, 

we consider the change in number caused by placing a stone on an empty 

intersection p close to a black group G, i.e., there is a stone q E G such that 

there is a link between p and q. For the intersection p = ( i, j) not on the edge, 

let C (p) be the circular sequence of eight neighbour states, 

where each state Sx,y is empty, or a black or white stone around the intersection 

p. The change in the number of regions caused by placing a black stone at p 
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Figure 6. Typiclil. patterns of neighbours and changes in the numbers of enclosed regions. 

equals E(p) - 1, where E(p) is the number of the consecutive subsequences 

in C (p) satisfying the following conditions. 

1 Bach state is either empty ora white (opponent) stone. 

2 Bach subsequence contains one or more elements in exterior( {p} ). 

The fact that the change equals E(p) -1 is derived from E(p) = n'- 1- L', 
where n' is the change in the number of links and L' is the change in the number 

of the closed loops caused by adding the stone. Figure 6 shows typical state 

patterns of neighbours and the increments of the number of regions enclosed 

by a black group. The symbol o denotes either an empty ora white stone. Note 

that for the intersection A in Figure 4 (a), the change is one, since E(A) = 2. 

Note also that the intersections p with E(p) 2:: 2 are considered the vital points. 

For the intersection p on the bottom edge, the number E(p) is defined as the 

number of consecutive subsequence in the sequence, 

The number E (p) is similarly defined for other edges with different directions, 

for the corners, and for the white stones. The change in the number of regions 

is E(p) - 1, if the group is earthed, and left and right neighbour intersections 

are empty. Otherwise, the change in the number of regions is E(p) - ·2. Note 

that since a stone is placed on the edge in this case, the group changes in being 

earthed. Figure 7 shows typical patterns of neighbours and their changes in 

the number of regions. The pattern (c) represents that the change is one, if the 

group is earthed, and zero otherwise. Patterns (e) and (t) represent two cases 

in the corner intersection. Since the point A in Figure 5 (a) matches the pattern 

( c) and the group is earthed, the change in the number of regions is one. 

4.3 Problems Related to Incremental Computation 

The method shown in this section only provides the number of enclosed 

regions, but no information on the position of the regions, which are necessary 

for the analysis as performed in Section 3. A practica! method for determining 

the position is using the potential distribution tobe described in Section 5. 

Moreover, the enclosed regions counted by the method might include false 

eyes. A false eye occurs, when two blocks are connected by two diagonal 

links. Hence, a region with one empty intersection enclosed by two blocks is 
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Figure 7. Typical patterns ofneighbours on the edge (a- d) and the corner (e, f). 
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Figure 8. Groups consisting of two blocks connected by diagonallinks. 

not a false eye, if the blocks are connected by three or more diagonallinks and 

virtuallinks (Figure 8). We can calculate the number of the connecting links 

by subtracting the total number of diagonal links in the two blocks from the 

number of diagonallinks and virtuallinks in the group. Note that this rule is also 

effective for determining the life and death of the dragon with two heads, i.e., a 

group with two blocks connected by two false eyes. Although the condition for 

unconditionallife by Benson (1976) covers these groups, our rule is simpler 

and appropriate for incremental computation. 

Although most other enclosed regions can form one or two eyes as discussed 

in Section 3, there is the case that a large enclosed region containing an opponent 

group might form no eye andlor a seki. This problem can be solved by analysing 

capturing races (Nakamura, 2001). 

5. Static Analysis by Electric Charge Model 

This section outlines how incremental computation is used in estimating 

groups and territories based on the electric charge model. For a board config­

uration, the potential of each intersection is defined as follows. 

1 Bach stone distributes potential values 1/d to intersections around this 

stone, where d is the Manhattan distance between the stone and the in­

tersection. The potential of every intersection is the sum of the potential 

values given by ali the stones nearby. The potential given by black stones 

and that by white stones are separately calculated. 

2 Stones close to the edges or the corners have their mirror images as shown 

in Figure 9. Therefore, the intersections near the edges or the corners 

have higher potential than intersections in the centre of the board. 
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Figure 9. An example of mirror images. 
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Figure 10. Values added to distances in shadows. 
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3 A potential value of an intersection given by a stone' is reduced, if the 

intersection is in the shadow of another stone. The distance dis increased 

by the value shown in Figure 1 O in the calculation of the potential value. 

We use two different types of potential distributions. One is the potential distri­

bution reflecting only the shadows of the stones of the same colour and the other 

is the potential distribution reflecting the shadows of ali stones. In Subsection 

5.3 the latter type of distribution is used for recognizing groups. The first type 

is intended to be used for estimating the strength of the groups, although the 

use is not shown in this paper. 

Figure 11 shows examples of potential distributions. Because of the mirror 

images, the intersections in the corner have higher potentials as shown in Figure 

11(c). In general, the potential of an intersection represents the degree to what 

extent the intersection is surrounded by stones. The potential in an enclosed 

region is approximately 4 to 6 as shown in Figure ll(b), and independent of 

the size and the shape of the region or of the stones of the opponent. 

5.1 Incremental Computation of Potentials 

Because of the linear, additive nature of the potential, incremental compu­

tation is generally simple, although mutual interactions of the shadows make 

the computation more complex for the configurations with many stones. We 

employ the following approximation method for computing a potential distri­

bution. 
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I 1 1 1 1 1 1 1 1 
-o. 2-{). 2-{) .2-{). 3-0.5-0.3-0. 2-{). 2-{). 2-

1 1 1 1 1 1 1 1 1 
-o.2-D.2-D.3-0.5-l.o-o.5-0.3-0.2-{).2-

l 1 1 lo€)1 1 1 1 
-o.2-D.3-0.5-l. 0.0 l.G-o.5-0.3-Q.2-

I 1 1 1 1 1 1 1 
-o. 2-{). 2-{). 3-{). 5-1. o-o. 5-0 .3-{). 2-{). 2-

1 1 1 1 1 1 1 1 1 
-o. 2-{). 2-{). 2-{). 3-0.5-0.3-0. 2-{). 2-{). 2-

1 1 1 1 1 1 1 1 1 
-o .1-o. 2-{). 2-{). 2-{). 3-{). 2-{). 2-{). 2-{) .l-

I 1 1 1 1 1 1 1 1 

(a) One stone in the center. 

I 1 1 1 1 1 1 1 1 1 
-o.6-0. 7-1.1-1.5-2.1-2.1-1.5-1.1-Q. 7-Q.6-
IIII~IIII 

-o.7-Q.8-1.2-2. .5 .5 2.6-1.2-{).8-0.7-

111~ ~III -o.7-Q.9-l. 1.5 .5-4. 1.5 1.5-0.9-{).7-

lllwlll 
-o. 7-{).8-1.2-2. 2.5 2.5 2.6-1.2-{).8-0. 7-

1 1 1 1 1 1 1 1 
-o.6-0. 7-1.1-1.5-2.1-2.1-1.5-1.1-Q. 7-D.6-

I 1 1 1 1 1 1 1 1 1 
-o.5-0.8-0.9-1.2-1.3-1.3-1.2-{).9-D.8-0.5-

I 1 1 1 1 1 1 1 1 1 

(b) An enclosed region in the center. 

-o.2-{).3-0.5-0.7-Q.8-l.l-1.2-1.4-1.7-1.4-i.2 
1 1 1 1 1 1 1 1 1 1 1 

-o.l-Q.4-Q.4-{). 7-D.9-1.3-1.2-1.4-2.Q-1.4-1.2 
1 1 1 1 1 1 1 ls€)1 1 

-o.3-0.3-0.5-0.6-l.Q-1.8-1.4-l. 1.0 1.8-1.4 
11111~1 1 11 

-o.2-D.3-0.4-Q. 7-1. 0.6 1. 7-1~-1.7-1.2-1.1 
1 1 1 1 1 1 1 1 1 1 

-o.2-D.2-D.3-0.4-Q. 7-1.3-1.1-Q. 9-1.0-D.B-0.8 
1 1 1 1 1 1 1 1 1 1 1 

-o.l-o.2-D.2-D.3-0.5-0.8-0.5-0. 7-o.s-o. 7-o.5 
1 1 1 1 1 1 1 1 1 1 1 

-o .1-{) .1-o .2-{). 2-{) .4-{). 5-0 .4-Q .4-Q. 6-0.5-0.5 
1 1 1 1 1 1 1 1 1 1 1 

( c) Two stones in the comer. 

Figure 11. Examples of potential distribution. 

1 We restrict the area to which the potential values from a stone are dis­

tributed to the set D of intersections in such a way that the distance from 

the stone to the other intersections is fewer than 8. The stones have their 

mirror images, only if the distance between the stones and the edge is 

fewer than 5. 

2 Whenever a stone is placed on an intersection: 

(a) the potential of every intersection in the area D is increased by 

the value 1/ d, where d is the distance between the stone and the 

intersection; and 
(b) for each stone in the area D, the decrements by the effect of shad­

ows are subtracted from the potentials of intersections in the two 

symmetric shadows of the two stones. 

Note that the potential at an intersection obtained by the computation method 

above is slightly different from the one given by the definition in the previous 

subsection, if the intersection is in double shadows. The errors by the approxi­

mation, however, are negligible. 
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Figure 12. Computation time for potential distributions by computing the difference . 
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Figure 12 shows a graph of computation time of the potential distributions 

for each move. For the experiment, we used a Pentium III processor with 1 G 

Hz clock running a program written in C++. The computation results include 

four potential distributions, i.e., those for two types of distributions for both 

black and white stones. Although the time increases with the number of stones 

while the number is fewer than approximately 50, the time is almost constant 

otherwise. 

5.2 Recognition of Groups and Territories by Potential 

Distributions 

Let B ( i, j) be the potential of an intersection ( i, j) given by black stones, and 

W ( i, j) by white stones. We use the potential distribution that has the effects of 

shadows by both black and white stones. The procedure for recognizing black 

groups is as follows. 

1 First, select group points from a given configuration by the following 

rules. 

(a) The intersection occupied by a black stone is a black group point. 

(b) An empty intersection is a black group point, if B(i,j) ~VI and 

B(i,j)- W(i,j) ~ v2 , where VI and v2 are parameters. 

The white group points are selected similarly. Based on many experi­

ments, we determined the parameters as VI = 1.0, v2 = 0.55. 

2 Determine connected sets of group points of the same colour (Note that 

this process is similar to that for determining blocks). The set of stones in 

each of the connected sets is a group. The connected set of group points 

represents the influence range, or the territory, of the group. 



190 K. Nakamura 

Figure 13. An example of groups and their territories derived from potential distributions. 

3 In some cases, groups connected by diagonal, or kosu,mi, relations are 

not recognized only by the rules above. Hence, it is necessary to unify 

these groups into one by finding stones with this relation. 

By testing this method for various configurations in games by professional 

players, we found that incremental computation can correctly recognize most 

groups for the wide range of configurations with more than 20 stones. Figure 

13 shows an example of groups in a game (Black: C. Chou and White: M. 

Takemiya, 1994) evaluated by incremental computation. The dark gray areas 

represent the white territories, and light gray areas the black territories. 

It is generally not difficult to compute the difference in finding the groups, 

since a group usually expands in each move and the changes of the group points 

are restricted to intersections near to the point of the move. There is, however, 

the case that a group is cut and separated by erroneous move(s) or ko threats. 

This case will be investigated in future research. 

5.3 Comparison with Other Approaches 

Most Go programs employ some methods of evaluating inftuence of stones 

and/or finding territories, including the potential distribution (Zobrist, 1969), the 

5/21 algorithm (Bouzy, 1995), and the heuristic territory evaluation by Miiller 

(2002). A feature of our approach is that each stone distributes the potential 

of 1/ d to the neighbour intersections for the distance d. This methodology is 

common to those in several Go programs including HANDTALK (Chen, 2002), 

Go-INTELLECT (Chen, 1989), and JIMMY 5.0 (Yan and Hsu, 2001) in the 
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sense that each stone distributes, or radiates, some inference values to neigh­

bour intersections. In contrast, these programs employ different methods for 

calculating the values except HANDTALK, in which the distribution of values 

is similar to our distribution led by 1/d. For example, Go-INTELLECT uses 

the exponential function (exp( -d)) instead of 1/d. 

A unique feature of our method in addition to incremental computation is 

that the inftuences of black stones and white stones are separately calculated. 

This is different from most other programs, in which the inftuence values by 

black (or white) stones are subtracted from those by white (black) stones to 

form a single distribution of inftuence values. 

Another unique feature of our method is that it uses the mirror images, the 

shadows, and four kinds of potential distributions to describe some aspects of 

Go boards in detail. By these features, the potential values of every intersection 

in the board represent how strong other black and white stones surround the 

intersection. Note that this property is based on the potential given by 1/d and 

the mirror images. 

6. Concluding Remarks 

In this paper, we discussed static analysis based on incr~mental computa­

tion to be used in the static analysis in Go programming. The main questions 

were: (1) how the incremental computation can be applied to the static analysis, 

(2) how much does the computation speed increase by incremental computa­

tion, and (3) what sort of analysis is suitable or unsuitable for incremental 

computation? We showed applications of our method to static analysis in Go 

programming, including: 

• identifying the life and death of a group enclosing a region by numerica! 

features, which are described by the operations on sets of intersections; 
• finding the number of regions enclosed by a group based on Euler's 

Formula; and 

• estimation of groups and territories by potential distributions based on 

the electric charge model. 

The analysis methods are based on numerica! features or values, and not on 

pattern matching. Most notions in the static analysis and incremental com­

putation are mathematically defined by the !Jperations on sets of intersections. 

We showed that incremental computation can be used for the operations in the 

analysis. · 

The author and his colleagues are implementing the methods described above 

in a Go-playing program in Prolog and C++. There is stiH some work tobe 

done before we can satisfactorily answer the questions above. Future problems 

include: 

• finding numerica! features effective for identifying alive-and-dead pat­

tems of loosely connected groups, especially those in the comers; 
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• developing a method of acquiring a broad class of alive-and-dead patterns 

and making a database efficiently; and 

• developing faster algorithms for the analysis, especially for incremental 

computation of the potential distributions. 
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