
STATIC ANALYSIS BY INCREMENTAL
COMPUTATION IN GO PROGRAMMING

K.Nakamura
College of Science and Engineering, Tokyo Denki University

Hatoyama-machi, Saitama-ken, 350-0394 Japan.

nakamura@k.dendai.ac.jp

Abstract Computer-Go programs have high computational costs for static analysis, even

though most intersections of the board remain unchanged after one move. There

fore, we introduced the method of incremental computation as an essential feature

in Go programming. This paper explores how incremental computation is ap

plied to the static analysis in Go programs, and describes two types of analysis

and pattern recognition. One type is determination in cases where the territories

of groups are almost determined. This includes (1) the methods of determining

the life and death of a group by numeri cal features and (2) the method of finding

the numbers of regions enclosed by the groups based on Euler's formula. The

other type is estimation of groups of stones and territories by analysing the in

fiuence of stones using an "electric charge model" in cases where the density of

stones is rather low. In the analysis, operations on sets of intersections are used

for mathematical descriptions when applying incremental computation as well

as definitions of the notions on the Go board.

Keywords: incremental computation, Euler's formula, life and death, potential distribution,

electric charge model

1. lntroduction

The strength of computer-Go programs is generally considered as a begin

ners' level despite ali efforts by many researchers. Many Go players in Japan

estimate the current best Go programs as playing at around 4 or 5 kyu in amateur

rating, although the Japan Go Association recently certified some Go programs

as one dan. This is stronger than 5 kyu; the difference is 5 handicap stones.

The progress in playing strength is considered rather slow compared to that of

computer Shogi. The latter game is also considered very difficult, but appar

ently the Shogi programs are steadily improving. We assume that investigating

the theoretical and mathematical foundations of the game as well as applying

the results in practica! Go programming are significant for computer Go.

H. J. Van Den Herik et al. (eds.), Advances in Computer Games

© IFIP International Federation for Information Processing 2004

176 K. Nakamura

It is widely accepted that an efficient static analysis is essential to improve

the playing strength of computer-Go programs. However, the costs of such an

analysis are much higher than those of chess and Shogi. The static analysis

needs to be repeated not only at every move, but also at every step in the search

tree.

In this paper, we explore how the incremental computation can be applied to

static analysis. We discuss two types of static analysis and pattern recognition

in computer Go: determination and estimation. The first type, determination,

contains the analysis of cases where the territories of the groups have been

almost determined. This includes (1) the methods of determining the life and

death of a group by the numerica! features and (2) the method of finding the

numbers of regions enclosed by the groups based on Euler's formula. The other

type, estimation, deals with the estimation of groups of stones and territories

on the board when the density of stones is rather low by analyslng the influence

of stones using an electric charge model.

The aim of the static analysis is to obtain the phase of the board, which is

a collection of overall aspects of the board configuration, such as territories of

black and white stones, influence of stones, and life and death of the groups. In

most cases, the change in board configurations is restricted to one intersection

except for capturing, which seldom occurs. The largest part ofthe phase usually

remains unchanged for one move, although there are cases where the phase

changes vastly by one move. By using incremental computation for obtaining

the phase of the board, we can restrict the evaluation process to the parts changed

without repeating the same process for any unchanged part of the configuration.

Since the game of Go requires high computational costs for the static analysis,

incremental computation is especially effective for computer Go.

In most previous publications on static analysis in computer Go, the main

subject dealt with determining the life and death of groups of stones. Those

works include: the theoretical study of static life (Benson, 1976); determining

the life and death of groups by some local features including perimeters of the

empty regions (Chen and Chen, 1999) and by tactica! analysis and eye values

(Fotland, 2002); and static analysis by position evaluation (Miiller, 2002). The

application of combinatorial game theory to yose problems (Berlekamp and

Wolfe, 1994) is another theoretical result. Nakamura (2000, 2001) presented

basic approaches to the life-and-death problem, which included estimating the

number of eyes based on Euler's formula for connected planar graphs and

analysing capturing races by semeai graphs.

There are few papers that discuss the method of incremental computation in

computer Go so far. Most Go-playing programs seem to have some mechanism

for incremental computation. Klinger and Mechner (1996) and Bouzy (1997)

describe some methods for incremental updating of data in Go programs. These

Static Analysis by Incremental Computation in Go Programming 177

two publications contain elements of the basics of incremental computation

since they take into account the knowledge maintenance and backtracking.

Since the early program by Zobrist (1969), most Go programs, including

INDIGO (Bouzy, 1995), Go INTELLECT (Chen, 1989), HANDTALK (Chen,

2002), EXPLORER (Miiller, 2002), and JIMMY 5.0 (Yan and Hsu, 2001) em

ploy mechanisms for evaluating the inftuence of stones and determining terri

tories. An important feature of our electric charge model is the computation of

the potential distribution which is based on incremental computation. Another

feature is that some aspects of Go boards can be described in detail by potential

distributions.

This paper is organized as follows. In Section 2, we describe operations on

the set of intersections on the board, which are used for representing features

of pattern analysis as well as mathematical descriptions of incremental com

putation. Section 3 describes methods of recognizing blocks 'and groups based

on the set operations, and discusses a method of identifying the life and death

of a group enclosing a region by the numerica! features of the regions detined

by the set operations. Section 4 shows an improved method of estimating the

number of regions enclosed by the groups based on Euler's formula for planar

graphs. Section 5 outlines another approach of static analysis for recognizing

groups and tinding the inftuence of stones based on the electric charge model

and on incremental computation.

2. Set Operations and Incremental Computation

In this section, we detine several constants and some operations on the sets

of intersections. We show the relation of the operations with incremental com

putation. Our intention is not to use the sets of intersections and the operations

directly for the analysis, but to detine basic notions on Go boards and to use

incremental computation only for the parts that changed in every move.

2.1 Operations on Sets of Intersections

The Board is the set B = {(i,j) Jl ~ i,j ~ N} of intersections. In the

standard rule N is 19. A contiguration is represented by two disjoint sets B ~ B

and W ~ B of intersections occupied by black and white stones, respectively.

The intersections in B or W are called black or white stones, respectively. The

other elements of Board, B- B - W, are empty intersections. An intersection

(i,j) isadjacenttoanintersection (m, n), ifandonlyifJi-mJ+Jj-nJ = 1. An

intersection (i, j) is adjacent to a set S of intersections, if and only if (i, j) fj. S
and there is (m, n) E S such that (i, j) is adjacent to (m, n).

The board B and the empty set 0 are constants. Another constant is Edge D·
detined by

D ~ {(i,j)J i = l,i = N,j = 1 or j = N}.

178 K. Nakamura

1

1
! ,,. tr·nr

t±±~
w

(a) A configuration (b)B (c) W

E - -F -f--+-+--1-

(d) thicken(W) (e) exterior(W) (f) liberty(W, B)

Figure 1. An example of a configuration and the results of extended operations.

We have three types of operations: Boolean, shift, and extended operations.

The Boolean operations include union U, intersection n and set difference
<-

-. There are four shift operations. The operation Shift Left A is defined by

A~ {(i- l,j) 1 (i,j) EA, i 2: 2}. The value of A is the set ofintersections

which are shifted left from the intersections in A. The intersections on the left
--+

edge in A are eliminated. Other shift operations are: Shift Right A, Shift Down

Al and Shift Up A j; they are defined analogously.

For a set X, it holds that lXI is the number of elements inS. The following

extended operations are used for representing features of enclosed regions in

Subsection 3.3.

exterior(X) ~ {(i,j) 1 (i,j) is adjacent to X}

thicken(X) ~X U exterior(X)
/:;. --+

#adjacent(X) = jXn X 1 + IX n X li

Some examples of these operations are shown in Figure 1. We represent

a configuration (Figure 1(a)) by sets B (Figure 1(b)) and W (Figure 1(c)) of

black and white stones, respectively. The value of #adjacent(B) is 11, and

that of #adjacent(W) is 3.

2.2 Operations and Incremental Computation

Let Y be any set of stones of the same colour, and A be a set of one stone

of the same colour, such that Y n A = 0. Incremental computation of an

operation Op for Y U A means finding the result Op(Y U A) from the value

Static Analysis by Incremental Computation in Go Programming 179

Op(Y) and the operations on the neighbour intersections of A. The costs of

incremental computation are generally lower than those of a full computation,

since the change caused by adding a stone in A is restricted to the neighbour

intersections of this stone. The results of incremental computation for the basic

operations are as follows.

X U (Y U A)= (X U Y) U A

X n (Y U A) = (X n Y) U (X n A)

X- (Y U A)= (X- Y)- A

(Y U A)- X= (Y- X) U (A- X)
~ -> ->

YUA =Y U A

Incremental computation for other shift operations is defined· analogously. We

note that the rightmost terms in the equations represent the changes. We also

note that A - X = 0, if A c X, and otherwise A - X = A. The results of

the method for the extended operations are shown below, with ISI being the

number of elements in a set S.

thicken(Y U A) = thicken(Y) U thicken(A)

exterior(Y U A) = thicken(Y) U thicken(A) '_ (Y U A)

= (exterior(Y) -A) U (exterior(A) - Y)

#adjacent(Y U A)
-> ->

= I(Y uA) n (Y u A)l + I(YuA) n (Y l uAl)!

= #adjacent(Y) + IY n exterior(A)I

3. Static Analysis Based on Set Operations

In this section, we define blocks and groups, and discuss a method of deter

mining the life and death of a group that depends on the shape of the enclosed

region and on the positions of the opponent stones in the region. We imple

mented and tested most of the methods in Sections 3 and 4 in Prolog.

3.1 Blocks and Group

A connected set of intersections is defined by the following recursive rules.

1 A set of one intersection is connected.

2 For any set of T of intersections, if a subset S ~ T is connected, then

thicken(S) n T is connected.

We represent a board configuration by sets B and W of black and white

stones. The set E of empty intersections is given by E = B - B - W. A black
block is a connected set Bx ~ B such that thicken(Bx) n B = Bx. White

180 K. Nakamura

blocks are defined analogously. An empty region is a connected set Ex ~ E

such that thicken(Ex) n E = Ex.

A liberty, or dame, of a black (or white) block Bx (W x) is an empty inter

section in the exterior of the block. Hence we have

liberty(Bx, W) ~ exterior(Bx) nE= exterior(Bx)- W.

We note that every block has non-empty liberties, since any block without the

liberty is dead and removed from the board.

The configurati ou in Figure 1 (a) contains two black blocks, two white blocks

and three small empty regions. The inner black block has two liberties. The two

black blocks enclose the region of fi ve white stones and fi ve empty intersections.

A group is an important notion that is defined to be either a block or a union

of blocks of the same colour such that the blocks are "dynamically" connected,

i.e., the opponent cannot cut, or separate, the blocks. Although some groups,

such as blocks connected by kosumi (diagonal) relations, can be recognized

by static analysis, precise recognition needs dynamic analysis, as discussed

in Nakamura (2002), We call the group in this narrow sense the linked group,

which is a set of stones connected by adjacent-to or kosumi relations. In Section

5 it is shown that most of the groups in the broad sense are recognized by static

analysis based on the electric charge model.

A group is alive, if the opponent player cannot capture it, and dead otherwise.

Practically, a group is alive, if it has two eyes (i.e., small enclosed regions), it

can be changed to form two eyes or a seki, or the group side wins the capturing

race relating this group. There is a case where the life and death depends on a

ko in the group.

3.2 Life and Death of Groups Enclosing Regions

Following Berlekamp and Wolfe (1994) and Chen and Chen (1999), we

represent the types of enclosed regions related to the life and death of groups

by pairs { ai,B} of symbols, where a represents the state, if fue group side

moves next, and (3, if the opponent moves next. The symbol of the state is

either L, O, S, or K. Symbol L denotes that the group is alive in the sense

that the enclosed region can form two eyes, whereas S denotes that the group

enclosing the region can form a seki. Although the group is alive in the both

cases, we distinguish S from L, because the opponent group in the region is

also alive in the seki. Symbol O denotes that the region cannot be two eyes

but only one eye. Symbol K denotes that the region can be changed to have

a ko such that it can have two eyes, if the group side wins the ko, and one eye

otherwise. Possible combinations in this section are {LJL}, {LJS}, {LJO},

{SJO}, {OJO}, {LJK}, and {KJO}. In some cases, life anddeath depends on

the outer liberties of the group as well as the features of the region. Note that

{LJL} corresponds to 2.0 eyes, {LJO} 1.5 eyes, and {OJO} 1.0 eye in other

Static Analysis by Incremental Computation in Go Programming

Feature

size of region R

perimeter of R

num. of adjacent-to relations in X

max. neighbours in X

num. of opponent stones in R

max. liberties of one stone in B n R

total num. of opponent stones in R

num. of intersections in R on the edge

outer liberties of the group

Definition

IRI
1 exterior(R) 1

#adjacent(X)
max_neighbour(X)

IBnRI
maxJiberties(B n R)
exterior(R n B)

IRnDI
lliberty(W)I-IE n liberty(W)I

Table 1. Features for determining the life and death of a group enclosing a region.

181

publications (Chen and Chen, 1999; Fotland, 2002). Since we discuss only

the states of closed regions enclosed by groups and exclude the case where the

region contains an opponent group with two eyes, we do not use the symbols

for the states of half eyes or empty eyes.

Table 1 shows the list of features used for determining the life and death

of the groups. In this table, R denotes the region, i.e., the set of intersections

enclosed by a group, E the set of empty intersections, and B the set of opponent

stones. We assume that the white group encloses the region ~n the figures. This

table contains two features defined as follows.

max_neighbour(X) ~ rnax IX n exterior({p}) 1
pE X

max_liberties(X) ~ max lE n exterior({p}) 1
pEE

We tested this set of features for various pattems of the enclosed regions,

and found that the features are effective to identify the types of life and death

of the regions with the size of fi veto eight including those in the comers and

those containing opponent stones.

Chen and Chen (1999) have shown that the life and death of a group enclosing

an empty region R can be determined by the features, the perimeters of R, and

the existence of square ţţ , which is given by #adjacent(R) - IRI + 1 2 1

in our terminology. Another possible set of features for this recognition is IRI,
#adjacent(R), and max_neighbour(R). ·

Figure 2 shows typical empty regions in the comer with { LIK} or {LIS}, if

the groups have a few outer liberties. For example, the bent four in the comer

(a) is in {LIL }, ifthe white group bas two or more outer liberties, and {LIK}

otherwise. White can choose {LIK} or {LIS} in (e), if the outer liberties

are zero or one. These pattems can be identified by the features, the number

of intersections on the edge, the perimeters of R, and the number of squares,

#adjacent(R) - IRI + 1.

182 K. Nakamura

00

t228
(a) (b) (c) (d) (e)

Figure 2. Patterns of groups with {LIK} and/or {LIS} when the white groups have a few

outer liberties.

(a) (b) (c) (d) (e)

Pattern in Figure 3 (a) (b) (c) (d) (e)

num. of opponent stones 2 2 2 2 3 3 3

#adjacent(B n R) 1 1 o o 1 1 1

totalliberties of B n R 2 3 3 3 2 2 2

max. liberties of one stone 1 2 2 2 1 2 2

outer liberties - - >1 o - >1 o
Life and Death LIO OIO LIL LIS LIL LIL SIS

Figure 3. Regions with prisoners in size 5 enclosed by white groups.

Figure 3 shows examples of patterns of the enclosed regions containing two

or three opponent stones (prisoners). We can identify each of the patterns by

the five features in the table. Note that the groups enclosing the J?atterns (c) and

(e) are alive by squashing (oshitsubushi), if the group has one or more outer

liberties, otherwise the group is in seki.

A characteristic of our method is that the recognition is based on numerica!

features of the regions and groups, to which incremental computation can be ap

plied. The method does not use pattern matching as used in many Go programs,

which we consider inefficient and inappropriate for incremental computation.

The method shown in this section is only applicable to the groups enclos

ing closed regions. To analyse patterns with incompletely closed regions, or

patterns with half eyes or open eyes, severa! methods have been proposed such

as those by eye values and eye regions in Chen and Chen (1999) and Fotland

(2002) and by position evaluation in Chen (2002) . We are working on extend

ing our methodology so that it can be applied to incompletely closed regions or

loosely connected groups, e.g., those connected by bamboo joints.

Static Analysis by Incremental Computation in Go Programming

4. Finding the Number of Enclosed Regions Based on
Euler's Formula

183

The regions enclosed by groups are important for deciding the life and death

of the group, since the eyes are small enclosed regions and a group enclosing a

region can be alive as discussed in the previous section. Nakamura (2000, 2002)

proposed a method of using a formula to tind the number regions enclosed by

the groups. In this section, we show an improved method of tinding the number

of enclosed regions based on the method of incremental computation. The term

"group" in this section refers to the linked group.

For any connected planar graph, the number N of regions enclosed by edges,

or minimalloops, is given by Euler's formula N = n- k + 1, where n and k are

the numbers of edges and vertices, respectively. This formul~ has been applied

in computer graphics to tind the number of enclosed open regions in digital

tigures, which are represented by bit arrays (Gray, 1971). Euler's formula is

also applied in tinding "holes" in the game Lines of Action (LoA) (Winands,

Uiterwijk, and Van den Herik, 2001).

4.1 Application of Euler's Formula to Go

For the application ofEuler's formula to graphs to tind the number of enclosed

regions in Go, we consider each stone in a group as a vertex, and each "link"

between the stones as an edge. The link is either the "adjacent-to" relation or

the diagonal relation of two stones in the group.

6 ~ ~

#link(G) = #adjacent(G) + IG n GJ 1 + IG n GJ 1

It is remarked that we assume that every stone in a group is connected t6 at least

an other stone in the group by the link.

The group may contain closed loops of stones composed of three stones and

three links, e.g., ~· and le. To tind the number of enclbsed regions (or

the number of open loops), the number of the closed loops #closedJoop(G)

should be subtracted from the number of the minimalloops. The number of

regions enclosed by the group G, is given by

#empty_region(G) ~ #link(G) -IGI- #closedJoop(G) + 1.

A group may contain a closed loop of the form 11 , which contains two

diagonallinks. In this case, only one ofthe diagonallinks is valid, since Euler's

formula applies only to planar graphs. For example, the black group in Figure

4 has 16 links including 8 diagonallinks, 12 stones and 4 closed loop. The

number of enclosed regions is calculated as 16- 12- 4 + 1 = 1. When the

intersection A is occupied by a black stone, the numbers of links, stones and

184 K. Nakamura

(a) (b)

Figure 4. Black groups enclosing one region (a) and two regions (b).

(a)
earth

(b)

Figure 5. A group in the corner enclosing one region (a) and two regions (b).

closed loops increase by 3, 1 and 1, respectively, and the number of enclosed

regions changes to 19 - 13 - 5 + 1 = 2.

To apply this method to the groups in the peripherals and comers, we consider

that there are links between stones on the edge of the board and a special virtual

stone called earth as shown in Figure 5. To find the number ofthe virtuallinks,

we first assign the set of stones on the edge G n D to a variable X. The

number ofvirtuallinks is lXI, and the number of closed loops with the earth is
---+

IX n X li+ jXnx j. We say that the group G is earthed, if X =f 0. Since the

group in Figure 5 (a) has 11links including 3 virtuallinks, 8 stones including

earth and 3 closed loops, the number of open loops is N = 11 -, 8 - 3 + 1 = 1.

After placing a black stone atA, the number changes to N = 13-9-3 + 1 = 2.

4.2 Incremental Computation

For an effective incremental computation of the number of enclosed regions,

we consider the change in number caused by placing a stone on an empty

intersection p close to a black group G, i.e., there is a stone q E G such that

there is a link between p and q. For the intersection p = (i, j) not on the edge,

let C (p) be the circular sequence of eight neighbour states,

where each state Sx,y is empty, or a black or white stone around the intersection

p. The change in the number of regions caused by placing a black stone at p

Static Analysis by Incremental Computation in Go Programming 185

·; :r-~~ -6;6- tf-t
11.

tt 1 1 •!?--o- -o-
1 1

-b-0. -o-o-o- -o o- -o o-
1 1 1 1 1 1 1 1 1

(a) -1 (b) o (c) +1 (d) +1 (e) +2

Figure 6. Typiclil. patterns of neighbours and changes in the numbers of enclosed regions.

equals E(p) - 1, where E(p) is the number of the consecutive subsequences

in C (p) satisfying the following conditions.

1 Bach state is either empty ora white (opponent) stone.

2 Bach subsequence contains one or more elements in exterior({p}).

The fact that the change equals E(p) -1 is derived from E(p) = n'- 1- L',
where n' is the change in the number of links and L' is the change in the number

of the closed loops caused by adding the stone. Figure 6 shows typical state

patterns of neighbours and the increments of the number of regions enclosed

by a black group. The symbol o denotes either an empty ora white stone. Note

that for the intersection A in Figure 4 (a), the change is one, since E(A) = 2.

Note also that the intersections p with E(p) 2:: 2 are considered the vital points.

For the intersection p on the bottom edge, the number E(p) is defined as the

number of consecutive subsequence in the sequence,

The number E (p) is similarly defined for other edges with different directions,

for the corners, and for the white stones. The change in the number of regions

is E(p) - 1, if the group is earthed, and left and right neighbour intersections

are empty. Otherwise, the change in the number of regions is E(p) - ·2. Note

that since a stone is placed on the edge in this case, the group changes in being

earthed. Figure 7 shows typical patterns of neighbours and their changes in

the number of regions. The pattern (c) represents that the change is one, if the

group is earthed, and zero otherwise. Patterns (e) and (t) represent two cases

in the corner intersection. Since the point A in Figure 5 (a) matches the pattern

(c) and the group is earthed, the change in the number of regions is one.

4.3 Problems Related to Incremental Computation

The method shown in this section only provides the number of enclosed

regions, but no information on the position of the regions, which are necessary

for the analysis as performed in Section 3. A practica! method for determining

the position is using the potential distribution tobe described in Section 5.

Moreover, the enclosed regions counted by the method might include false

eyes. A false eye occurs, when two blocks are connected by two diagonal

links. Hence, a region with one empty intersection enclosed by two blocks is

186 K. Nakamura

·~·
' .• -o!! .o. •• -o-o

-b-P• -b- -o- -o-P-o-

(a) -1 (b) o (c) O or +1 (d) +1 Of +2

•• p -o-
<? •
p -o-

(e) O (f)O or +1

Figure 7. Typical patterns ofneighbours on the edge (a- d) and the corner (e, f).

gţg

868
Figure 8. Groups consisting of two blocks connected by diagonallinks.

not a false eye, if the blocks are connected by three or more diagonallinks and

virtuallinks (Figure 8). We can calculate the number of the connecting links

by subtracting the total number of diagonal links in the two blocks from the

number of diagonallinks and virtuallinks in the group. Note that this rule is also

effective for determining the life and death of the dragon with two heads, i.e., a

group with two blocks connected by two false eyes. Although the condition for

unconditionallife by Benson (1976) covers these groups, our rule is simpler

and appropriate for incremental computation.

Although most other enclosed regions can form one or two eyes as discussed

in Section 3, there is the case that a large enclosed region containing an opponent

group might form no eye andlor a seki. This problem can be solved by analysing

capturing races (Nakamura, 2001).

5. Static Analysis by Electric Charge Model

This section outlines how incremental computation is used in estimating

groups and territories based on the electric charge model. For a board config

uration, the potential of each intersection is defined as follows.

1 Bach stone distributes potential values 1/d to intersections around this

stone, where d is the Manhattan distance between the stone and the in

tersection. The potential of every intersection is the sum of the potential

values given by ali the stones nearby. The potential given by black stones

and that by white stones are separately calculated.

2 Stones close to the edges or the corners have their mirror images as shown

in Figure 9. Therefore, the intersections near the edges or the corners

have higher potential than intersections in the centre of the board.

Static Analysis by Incremental Computation in Go Programming

·'

-"
'-~-
-~-

~ -~-

~

Figure 9. An example of mirror images.

~~ =~ .. _L
'III!"

- -

- - - -7 -11--+-1-+-l--

- - - ~ - J -1-t--t-+--lr-

-' _,. -2-.t---1--t-r+-1-

~

-t--t--lr---+--1-· 2

-+-+-+--11-+--" ~ - ~ -~ - ~ -

Figure 10. Values added to distances in shadows.

187

3 A potential value of an intersection given by a stone' is reduced, if the

intersection is in the shadow of another stone. The distance dis increased

by the value shown in Figure 1 O in the calculation of the potential value.

We use two different types of potential distributions. One is the potential distri

bution reflecting only the shadows of the stones of the same colour and the other

is the potential distribution reflecting the shadows of ali stones. In Subsection

5.3 the latter type of distribution is used for recognizing groups. The first type

is intended to be used for estimating the strength of the groups, although the

use is not shown in this paper.

Figure 11 shows examples of potential distributions. Because of the mirror

images, the intersections in the corner have higher potentials as shown in Figure

11(c). In general, the potential of an intersection represents the degree to what

extent the intersection is surrounded by stones. The potential in an enclosed

region is approximately 4 to 6 as shown in Figure ll(b), and independent of

the size and the shape of the region or of the stones of the opponent.

5.1 Incremental Computation of Potentials

Because of the linear, additive nature of the potential, incremental compu

tation is generally simple, although mutual interactions of the shadows make

the computation more complex for the configurations with many stones. We

employ the following approximation method for computing a potential distri

bution.

188 K. Nakamura

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
-o.5-0.8-0.9-1.2-1.3-1.3-1.2-{).9-D.8-0.5--o .1-o. 2-{). 2-{). 2-{) .3-0. 2-{). 2-{). 2-{) .l-

I 1 1 1 1 1 1 1 1
-o. 2-{). 2-{) .2-{). 3-0.5-0.3-0. 2-{). 2-{). 2-

1 1 1 1 1 1 1 1 1
-o.2-D.2-D.3-0.5-l.o-o.5-0.3-0.2-{).2-

l 1 1 lo€)1 1 1 1
-o.2-D.3-0.5-l. 0.0 l.G-o.5-0.3-Q.2-

I 1 1 1 1 1 1 1
-o. 2-{). 2-{). 3-{). 5-1. o-o. 5-0 .3-{). 2-{). 2-

1 1 1 1 1 1 1 1 1
-o. 2-{). 2-{). 2-{). 3-0.5-0.3-0. 2-{). 2-{). 2-

1 1 1 1 1 1 1 1 1
-o .1-o. 2-{). 2-{). 2-{). 3-{). 2-{). 2-{). 2-{) .l-

I 1 1 1 1 1 1 1 1

(a) One stone in the center.

I 1 1 1 1 1 1 1 1 1
-o.6-0. 7-1.1-1.5-2.1-2.1-1.5-1.1-Q. 7-Q.6-
IIII~IIII

-o.7-Q.8-1.2-2. .5 .5 2.6-1.2-{).8-0.7-

111~ ~III -o.7-Q.9-l. 1.5 .5-4. 1.5 1.5-0.9-{).7-

lllwlll
-o. 7-{).8-1.2-2. 2.5 2.5 2.6-1.2-{).8-0. 7-

1 1 1 1 1 1 1 1
-o.6-0. 7-1.1-1.5-2.1-2.1-1.5-1.1-Q. 7-D.6-

I 1 1 1 1 1 1 1 1 1
-o.5-0.8-0.9-1.2-1.3-1.3-1.2-{).9-D.8-0.5-

I 1 1 1 1 1 1 1 1 1

(b) An enclosed region in the center.

-o.2-{).3-0.5-0.7-Q.8-l.l-1.2-1.4-1.7-1.4-i.2
1 1 1 1 1 1 1 1 1 1 1

-o.l-Q.4-Q.4-{). 7-D.9-1.3-1.2-1.4-2.Q-1.4-1.2
1 1 1 1 1 1 1 ls€)1 1

-o.3-0.3-0.5-0.6-l.Q-1.8-1.4-l. 1.0 1.8-1.4
11111~1 1 11

-o.2-D.3-0.4-Q. 7-1. 0.6 1. 7-1~-1.7-1.2-1.1
1 1 1 1 1 1 1 1 1 1

-o.2-D.2-D.3-0.4-Q. 7-1.3-1.1-Q. 9-1.0-D.B-0.8
1 1 1 1 1 1 1 1 1 1 1

-o.l-o.2-D.2-D.3-0.5-0.8-0.5-0. 7-o.s-o. 7-o.5
1 1 1 1 1 1 1 1 1 1 1

-o .1-{) .1-o .2-{). 2-{) .4-{). 5-0 .4-Q .4-Q. 6-0.5-0.5
1 1 1 1 1 1 1 1 1 1 1

(c) Two stones in the comer.

Figure 11. Examples of potential distribution.

1 We restrict the area to which the potential values from a stone are dis

tributed to the set D of intersections in such a way that the distance from

the stone to the other intersections is fewer than 8. The stones have their

mirror images, only if the distance between the stones and the edge is

fewer than 5.

2 Whenever a stone is placed on an intersection:

(a) the potential of every intersection in the area D is increased by

the value 1/ d, where d is the distance between the stone and the

intersection; and
(b) for each stone in the area D, the decrements by the effect of shad

ows are subtracted from the potentials of intersections in the two

symmetric shadows of the two stones.

Note that the potential at an intersection obtained by the computation method

above is slightly different from the one given by the definition in the previous

subsection, if the intersection is in double shadows. The errors by the approxi

mation, however, are negligible.

Static Analysis by Incremental Computation in Go Programming

T1meCms)

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

o 50 100 150 200 250
Number of stones

Figure 12. Computation time for potential distributions by computing the difference .

189

Figure 12 shows a graph of computation time of the potential distributions

for each move. For the experiment, we used a Pentium III processor with 1 G

Hz clock running a program written in C++. The computation results include

four potential distributions, i.e., those for two types of distributions for both

black and white stones. Although the time increases with the number of stones

while the number is fewer than approximately 50, the time is almost constant

otherwise.

5.2 Recognition of Groups and Territories by Potential

Distributions

Let B (i, j) be the potential of an intersection (i, j) given by black stones, and

W (i, j) by white stones. We use the potential distribution that has the effects of

shadows by both black and white stones. The procedure for recognizing black

groups is as follows.

1 First, select group points from a given configuration by the following

rules.

(a) The intersection occupied by a black stone is a black group point.

(b) An empty intersection is a black group point, if B(i,j) ~VI and

B(i,j)- W(i,j) ~ v2 , where VI and v2 are parameters.

The white group points are selected similarly. Based on many experi

ments, we determined the parameters as VI = 1.0, v2 = 0.55.

2 Determine connected sets of group points of the same colour (Note that

this process is similar to that for determining blocks). The set of stones in

each of the connected sets is a group. The connected set of group points

represents the influence range, or the territory, of the group.

190 K. Nakamura

Figure 13. An example of groups and their territories derived from potential distributions.

3 In some cases, groups connected by diagonal, or kosu,mi, relations are

not recognized only by the rules above. Hence, it is necessary to unify

these groups into one by finding stones with this relation.

By testing this method for various configurations in games by professional

players, we found that incremental computation can correctly recognize most

groups for the wide range of configurations with more than 20 stones. Figure

13 shows an example of groups in a game (Black: C. Chou and White: M.

Takemiya, 1994) evaluated by incremental computation. The dark gray areas

represent the white territories, and light gray areas the black territories.

It is generally not difficult to compute the difference in finding the groups,

since a group usually expands in each move and the changes of the group points

are restricted to intersections near to the point of the move. There is, however,

the case that a group is cut and separated by erroneous move(s) or ko threats.

This case will be investigated in future research.

5.3 Comparison with Other Approaches

Most Go programs employ some methods of evaluating inftuence of stones

and/or finding territories, including the potential distribution (Zobrist, 1969), the

5/21 algorithm (Bouzy, 1995), and the heuristic territory evaluation by Miiller

(2002). A feature of our approach is that each stone distributes the potential

of 1/ d to the neighbour intersections for the distance d. This methodology is

common to those in several Go programs including HANDTALK (Chen, 2002),

Go-INTELLECT (Chen, 1989), and JIMMY 5.0 (Yan and Hsu, 2001) in the

Static Analysis by Incremental Computation in Go Programming 191

sense that each stone distributes, or radiates, some inference values to neigh

bour intersections. In contrast, these programs employ different methods for

calculating the values except HANDTALK, in which the distribution of values

is similar to our distribution led by 1/d. For example, Go-INTELLECT uses

the exponential function (exp(-d)) instead of 1/d.

A unique feature of our method in addition to incremental computation is

that the inftuences of black stones and white stones are separately calculated.

This is different from most other programs, in which the inftuence values by

black (or white) stones are subtracted from those by white (black) stones to

form a single distribution of inftuence values.

Another unique feature of our method is that it uses the mirror images, the

shadows, and four kinds of potential distributions to describe some aspects of

Go boards in detail. By these features, the potential values of every intersection

in the board represent how strong other black and white stones surround the

intersection. Note that this property is based on the potential given by 1/d and

the mirror images.

6. Concluding Remarks

In this paper, we discussed static analysis based on incr~mental computa

tion to be used in the static analysis in Go programming. The main questions

were: (1) how the incremental computation can be applied to the static analysis,

(2) how much does the computation speed increase by incremental computa

tion, and (3) what sort of analysis is suitable or unsuitable for incremental

computation? We showed applications of our method to static analysis in Go

programming, including:

• identifying the life and death of a group enclosing a region by numerica!

features, which are described by the operations on sets of intersections;
• finding the number of regions enclosed by a group based on Euler's

Formula; and

• estimation of groups and territories by potential distributions based on

the electric charge model.

The analysis methods are based on numerica! features or values, and not on

pattern matching. Most notions in the static analysis and incremental com

putation are mathematically defined by the !Jperations on sets of intersections.

We showed that incremental computation can be used for the operations in the

analysis. ·

The author and his colleagues are implementing the methods described above

in a Go-playing program in Prolog and C++. There is stiH some work tobe

done before we can satisfactorily answer the questions above. Future problems

include:

• finding numerica! features effective for identifying alive-and-dead pat

tems of loosely connected groups, especially those in the comers;

192 K. Nakamura

• developing a method of acquiring a broad class of alive-and-dead patterns

and making a database efficiently; and

• developing faster algorithms for the analysis, especially for incremental

computation of the potential distributions.

Acknowledgements

The author would like to thank the anonymous referees for their helpful

comments. He also would like to thank Shuhei Kitoma, Tomomi Miyashita,

Hiroyuki Otsuka, and Ayumi Kondo for their help in implementing the ideas

and preparing the manuscript.

References

Benson, D.B. (1976). Life in the Game of Go. lrifonnation Sciences, Voi. 10, pp. 17-29.

Berlekamp, E. and Wolfe, D. (1994). Mathematical Go- Chilling Gets the Last Point. A. K.

Peters, Ltd.

Bouzy, B. (1995). Modelisation Cognitive du Joueur de Go. Ph.D. Thesis, Universite Paris, Paris.

Bouzy, B. (1997). Incremental Updating of Objects in Indigo. Fourth Game Programming Work

shop,IIakone,Japan,pp. 179-188.

Chen, K. (1989). Group Identification in Computer Go. Heuristic Progr~mming in Artificial

Intelligence, D. Levy and D. Beai (eds.), pp. 195-210. Ellis IIorwood, Chichester, UK.

Chen, K. and Chen, Z.(1999). Static Analysis of Life and Death in the Game of Go. Information

Sciences, Voi. 121, pp. 113-134.

Chen, Z. (2002). Semi-Empirical Quantitative Theory of Go- Part 1: Estimation of the Influence

of a Wall. ICGA Journal, Voi. 25, No. 4, pp. 211-218.

Fotland, D. (2002). Static Analysis in THE MANY FACES OF Go. ICGA Journal, Voi. 25,

No. 4, pp. 203-210.

Gray, S.B. (1971). Local Properties of Binary Images in Two Dimensions. IEEE Transactions

on Computers, Voi. C-20, No. 5, pp. 551-561.

Klinger, K. and Mechner, D. (1996). An Architecture for Computer Go, http://www.cns.nyu.edu/

-mechner/compgo/acg/.

Miiller, M. (2002). Position Evaluation in Computer Go, ICGA Journal Voi. 25, No. 4, pp.

219-228.

Nakamura, K. and Kitoma S. (2002). Analyzing Go Board Pattems Based on Numerica! Features.

Journal of IPSJ, Voi. 43, No. 10, pp. 3021-3029 (in Japanese).

Nakamura, K. (2001). Analyzing Capturing Races and Seki Situations. Advances in Computer

Games 9, II.J. van den IIerik and II. lida (eds.), pp. 295-311.

Nakamura, K. (2000). Graph-Theoretic Analyses of Go Board Phases. Games in AI Research

II.J. van den IIerik and II. lida (eds.), pp. 239-250.

Sanechika, N. (1988). Methods in Go System Go SEDAI. ICOT TM-0618 (in Japanese).

Winands, M.II.M., Uiterwijk, J.W.II.M., and van den IIerik, II.J. (2001). The Quad IIeuristic in

Lines of Action. ICGA Journal, Voi. 24, No. 1, pp. 3-15.

Yan, S.-J. and IIsu, S.-C. (2001). A Positional Judgment System for Computer Go. Advances in

Computer Games 9, II.J. van den IIerik and II. lida (eds.), pp. 313-326.

Zobrist, A.L. (1969). A Model of Visual Organization for the Game of Go. Proceedings ofthe

AFIPS Spring Joint Computer Coriference, Voi. 34, pp. 103-112.

